JP5850388B2 - Electrode forming glass and electrode forming material using the same - Google Patents

Electrode forming glass and electrode forming material using the same Download PDF

Info

Publication number
JP5850388B2
JP5850388B2 JP2011151513A JP2011151513A JP5850388B2 JP 5850388 B2 JP5850388 B2 JP 5850388B2 JP 2011151513 A JP2011151513 A JP 2011151513A JP 2011151513 A JP2011151513 A JP 2011151513A JP 5850388 B2 JP5850388 B2 JP 5850388B2
Authority
JP
Japan
Prior art keywords
glass
electrode
content
electrode forming
forming material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011151513A
Other languages
Japanese (ja)
Other versions
JP2012066993A (en
Inventor
石原 健太郎
健太郎 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2011151513A priority Critical patent/JP5850388B2/en
Publication of JP2012066993A publication Critical patent/JP2012066993A/en
Application granted granted Critical
Publication of JP5850388B2 publication Critical patent/JP5850388B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

本発明は、電極形成用ガラス及び電極形成材料に関し、特に反射防止膜を有するシリコン太陽電池(単結晶シリコン太陽電池、多結晶シリコン太陽電池、微結晶シリコン太陽電池を含む)の受光面電極の形成に好適な電極形成用ガラス及び電極形成材料に関する。   The present invention relates to an electrode-forming glass and an electrode-forming material, and in particular, to form a light-receiving surface electrode of a silicon solar cell (including a single crystal silicon solar cell, a polycrystalline silicon solar cell, and a microcrystalline silicon solar cell) having an antireflection film. The present invention relates to an electrode forming glass and an electrode forming material suitable for the above.

シリコン太陽電池は、半導体基板、受光面電極、裏面電極、反射防止膜を備えており、半導体基板は、p型半導体層とn型半導体層を有している。受光面電極や裏面電極は、電極形成材料(金属粉末と、ガラス粉末と、ビークルとを含む)を焼結させることにより形成される。一般的に、受光面電極にはAg粉末、裏面電極にはAl粉末が使用される。反射防止膜は、窒化ケイ素膜、酸化シリコン膜、酸化チタン膜、酸化アルミニウム膜等が使用されており、現在では、主に窒化ケイ素膜が使用されている。   The silicon solar cell includes a semiconductor substrate, a light-receiving surface electrode, a back electrode, and an antireflection film, and the semiconductor substrate has a p-type semiconductor layer and an n-type semiconductor layer. The light-receiving surface electrode and the back electrode are formed by sintering an electrode forming material (including metal powder, glass powder, and vehicle). Generally, Ag powder is used for the light receiving surface electrode and Al powder is used for the back electrode. As the antireflection film, a silicon nitride film, a silicon oxide film, a titanium oxide film, an aluminum oxide film, or the like is used. Currently, a silicon nitride film is mainly used.

シリコン太陽電池に受光面電極を形成する方法には、蒸着法、めっき法、印刷法等があるが、最近では、印刷法が主流になっている。印刷法は、スクリーン印刷により、電極形成材料を反射防止膜等の上に塗布した後、650〜850℃で短時間焼成し、受光面電極を形成する方法である。   Methods for forming a light-receiving surface electrode on a silicon solar cell include a vapor deposition method, a plating method, a printing method, and the like, but recently, a printing method has become mainstream. The printing method is a method of forming a light-receiving surface electrode by applying an electrode forming material on an antireflection film or the like by screen printing and baking it at 650 to 850 ° C. for a short time.

印刷法の場合、焼成時に電極形成材料が反射防止膜を貫通する現象が利用され、この現象により受光面電極と半導体層が電気的に接続される。この現象は、一般的にファイアスルーと称されている。ファイアスルーを利用すれば、受光面電極の形成に際し、反射防止膜のエッチングが不要になると共に、反射防止膜のエッチングと電極パターンの位置合わせが不要になり、シリコン太陽電池の生産効率が飛躍的に向上する。   In the case of the printing method, the phenomenon that the electrode forming material penetrates the antireflection film at the time of firing is utilized, and this phenomenon electrically connects the light receiving surface electrode and the semiconductor layer. This phenomenon is generally called fire-through. Using fire-through eliminates the need to etch the antireflection film and eliminates the need to etch the antireflection film and align the electrode pattern when forming the light-receiving surface electrode, dramatically improving the production efficiency of silicon solar cells. To improve.

特開2004−87951号公報JP 2004-87951 A 特開2005−56875号公報JP 2005-56875 A 特表2008−527698号公報Special table 2008-527698

電極形成材料が反射防止膜を貫通する度合(以下、ファイアスルー性)は、電極形成材料の組成、焼成条件で変動し、特にガラス粉末のガラス組成の影響が最も大きい。これは、ファイアスルーが、主にガラス粉末と反射防止膜の反応で生じることに起因している。また、シリコン太陽電池の光電変換効率は、電極形成材料のファイアスルー性と相関がある。ファイアスルー性が不十分であると、シリコン太陽電池の光電変換効率が低下し、シリコン太陽電池の基本性能が低下する。   The degree to which the electrode-forming material penetrates the antireflection film (hereinafter referred to as fire-through property) varies depending on the composition of the electrode-forming material and the firing conditions, and is particularly affected by the glass composition of the glass powder. This is due to the fact that fire-through occurs mainly due to the reaction between the glass powder and the antireflection film. Moreover, the photoelectric conversion efficiency of a silicon solar cell has a correlation with the fire-through property of the electrode forming material. If the fire-through property is insufficient, the photoelectric conversion efficiency of the silicon solar cell is lowered, and the basic performance of the silicon solar cell is lowered.

また、特定のガラス組成を有するビスマス系ガラスは、良好なファイアスルー性を示すが、このようなビスマス系ガラスを用いても、ファイアスルーの際に、シリコン太陽電池の光電変換効率を低下させる不具合が発生する場合があった。このため、ビスマス系ガラスは、シリコン太陽電池の光電変換効率を高める観点から、未だ改善の余地があった。   In addition, bismuth-based glass having a specific glass composition shows good fire-through properties, but even when such bismuth-based glass is used, there is a problem that the photoelectric conversion efficiency of silicon solar cells is reduced during fire-through. May occur. For this reason, the bismuth-based glass still has room for improvement from the viewpoint of increasing the photoelectric conversion efficiency of the silicon solar cell.

さらに、電極形成材料に含まれるガラス粉末には、低温で焼結可能であること等の特性が要求される。   Furthermore, the glass powder contained in the electrode forming material is required to have characteristics such as being sinterable at a low temperature.

そこで、本発明は、ファイアスルー性が良好であり、またファイアスルーの際にシリコン太陽電池の光電変換効率を低下させ難く、しかも低温で焼結可能なビスマス系ガラスを創案することにより、シリコン太陽電池の光電変換効率を高めることを技術的課題とする。   Therefore, the present invention has been developed by creating a bismuth-based glass that has good fire-through properties and that is difficult to reduce the photoelectric conversion efficiency of a silicon solar cell during fire-through and that can be sintered at low temperatures. A technical problem is to increase the photoelectric conversion efficiency of the battery.

本発明者は、鋭意検討の結果、ビスマス系ガラスのガラス組成を所定範囲に規制、特にBiとBの含有量を所定範囲に規制することにより、上記技術的課題を解決できることを見出し、本発明として、提案するものである。すなわち、本発明の電極形成用ガラスは、ガラス組成として、質量%で、Bi 65.2〜90%、B 0〜1%、MgO+CaO+SrO+BaO+ZnO+CuO+Fe+Nd+CeO+Sb(MgO、CaO、SrO、BaO、ZnO、CuO、Fe、Nd、CeO、及びSbの合量) 0.1〜34.5%、MgO 0〜5%、CaO 0〜5%、SrO 0〜15%、BaO 0〜20%、ZnO 0〜25%、CuO 0〜15%、Fe 0〜5%、Nd 0〜10%、CeO 0〜5%、Sb 0〜7%、SiO 0.1〜10%、Al 0.1〜15%を含有することを特徴とする。 As a result of intensive studies, the inventor solved the above technical problem by restricting the glass composition of bismuth-based glass to a predetermined range, in particular, limiting the contents of Bi 2 O 3 and B 2 O 3 to a predetermined range. The present invention is found and proposed as the present invention. That is, the electrode-forming glass of the present invention has, as a glass composition, mass percent Bi 2 O 3 65.2 to 90%, B 2 O 3 0 to 1%, MgO + CaO + SrO + BaO + ZnO + CuO + Fe 2 O 3 + Nd 2 O 3 + CeO 2 + Sb. 2 O 3 (MgO, CaO, SrO, BaO, ZnO, CuO, Fe 2 O 3 , Nd 2 O 3 , CeO 2 , and Sb 2 O 3 total amount) 0.1 to 34.5%, MgO 0 5%, CaO 0~5%, SrO 0~15%, BaO 0~20%, 0~25% ZnO, 0~15% CuO, Fe 2 O 3 0~5%, Nd 2 O 3 0~10% CeO 2 0 to 5%, Sb 2 O 3 0 to 7%, SiO 2 0.1 to 10 %, Al 2 O 3 0.1 to 15%.

