JP6112384B2 - Electrode forming glass and electrode forming material using the same - Google Patents

Electrode forming glass and electrode forming material using the same Download PDF

Info

Publication number
JP6112384B2
JP6112384B2 JP2012169507A JP2012169507A JP6112384B2 JP 6112384 B2 JP6112384 B2 JP 6112384B2 JP 2012169507 A JP2012169507 A JP 2012169507A JP 2012169507 A JP2012169507 A JP 2012169507A JP 6112384 B2 JP6112384 B2 JP 6112384B2
Authority
JP
Japan
Prior art keywords
glass
electrode
content
electrode forming
forming material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012169507A
Other languages
Japanese (ja)
Other versions
JP2014028713A (en
Inventor
石原 健太郎
健太郎 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2012169507A priority Critical patent/JP6112384B2/en
Publication of JP2014028713A publication Critical patent/JP2014028713A/en
Application granted granted Critical
Publication of JP6112384B2 publication Critical patent/JP6112384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Glass Compositions (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、シリコン太陽電池(単結晶シリコン太陽電池、多結晶シリコン太陽電池を含む)に用いる電極形成用ガラス及び電極形成材料に関する。   The present invention relates to an electrode-forming glass and an electrode-forming material used for silicon solar cells (including single crystal silicon solar cells and polycrystalline silicon solar cells).

シリコン太陽電池は、半導体基板、受光面電極、裏面電極、反射防止膜を備えており、半導体基板は、p型半導体層とn型半導体層を有している。受光面電極と裏面電極は、電極形成材料(金属粉末と、ガラス粉末と、ビークルとを含む)を焼結させることにより形成される。一般的に、受光面電極にはAg粉末、裏面電極にはAl粉末が使用される。反射防止膜は、窒化ケイ素膜、酸化シリコン膜、酸化チタン膜、酸化アルミニウム膜等が使用されており、現在では、主に窒化ケイ素膜が使用されている。   The silicon solar cell includes a semiconductor substrate, a light-receiving surface electrode, a back electrode, and an antireflection film, and the semiconductor substrate has a p-type semiconductor layer and an n-type semiconductor layer. The light-receiving surface electrode and the back electrode are formed by sintering an electrode forming material (including metal powder, glass powder, and vehicle). Generally, Ag powder is used for the light receiving surface electrode and Al powder is used for the back electrode. As the antireflection film, a silicon nitride film, a silicon oxide film, a titanium oxide film, an aluminum oxide film, or the like is used. Currently, a silicon nitride film is mainly used.

シリコン太陽電池に受光面電極を形成する方法には、蒸着法、めっき法、印刷法等があるが、最近では、印刷法が主流になっている。印刷法は、スクリーン印刷により、電極形成材料を反射防止膜等の上に塗布した後、650〜950℃で短時間焼成し、受光面電極を形成する方法である。   Methods for forming a light-receiving surface electrode on a silicon solar cell include a vapor deposition method, a plating method, a printing method, and the like, but recently, a printing method has become mainstream. The printing method is a method of forming a light-receiving surface electrode by applying an electrode forming material on an antireflection film or the like by screen printing and then baking it at 650 to 950 ° C. for a short time.

印刷法の場合、焼成時に電極形成材料が反射防止膜を貫通する現象が利用される。この現象は、一般的にファイアスルーと称されている。この現象により受光面電極と半導体層が電気的に接続される。ファイアスルーを利用すれば、受光面電極の形成に際し、反射防止膜のエッチングが不要になると共に、反射防止膜のエッチングと電極パターンの位置合わせが不要になり、シリコン太陽電池の生産効率が飛躍的に向上する。   In the case of the printing method, a phenomenon in which the electrode forming material penetrates the antireflection film during firing is used. This phenomenon is generally called fire-through. Due to this phenomenon, the light receiving surface electrode and the semiconductor layer are electrically connected. Using fire-through eliminates the need to etch the antireflection film and eliminates the need to etch the antireflection film and align the electrode pattern when forming the light-receiving surface electrode, dramatically improving the production efficiency of silicon solar cells. To improve.

電極形成材料が反射防止膜を貫通する度合(以下、ファイアスルー性)は、電極形成材料の組成、焼成条件で変動し、特にガラス粉末のガラス組成の影響が最も大きい。これは、ファイアスルーが、主にガラス粉末が金属粉末を溶かし、その溶解物が反射防止膜を侵食することにより生じると考えられている。また、シリコン太陽電池の光電変換効率は、電極形成材料のファイアスルー性と相関がある。ファイアスルー性が不十分であると、シリコン太陽電池の光電変換効率が低下し、シリコン太陽電池の基本性能が低下する。   The degree to which the electrode-forming material penetrates the antireflection film (hereinafter referred to as fire-through property) varies depending on the composition of the electrode-forming material and the firing conditions, and is particularly affected by the glass composition of the glass powder. This is considered to be caused by the fact that the fire-through is mainly caused by the glass powder dissolving the metal powder and the dissolved material eroding the antireflection film. Moreover, the photoelectric conversion efficiency of a silicon solar cell has a correlation with the fire-through property of the electrode forming material. If the fire-through property is insufficient, the photoelectric conversion efficiency of the silicon solar cell is lowered, and the basic performance of the silicon solar cell is lowered.

特開2004−87951号公報JP 2004-87951 A 特開2005−56875号公報JP 2005-56875 A 特表2008−527698号公報Special table 2008-527698

鉛系ガラスは、他のガラス系に比べて、ファイアスルー性を高める効果が大きいが、このような鉛系ガラスを用いても、ファイアスルーの際に、シリコン太陽電池の光電変換効率を低下させる不具合が発生する場合があった。   Lead-based glass has a greater effect of improving fire-through performance than other glass-based glasses, but even when such lead-based glass is used, the photoelectric conversion efficiency of the silicon solar cell is reduced during fire-through. There was a case where a problem occurred.

この不具合の原因として、ファイアスルーの際に、鉛系ガラス粉末に含まれる特定の成分により、半導体層中に異種層が形成されることが考えられる。   As a cause of this problem, it is considered that a different layer is formed in the semiconductor layer due to a specific component contained in the lead-based glass powder at the time of fire-through.

更に、ファイアスルーの際に、鉛系ガラスが金属粉末を溶かし過ぎて、その溶解物が、反射防止膜だけでなく、n型半導体層を侵食することも考えられる。近年、n型半導体層は、薄くなる傾向があるが、n型半導体層が薄くなる程、溶解物による侵食のリスクが顕在化する。   Furthermore, it is conceivable that the lead-based glass melts the metal powder too much during fire-through, and the melted material erodes not only the antireflection film but also the n-type semiconductor layer. In recent years, the n-type semiconductor layer tends to be thin, but the risk of erosion by the dissolved material becomes more apparent as the n-type semiconductor layer becomes thinner.

そこで、本発明は、ファイアスルー性を高める効果が大きいと共に、半導体層中に異種層を形成させ難く、しかもn型半導体層を侵食させ難い鉛系ガラスを創案することにより、シリコン太陽電池の光電変換効率を高めることを技術的課題とする。   Therefore, the present invention has a great effect of improving the fire-through property, and it is difficult to form a heterogeneous layer in the semiconductor layer and to erode the n-type semiconductor layer. Increasing conversion efficiency is a technical issue.

本発明者は、鋭意検討の結果、鉛系ガラスのガラス組成を所定範囲に規制し、これを電極形成用ガラスに用いることにより、上記技術的課題を解決できることを見出し、本発明として、提案するものである。すなわち、本発明の電極形成用ガラスは、ガラス組成として、質量%で、PbO 70〜95%、B 0〜1%、SiO+Al 1〜18%、Al 0.1〜15%、TeO 0.1〜30%を含有し、質量比PbO/SiO が5以上、質量比PbO/(SiO +Al )が5以上、質量比B /PbOが0〜0.01であり、シリコン太陽電池に用いることを特徴とする。ここで、「SiO+Al」は、SiOとAlの合量である。 As a result of intensive studies, the present inventors have found that the above technical problem can be solved by restricting the glass composition of lead-based glass to a predetermined range and using it for glass for electrode formation, and propose as the present invention. Is. That is, the glass for electrode formation according to the present invention has, as a glass composition, mass%, PbO 70 to 95%, B 2 O 3 0 to 1%, SiO 2 + Al 2 O 3 1 to 18 %, Al 2 O 3 0. 0.1 to 15%, TeO 2 0.1 to 30%, the mass ratio PbO / SiO 2 is 5 or more, the mass ratio PbO / (SiO 2 + Al 2 O 3 ) is 5 or more, and the mass ratio B 2 O 3 / PbO is 0 to 0.01, and is used for a silicon solar cell. Here, “SiO 2 + Al 2 O 3 ” is the total amount of SiO 2 and Al 2 O 3 .

本発明の電極形成用ガラスでは、PbOの含有量が70質量%以上に規制されている。このようにすれば、ファイアスルー性が向上すると共に、軟化点が低下して、低温で電極形成材料の焼結が可能になる。なお、低温で電極を形成すれば、シリコン太陽電池の生産性が向上し、また半導体基板の結晶粒界の水素が放出され難くなり、シリコン太陽電池の光電変換効率が向上する。一方、本発明の電極形成用ガラスでは、PbOの含有量が95質量%以下に規制されている。このようにすれば、ガラス骨格成分の欠乏による耐失透性の低下に起因して、金属粉末の溶解性が低下したり、電極形成材料の焼結性が低下する事態を防止することができる。 In the electrode forming glass of the present invention, the PbO content is regulated to 70 % by mass or more. In this way, the fire-through property is improved, the softening point is lowered, and the electrode forming material can be sintered at a low temperature. Note that if the electrode is formed at a low temperature, the productivity of the silicon solar cell is improved, and hydrogen at the crystal grain boundary of the semiconductor substrate is hardly released, so that the photoelectric conversion efficiency of the silicon solar cell is improved. On the other hand, in the electrode forming glass of the present invention, the content of PbO is regulated to 95% by mass or less. In this way, it is possible to prevent a situation in which the solubility of the metal powder is reduced or the sinterability of the electrode forming material is reduced due to the decrease in devitrification resistance due to the lack of the glass skeleton component. .

また、本発明の電極形成用ガラスでは、Bの含有量が質量%以下に規制されている。本発明者は、鋭意検討の結果、ガラス組成中のBが、ファイアスルーの際にシリコン太陽電池の光電変換効率を低下させる原因であること、特にこのBがファイアスルーの際に半導体層中にホウ素含有異種層を形成させて、半導体基板の半導体層の機能を低下させることを見出すと共に、ガラス組成中のBの含有量を規制すれば、このような不具合を抑制し得ることを見出した。また、Bの含有量を規制すれば、軟化点が低下して、低温で電極形成材料の焼結が可能になると共に、耐水性が向上するため、シリコン太陽電池の長期信頼性も高めることができる。 Further, in the electrode forming glass of the present invention, the content of B 2 O 3 it is restricted to less than 1 wt%. The present inventors have conducted extensive studies results, the B 2 O 3 in the glass composition, it is responsible for lowering the photoelectric conversion efficiency of the silicon solar cell during fire through, in particular the B 2 O 3 is fire through to form a boron-containing heterogeneous layer on the semiconductor layer, when, along with finding that reducing the function of the semiconductor layer of the semiconductor substrate, if the content of B 2 O 3 in the glass composition Seisure regulations, like this It has been found that defects can be suppressed. Further, if the content of B 2 O 3 Seisure regulations, softening point decreases, it becomes possible to sinter the electrode forming material at a low temperature, for improving the water resistance, long-term reliability of the silicon solar cell Can also be increased.

一方、ガラス組成中のBの含有量を質量%以下に規制すれば、焼成時にガラスが失透し易くなり、この失透に起因して、電極形成材料の焼結性が低下し、また金属粉末の溶解性が乏しくなる。そこで、本発明の電極形成材料では、SiO+Alの含有量が1質量%以上に規制して、ガラス粉末の耐失透性を高めている。一方、本発明の電極形成用ガラスでは、SiO+Alの含有量が30質量%以下に規制されている。このようにすれば、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなる事態を防止し易くなる。 On the other hand, if the content of B 2 O 3 in the glass composition is regulated to 1 % by mass or less, the glass is easily devitrified during firing, and the sinterability of the electrode forming material is reduced due to this devitrification. In addition, the solubility of the metal powder becomes poor. Therefore, in the electrode forming material of the present invention, the content of SiO 2 + Al 2 O 3 is regulated to 1% by mass or more to improve the devitrification resistance of the glass powder. On the other hand, in the glass for electrode formation of the present invention, the content of SiO 2 + Al 2 O 3 is regulated to 30% by mass or less. In this way, it becomes easy to prevent a situation where the softening point becomes too high and it becomes difficult to sinter the electrode forming material at a low temperature.

更に、本発明の電極形成用ガラスでは、TeOの含有量が0.1〜30質量%に規制されている。本発明者は、鋭意検討の結果、ガラス組成中にTeOを所定量添加すれば、ガラス粉末が金属粉末を良好に溶かし、その溶解物が、良好なファイアスルー性を示すが、n型半導体層を侵食し難いことを見出した。この現象のメカニズムは不明であるが、本発明者は、ガラス組成中にTeOを添加すると、ガラス粉末が金属粉末を良好に溶かし、その溶解物が反射防止膜を貫通した後に、TeOと種々の成分の相互作用により、ガラスの結晶性が促進されて、溶解物とn型半導体層の反応性が抑制されると推定している。一方、本発明の電極形成用ガラスでは、TeOの含有量が30質量%以下に規制されている。このようにすれば、バッチコストの高騰を防止し易くなる。 Furthermore, in the electrode forming glass of the present invention, the content of TeO 2 is regulated to 0.1 to 30% by mass. As a result of intensive studies, the inventor has added a predetermined amount of TeO 2 in the glass composition, so that the glass powder dissolves the metal powder well, and the melt exhibits good fire-through properties. I found it difficult to erode the layer. Although the mechanism of this phenomenon is unclear, when the present inventor added TeO 2 in the glass composition, the glass powder dissolved the metal powder well, and after the melt penetrated the antireflection film, TeO 2 and It is presumed that the interaction between various components promotes the crystallinity of the glass and suppresses the reactivity between the melt and the n-type semiconductor layer. On the other hand, in the electrode forming glass of the present invention, the content of TeO 2 is regulated to 30% by mass or less. If it does in this way, it will become easy to prevent an increase in batch cost.

発明の電極形成用ガラスは、Bの含有量が0.5質量%以下であることが好ましい。 In the electrode forming glass of the present invention, the content of B 2 O 3 is preferably 0.5 % by mass or less.

発明の電極形成用ガラスは、SiOの含有量が0.1〜18質量%であることが好ましい。 The electrode-forming glass of the present invention preferably has a SiO 2 content of 0.1 to 18% by mass.

発明の電極形成用ガラスは、Alの含有量が質量%であることが好ましい。 In the electrode forming glass of the present invention, the content of Al 2 O 3 is preferably 1 to 5 % by mass.

発明の電極形成用ガラスは、実質的にBを含有しないことが好ましい。 It is preferable that the electrode forming glass of the present invention does not substantially contain B 2 O 3 .

発明の電極形成材料は、上記の電極形成用ガラスからなるガラス粉末と、金属粉末と、ビークルとを含むことを特徴とする。このようにすれば、印刷法により、電極パターンを形成し得るため、シリコン太陽電池の生産効率を高めることができる。ここで、「ビークル」は、一般的に、有機溶媒中に樹脂を溶解させたものを指すが、本発明では、樹脂を含有せず、高粘性の有機溶媒(例えば、イソトリデシルアルコール等の高級アルコール)のみで構成される態様を含む。 The electrode forming material of the present invention is characterized by including glass powder made of the above-mentioned electrode forming glass, metal powder, and a vehicle. If it does in this way, since an electrode pattern can be formed with a printing method, the production efficiency of a silicon solar cell can be improved. Here, “vehicle” generally refers to a resin dissolved in an organic solvent. However, in the present invention, the resin does not contain a high-viscosity organic solvent (for example, isotridecyl alcohol or the like). The aspect comprised only with a higher alcohol).