本発明の電極形成用ガラスは、Biの含有量が65.2質量%以上に規制されている。このようにすれば、ガラス粉末と反射防止膜の反応性が高まり、ファイアスルー性が向上すると共に、軟化点が低下し、低温で電極形成材料の焼結が可能になる。なお、低温で電極を形成すれば、シリコン太陽電池の生産性が向上し、また半導体基板の結晶粒界の水素が放出され難くなり、シリコン太陽電池の光電変換効率が向上する。さらに、Biの含有量を65.2質量%以上に規制すると、耐水性が向上し、シリコン太陽電池の長期信頼性を高めることができる。一方、本発明の電極形成用ガラスは、Biの含有量が90質量%以下に規制されている。このようにすれば、焼成時にガラスが失透し難くなるため、ガラス粉末と反射防止膜の反応性が低下し難くなると共に、電極形成材料の焼結性が低下し難くなる。 In the electrode forming glass of the present invention, the content of Bi 2 O 3 is regulated to 65.2% by mass or more. In this way, the reactivity between the glass powder and the antireflection film is increased, the fire-through property is improved, the softening point is lowered, and the electrode forming material can be sintered at a low temperature. Note that if the electrode is formed at a low temperature, the productivity of the silicon solar cell is improved, and hydrogen at the crystal grain boundary of the semiconductor substrate is hardly released, thereby improving the photoelectric conversion efficiency of the silicon solar cell. Furthermore, when the content of Bi 2 O 3 is regulated to 65.2% by mass or more, the water resistance is improved and the long-term reliability of the silicon solar cell can be improved. On the other hand, in the glass for electrode formation of the present invention, the content of Bi 2 O 3 is regulated to 90% by mass or less. If it does in this way, since it becomes difficult to devitrify glass at the time of baking, while the reactivity of glass powder and an antireflection film becomes difficult to fall, the sinterability of an electrode formation material becomes difficult to fall.

また、本発明の電極形成用ガラスは、Bの含有量が質量%以下に規制されている。本発明者は、鋭意検討の結果、ガラス組成中のBが、ファイアスルーの際にシリコン太陽電池の光電変換効率を低下させる原因であること、特にこのBがファイアスルーの際に受光面側の半導体層中にホウ素含有異種層を形成させて、半導体基板のp型半導体層とn型半導体層の機能を低下させることを見出すと共に、ガラス組成中のBの含有量を質量%以下に規制すれば、このような不具合を抑制し得ることを見出した。また、Bの含有量を質量%以下に規制すれば、軟化点が低下し、低温で電極形成材料を焼結できると共に、耐水性が向上して、シリコン太陽電池の長期信頼性も高めることができる。 In the electrode forming glass of the present invention, the content of B 2 O 3 is regulated to 1 % by mass or less. The present inventors have conducted extensive studies results, the B 2 O 3 in the glass composition, it is responsible for lowering the photoelectric conversion efficiency of the silicon solar cell during fire through, in particular the B 2 O 3 is fire through At the same time, it is found that a boron-containing heterogeneous layer is formed in the semiconductor layer on the light-receiving surface side to lower the functions of the p-type semiconductor layer and the n-type semiconductor layer of the semiconductor substrate, and B 2 O 3 in the glass composition It has been found that such a problem can be suppressed if the content is regulated to 1 % by mass or less. Further, if the content of B 2 O 3 is regulated to 1 % by mass or less, the softening point is lowered, the electrode forming material can be sintered at a low temperature, the water resistance is improved, and the long-term reliability of the silicon solar cell. Can also be increased.

一方、上記のようにBの含有量を規制すれば、ガラス骨格成分の含有量が低下するため、焼成時にガラスが失透し易くなる。そこで、本発明の電極形成用ガラスは、MgO+CaO+SrO+BaO+ZnO+CuO+Fe+Nd+CeO+Sbの含有量が0.1質量%以上に規制されている。このようにすれば、焼成時にガラスが失透し難くなるため、ガラス粉末と反射防止膜の反応性が低下し難くなると共に、電極形成材料の焼結性が低下し難くなる。一方、本発明の電極形成用ガラスは、MgO+CaO+SrO+BaO+ZnO+CuO+Fe+Nd+CeO+Sbの含有量が34.5質量%以下に規制されている。このようにすれば、軟化点の不当な上昇を抑制できるため、低温で電極形成材料の焼結が可能になる。 On the other hand, if the content of B 2 O 3 is regulated as described above, the content of the glass skeleton component decreases, and thus the glass is easily devitrified during firing. Therefore, in the electrode forming glass of the present invention, the content of MgO + CaO + SrO + BaO + ZnO + CuO + Fe 2 O 3 + Nd 2 O 3 + CeO 2 + Sb 2 O 3 is restricted to 0.1 mass% or more. If it does in this way, since it becomes difficult to devitrify glass at the time of baking, while the reactivity of glass powder and an antireflection film becomes difficult to fall, the sinterability of an electrode formation material becomes difficult to fall. On the other hand, in the electrode forming glass of the present invention, the content of MgO + CaO + SrO + BaO + ZnO + CuO + Fe 2 O 3 + Nd 2 O 3 + CeO 2 + Sb 2 O 3 is restricted to 34.5% by mass or less. In this way, since an undue increase in the softening point can be suppressed, the electrode forming material can be sintered at a low temperature.

発明の電極形成用ガラスは、Bの含有量が0.5質量%以下であることが好ましい。 In the electrode forming glass of the present invention, the content of B 2 O 3 is preferably 0.5% by mass or less .

発明の電極形成用ガラスは、実質的にBを含有しないことが好ましい。ここで、「実質的にBを含有しない」とは、Bの含有量が0.1質量%未満の場合を指す。 It is preferable that the electrode forming glass of the present invention does not substantially contain B 2 O 3 . Here, “substantially does not contain B 2 O 3 ” refers to the case where the content of B 2 O 3 is less than 0.1% by mass.

発明の電極形成用ガラスは、更に、SiO+Al(SiOとAlの合量)を0.1〜15質量%含むことが好ましい。このようにすれば、焼成時にガラスが失透し難くなるため、ガラス粉末と反射防止膜の反応性が低下し難くなると共に、電極形成材料の焼結性が低下し難くなる。なお、SiO+Alの含有量を15質量%以下にすれば、軟化点の不当な上昇を防止し易くなる。 The electrode-forming glass of the present invention preferably further contains 0.1 to 15% by mass of SiO 2 + Al 2 O 3 (total amount of SiO 2 and Al 2 O 3 ). If it does in this way, since it becomes difficult to devitrify glass at the time of baking, while the reactivity of glass powder and an antireflection film becomes difficult to fall, the sinterability of an electrode formation material becomes difficult to fall. If the content of SiO 2 + Al 2 O 3 is 15% by mass or less, it is easy to prevent an unreasonable increase in the softening point.

発明の電極形成用ガラスは、実質的にPbOを含有しないことが好ましい。このようにすれば、近年の環境的要請を満たすことができる。ここで、「実質的にPbOを含有しない」とは、PbOの含有量が0.1質量%未満の場合を指す。 It is preferable that the electrode forming glass of the present invention does not substantially contain PbO. In this way, environmental demands in recent years can be satisfied. Here, “substantially does not contain PbO” refers to a case where the content of PbO is less than 0.1 mass%.

発明の電極形成材料は、上記の電極形成用ガラスからなるガラス粉末と、金属粉末と、ビークルとを含むことを特徴とする。このようにすれば、印刷法により、電極パターンを形成できるため、シリコン太陽電池の生産効率を高めることができる。ここで、「ビークル」は、一般的に、有機溶媒中に樹脂を溶解させたものを指すが、本発明では、樹脂を含有せず、高粘性の有機溶媒(例えば、イソトリデシルアルコール等の高級アルコール)のみで構成される態様を含む。 The electrode forming material of the present invention is characterized by including glass powder made of the above-mentioned electrode forming glass, metal powder, and a vehicle. If it does in this way, since an electrode pattern can be formed with a printing method, the production efficiency of a silicon solar cell can be improved. Here, “vehicle” generally refers to a resin dissolved in an organic solvent. However, in the present invention, the resin does not contain a high-viscosity organic solvent (for example, isotridecyl alcohol or the like). The aspect comprised only with a higher alcohol) is included.