発明の電極形成材料は、ガラス粉末の平均粒子径D50が5μm未満であることが好ましい。このようにすれば、ファイアスルー性が向上すると共に、ガラス粉末の軟化点が低下して、低温で電極形成材料を焼結可能になり、更には電極パターンを高精細化することができる。なお、電極パターンを高精細化すれば、太陽光の入射量等が増加して、シリコン太陽電池の光電変換効率が向上する。ここで、「平均粒子径D50」は、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒子径を表す。 Electrode forming material of the present invention preferably has an average particle diameter D 50 of the glass powder is less than 5 [mu] m. In this way, the fire-through property is improved, the softening point of the glass powder is lowered, the electrode forming material can be sintered at a low temperature, and the electrode pattern can be further refined. If the electrode pattern is made highly precise, the amount of incident sunlight and the like increase, and the photoelectric conversion efficiency of the silicon solar cell is improved. Here, the “average particle diameter D 50 ” represents a particle diameter in which the accumulated amount is 50% cumulative from the smaller particle in the volume-based cumulative particle size distribution curve measured by the laser diffraction method.

発明の電極形成材料は、ガラス粉末の軟化点が580℃以下であることが好ましい。なお、軟化点は、マクロ型示差熱分析(DTA)装置で測定可能である。マクロ型DTAで軟化点を測定する場合、室温から測定を開始し、昇温速度を10℃/分とすればよい。なお、マクロ型DTAにおいて、軟化点は、図1に示す第四屈曲点(Ts)に相当する。 As for the electrode forming material of this invention, it is preferable that the softening point of glass powder is 580 degrees C or less. The softening point can be measured with a macro type differential thermal analysis (DTA) apparatus. When measuring the softening point with a macro-type DTA, the measurement may be started from room temperature and the rate of temperature increase may be 10 ° C./min. In the macro DTA, the softening point corresponds to the fourth bending point (Ts) shown in FIG.

発明の電極形成材料は、ガラス粉末の含有量が0.2〜10質量%であることが好ましい。このようにすれば、電極形成材料の焼結性を維持した上で、電極の導電性を高めることができる。 The electrode forming material of the present invention preferably has a glass powder content of 0.2 to 10% by mass. In this way, the conductivity of the electrode can be increased while maintaining the sinterability of the electrode forming material.

発明の電極形成材料は、金属粉末がAg又はその合金であることが好ましい。本発明に係るガラス粉末は、ガラス組成が所定範囲に規制されているため、Ag又はその合金粉末の溶解性が良好であり、更にAg又はその合金粉末と混合して、焼成しても、ガラス中に発泡が生じ難い性質を有している。 In the electrode forming material of the present invention, the metal powder is preferably Ag or an alloy thereof. Since the glass composition according to the present invention has a glass composition regulated within a predetermined range, the solubility of Ag or its alloy powder is good, and even if mixed with Ag or its alloy powder and fired, the glass powder It has the property that foaming is difficult to occur inside.

マクロ型DTAで測定した際の軟化点Tsを示す模式図である。なお、図中のTgは、ガラス転移点を示している。It is a schematic diagram which shows the softening point Ts at the time of measuring with macro type | mold DTA. In addition, Tg in a figure has shown the glass transition point.

本発明の電極形成用ガラスにおいて、上記のように各成分の含有範囲を限定した理由を以下に説明する。なお、ガラス組成に関する説明において、%表示は質量%を指す。   In the electrode forming glass of the present invention, the reason for limiting the content range of each component as described above will be described below. In addition, in description regarding a glass composition,% display points out the mass%.

PbOは、ファイアスルー性を高める成分であると共に、軟化点を低下させる成分であり、その含有量は70〜95%、好ましくは70〜92%、より好ましくは72〜89%、更に好ましくは77〜87%である。PbOの含有量が少な過ぎると、ファイアスルー性が低下することに加えて、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなる。一方、PbOの含有量が多過ぎると、ガラス骨格成分の欠乏に起因して、焼成時にガラスが失透し易くなり、この失透に起因して、電極形成材料の焼結性が低下し易くなり、また金属粉末の溶解性が乏しくなる。 PbO is a component that increases the fire-through property and lowers the softening point, and its content is 70 to 95%, preferably 70 to 92%, more preferably 72 to 89%, and still more preferably 77. ~ 87%. If the PbO content is too small, the fire-through property is lowered, and the softening point is too high, making it difficult to sinter the electrode forming material at a low temperature. On the other hand, if the PbO content is too high, the glass tends to devitrify during firing due to the lack of glass skeleton components, and the sinterability of the electrode-forming material tends to decrease due to this devitrification. Further, the solubility of the metal powder becomes poor.

は、ガラス形成成分であるが、ファイアスルーの際にシリコン太陽電池の光電変換効率を低下させる成分であり、その含有量は%以下であり、好ましくは1%未満、0.5%以下、特に0.3%以下であり、実質的に含有しないことが望ましい。ここで、「実質的にBを含有しない」とは、ガラス組成中のBの含有量が0.1%未満の場合を指す。Bの含有量が多過ぎると、ファイアスルーの際に半導体層にホウ素がドープされることにより、ホウ素含有異種層が形成されて、半導体基板の半導体層の機能が低下し易くなり、結果として、シリコン太陽電池の光電変換効率が低下し易くなる。また、Bの含有量が多過ぎると、ガラスの粘性が高くなる傾向があり、低温で電極形成材料を焼結し難くなることに加えて、耐水性が低下し易くなって、シリコン太陽電池の長期信頼性が低下し易くなる。なお、耐失透性向上の観点から、Bを0.1%以上添加した方が良い場合もある。 Although B 2 O 3 is a glass forming component, it is a component that lowers the photoelectric conversion efficiency of the silicon solar cell during the fire-through, and its content is 1 % or less, preferably less than 1 %, preferably 0.2%. It is preferably 5% or less, particularly 0.3% or less, and substantially not contained. Here, “substantially does not contain B 2 O 3 ” refers to the case where the content of B 2 O 3 in the glass composition is less than 0.1%. When the content of B 2 O 3 is too large, boron is doped into the semiconductor layer at the time of fire-through, so that a boron-containing heterogeneous layer is formed, and the function of the semiconductor layer of the semiconductor substrate is likely to deteriorate, As a result, the photoelectric conversion efficiency of the silicon solar cell tends to decrease. Further, when the content of B 2 O 3 is too large, there is a tendency that the viscosity of the glass is high, in addition to being difficult to sinter the electrode forming material at a low temperature, water resistance becomes liable to lower, silicon Long-term reliability of the solar cell is likely to decrease. In view of the devitrification resistance improvement, it may a B 2 O 3 is better with the addition of 0.1% or more.

SiO+Alは、ガラス骨格成分であり、また半導体基板と電極の接着強度を高める成分であり、その含有量は1〜18%であり、好ましくは2〜18%、3〜18%、特に7〜15%である。SiO+Alの含有量が少な過ぎると、上記効果を享受し難くなる。一方、SiO+Alの含有量が多過ぎると、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなる。 SiO 2 + Al 2 O 3 is a glass skeleton component and a component that increases the adhesive strength between the semiconductor substrate and the electrode, and its content is 1 to 18 %, preferably 2 to 18 %, preferably 3 to 18 %. In particular, it is 7 to 15%. When the content of SiO 2 + Al 2 O 3 is too small, it becomes difficult to enjoy the above-mentioned effects. On the other hand, if the content of SiO 2 + Al 2 O 3 is too large, the softening point becomes too high and it becomes difficult to sinter the electrode forming material at a low temperature.