発明の電極形成材料は、ガラス粉末の平均粒子径D50が5μm未満であることが好ましい。このようにすれば、ガラス粉末と反射防止膜の反応性が高まり、ファイアスルー性が向上すると共に、ガラス粉末の軟化点が低下して、低温で電極形成材料を焼結可能になり、更には電極パターンを高精細化することができる。なお、電極パターンを高精細化すれば、太陽光の入射量等が増加して、シリコン太陽電池の光電変換効率が向上する。ここで、「平均粒子径D50」は、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒子径を表す。 Electrode forming material of the present invention preferably has an average particle diameter D 50 of the glass powder is less than 5 [mu] m. In this way, the reactivity between the glass powder and the antireflection film is increased, the fire-through property is improved, the softening point of the glass powder is lowered, and the electrode forming material can be sintered at a low temperature. The electrode pattern can be made high definition. If the electrode pattern is made highly precise, the amount of incident sunlight and the like increase, and the photoelectric conversion efficiency of the silicon solar cell is improved. Here, the “average particle diameter D 50 ” represents a particle diameter in which the accumulated amount is 50% cumulative from the smaller particle in the volume-based cumulative particle size distribution curve measured by the laser diffraction method.

発明の電極形成材料は、ガラス粉末の軟化点が550℃以下であることが好ましい。なお、軟化点は、マクロ型示差熱分析(DTA)装置で測定可能である。マクロ型DTAで軟化点を測定する場合、室温から測定を開始し、昇温速度を10℃/分とすればよい。なお、マクロ型DTAにおいて、軟化点は、図1に示す第四屈曲点(Ts)に相当する。 As for the electrode forming material of this invention, it is preferable that the softening point of glass powder is 550 degrees C or less. The softening point can be measured with a macro type differential thermal analysis (DTA) apparatus. When measuring the softening point with a macro-type DTA, the measurement may be started from room temperature and the rate of temperature increase may be 10 ° C./min. In the macro DTA, the softening point corresponds to the fourth bending point (Ts) shown in FIG.

発明の電極形成材料は、ガラス粉末の含有量が0.2〜10質量%であることが好ましい。このようにすれば、電極形成材料の焼結性を維持した上で、電極の導電性を高めることができる。 The electrode forming material of the present invention preferably has a glass powder content of 0.2 to 10% by mass. In this way, the conductivity of the electrode can be increased while maintaining the sinterability of the electrode forming material.

発明の電極形成材料は、金属粉末がAg、Al、Au、Cu、Pd、Ptおよびこれらの合金の一種又は二種以上を含むことが好ましい。これらの金属粉末は、本発明に係るビスマス系ガラスと適合性が良好であり、焼成時にガラスの発泡を助長し難い性質を有している。 In the electrode forming material of the present invention, the metal powder preferably contains one or more of Ag, Al, Au, Cu, Pd, Pt, and alloys thereof. These metal powders have good compatibility with the bismuth glass according to the present invention, and have a property that it is difficult to promote foaming of the glass during firing.

発明の電極形成材料は、シリコン太陽電池の電極に用いることが好ましい。 The electrode forming material of the present invention is preferably used for an electrode of a silicon solar cell.

発明の電極形成材料は、反射防止膜を有するシリコン太陽電池の受光面電極に用いることが好ましい。 The electrode forming material of the present invention is preferably used for a light-receiving surface electrode of a silicon solar cell having an antireflection film.

マクロ型DTAで測定した際の軟化点Tsを示す模式図である。It is a schematic diagram which shows the softening point Ts at the time of measuring with macro type | mold DTA.

本発明の電極形成用ガラスにおいて、上記のように各成分の含有範囲を限定した理由を以下に説明する。なお、ガラス組成に関する説明において、%表示は質量%を指す。   In the electrode forming glass of the present invention, the reason for limiting the content range of each component as described above will be described below. In addition, in description regarding a glass composition,% display points out the mass%.

Biは、ファイアスルー性や耐水性を高める成分であると共に、軟化点を低下させる成分であり、その含有量は65.2〜90%、好ましくは70〜86%、より好ましくは75〜82%、更に好ましくは76〜80%である。Biの含有量が65.2%より少ないと、ファイアスルー性や耐水性が低下することに加えて、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなる。一方、Biの含有量が90%より多いと、焼成時にガラスが失透し易くなり、この失透に起因して、ガラス粉末と反射防止膜の反応性及び電極形成材料の焼結性が低下し易くなる。 Bi 2 O 3 is a component that enhances the fire-through property and water resistance, and is a component that lowers the softening point, and its content is 65.2 to 90%, preferably 70 to 86%, more preferably 75. It is -82%, More preferably, it is 76-80%. If the content of Bi 2 O 3 is less than 65.2%, the fire-through property and water resistance are lowered, and the softening point becomes too high, making it difficult to sinter the electrode forming material at a low temperature. On the other hand, when the content of Bi 2 O 3 is more than 90%, the glass tends to be devitrified during firing. Due to this devitrification, the reactivity of the glass powder and the antireflection film and the sintering of the electrode forming material are caused. The property tends to decrease.

は、ガラス骨格成分であるが、ファイアスルーの際にシリコン太陽電池の光電変換効率を低下させる成分であり、その含有量は%以下であり、1%未満、0.5%以下、0.3%以下、特に0.1%未満が好ましい。Bの含有量が多いと、ファイアスルーの際に受光面側の半導体層にホウ素がドープされることにより、ホウ素含有異種層が形成されて、半導体基板のp型半導体層とn型半導体層の機能が低下し易くなり、結果として、シリコン太陽電池の光電変換効率が低下し易くなる。また、Bの含有量が多いと、ガラスの粘性が高くなる傾向があり、低温で電極形成材料を焼結し難くなることに加えて、耐水性が低下し易くなり、シリコン太陽電池の長期信頼性が低下し易くなる。 B 2 O 3 is a glass skeleton component, but is a component that lowers the photoelectric conversion efficiency of the silicon solar cell during fire-through, and its content is 1 % or less, less than 1 %, 0.5% Hereinafter, it is preferably 0.3% or less, particularly preferably less than 0.1%. B 2 content of O 3 is polytene by boron semiconductor layer of the light-receiving surface side when the fire through is doped, is boron-containing heterogeneous layer is formed, p-type semiconductor layer and the n-type semiconductor substrate The function of the semiconductor layer is likely to be lowered, and as a result, the photoelectric conversion efficiency of the silicon solar cell is likely to be lowered. Further, B 2 O 3 content is polytene tend to the viscosity of the glass is high, in addition to being difficult to sinter the electrode forming material at a low temperature, water resistance tends to decrease, silicon solar cell The long-term reliability is likely to decrease.

MgO+CaO+SrO+BaO+ZnO+CuO+Fe+Nd+CeO+Sbは、熱的安定性を高める成分であり、その含有量は0.1〜34.5%、好ましくは0.5〜30%、より好ましくは1〜20%、更に好ましくは3〜15%である。MgO+CaO+SrO+BaO+ZnO+CuO+Fe+Nd+CeO+Sbの含有量が0.1%より少ないと、焼成時にガラスが失透し易くなり、この失透に起因して、ガラス粉末と反射防止膜の反応性及び電極形成材料の焼結性が低下し易くなる。一方、MgO+CaO+SrO+BaO+ZnO+CuO+Fe+Nd+CeO+Sbの含有量が34.5%より多いと、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなる。 MgO + CaO + SrO + BaO + ZnO + CuO + Fe 2 O 3 + Nd 2 O 3 + CeO 2 + Sb 2 O 3 is a component that enhances thermal stability, and its content is 0.1 to 34.5%, preferably 0.5 to 30%, more preferably Is 1 to 20%, more preferably 3 to 15%. If the content of MgO + CaO + SrO + BaO + ZnO + CuO + Fe 2 O 3 + Nd 2 O 3 + CeO 2 + Sb 2 O 3 is less than 0.1%, the glass tends to be devitrified at the time of firing. The reactivity and the sinterability of the electrode forming material are likely to decrease. On the other hand, if the content of MgO + CaO + SrO + BaO + ZnO + CuO + Fe 2 O 3 + Nd 2 O 3 + CeO 2 + Sb 2 O 3 is more than 34.5%, the softening point becomes too high and it becomes difficult to sinter the electrode forming material at a low temperature.

MgOは、熱的安定性を高める成分であり、その含有量は0〜5%であり、特に0〜2%が好ましい。MgOの含有量が5%より多いと、軟化転移点が高くなり過ぎて、低温で電極形成材料を焼結し難くなる。 MgO is a component that enhances thermal stability, and its content is 0 to 5% , and preferably 0 to 2%. When the content of MgO is more than 5%, the softening transition point becomes too high, and it becomes difficult to sinter the electrode forming material at a low temperature.

CaOは、熱的安定性を高める成分であり、その含有量は0〜5%であり、特に0〜2%が好ましい。CaOの含有量が5%より多いと、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなる。 CaO is a component that enhances thermal stability, and its content is 0 to 5% , and preferably 0 to 2%. When the content of CaO is more than 5%, the softening point becomes too high, and it becomes difficult to sinter the electrode forming material at a low temperature.