ファイアスルー性を高めるためには、ガラス組成中にPbOを多量に添加する必要があるが、PbOの含有量を増加させると、ガラスネットワークの欠乏により、焼成時にガラスが失透し易くなり、この失透に起因して、金属粉末の溶解性が乏しくなる。特に、PbOの含有量が80%以上になると、その傾向が顕著になる。そこで、ガラス組成中にSiO+Alを適量添加すれば、PbOの含有量が80%以上であっても、ガラスの失透を抑制することができる。 In order to increase the fire-through property, it is necessary to add a large amount of PbO in the glass composition. However, if the PbO content is increased, the glass tends to devitrify during firing due to the lack of the glass network. Due to devitrification, the solubility of the metal powder becomes poor. In particular, when the PbO content is 80% or more, the tendency becomes remarkable. Therefore, if an appropriate amount of SiO 2 + Al 2 O 3 is added to the glass composition, devitrification of the glass can be suppressed even if the PbO content is 80% or more.

SiOは、ガラス骨格成分であり、また半導体基板と電極の接着強度を高める成分である。SiOの含有量は、好ましくは0〜18%、0.1〜18%、1〜15%、特に2〜15%である。SiOの含有量が少な過ぎると、上記効果を享受し難くなる。一方、SiOの含有量が多過ぎると、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなる。 SiO 2 is a glass skeleton component and is a component that increases the adhesive strength between the semiconductor substrate and the electrode. The content of SiO 2 is preferably 0 to 18 %, 0.1 to 18 %, 1 to 15%, in particular 2 to 15%. When the content of SiO 2 is too small, it becomes difficult to enjoy the above-mentioned effects. On the other hand, when the content of SiO 2 is too large, the softening point becomes too high, and it becomes difficult to sinter the electrode forming material at a low temperature.

Alは、ガラスネットワークを安定化する成分であり、またシリコン太陽電池の光電変換効率を高める成分である。Alの含有量は、好ましくは0.1〜15%、0.1〜10%未満、0.5〜9%、特に1〜5%である。Alの含有量が少な過ぎると、上記効果を享受し難くなる。一方、Alの含有量が多過ぎると、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなる。なお、Alの添加により、シリコン太陽電池の光電変換効率が向上する理由は不明である。本発明者は、現時点では、Alを添加すると、ファイアスルーの際に半導体層中に異種層が形成され難くなると推定している。 Al 2 O 3 is a component that stabilizes the glass network, and is a component that increases the photoelectric conversion efficiency of the silicon solar cell. The content of Al 2 O 3 is preferably 0.1 to 15%, less than 0.1 to 10%, 0.5 to 9%, particularly 1 to 5%. When the content of Al 2 O 3 is too small, it becomes difficult to enjoy the above-mentioned effects. On the other hand, when the content of Al 2 O 3 is too large, too high softening point, difficult to sinter the electrode forming material at a low temperature. The reason why the photoelectric conversion efficiency of the silicon solar cell is improved by the addition of Al 2 O 3 is unknown. The present inventor currently estimates that adding Al 2 O 3 makes it difficult to form a heterogeneous layer in the semiconductor layer during fire-through.

TeOは、ファイアスルー性を損なうことなく、n型半導体層の侵食を抑制する成分である。TeOの含有量は0.1〜30%であり、好ましくは1〜25%、3〜20%、特に5〜15%である。TeOの含有量が少な過ぎると、上記効果を享受し難くなる。一方、TeOの含有量が多過ぎると、バッチコストが高騰し易くなる。 TeO 2 is a component that suppresses erosion of the n-type semiconductor layer without impairing the fire-through property. The content of TeO 2 is 0.1 to 30%, preferably 1 to 25%, 3 to 20%, particularly 5 to 15%. When the content of TeO 2 is too small, it becomes difficult to enjoy the above-mentioned effects. On the other hand, when the content of TeO 2 is too large, batch cost is likely to rise.

質量比PbO/SiO は5以上であり、好ましくは6以上、6〜20、7〜20、7.6〜20、7.9〜15、8.0〜12、特に8.1〜10である。このようにすれば、軟化点の上昇を抑制しつつ、ファイアスルー性を的確に高めることができる。 Mass ratio PbO / SiO 2 is 5 or more, preferably 6 or more, 6~20,7~20,7.6~20,7.9~15,8.0~12, especially in 8.1 to 10 is there. If it does in this way, fire-through property can be improved exactly, suppressing a raise of a softening point.

質量比PbO/(SiO+Alは5以上であり、好ましくは6以上、6.2以上、6.4以上、特に6.42〜15である。このようにすれば、軟化点の上昇を抑制しつつ、ファイアスルー性を的確に高めることができる。 The mass ratio PbO / (SiO 2 + Al 2 O 3 ) is 5 or more , preferably 6 or more, 6.2 or more, 6.4 or more, particularly 6.42 to 15. If it does in this way, fire-through property can be improved exactly, suppressing a raise of a softening point.

質量比B/PbOは0〜0.01である。このようにすれば、ファイアスルー性を維持した上で、半導体中のホウ素含有異種層の形成を抑制することができる。 The mass ratio B 2 O 3 / PbO is 0 to 0.01. In this way, it is possible to suppress the formation of the boron-containing heterogeneous layer in the semiconductor while maintaining the fire-through property.

上記成分以外にも、例えば、以下の成分を添加してもよい。なお、上記成分以外の成分は、種々の特性のバランスの関係上、合量で15%以下、10%以下、7%以下、5%以下、特に3%以下が好ましい。   In addition to the above components, for example, the following components may be added. Components other than the above components are preferably 15% or less, 10% or less, 7% or less, 5% or less, particularly 3% or less in terms of the balance of various characteristics.

LiO、NaO、KO及びCsOは、軟化点を低下させる成分であるが、成形時に溶融ガラスの失透を促進する作用を有するため、これらの成分の含有量は、各々1%以下が好ましい。 Li 2 O, Na 2 O, K 2 O and Cs 2 O are components that lower the softening point, but since they have an action of promoting devitrification of the molten glass during molding, the content of these components is Each is preferably 1% or less.

MgOは、耐失透性を高める成分である。MgOの含有量は、好ましくは0〜5%、特に0〜2%である。MgOの含有量が多過ぎると、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなる。   MgO is a component that improves devitrification resistance. The content of MgO is preferably 0 to 5%, particularly 0 to 2%. When there is too much content of MgO, a softening point will become high too much and it will become difficult to sinter an electrode forming material at low temperature.

CaOは、耐失透性を高める成分である。CaOの含有量は、好ましくは0〜5%、特に0〜2%である。CaOの含有量が多過ぎると、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなる。   CaO is a component that increases devitrification resistance. The content of CaO is preferably 0 to 5%, particularly 0 to 2%. When there is too much content of CaO, a softening point will become high too much and it will become difficult to sinter an electrode forming material at low temperature.

SrOは、耐失透性を高める成分である。SrOの含有量は、好ましくは0〜5%、特に0〜2%である。SrOの含有量が多過ぎると、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなる。   SrO is a component that improves devitrification resistance. The content of SrO is preferably 0 to 5%, particularly 0 to 2%. When there is too much content of SrO, a softening point will become high too much and it will become difficult to sinter an electrode forming material at low temperature.

BaOは、耐失透性を高める成分である。BaOの含有量は、好ましくは0〜5%、特に0〜2%である。BaOの含有量が多過ぎると、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなる。   BaO is a component that increases devitrification resistance. The content of BaO is preferably 0 to 5%, in particular 0 to 2%. When there is too much content of BaO, a softening point will become high too much and it will become difficult to sinter an electrode forming material at low temperature.

ZnOは、耐失透性を高める成分であると共に、熱膨張係数を低下させずに、軟化点を低下させる成分である。ZnOの含有量は、好ましくは0〜10%、0〜5%、特に0〜2%である。ZnOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。   ZnO is a component that increases devitrification resistance and a component that decreases the softening point without decreasing the thermal expansion coefficient. The content of ZnO is preferably 0 to 10%, 0 to 5%, particularly 0 to 2%. When there is too much content of ZnO, the component balance of a glass composition will be impaired and devitrification resistance will fall easily conversely.

TiOは、耐酢酸性を顕著に高める成分である。TiOの含有量は、好ましくは0〜15%、0〜10%、特に0〜6%である。ガラス組成中にTiOを添加すれば、エチレンビニルアセテート(以下、EVA)中に含まれる未反応物(酢酸)が、電極形成用ガラスを侵食し難くなり、結果として、電極が損傷されて、電池特性が低下する事態を防止し易くなる。一方、TiOの含有量が多過ぎると、低温で電極形成材料を焼結し難くなることに加えて、耐失透性が低下し易くなる。なお、シリコン太陽電池は、2枚のガラス基板で太陽電池セルを挟み込んだ構造を有している。そして、2枚のガラス基板は、通常、EVAにより接着されている。 TiO 2 is a component that significantly increases acetic acid resistance. The content of TiO 2 is preferably 0 to 15%, 0 to 10%, particularly 0 to 6%. If TiO 2 is added to the glass composition, unreacted substances (acetic acid) contained in ethylene vinyl acetate (hereinafter referred to as EVA) are unlikely to erode the glass for electrode formation, and as a result, the electrode is damaged. It becomes easy to prevent the situation where battery characteristics deteriorate. On the other hand, when the content of TiO 2 is too large, in addition to being difficult to sinter the electrode forming material at a low temperature, resistance to devitrification is liable to decrease. Note that the silicon solar battery has a structure in which a solar battery cell is sandwiched between two glass substrates. And the two glass substrates are normally adhere | attached by EVA.

ZrOは、耐酢酸性を顕著に高める成分である。ZrOの含有量は、好ましくは0〜15%、0〜8%、特に0〜6%である。ガラス組成中にZrOを添加すれば、EVA中に含まれる未反応物(酢酸)が、電極形成用ガラスを侵食し難くなり、結果として、電極が損傷されて、電池特性が低下する事態を防止し易くなる。一方、ZrOの含有量が多過ぎると、低温で電極形成材料を焼結し難くなることに加えて、耐失透性が低下し易くなる。 ZrO 2 is a component that significantly increases acetic acid resistance. The content of ZrO 2 is preferably 0 to 15%, 0 to 8%, particularly 0 to 6%. If ZrO 2 is added to the glass composition, the unreacted substance (acetic acid) contained in the EVA is less likely to erode the electrode forming glass, resulting in damage to the electrode and deterioration of battery characteristics. It becomes easy to prevent. On the other hand, if the content of ZrO 2 is too large, it becomes difficult to sinter the electrode forming material at a low temperature, and the devitrification resistance tends to decrease.

CuOは、耐失透性を高める成分である。CuOの含有量は、好ましくは0〜5%、特に0〜2%である。CuOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。   CuO is a component that improves devitrification resistance. The content of CuO is preferably 0 to 5%, particularly 0 to 2%. When there is too much content of CuO, the component balance of a glass composition will be impaired and devitrification resistance will fall easily conversely.

Feは、耐失透性を高める成分である。Feの含有量は、好ましくは0〜5%、特に0〜2%である。Feの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。 Fe 2 O 3 is a component that increases devitrification resistance. The content of Fe 2 O 3 is preferably 0 to 5%, particularly 0 to 2%. When the content of Fe 2 O 3 is too large, balance of components the glass composition is impaired, the devitrification resistance is liable to decrease conversely.

は、溶融時にガラスの失透を抑制する成分である。Pの含有量は、好ましくは2.5%以下、特に1%以下である。Pの含有量が多過ぎると、成形時に溶融ガラスが分相し易くなる。 P 2 O 5 is a component that suppresses devitrification of the glass during melting. The content of P 2 O 5 is preferably 2.5% or less, particularly 1% or less. When the content of P 2 O 5 is too large, the molten glass tends to undergo phase separation at the time of molding.

Biは、耐水性を高める成分である。Biの含有量は、好ましくは0〜5%、特に0〜2%である。Biの含有量が多過ぎると、バッチコストが高騰する。 Bi 2 O 3 is a component that improves water resistance. The content of Bi 2 O 3 is preferably 0 to 5%, particularly 0 to 2%. If the content of Bi 2 O 3 is too large, batch cost soars.

本発明の電極形成材料は、上記の電極形成用ガラスからなるガラス粉末と、金属粉末と、ビークルとを含む。ガラス粉末は、焼成時に、金属粉末を溶解する成分であり、またファイアスルー性を高める成分であると共に、電極と半導体基板を接着させる成分である。金属粉末は、電極を形成する主要成分であり、導電性を確保するための成分である。ビークルは、ペースト化するための成分であり、印刷に適した粘度を付与するための成分である。   The electrode forming material of the present invention includes glass powder made of the above electrode forming glass, metal powder, and a vehicle. The glass powder is a component that dissolves the metal powder during firing, a component that enhances the fire-through property, and a component that adheres the electrode and the semiconductor substrate. The metal powder is a main component for forming the electrode and a component for ensuring conductivity. The vehicle is a component for making a paste, and a component for imparting a viscosity suitable for printing.

本発明の電極形成材料において、ガラス粉末の平均粒子径D50は5μm未満、4μm以下、3μm以下、2μm以下、特に1.5μm以下が好ましい。ガラス粉末の平均粒子径D50が5μm以上であると、ガラス粉末の表面積が小さくなることに起因して、金属粉末の溶解性が低下し、ファイアスルー性も低下し易くなる。また、ガラス粉末の平均粒子径D50が5μm以上であると、ガラス粉末の軟化点が上昇して、電極の形成に必要な温度域が上昇する。更に、ガラス粉末の平均粒子径D50が5μm以上であると、微細な電極パターンを形成し難くなり、シリコン太陽電池の光電変換効率が低下し易くなる。一方、ガラス粉末の平均粒子径D50の下限は特に限定されないが、ガラス粉末の平均粒子径D50が小さ過ぎると、ガラス粉末のハンドリング性が低下して、ガラス粉末の材料収率が低下することに加えて、ガラス粉末が凝集し易くなり、シリコン太陽電池の特性が変動し易くなる。このような状況を考慮すれば、ガラス粉末の平均粒子径D50は0.5μm以上が好ましい。 In the electrode forming material of the present invention, the average particle diameter D 50 of the glass powder less than 5 [mu] m, 4 [mu] m or less, 3 [mu] m or less, 2 [mu] m or less, especially 1.5μm or less preferred. If the average of the glass powder the particle diameter D 50 is at 5μm or more, due to the surface area of the glass powder is reduced, decreased solubility of the metal powder, fire through property also tends to decrease. When the average particle diameter D 50 of the glass powder is 5μm or more, the softening point of the glass powder is increased, the temperature range is increased required to form the electrode. Further, when the average particle diameter D 50 of the glass powder is 5μm or more, it becomes difficult to form a fine electrode pattern, the photoelectric conversion efficiency of the silicon solar cells tends to decrease. On the other hand, the lower limit of the average particle diameter D 50 of the glass powder is not particularly limited, the average particle diameter D 50 of the glass powder is too small, the handling of the glass powder is lowered to decrease the material yield of the glass powder In addition, the glass powder tends to aggregate and the characteristics of the silicon solar cell are likely to fluctuate. In view of such situation, the average particle diameter D 50 of the glass powder is preferably at least 0.5 [mu] m.