SrOは、熱的安定性を高める成分であり、その含有量は0〜15%であり、0〜10%、特に0〜7%が好ましい。SrOの含有量が15%より多いと、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなる。 SrO is a component that enhances thermal stability, and its content is 0 to 15% , preferably 0 to 10%, particularly preferably 0 to 7%. If the SrO content is more than 15%, the softening point becomes too high, and it becomes difficult to sinter the electrode forming material at a low temperature.

BaOは、アルカリ土類金属酸化物の中で熱的安定性を高める効果が最も大きく、更には軟化点を上昇させ難い効果を有するため、ガラス組成中に積極的に添加することが好ましい。BaOの含有量は0〜20%であり、0.1〜17%、2〜15%、特に4〜12%が好ましい。BaOの含有量が20%より多いと、ガラス組成の成分バランスが損なわれて、逆に熱的安定性が低下し易くなる。 BaO has the greatest effect of increasing the thermal stability among alkaline earth metal oxides, and further has the effect of hardly raising the softening point, so it is preferable to add it positively into the glass composition. The content of BaO is 0 to 20% , preferably 0.1 to 17%, 2 to 15%, particularly 4 to 12%. When there is more content of BaO than 20%, the component balance of a glass composition will be impaired and conversely thermal stability will fall easily.

ZnOは、熱的安定性を高める成分であると共に、熱膨張係数を低下させずに、軟化点を低下させる成分であり、その含有量は0〜25%であり、1〜16%、特に2〜12%が好ましい。ZnOの含有量が25%より多いと、ガラス組成の成分バランスが損なわれて、逆にガラスに結晶が析出し易くなる。 ZnO is a component that enhances thermal stability, and is a component that lowers the softening point without reducing the thermal expansion coefficient. Its content is 0 to 25% , 1 to 16%, particularly 2 ~ 12% is preferred. If the ZnO content is more than 25%, the component balance of the glass composition is impaired, and conversely, crystals are likely to precipitate on the glass.

CuOは、熱的安定性を高める成分であり、その含有量は0〜15%であり、0.1〜10%、特に1〜10%が好ましい。CuOの含有量が15%より多いと、ガラス組成の成分バランスが損なわれて、逆に結晶の析出速度が速くなり、すなわち熱的安定性が低下する傾向がある。ファイアスルー性を高めるためには、ガラス組成中にBiを多量に添加する必要があるが、Biの含有量を増加させると、焼成時にガラスが失透し易くなり、この失透に起因して、ガラス粉末と反射防止膜の反応性が低下し易くなる。特に、Biの含有量が70%以上になると、その傾向が顕著になる。そこで、ガラス組成中にCuOを適量添加すれば、Biの含有量が70%以上であっても、ガラスの失透を抑制することができる。 CuO is a component that enhances thermal stability, and its content is 0 to 15% , preferably 0.1 to 10%, particularly preferably 1 to 10%. When the content of CuO is more than 15%, the component balance of the glass composition is impaired, and conversely, the deposition rate of crystals increases, that is, the thermal stability tends to decrease. In order to improve the fire-through property, it is necessary to add a large amount of Bi 2 O 3 in the glass composition. However, if the content of Bi 2 O 3 is increased, the glass tends to be devitrified during firing. Due to the devitrification, the reactivity between the glass powder and the antireflection film tends to decrease. In particular, when the content of Bi 2 O 3 is 70% or more, the tendency becomes remarkable. Therefore, if an appropriate amount of CuO is added to the glass composition, devitrification of the glass can be suppressed even if the content of Bi 2 O 3 is 70% or more.

Feは、熱的安定性を高める成分であり、その含有量は0〜5%であり、特に0〜2%が好ましい。Feの含有量が5%より多いと、ガラス組成の成分バランスが損なわれて、逆に結晶の析出速度が速くなり、すなわち熱的安定性が低下する傾向がある。 Fe 2 O 3 is a component that enhances thermal stability, and its content is 0 to 5% , particularly preferably 0 to 2%. When the content of Fe 2 O 3 is more than 5%, the component balance of the glass composition is impaired, and conversely, the deposition rate of crystals increases, that is, the thermal stability tends to decrease.

Ndは、熱的安定性を高める成分であり、その含有量は0〜10%であり、特に0〜3%が好ましい。ガラス組成中にNdを所定量添加すれば、Bi−Bのガラスネットワークが安定化し、焼成時にBi(ビスマイト)、BiとBで形成される2Bi・B又は12Bi・B等の結晶が析出し難くなる。但し、Ndの含有量が10%より多いと、ガラス組成の成分バランスが損なわれて、逆にガラスに結晶が析出し易くなる。 Nd 2 O 3 is a component which enhances the thermal stability, the content thereof is 0-10%, particularly 0-3% is preferred. If a predetermined amount of Nd 2 O 3 is added to the glass composition, the glass network of Bi 2 O 3 —B 2 O 3 is stabilized, and Bi 2 O 3 (bismite), Bi 2 O 3 and B 2 O 3 are fired during firing. in crystal such 2Bi 2 O 3 · B 2 O 3 or 12Bi 2 O 3 · B 2 O 3 is formed is hardly precipitated. However, if the content of Nd 2 O 3 is more than 10%, the component balance of the glass composition is impaired, and conversely, crystals are likely to precipitate on the glass.

CeOは、熱的安定性を高める成分であり、その含有量は0〜5%であり、特に0〜2%が好ましい。CeOの含有量が5%より多いと、ガラス組成の成分バランスが損なわれて、逆に結晶の析出速度が速くなり、すなわち熱的安定性が低下する傾向がある。 CeO 2 is a component that enhances thermal stability, and its content is 0 to 5% , and preferably 0 to 2%. When the content of CeO 2 is more than 5%, the component balance of the glass composition is impaired, and conversely, the deposition rate of crystals increases, that is, the thermal stability tends to decrease.

Sbは、熱的安定性を高める成分であり、その含有量は0〜7%であり、0.1〜5%、特に0.3〜3%が好ましい。Sbの含有量が7%より多いと、ガラス組成の成分バランスが損なわれて、逆に結晶の析出速度が速くなり、すなわち熱的安定性が低下する傾向がある。ファイアスルー性を高めるためには、ガラス組成中にBiを多量に添加する必要があるが、Biの含有量を増加させると、焼成時にガラスが失透し易くなり、この失透に起因して、ガラス粉末と反射防止膜の反応性が低下し易くなる。特に、Biの含有量が70%以上になると、その傾向が顕著になる。そこで、ガラス組成中にSbを適量添加すれば、Biの含有量が70%以上であっても、ガラスの失透を抑制することができる。 Sb 2 O 3 content of, or to enhance the thermal stability, the content thereof is 0 to 7% 0.1% to 5%, in particular 0.3 to 3 percent is preferred. If the content of Sb 2 O 3 is more than 7%, the component balance of the glass composition is impaired, and conversely, the rate of crystal precipitation increases, that is, thermal stability tends to decrease. In order to improve the fire-through property, it is necessary to add a large amount of Bi 2 O 3 in the glass composition. However, if the content of Bi 2 O 3 is increased, the glass tends to be devitrified during firing. Due to the devitrification, the reactivity between the glass powder and the antireflection film tends to decrease. In particular, when the content of Bi 2 O 3 is 70% or more, the tendency becomes remarkable. Therefore, if an appropriate amount of Sb 2 O 3 is added to the glass composition, devitrification of the glass can be suppressed even if the Bi 2 O 3 content is 70% or more.

上記成分以外にも、例えば、以下の成分を添加してもよい。   In addition to the above components, for example, the following components may be added.

SiO+Alは、耐水性を高める成分であり、その含有量は〜20%、〜15%、特に5〜12%が好ましい。SiO+Alの含有量が20%より多いと、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなることに加えて、ファイアスルー性が低下する傾向がある。 SiO 2 + Al 2 O 3 is a component which enhances the water resistance, the content thereof is 5-20%, 5-15%, especially 5-12% is preferred. When the content of SiO 2 + Al 2 O 3 is more than 20%, the softening point becomes too high, and it becomes difficult to sinter the electrode forming material at a low temperature, and the fire-through property tends to be lowered.

SiOは、耐水性を高める成分であり、また半導体基板と電極の接着強度を高める成分であり、その含有量は0.1〜10%、特に1〜10%が好ましい。SiOの含有量が20%より多いと、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなることに加えて、ファイアスルー性が低下する傾向がある。
SiO 2 is a component improving the water resistance, also a component for increasing the bonding strength of the semiconductor substrate and the electrode, the content thereof is from 0.1 to 10%, 1-10% especially preferred. When the content of SiO 2 is more than 20%, the softening point becomes too high, and it becomes difficult to sinter the electrode forming material at a low temperature, and the fire-through property tends to be lowered.

Alは、耐水性を高める成分であり、またシリコン太陽電池の光電変換効率を高める成分であり、その含有量は0.1〜15%、0.1〜10%、特に1〜8%が好ましい。Alの含有量が15%より多いと、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなることに加えて、ファイアスルー性が低下する傾向がある。なお、Alの添加により、シリコン太陽電池の光電変換効率が向上する理由は不明である。本発明者は、現時点では、Alを添加すると、ファイアスルーの際に受光面側の半導体層中に異種層が形成され難くなると推定している。 Al 2 O 3 is a component that enhances water resistance and is a component that enhances the photoelectric conversion efficiency of the silicon solar cell, and its content is 0.1 to 15%, 0.1 to 10%, particularly 1 to 8. % Is preferred. When the content of Al 2 O 3 is more than 15%, the softening point becomes too high and it becomes difficult to sinter the electrode forming material at a low temperature, and the fire-through property tends to be lowered. The reason why the photoelectric conversion efficiency of the silicon solar cell is improved by the addition of Al 2 O 3 is unknown. The present inventor currently estimates that when Al 2 O 3 is added, it is difficult to form a heterogeneous layer in the semiconductor layer on the light-receiving surface side during fire-through.

LiO、NaO、KO及びCsOは、軟化点を低下させる成分であるが、溶融時にガラスの失透を促進する作用を有するため、これらの成分の含有量は、各々2%以下が好ましい。 Li 2 O, Na 2 O, K 2 O and Cs 2 O are components that lower the softening point, but since they have an action of promoting devitrification of the glass at the time of melting, the content of these components is 2% or less is preferable.

WOは、熱的安定性を高める成分であり、その含有量は0〜5%、特に0〜2%が好ましい。WOの含有量が5%より多いと、ガラス組成の成分バランスが損なわれて、逆に熱的安定性が低下し易くなる。 WO 3 is a component that enhances thermal stability, and its content is preferably 0 to 5%, particularly preferably 0 to 2%. When the content of WO 3 is more than 5%, the component balance of the glass composition is impaired, and conversely, the thermal stability tends to be lowered.

In+Ga(InとGaの合量)は、熱的安定性を高める成分であり、その含有量は0〜5%、0〜3%、特に0〜1%が好ましい。In+Gaの含有量が5%より多いと、バッチコストが高騰し易くなる。なお、In、Gaの含有量は各々0〜2%が好ましい。 In 2 O 3 + Ga 2 O 3 (total amount of In 2 O 3 and Ga 2 O 3 ) is a component that enhances thermal stability, and its content is 0 to 5%, 0 to 3%, particularly 0. ~ 1% is preferred. When the content of In 2 O 3 + Ga 2 O 3 is more than 5%, the batch cost is likely to increase. In addition, the content of In 2 O 3 and Ga 2 O 3 is preferably 0 to 2%.

は、溶融時にガラスの失透を抑制する成分であるが、その含有量が多いと、溶融時にガラスが分相し易くなる。このため、Pの含有量は1%以下が好ましい。 P 2 O 5 is a component that suppresses the devitrification of the glass at the time of melting, but if the content is large, the glass is likely to phase-separate at the time of melting. For this reason, the content of P 2 O 5 is preferably 1% or less.

MoO+La+Y(MoO、La、及びYの合量)は、溶融時に分相を抑制する効果があるが、これらの成分の含有量が多いと、軟化点が高くなり過ぎて、低温で電極形成材料を焼結し難くなる。よって、MoO+La+Yの含有量は3%以下が好ましい。なお、MoO、La、Yの含有量は各々0〜2%が好ましい。 MoO 3 + La 2 O 3 + Y 2 O 3 (total amount of MoO 3 , La 2 O 3 , and Y 2 O 3 ) has an effect of suppressing phase separation during melting, but the content of these components is large. Then, the softening point becomes too high, and it becomes difficult to sinter the electrode forming material at a low temperature. Therefore, the content of MoO 3 + La 2 O 3 + Y 2 O 3 is preferably 3% or less. Incidentally, MoO 3, the content of La 2 O 3, Y 2 O 3 are each 0 to 2% is preferred.

本発明のビスマス系ガラスは、PbOの含有を排除するものではないが、環境的観点から実質的にPbOを含有しないことが好ましい。また、PbOは、耐水性が十分ではないため、シリコン太陽電池に用いる場合には、実質的にPbOを含有しないことが好ましい。   The bismuth-based glass of the present invention does not exclude the inclusion of PbO, but it is preferable that it does not substantially contain PbO from the environmental viewpoint. Moreover, since PbO does not have sufficient water resistance, it is preferable that PbO does not substantially contain PbO when used for silicon solar cells.

本発明の電極形成材料は、上記の電極形成用ガラスからなるガラス粉末と、金属粉末と、ビークルとを含む。ガラス粉末は、焼成時に、反射防止膜を侵食することにより、電極形成材料をファイアスルーさせる成分であると共に、電極と半導体基板を接着させる成分である。金属粉末は、電極を形成する主要成分であり、導電性を確保するための成分である。ビークルは、ペースト化するための成分であり、印刷に適した粘度を付与するための成分である。   The electrode forming material of the present invention includes glass powder made of the above electrode forming glass, metal powder, and a vehicle. Glass powder is a component that causes the electrode-forming material to fire through by corroding the antireflection film during firing, and is a component that adheres the electrode and the semiconductor substrate. The metal powder is a main component for forming the electrode and a component for ensuring conductivity. The vehicle is a component for making a paste, and a component for imparting a viscosity suitable for printing.

本発明の電極形成材料において、ガラス粉末の平均粒子径D50は5μm未満、4μm以下、3μm以下、2μm以下、特に1.5μm以下が好ましい。ガラス粉末の平均粒子径D50が5μm以上であると、ガラス粉末の表面積が小さくなることに起因して、ガラス粉末と反射防止膜の反応性が低下し、ファイアスルー性が低下し易くなる。また、ガラス粉末の平均粒子径D50が5μm以上であると、ガラス粉末の軟化点が上昇し、電極の形成に必要な温度域が上昇する。さらに、ガラス粉末の平均粒子径D50が5μm以上であると、微細な電極パターンを形成し難くなり、シリコン太陽電池の光電変換効率が低下し易くなる。一方、ガラス粉末の平均粒子径D50の下限は特に限定されないが、ガラス粉末の平均粒子径D50が小さ過ぎると、ガラス粉末のハンドリング性が低下し、ガラス粉末の材料収率が低下することに加えて、ガラス粉末が凝集し易くなり、シリコン太陽電池の特性が変動し易くなる。このような状況を考慮すれば、ガラス粉末の平均粒子径D50は0.5μm以上が好ましい。なお、(1)ガラスフィルムをボールミルで粉砕した後、得られたガラス粉末を空気分級、或いは(2)ガラスフィルムをボールミル等で粗粉砕した後、ビーズミル等で湿式粉砕すれば、上記平均粒子径D50を有するガラス粉末を得ることができる。 In the electrode forming material of the present invention, the average particle diameter D 50 of the glass powder less than 5 [mu] m, 4 [mu] m or less, 3 [mu] m or less, 2 [mu] m or less, especially 1.5μm or less preferred. If the average of the glass powder the particle diameter D 50 is at 5μm or more, due to the surface area of the glass powder is reduced, it reduces the reactivity of the glass powder and the antireflection film, fire through resistance is liable to lower. When the average particle diameter D 50 of the glass powder is 5μm or more, the softening point of the glass powder is increased, the temperature range is increased required to form the electrode. Further, when the average particle diameter D 50 of the glass powder is 5μm or more, it becomes difficult to form a fine electrode pattern, the photoelectric conversion efficiency of the silicon solar cells tends to decrease. On the other hand, the lower limit of the average particle diameter D 50 of the glass powder is not particularly limited, the average particle diameter D 50 of the glass powder is too small, decreases the handling of the glass powder is lowered material yield of the glass powder In addition, the glass powder tends to aggregate and the characteristics of the silicon solar cell are likely to fluctuate. In view of such situation, the average particle diameter D 50 of the glass powder is preferably at least 0.5 [mu] m. (1) After the glass film is pulverized with a ball mill, the obtained glass powder is classified by air, or (2) The glass film is coarsely pulverized with a ball mill or the like and then wet pulverized with a bead mill or the like. it is possible to obtain a glass powder having a D 50.