本発明の電極形成材料において、ガラス粉末の最大粒子径Dmaxは25μm以下、20μm以下、15μm以下、特に10μm以下が好ましい。ガラス粉末の最大粒子径Dmaxが25μmより大きいと、微細な電極パターンを形成し難くなり、シリコン太陽電池の光電変換効率が低下し易くなる。ここで、「最大粒子径Dmax」は、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して99%である粒子径を表す。なお、(1)ガラスフィルムをボールミルで粉砕した後、得られたガラス粉末を空気分級、或いは(2)ガラスフィルムをボールミル等で粗粉砕した後、ビーズミル等で湿式粉砕すれば、上記平均粒子径D50及び/又はDmaxを有するガラス粉末を得ることができる。 In the electrode forming material of the present invention, the maximum particle diameter Dmax of the glass powder is preferably 25 μm or less, 20 μm or less, 15 μm or less, and particularly preferably 10 μm or less. When the maximum particle diameter Dmax of the glass powder is larger than 25 μm, it becomes difficult to form a fine electrode pattern, and the photoelectric conversion efficiency of the silicon solar cell is likely to be lowered. Here, the “maximum particle diameter D max ” represents a particle diameter in which the accumulated amount is 99% cumulative from the smaller particle in the volume-based cumulative particle size distribution curve measured by the laser diffraction method. (1) After the glass film is pulverized with a ball mill, the obtained glass powder is classified by air, or (2) The glass film is coarsely pulverized with a ball mill or the like and then wet pulverized with a bead mill or the like. Glass powder having D 50 and / or D max can be obtained.

本発明の電極形成材料において、ガラス粉末の軟化点は580℃以下、550℃以下、530℃以下、500℃以下、特に380〜480℃が好ましい。ガラス粉末の軟化点が580℃より高いと、電極の形成に必要な温度域が上昇する。なお、ガラス粉末の軟化点が380℃より低いと、ファイアスルーの際に、n型半導体層の侵食が助長されて、シリコン太陽電池の電池特性が低下するおそれがある。   In the electrode forming material of the present invention, the softening point of the glass powder is preferably 580 ° C. or lower, 550 ° C. or lower, 530 ° C. or lower, 500 ° C. or lower, and particularly preferably 380 to 480 ° C. When the softening point of the glass powder is higher than 580 ° C., the temperature range necessary for forming the electrode increases. If the softening point of the glass powder is lower than 380 ° C., the erosion of the n-type semiconductor layer is promoted during fire-through, and the battery characteristics of the silicon solar battery may be deteriorated.

本発明の電極形成材料において、ガラス粉末の含有量は0.2〜10質量%、1〜6質量%、特に1.5〜4質量%が好ましい。ガラス粉末の含有量が0.2質量%より少ないと、電極形成材料の焼結性が低下し易くなる。一方、ガラス粉末の含有量が10質量%より多いと、形成される電極の導電性が低下し易くなるため、発生した電気を取り出し難くなる。また、ガラス粉末の含有量と金属粉末の含有量は、上記と同様の理由により、質量比で0.3:99.7〜13:87、1.5:98.5〜7.5:92.5、特に2:98〜5:95が好ましい。   In the electrode forming material of the present invention, the glass powder content is preferably 0.2 to 10% by mass, 1 to 6% by mass, and particularly preferably 1.5 to 4% by mass. When the content of the glass powder is less than 0.2% by mass, the sinterability of the electrode forming material tends to be lowered. On the other hand, when the content of the glass powder is more than 10% by mass, the conductivity of the formed electrode is likely to be lowered, and thus it is difficult to take out the generated electricity. Moreover, content of glass powder and content of metal powder are 0.3: 99.7-13: 87 and 1.5: 98.5-7.5: 92 by mass ratio for the same reason as the above. .5, particularly 2:98 to 5:95 is preferred.

本発明の電極形成材料において、金属粉末の含有量は50〜97質量%、65〜95質量%、特に70〜92質量%が好ましい。金属粉末の含有量が50質量%より少ないと、形成される電極の導電性が低下して、シリコン太陽電池の光電変換効率が低下し易くなる。一方、金属粉末の含有量が97質量%より多いと、ガラス粉末の含有量が相対的に低下するため、電極形成材料の焼結性が低下し易くなる。   In the electrode forming material of the present invention, the content of the metal powder is preferably 50 to 97 mass%, 65 to 95 mass%, particularly preferably 70 to 92 mass%. When content of metal powder is less than 50 mass%, the electroconductivity of the electrode formed will fall and the photoelectric conversion efficiency of a silicon solar cell will fall easily. On the other hand, when the content of the metal powder is more than 97% by mass, the content of the glass powder is relatively lowered, so that the sinterability of the electrode forming material is easily lowered.

本発明の電極形成材料において、金属粉末はAg、Al、Au、Cu、Pd、Pt及びこれらの合金の一種又は二種以上が好ましく、特にAg及びその合金が好ましい。本発明に係るガラス粉末は、ガラス組成が上記範囲に規制されているため、これらの金属粉末の溶解性が良好であり、更にこれらの金属粉末と混合して、焼成しても、ガラス中に発泡が生じ難い性質を有している。また、金属粉末の平均粒子径D50は2μm以下、特に1μm以下が好ましい。このようにすれば、微細な電極パターンを形成し易くなる。 In the electrode forming material of the present invention, the metal powder is preferably one or more of Ag, Al, Au, Cu, Pd, Pt and alloys thereof, and particularly Ag and alloys thereof. Since the glass composition according to the present invention has the glass composition regulated within the above range, the solubility of these metal powders is good, and even when mixed with these metal powders and fired, It has the property that foaming hardly occurs. The average particle diameter D 50 of the metal powder is 2μm or less, especially 1μm or less. If it does in this way, it will become easy to form a fine electrode pattern.

本発明の電極形成材料において、ビークルの含有量は5〜40質量%、特に10〜25質量%が好ましい。ビークルの含有量が5質量%より少ないと、ペースト化が困難になり、印刷法で電極を形成し難くなる。一方、ビークルの含有量が40質量%より多いと、焼成前後で膜厚や膜幅が変動し易くなり、結果として、所望の電極パターンを形成し難くなる。   In the electrode forming material of the present invention, the content of the vehicle is preferably 5 to 40% by mass, particularly preferably 10 to 25% by mass. When the content of the vehicle is less than 5% by mass, it becomes difficult to form a paste, and it is difficult to form an electrode by a printing method. On the other hand, when the content of the vehicle is more than 40% by mass, the film thickness and film width are likely to fluctuate before and after firing, and as a result, it becomes difficult to form a desired electrode pattern.

ビークルは、一般的に、有機溶媒中に樹脂を溶解させたものを指す。樹脂としては、アクリル酸エステル(アクリル樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、メタクリル酸エステル等が使用可能である。特に、アクリル酸エステル、ニトロセルロース、エチルセルロースは、熱分解性が良好であるため、好ましい。有機溶媒としては、N、N’−ジメチルホルムアミド(DMF)、α−ターピネオール、高級アルコール、γ−ブチルラクトン(γ−BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3−メトキシ−3−メチルブタノール、水、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N−メチル−2−ピロリドン等が使用可能である。特に、α−ターピネオールは、高粘性であり、樹脂等の溶解性も良好であるため、好ましい。   The vehicle generally refers to a resin dissolved in an organic solvent. As the resin, acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester and the like can be used. In particular, acrylic acid ester, nitrocellulose, and ethylcellulose are preferable because of their good thermal decomposability. As organic solvents, N, N′-dimethylformamide (DMF), α-terpineol, higher alcohol, γ-butyllactone (γ-BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether , Diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, water, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl Ether, tripropylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO) N- methyl-2-pyrrolidone and the like can be used. In particular, α-terpineol is preferable because it is highly viscous and has good solubility in resins and the like.

本発明の電極形成材料は、上記成分以外にも、熱膨張係数を調整するためにコーディエライト等のセラミックフィラー粉末、電極の抵抗を調整するためにNiO等の酸化物粉末、ペースト特性を調整するために界面活性剤や増粘剤、外観品位を調整するために顔料等を含有してもよい。   In addition to the above components, the electrode forming material of the present invention adjusts ceramic filler powder such as cordierite to adjust the thermal expansion coefficient, oxide powder such as NiO to adjust the electrode resistance, and paste characteristics. Therefore, a surfactant, a thickener, and a pigment may be contained to adjust the appearance quality.