本発明の電極形成材料において、ガラス粉末の最大粒子径Dmaxは25μm以下、20μm以下、15μm以下、特に10μm以下が好ましい。ガラス粉末の最大粒子径Dmaxが25μmより大きいと、微細な電極パターンを形成し難くなり、シリコン太陽電池の光電変換効率が低下し易くなる。ここで、「最大粒子径Dmax」は、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して99%である粒子径を表す。 In the electrode forming material of the present invention, the maximum particle diameter Dmax of the glass powder is preferably 25 μm or less, 20 μm or less, 15 μm or less, and particularly preferably 10 μm or less. When the maximum particle diameter Dmax of the glass powder is larger than 25 μm, it becomes difficult to form a fine electrode pattern, and the photoelectric conversion efficiency of the silicon solar cell is likely to be lowered. Here, the “maximum particle diameter D max ” represents a particle diameter in which the accumulated amount is 99% cumulative from the smaller particle in the volume-based cumulative particle size distribution curve measured by the laser diffraction method.

本発明の電極形成材料において、ガラス粉末の軟化点は550℃以下、530℃以下、特に400〜500℃が好ましい。ガラス粉末の軟化点が550℃より高いと、電極の形成に必要な温度域が上昇する。なお、ガラス粉末の軟化点が400℃より低いと、ガラス粉末と反射防止膜の反応が進行し過ぎて、ガラス粉末が半導体基板も侵食するため、空乏層が損傷されて、シリコン太陽電池の電池特性が低下するおそれがある。   In the electrode forming material of the present invention, the softening point of the glass powder is preferably 550 ° C. or lower, 530 ° C. or lower, particularly preferably 400 to 500 ° C. When the softening point of the glass powder is higher than 550 ° C., the temperature range necessary for forming the electrode increases. If the softening point of the glass powder is lower than 400 ° C., the reaction between the glass powder and the antireflection film proceeds too much, and the glass powder also erodes the semiconductor substrate, so that the depletion layer is damaged and the silicon solar cell battery There is a risk that the characteristics will deteriorate.

本発明の電極形成材料において、ガラス粉末の含有量は0.2〜10質量%、1〜6質量%、特に1.5〜4質量%が好ましい。ガラス粉末の含有量が0.2質量%より少ないと、電極形成材料の焼結性が低下し易くなる。一方、ガラス粉末の含有量が10質量%より多いと、形成される電極の導電性が低下し易くなるため、発生した電気を取り出し難くなる。また、ガラス粉末の含有量と金属粉末の含有量は、上記と同様の理由により、質量比で0.3:99.7〜13:87、1.5:98.5〜7.5:92.5、特に2:98〜5:95が好ましい。   In the electrode forming material of the present invention, the glass powder content is preferably 0.2 to 10% by mass, 1 to 6% by mass, and particularly preferably 1.5 to 4% by mass. When the content of the glass powder is less than 0.2% by mass, the sinterability of the electrode forming material tends to be lowered. On the other hand, when the content of the glass powder is more than 10% by mass, the conductivity of the formed electrode is likely to be lowered, and thus it is difficult to take out the generated electricity. Moreover, content of glass powder and content of metal powder are 0.3: 99.7-13: 87 and 1.5: 98.5-7.5: 92 by mass ratio for the same reason as the above. .5, particularly 2:98 to 5:95 is preferred.

本発明の電極形成材料において、金属粉末の含有量は50〜97質量%、65〜95質量%、特に70〜92質量%が好ましい。金属粉末の含有量が50質量%より少ないと、形成される電極の導電性が低下して、シリコン太陽電池の光電変換効率が低下し易くなる。一方、金属粉末の含有量が97質量%より多いと、相対的にガラス粉末の含有量が低下するため、電極形成材料の焼結性が低下し易くなる。   In the electrode forming material of the present invention, the content of the metal powder is preferably 50 to 97 mass%, 65 to 95 mass%, particularly preferably 70 to 92 mass%. When content of metal powder is less than 50 mass%, the electroconductivity of the electrode formed will fall and the photoelectric conversion efficiency of a silicon solar cell will fall easily. On the other hand, when the content of the metal powder is more than 97% by mass, the content of the glass powder is relatively lowered, so that the sinterability of the electrode forming material is easily lowered.

本発明の電極形成材料において、金属粉末はAg、Al、Au、Cu、Pd、Pt及びこれらの合金の一種又は二種以上が好ましく、特にAgが好ましい。これらの金属粉末は、導電性が良好であると共に、本発明に係るガラス粉末と適合性が良好である。このため、これらの金属粉末を用いると、焼成時にガラスが失透し難くなると共に、ガラスが発泡し難くなる。また、微細な電極パターンを形成するために、金属粉末の平均粒子径D50は2μm以下、特に1μm以下が好ましい。 In the electrode forming material of the present invention, the metal powder is preferably Ag, Al, Au, Cu, Pd, Pt, or one or more of these alloys, and particularly preferably Ag. These metal powders have good electrical conductivity and good compatibility with the glass powder according to the present invention. For this reason, when these metal powders are used, the glass is difficult to devitrify during firing and the glass is difficult to foam. Further, in order to form a fine electrode pattern, the mean particle diameter D 50 of the metal powder is 2μm or less, especially 1μm or less.

本発明の電極形成材料において、ビークルの含有量は5〜40質量%、特に10〜25質量%が好ましい。ビークルの含有量が5質量%より少ないと、ペースト化が困難になり、印刷法で電極を形成し難くなる。一方、ビークルの含有量が40質量%より多いと、焼成前後で膜厚や膜幅が変動し易くなり、結果として、所望の電極パターンを形成し難くなる。   In the electrode forming material of the present invention, the content of the vehicle is preferably 5 to 40% by mass, particularly preferably 10 to 25% by mass. When the content of the vehicle is less than 5% by mass, it becomes difficult to form a paste, and it is difficult to form an electrode by a printing method. On the other hand, when the content of the vehicle is more than 40% by mass, the film thickness and film width are likely to fluctuate before and after firing, and as a result, it becomes difficult to form a desired electrode pattern.

上記の通り、ビークルは、一般的に、有機溶媒中に樹脂を溶解させたものを指す。樹脂としては、アクリル酸エステル(アクリル樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、メタクリル酸エステル等が使用可能である。特に、アクリル酸エステル、ニトロセルロース、エチルセルロースは、熱分解性が良好であるため、好ましい。有機溶媒としては、N、N’−ジメチルホルムアミド(DMF)、α−ターピネオール、高級アルコール、γ−ブチルラクトン(γ−BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3−メトキシ−3−メチルブタノール、水、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N−メチル−2−ピロリドン等が使用可能である。特に、α−ターピネオールは、高粘性であり、樹脂等の溶解性も良好であるため、好ましい。   As described above, the vehicle generally refers to a resin in which a resin is dissolved in an organic solvent. As the resin, acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester and the like can be used. In particular, acrylic acid ester, nitrocellulose, and ethylcellulose are preferable because of their good thermal decomposability. As organic solvents, N, N′-dimethylformamide (DMF), α-terpineol, higher alcohol, γ-butyllactone (γ-BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether , Diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, water, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl Ether, tripropylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO) N- methyl-2-pyrrolidone and the like can be used. In particular, α-terpineol is preferable because it is highly viscous and has good solubility in resins and the like.

本発明の電極形成材料は、上記成分以外にも、熱膨張係数を調整するためにコーディエライト等のセラミックフィラー粉末、電極の抵抗を調整するためにNiO等の酸化物粉末、ペースト特性を調整するために界面活性剤や増粘剤、外観品位を調整するために顔料等を含有してもよい。   In addition to the above components, the electrode forming material of the present invention adjusts ceramic filler powder such as cordierite to adjust the thermal expansion coefficient, oxide powder such as NiO to adjust the electrode resistance, and paste characteristics. Therefore, a surfactant, a thickener, and a pigment may be contained to adjust the appearance quality.

本発明の電極形成材料は、窒化ケイ素膜、酸化シリコン膜、酸化チタン膜、酸化アルミニウム膜との反応性、特に窒化ケイ素膜との反応性が適正であり、ファイアスルー性に優れている。その結果、焼成時に反射防止膜を貫通可能であり、シリコン太陽電池の受光面電極を効率良く形成することができる。また、本発明の電極形成材料を用いると、ファイアスルーの際に受光面側の半導体層へのホウ素のドープを抑制することができる。これにより、ホウ素含有異種層が形成されて、半導体基板のp型半導体層とn型半導体層の機能が低下する事態を防止でき、結果として、シリコン太陽電池の光電変換効率が低下し難くなる。   The electrode forming material of the present invention has an appropriate reactivity with a silicon nitride film, a silicon oxide film, a titanium oxide film, and an aluminum oxide film, particularly a reactivity with a silicon nitride film, and is excellent in fire-through properties. As a result, the antireflection film can be penetrated during firing, and the light-receiving surface electrode of the silicon solar cell can be efficiently formed. Further, when the electrode forming material of the present invention is used, boron doping to the semiconductor layer on the light receiving surface side can be suppressed during fire-through. As a result, it is possible to prevent a situation where the boron-containing heterogeneous layer is formed and the functions of the p-type semiconductor layer and the n-type semiconductor layer of the semiconductor substrate are lowered, and as a result, the photoelectric conversion efficiency of the silicon solar cell is hardly lowered.