本発明の電極形成材料は、窒化ケイ素膜、酸化シリコン膜、酸化チタン膜、酸化アルミニウム膜との反応性、特に窒化ケイ素膜との反応性が適正であり、ファイアスルー性に優れている。その結果、焼成時に反射防止膜を貫通可能であり、シリコン太陽電池の受光面電極を効率良く形成することができる。また、本発明の電極形成材料を用いると、ファイアスルーの際に半導体層へのホウ素のドープを抑制することができる。これにより、ホウ素含有異種層が形成されて、半導体基板の半導体層の機能が低下する事態を防止でき、結果として、シリコン太陽電池の光電変換効率が低下し難くなる。   The electrode forming material of the present invention has an appropriate reactivity with a silicon nitride film, a silicon oxide film, a titanium oxide film, and an aluminum oxide film, particularly a reactivity with a silicon nitride film, and is excellent in fire-through properties. As a result, the antireflection film can be penetrated during firing, and the light-receiving surface electrode of the silicon solar cell can be efficiently formed. In addition, when the electrode forming material of the present invention is used, boron doping into the semiconductor layer can be suppressed during fire-through. As a result, it is possible to prevent a situation where the boron-containing heterogeneous layer is formed and the function of the semiconductor layer of the semiconductor substrate is lowered, and as a result, the photoelectric conversion efficiency of the silicon solar cell is hardly lowered.

本発明の電極形成材料は、シリコン太陽電池の裏面電極の形成にも好適である。裏面Al電極を形成するための電極形成材料は、通常、Al粉末と、ガラス粉末と、ビークル等とを含有している。また、裏面Ag電極を形成するために、Ag粉末と、ガラス粉末と、ビークル等とを含有する電極形成材料が用いられる場合もある。そして、これらの裏面電極は、通常、上記の印刷法で形成される。   The electrode forming material of the present invention is also suitable for forming a back electrode of a silicon solar cell. The electrode forming material for forming the back Al electrode usually contains Al powder, glass powder, vehicle and the like. Moreover, in order to form a back surface Ag electrode, the electrode forming material containing Ag powder, glass powder, a vehicle, etc. may be used. And these back surface electrodes are normally formed by said printing method.

以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は単なる例示である。本発明は以下の実施例に何ら限定されない。   Hereinafter, based on an Example, this invention is demonstrated in detail. The following examples are merely illustrative. The present invention is not limited to the following examples.

表1、2は、試料No.1〜11を示している。 Tables 1 and 2, specimen No. 1 to 11 are shown.

次のようにして、各試料を調製した。最初に、表中に示したガラス組成となるように各種酸化物、炭酸塩等のガラス原料を調合し、ガラスバッチを準備した後、このガラスバッチを白金坩堝に入れて、900〜1200℃で1〜2時間溶融した。次に、溶融ガラスを水冷ローラーでフィルム状に成形し、得られたガラスフィルムをボールミルで粉砕した後、目開き200メッシュの篩を通過させた上で、空気分級し、表中に記載の平均粒子径D50を有するガラス粉末を得た。 Each sample was prepared as follows. First, after preparing glass batches such as various oxides and carbonates so as to have the glass composition shown in the table and preparing a glass batch, the glass batch was put in a platinum crucible at 900 to 1200 ° C. Melted for 1-2 hours. Next, the molten glass was formed into a film shape with a water-cooled roller, and the obtained glass film was pulverized with a ball mill, then passed through a sieve having a mesh size of 200 mesh, air-classified, and the average shown in the table to obtain a glass powder with a particle size D 50.

各試料につき、軟化点を測定した。軟化点は、マクロ型DTA装置で測定した値である。なお、測定温度域を室温〜600℃とし、昇温速度を10℃/分とした。   The softening point was measured for each sample. The softening point is a value measured with a macro DTA apparatus. The measurement temperature range was from room temperature to 600 ° C., and the heating rate was 10 ° C./min.

得られたガラス粉末3質量%と、表中に示す金属粉末(平均粒子径D50=0.5μm)77質量%と、ビークル(α−ターピネオールにアクリル酸エステルを溶解させたもの)20質量%とを三本ローラーで混練し、ペースト状の試料を得た。この試料につき、ファイアスルー性と電池特性を評価した。 3% by mass of the obtained glass powder, 77% by mass of metal powder (average particle diameter D 50 = 0.5 μm) shown in the table, and 20% by mass of vehicle (a product obtained by dissolving an acrylate ester in α-terpineol) Were kneaded with three rollers to obtain a paste-like sample. This sample was evaluated for fire-through properties and battery characteristics.

次のようにして、ファイアスルー性及び半導体基板の侵食性を評価した。シリコン半導体基板に形成されたSiN膜(膜厚100nm)上に、長さ200mm、100μm幅になるようにペースト状の試料を線状にスクリーン印刷し、乾燥した後、電気炉で850℃1分間焼成した。次に、得られた焼成基板を塩酸水溶液(10質量%濃度)に浸漬し、常温(25℃)で12時間超音波にかけて、エッチング処理を行った。続いて、エッチング処理後の焼成基板を光学顕微鏡(100倍)で観察した。ファイアスルー性は、SiN膜を貫通し、焼成基板上に線状の電極パターンが形成されていたものを「○」、焼成基板上に線状の電極パターンが概ね形成されていたが、SiN膜を貫通していない箇所が存在し、電気的接続が一部途切れていたものを「△」、SiN膜を貫通していなかったものを「×」として評価した。半導体基板の侵食性は、半導体基板を断面観察することにより、半導体基板が侵食されていなかったものを「○」、半導体基板が侵食されてたものを「×」として評価した。   The fire-through property and the erosion property of the semiconductor substrate were evaluated as follows. A paste-like sample was screen-printed in a line shape to a length of 200 mm and a width of 100 μm on a SiN film (film thickness 100 nm) formed on a silicon semiconductor substrate, dried, and then 850 ° C. for 1 minute in an electric furnace. Baked. Next, the obtained fired substrate was immersed in an aqueous hydrochloric acid solution (10% by mass concentration) and subjected to an etching treatment by applying ultrasonic waves at room temperature (25 ° C.) for 12 hours. Subsequently, the fired substrate after the etching treatment was observed with an optical microscope (100 times). The fire-through property is “○” when the linear electrode pattern is formed on the baked substrate through the SiN film, and the linear electrode pattern is generally formed on the baked substrate. The case where there was a portion not penetrating through and a part of the electrical connection was broken was evaluated as “Δ”, and the portion not penetrating through the SiN film was evaluated as “x”. The erodibility of the semiconductor substrate was evaluated by observing a cross section of the semiconductor substrate as “◯” when the semiconductor substrate was not eroded and “X” when the semiconductor substrate was eroded.

次のようにして、電池特性を評価した。上記のペースト状の試料を用いて、常法に従い、受光面電極を形成した上で、単結晶シリコン太陽電池を作製した。次に、常法に従い、得られた単結晶シリコン太陽電池の光電変換効率を測定し、光電変換効率が17.8%以上である場合を「○」、15%以上17.8%未満である場合を「△」、15%未満である場合を「×」として、評価した。   The battery characteristics were evaluated as follows. Using the above paste-like sample, a light-receiving surface electrode was formed according to a conventional method, and then a single crystal silicon solar cell was produced. Next, according to a conventional method, the photoelectric conversion efficiency of the obtained single crystal silicon solar cell is measured, and the case where the photoelectric conversion efficiency is 17.8% or more is “◯”, and is 15% or more and less than 17.8%. The case was evaluated as “Δ” and the case of less than 15% as “x”.

表1、2から明らかなように、試料No.1〜10は、ファイアスルー性、半導体基板の侵食性及び電池特性の評価が良好であった。一方、試料No.11は、ガラス組成が所定範囲外であり、半導体基板の侵食性の評価が不良であった。なお、試料No.11は、半導体基板の侵食性の評価が不良であったため、電池特性の評価が行われていない。   As apparent from Tables 1 and 2, Sample No. In Nos. 1 to 10, the fire-through property, the erosion property of the semiconductor substrate, and the evaluation of battery characteristics were good. On the other hand, sample No. No. 11 had a glass composition outside the predetermined range, and the evaluation of the erodibility of the semiconductor substrate was poor. Sample No. No. 11 was not evaluated for battery characteristics because the evaluation of the erodibility of the semiconductor substrate was poor.