本発明の電極形成材料は、シリコン太陽電池の裏面電極の形成にも使用可能である。裏面電極を形成するための電極形成材料は、通常、Al粉末と、ガラス粉末と、ビークル等とを含有している。そして裏面電極は、通常、上記の印刷法で形成される。本発明の電極形成材料は、Al粉末が半導体基板のSiと反応し、裏面電極と半導体基板の界面にAl−Si合金層が形成される反応を促進させ、更にはAl−Si合金層と半導体基板の界面においてp+電解層(Back Surface Field層、BSF層とも称される)の形成も促進させることが可能である。p+電解層を形成すれば、電子の再結合を防止し、生成キャリアの収集効率を高める効果、所謂BSF効果を享受することができる。結果として、p+電解層を形成すれば、シリコン太陽電池の光電変換効率を高めることができる。また、本発明の電極形成材料を用いると、Al粉末とSiの反応が不均一になり、局所的にAl−Si合金の生成量が増大し、このことに起因して、裏面電極の表面にブリスターやAlの凝集が生じ、シリコン太陽電池の製造工程でシリコン半導体基板に割れ等が発生して、シリコン太陽電池の製造効率が低下する不具合も防止することができる。   The electrode forming material of the present invention can also be used to form the back electrode of a silicon solar cell. The electrode forming material for forming the back electrode usually contains Al powder, glass powder, vehicle and the like. And a back surface electrode is normally formed by said printing method. In the electrode forming material of the present invention, Al powder reacts with Si of the semiconductor substrate to promote a reaction in which an Al—Si alloy layer is formed at the interface between the back electrode and the semiconductor substrate. Formation of a p + electrolytic layer (also referred to as a back surface field layer or a BSF layer) at the interface of the substrate can be promoted. If the p + electrolytic layer is formed, it is possible to enjoy the effect of preventing recombination of electrons and increasing the collection efficiency of generated carriers, the so-called BSF effect. As a result, if a p + electrolytic layer is formed, the photoelectric conversion efficiency of the silicon solar cell can be increased. In addition, when the electrode forming material of the present invention is used, the reaction between Al powder and Si becomes non-uniform, and the amount of Al-Si alloy produced locally increases. It is possible to prevent a problem that blisters and Al are aggregated and a silicon semiconductor substrate is cracked in the manufacturing process of the silicon solar cell, and the manufacturing efficiency of the silicon solar cell is lowered.

以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は単なる例示である。本発明は以下の実施例に何ら限定されない。   Hereinafter, based on an Example, this invention is demonstrated in detail. The following examples are merely illustrative. The present invention is not limited to the following examples.

表1〜3は、試料No.1〜21を示している。 Table 1-3, specimen No. 1 to 21 are shown.

次のようにして、各試料を調製した。まず、表中に示したガラス組成となるように各種酸化物、炭酸塩等のガラス原料を調合し、ガラスバッチを準備した後、このガラスバッチを白金坩堝に入れて、900〜1200℃で1〜2時間溶融した。次に、溶融ガラスを水冷ローラーでフィルム状に成形し、得られたガラスフィルムをボールミルで粉砕した後、目開き200メッシュの篩を通過させた上で、空気分級し、表中に記載の平均粒子径D50を有するガラス粉末を得た。 Each sample was prepared as follows. First, after preparing glass raw materials such as various oxides and carbonates so as to have the glass composition shown in the table and preparing a glass batch, the glass batch was put in a platinum crucible and 1 at 900 to 1200 ° C. Melted for ~ 2 hours. Next, the molten glass was formed into a film shape with a water-cooled roller, and the obtained glass film was pulverized with a ball mill, then passed through a sieve having a mesh size of 200 mesh, air-classified, and the average shown in the table to obtain a glass powder with a particle size D 50.

各試料につき、軟化点を測定した。軟化点は、マクロ型DTA装置で測定した値である。なお、測定温度域を室温〜700℃とし、昇温速度を10℃/分とした。   The softening point was measured for each sample. The softening point is a value measured with a macro DTA apparatus. The measurement temperature range was from room temperature to 700 ° C., and the heating rate was 10 ° C./min.

得られたガラス粉末4質量%と、表中に示す金属粉末(平均粒子径D50=0.5μm)76質量%と、ビークル(α−ターピネオールにアクリル酸エステルを溶解させたもの)20質量%とを三本ローラーで混練し、ペースト状の試料を得た。この試料につき、ファイアスルー性と電池特性を評価した。 4% by mass of the obtained glass powder, 76% by mass of metal powder (average particle diameter D 50 = 0.5 μm) shown in the table, and 20% by mass of vehicle (a solution of acrylic acid ester dissolved in α-terpineol) Were kneaded with three rollers to obtain a paste-like sample. This sample was evaluated for fire-through properties and battery characteristics.

次のようにして、ファイアスルー性を評価した。シリコン半導体基板に形成されたSiN膜(膜厚100nm)上に、長さ200mm、100μm幅になるようにペースト状の試料を線状にスクリーン印刷し、乾燥した後、電気炉で700℃1分間焼成した。次に、得られた焼成基板を塩酸水溶液(10質量%濃度)に浸漬し、12時間超音波にかけて、エッチング処理を行った。続いて、エッチング処理後の焼成基板を光学顕微鏡(100倍)で観察し、ファイアスルー性を評価した。SiN膜を貫通し、焼成基板上に線状の電極パターンが形成されていたものを「○」、焼成基板上に線状の電極パターンが概ね形成されていたが、SiN膜を貫通していない箇所が存在し、電気的接続が一部途切れていたものを「△」、SiN膜を貫通していなかったものを「×」として評価した。   The fire-through property was evaluated as follows. A paste-like sample is screen-printed in a line shape to a length of 200 mm and a width of 100 μm on a SiN film (film thickness 100 nm) formed on a silicon semiconductor substrate, dried, and then 700 ° C. for 1 minute in an electric furnace. Baked. Next, the obtained fired substrate was immersed in a hydrochloric acid aqueous solution (10% by mass concentration) and subjected to an etching treatment by applying ultrasonic waves for 12 hours. Then, the fired board | substrate after an etching process was observed with the optical microscope (100 time), and fire through property was evaluated. “○” indicates that the linear electrode pattern was formed on the fired substrate through the SiN film, and the linear electrode pattern was generally formed on the fired substrate, but did not penetrate the SiN film. An evaluation was given as “Δ” when the location was present and the electrical connection was partially broken, and “X” when the location was not penetrating the SiN film.

次のようにして、電池特性を評価した。上記のペースト状の試料を用いて、常法に従い、受光面電極を形成した上で、多結晶シリコン太陽電池を作製した。次に、常法に従い、得られた多結晶シリコン太陽電池の光電変換効率を測定し、光電変換効率が18%以上である場合を「○」、15%以上18%未満である場合を「△」、15%未満である場合を「×」として、評価した。   The battery characteristics were evaluated as follows. Using the above paste-like sample, a light receiving surface electrode was formed according to a conventional method, and then a polycrystalline silicon solar cell was produced. Next, according to a conventional method, the photoelectric conversion efficiency of the obtained polycrystalline silicon solar cell is measured. When the photoelectric conversion efficiency is 18% or more, “◯”, and when it is 15% or more and less than 18%, “△ ", The case of less than 15% was evaluated as" x ".

表1〜3から明らかなように、試料No.1〜18は、ファイアスルー性と電池特性の評価が良好であった。一方、試料No.19、21は、ガラス組成が所定範囲外であり、ファイアスルー性の評価が不良であった。なお、試料No.19、21については、ファイアスルー性の評価が不良であったため、電池特性の評価が行われていない。また、試料No.20は、ガラス組成が所定範囲外であり、電池特性の評価が不良であった。   As is apparent from Tables 1 to 3, sample No. Nos. 1 to 18 were excellent in fire-through property and battery characteristics. On the other hand, sample No. 19 and 21 had a glass composition outside the predetermined range, and the fire-through evaluation was poor. Sample No. Regarding 19 and 21, since the fire-through evaluation was poor, the battery characteristics were not evaluated. Sample No. In No. 20, the glass composition was out of the predetermined range, and the battery characteristics were poorly evaluated.

本発明の電極形成用ガラス及び電極形成材料は、シリコン太陽電池の電極、特に反射防止膜を有するシリコン太陽電池の受光面電極に好適に使用可能である。また、本発明の電極形成用ガラス及び電極形成材料は、シリコン太陽電池以外の用途、例えばセラミックコンデンサ等のセラミック電子部品、フォトダイオード等の光学部品に応用することもできる。   The electrode forming glass and electrode forming material of the present invention can be suitably used for an electrode of a silicon solar cell, particularly a light receiving surface electrode of a silicon solar cell having an antireflection film. The glass for electrode formation and the electrode formation material of the present invention can also be applied to uses other than silicon solar cells, for example, ceramic electronic parts such as ceramic capacitors and optical parts such as photodiodes.

Claims (12)

ガラス組成として、質量%で、Bi 65.2〜90%、B 0〜1%、MgO+CaO+SrO+BaO+ZnO+CuO+Fe+Nd+CeO+Sb 0.1〜34.5%、MgO 0〜5%、CaO 0〜5%、SrO 0〜15%、BaO 0〜20%、ZnO 0〜25%、CuO 0〜15%、Fe 0〜5%、Nd 0〜10%、CeO 0〜5%、Sb 0〜7%、SiO 0.1〜10%、Al 0.1〜15%を含有することを特徴とする電極形成用ガラス。 As a glass composition, in mass%, Bi 2 O 3 65.2~90% , B 2 O 3 0~1%, MgO + CaO + SrO + BaO + ZnO + CuO + Fe 2 O 3 + Nd 2 O 3 + CeO 2 + Sb 2 O 3 0.1~34.5% , 0~5% MgO, CaO 0~5% , SrO 0~15%, BaO 0~20%, 0~25% ZnO, 0~15% CuO, Fe 2 O 3 0~5%, Nd 2 O 3 0~10%, CeO 2 0~5%, Sb 2 O 3 0~7%, SiO 2 0.1~ 10%, electrode formation, characterized by containing Al 2 O 3 0.1~15% Glass. の含有量が0.5質量%以下であることを特徴とする請求項1に記載の電極形成用ガラス。 2. The glass for forming an electrode according to claim 1, wherein the content of B 2 O 3 is 0.5% by mass or less. 実質的にBを含有しないことを特徴とする請求項1又は2に記載の電極形成用ガラス。 The glass for electrode formation according to claim 1 or 2, wherein the glass does not substantially contain B 2 O 3 . SiO+Alを5〜20質量%含むことを特徴とする請求項1〜3の何れか一項に記載の電極形成用ガラス。 The glass for forming an electrode according to any one of claims 1 to 3, comprising 5 to 20% by mass of SiO 2 + Al 2 O 3 . 実質的にPbOを含有しないことを特徴とする請求項1〜4の何れか一項に記載の電極形成用ガラス。   The electrode forming glass according to any one of claims 1 to 4, wherein the glass does not substantially contain PbO. 請求項1〜5の何れか一項に記載の電極形成用ガラスからなるガラス粉末と、金属粉末と、ビークルとを含むことを特徴とする電極形成材料。   An electrode forming material comprising glass powder made of the electrode forming glass according to any one of claims 1 to 5, a metal powder, and a vehicle. ガラス粉末の平均粒子径D50が5μm未満であることを特徴とする請求項6に記載の電極形成材料。 The electrode forming material according to claim 6, wherein the glass powder has an average particle diameter D 50 of less than 5 μm. ガラス粉末の軟化点が550℃以下であることを特徴とする請求項6又は7に記載の電極形成材料。   The electrode forming material according to claim 6 or 7, wherein the softening point of the glass powder is 550 ° C or lower. ガラス粉末の含有量が0.2〜10質量%であることを特徴とする請求項6〜8の何れか一項に記載の電極形成材料。   Content of glass powder is 0.2-10 mass%, The electrode forming material as described in any one of Claims 6-8 characterized by the above-mentioned. 金属粉末がAg、Al、Au、Cu、Pd、Ptおよびこれらの合金の一種又は二種以上を含むことを特徴とする請求項6〜9の何れか一項に記載の電極形成材料。   The electrode powder according to any one of claims 6 to 9, wherein the metal powder contains Ag, Al, Au, Cu, Pd, Pt, or one or more of these alloys. シリコン太陽電池の電極に用いることを特徴とする請求項6〜10の何れか一項に記載の電極形成材料。   It uses for the electrode of a silicon solar cell, The electrode formation material as described in any one of Claims 6-10 characterized by the above-mentioned. 反射防止膜を有するシリコン太陽電池の受光面電極に用いることを特徴とする請求項6〜11の何れか一項に記載の電極形成材料。   It is used for the light-receiving surface electrode of the silicon solar cell which has an antireflection film, The electrode formation material as described in any one of Claims 6-11 characterized by the above-mentioned.
JP2011151513A 2010-08-26 2011-07-08 Electrode forming glass and electrode forming material using the same Expired - Fee Related JP5850388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011151513A JP5850388B2 (en) 2010-08-26 2011-07-08 Electrode forming glass and electrode forming material using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010188992 2010-08-26
JP2010188992 2010-08-26
JP2011151513A JP5850388B2 (en) 2010-08-26 2011-07-08 Electrode forming glass and electrode forming material using the same

Publications (2)

Publication Number Publication Date
JP2012066993A JP2012066993A (en) 2012-04-05
JP5850388B2 true JP5850388B2 (en) 2016-02-03

Family

ID=46164719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011151513A Expired - Fee Related JP5850388B2 (en) 2010-08-26 2011-07-08 Electrode forming glass and electrode forming material using the same

Country Status (1)

Country Link
JP (1) JP5850388B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6075601B2 (en) * 2012-08-03 2017-02-08 日本電気硝子株式会社 Electrode forming glass and electrode forming material using the same
JP5991945B2 (en) * 2013-06-07 2016-09-14 信越化学工業株式会社 Solar cell and solar cell module
JP6294094B2 (en) * 2014-02-13 2018-03-14 株式会社オハラ Glass electrolyte and all solid lithium ion secondary battery
CN104538157B (en) * 2014-12-19 2017-02-22 广东风华高新科技股份有限公司 Terminal electrode of chip inductor, manufacturing method thereof and chip inductor
JP7027719B2 (en) * 2017-08-07 2022-03-02 Agc株式会社 Glass composition and glass powder

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296749A (en) * 1989-05-12 1990-12-07 Sumitomo Metal Mining Co Ltd Electric conductive paste
US20060001009A1 (en) * 2004-06-30 2006-01-05 Garreau-Iles Angelique Genevie Thick-film conductive paste
JP2010008578A (en) * 2008-06-25 2010-01-14 Central Glass Co Ltd Photosensitive conductive paste
JP5703539B2 (en) * 2009-01-30 2015-04-22 旭硝子株式会社 Glass composition
EP2417073A1 (en) * 2009-04-09 2012-02-15 E. I. du Pont de Nemours and Company Glass compositions used in conductors for photovoltaic cells
KR20110137827A (en) * 2009-04-09 2011-12-23 이 아이 듀폰 디 네모아 앤드 캄파니 Glass compositions used in conductors for photovoltaic cells
WO2011016594A1 (en) * 2009-08-07 2011-02-10 주식회사 엘지화학 Lead-free glass frit powder for manufacturing silicon solar cell, preparation method thereof, metal paste composition comprising same, and silicon solar cell
JP5594682B2 (en) * 2010-03-03 2014-09-24 奥野製薬工業株式会社 Lead-free low melting point glass with acid resistance

Also Published As

Publication number Publication date
JP2012066993A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP5532512B2 (en) Electrode forming glass composition and electrode forming material
JP5717043B2 (en) Electrode forming glass composition and electrode forming material
WO2010026952A1 (en) Glass composition for electrode formation and electrode formation material
WO2012023413A1 (en) Glass for use in forming electrodes, and electrode-forming material using same
US8552558B2 (en) Conductive compositions and processes for use in the manufacture of semiconductor devices
JP5796270B2 (en) Electrode forming material
JP5850388B2 (en) Electrode forming glass and electrode forming material using the same
JP6090706B2 (en) Electrode forming glass and electrode forming material using the same
JP6075601B2 (en) Electrode forming glass and electrode forming material using the same
JPWO2014050704A1 (en) Conductive paste and solar cell
TWI422547B (en) A conductive paste and a solar cell element using the conductive paste
JPWO2012111477A1 (en) Conductive paste and solar cell
JP2014007212A (en) Glass for electrode formation and electrode-formation material using the same
JP5541605B2 (en) Electrode forming glass composition and electrode forming material
JP5943295B2 (en) Electrode forming glass and electrode forming material using the same
JP6112384B2 (en) Electrode forming glass and electrode forming material using the same
JP5796281B2 (en) Electrode forming material
JP2014105153A (en) Bismuth-based glass composition and electrode formation material using the same
JP2013018666A (en) Electrode formation glass and electrode formation material
JP2010192480A (en) Glass composition for electrode formation, and electrode forming material
US10804003B2 (en) Conductive paste for forming solar cell electrode
JP2013212949A (en) Glass for electrode formation and electrode forming material using the same
JP2011035035A (en) Conductive composition for solar cell electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151109

R150 Certificate of patent or registration of utility model

Ref document number: 5850388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151122

LAPS Cancellation because of no payment of annual fees