本発明の電極形成用ガラス及び電極形成材料は、シリコン太陽電池の電極、特に反射防止膜を有する結晶シリコン太陽電池の受光面電極に好適に使用可能である。また、本発明の電極形成用ガラス及び電極形成材料は、シリコン太陽電池以外の用途、例えばセラミックコンデンサ等のセラミック電子部品、フォトダイオード等の光学部品に応用することもできる。   The electrode-forming glass and electrode-forming material of the present invention can be suitably used for an electrode of a silicon solar cell, particularly a light-receiving surface electrode of a crystalline silicon solar cell having an antireflection film. The glass for electrode formation and the electrode formation material of the present invention can also be applied to uses other than silicon solar cells, for example, ceramic electronic parts such as ceramic capacitors and optical parts such as photodiodes.

Claims (10)

ガラス組成として、質量%で、PbO 70〜95%、B 0〜1%、SiO+Al 1〜18%、Al 0.1〜15%、TeO 0.1〜30%を含有し、質量比PbO/SiO が5以上、質量比PbO/(SiO +Al )が5以上、質量比B /PbOが0〜0.01であり、シリコン太陽電池に用いることを特徴とする電極形成用ガラス。 As a glass composition, by mass%, PbO 70 to 95%, B 2 O 3 0 to 1%, SiO 2 + Al 2 O 3 1 to 18 %, Al 2 O 3 0.1 to 15%, TeO 2 0.1 The mass ratio PbO / SiO 2 is 5 or more, the mass ratio PbO / (SiO 2 + Al 2 O 3 ) is 5 or more, and the mass ratio B 2 O 3 / PbO is 0 to 0.01, An electrode-forming glass, which is used for a silicon solar cell. の含有量が0.5質量%以下であることを特徴とする請求項1に記載の電極形成用ガラス。 2. The glass for forming an electrode according to claim 1, wherein the content of B 2 O 3 is 0.5% by mass or less. SiOの含有量が0.1〜18質量%であることを特徴とする請求項1又は2に記載の電極形成用ガラス。 The glass for forming an electrode according to claim 1, wherein the content of SiO 2 is 0.1 to 18% by mass. Alの含有量が1〜5質量%であることを特徴とする請求項1〜3の何れか一項に記載の電極形成用ガラス。 Electrode forming glass according to any one of claims 1 to 3, wherein the content of Al 2 O 3 is 1 to 5 mass%. 実質的にBを含有しないことを特徴とする請求項1〜4の何れか一項に記載の電極形成用ガラス。 The glass for electrode formation according to any one of claims 1 to 4, which does not substantially contain B 2 O 3 . 請求項1〜5の何れか一項に記載の電極形成用ガラスからなるガラス粉末と、金属粉末と、ビークルとを含むことを特徴とする電極形成材料。   An electrode forming material comprising glass powder made of the electrode forming glass according to any one of claims 1 to 5, a metal powder, and a vehicle. ガラス粉末の平均粒子径D50が5μm未満であることを特徴とする請求項6に記載の電極形成材料。 The electrode forming material according to claim 6, wherein the glass powder has an average particle diameter D 50 of less than 5 μm. ガラス粉末の軟化点が580℃以下であることを特徴とする請求項6又は7に記載の電極形成材料。   The electrode forming material according to claim 6 or 7, wherein the softening point of the glass powder is 580 ° C or lower. ガラス粉末の含有量が0.2〜10質量%であることを特徴とする請求項6〜8の何れか一項に記載の電極形成材料。   Content of glass powder is 0.2-10 mass%, The electrode forming material as described in any one of Claims 6-8 characterized by the above-mentioned. 金属粉末がAg又はその合金であることを特徴とする請求項6〜9の何れか一項に記載の電極形成材料。   The electrode forming material according to any one of claims 6 to 9, wherein the metal powder is Ag or an alloy thereof.
JP2012169507A 2012-07-31 2012-07-31 Electrode forming glass and electrode forming material using the same Active JP6112384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169507A JP6112384B2 (en) 2012-07-31 2012-07-31 Electrode forming glass and electrode forming material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012169507A JP6112384B2 (en) 2012-07-31 2012-07-31 Electrode forming glass and electrode forming material using the same

Publications (2)

Publication Number Publication Date
JP2014028713A JP2014028713A (en) 2014-02-13
JP6112384B2 true JP6112384B2 (en) 2017-04-12

Family

ID=50201595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169507A Active JP6112384B2 (en) 2012-07-31 2012-07-31 Electrode forming glass and electrode forming material using the same

Country Status (1)

Country Link
JP (1) JP6112384B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6580383B2 (en) 2015-06-17 2019-09-25 ナミックス株式会社 Conductive paste, solar cell, and method for manufacturing solar cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3381332B2 (en) * 1993-08-24 2003-02-24 日本電気硝子株式会社 High dielectric constant glass ceramic
JPH07129909A (en) * 1993-11-02 1995-05-19 Matsushita Electric Ind Co Ltd Glass for magnetic head and magnetic head
JP2002125866A (en) * 2000-10-25 2002-05-08 Nippon Electric Glass Co Ltd Sealing glass for metal-made vacuum double wall vessel
JP2005182894A (en) * 2003-12-18 2005-07-07 Asahi Techno Glass Corp Glass composition for magnetic head
JPWO2011052336A1 (en) * 2009-10-29 2013-03-21 日本山村硝子株式会社 Glass composition and composition for forming conductor using the same
JP5480448B2 (en) * 2010-05-04 2014-04-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Thick film pastes containing lead-tellurium-lithium-oxides and their use in the manufacture of semiconductor devices
US9129725B2 (en) * 2010-12-17 2015-09-08 E I Du Pont De Nemours And Company Conductive paste composition containing lithium, and articles made therefrom

Also Published As

Publication number Publication date
JP2014028713A (en) 2014-02-13

Similar Documents

Publication Publication Date Title
JP5532512B2 (en) Electrode forming glass composition and electrode forming material
JP5717043B2 (en) Electrode forming glass composition and electrode forming material
WO2010026952A1 (en) Glass composition for electrode formation and electrode formation material
JP5796270B2 (en) Electrode forming material
WO2012023413A1 (en) Glass for use in forming electrodes, and electrode-forming material using same
JP6531421B2 (en) Bi2O3-TeO2-SiO2-WO3-RO Glass
JP5888493B2 (en) Conductive paste and solar cell element using the conductive paste
TWI428303B (en) A low melting point glass composition and a conductive paste material using the same
KR20140022511A (en) Electrode paste for solar cell, electrode prepared from the same and solar cell comprising the same
JP6075601B2 (en) Electrode forming glass and electrode forming material using the same
KR20130064659A (en) Electrode paste composition for solar cell and electrode prepared using the same
JP6090706B2 (en) Electrode forming glass and electrode forming material using the same
JP5850388B2 (en) Electrode forming glass and electrode forming material using the same
TWI422547B (en) A conductive paste and a solar cell element using the conductive paste
JP2014007212A (en) Glass for electrode formation and electrode-formation material using the same
JP5541605B2 (en) Electrode forming glass composition and electrode forming material
JP6112384B2 (en) Electrode forming glass and electrode forming material using the same
JP5943295B2 (en) Electrode forming glass and electrode forming material using the same
JP5796281B2 (en) Electrode forming material
JP2014105153A (en) Bismuth-based glass composition and electrode formation material using the same
JP2013018666A (en) Electrode formation glass and electrode formation material
JP2010192480A (en) Glass composition for electrode formation, and electrode forming material
JP2013212949A (en) Glass for electrode formation and electrode forming material using the same
US10804003B2 (en) Conductive paste for forming solar cell electrode
JP2013189372A (en) Conductive paste material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170302

R150 Certificate of patent or registration of utility model

Ref document number: 6112384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150