JP2005182894A - Glass composition for magnetic head - Google Patents

Glass composition for magnetic head Download PDF

Info

Publication number
JP2005182894A
JP2005182894A JP2003420758A JP2003420758A JP2005182894A JP 2005182894 A JP2005182894 A JP 2005182894A JP 2003420758 A JP2003420758 A JP 2003420758A JP 2003420758 A JP2003420758 A JP 2003420758A JP 2005182894 A JP2005182894 A JP 2005182894A
Authority
JP
Japan
Prior art keywords
glass
magnetic head
sealing
magnetic
glass composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003420758A
Other languages
Japanese (ja)
Inventor
Hiroshi Kobayashi
洋 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Asahi Techno Glass Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Techno Glass Corp filed Critical Asahi Techno Glass Corp
Priority to JP2003420758A priority Critical patent/JP2005182894A/en
Publication of JP2005182894A publication Critical patent/JP2005182894A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • C03C3/072Glass compositions containing silica with less than 40% silica by weight containing lead containing boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Magnetic Heads (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an unleaded glass composition which is hardly crystallized even in a thermal treatment step when a magnetic head is sealed and causes no problem in operational environment and waste disposal, in sealing glass for the magnetic head. <P>SOLUTION: The glass composition for the magnetic head contains, by weight, 50 to 70% PbO, 1 to 8%, B<SB>2</SB>O<SB>3</SB>, 10 to 20 % SiO<SB>2</SB>, 10 to 30% TeO<SB>2</SB>, 0.5 to 8% Al<SB>2</SB>O<SB>3</SB>, 0.1 to 5 % Fe<SB>2</SB>O<SB>3</SB>, 0 to 5% MnO, and 0.05 to 5% any one oxide of TiO<SB>2</SB>, SrO and La<SB>2</SB>O<SB>3</SB>, in representation based on oxides. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、磁気ヘッド用材料、特にフェライトとの接着に使用されるガラス組成物に関するものである。   The present invention relates to a glass composition used for adhesion to a magnetic head material, particularly ferrite.

ビデオ、フロッピィーディスク等の磁気ヘッドコア材は、磁気特性、耐摩耗性、機械加工性等に優れるフェライト材が主に用いられる。また、磁気ヘッドの高性能化のため、センダスト合金やCo系アモルファス合金等の金属強磁性膜を磁気ギャップ部に配した材料も使われている。これら磁性材料からなる一対のコア材をガラスで封着成型して磁気ヘッドとなる。   As a magnetic head core material such as a video or floppy disk, a ferrite material having excellent magnetic properties, wear resistance, machinability, etc. is mainly used. In order to improve the performance of the magnetic head, a material in which a metal ferromagnetic film such as Sendust alloy or Co-based amorphous alloy is arranged in the magnetic gap portion is also used. A pair of core materials made of these magnetic materials are sealed with glass to form a magnetic head.

この封着に用いられるガラスは、次の特性を満足する必要がある。磁性材料の熱膨張係数に近い材料であること。水、研磨液、洗浄液に侵されない化学的耐久性に優れていること。磁性材料と反応しないこと。ガラスが安定で熱処理工程においてガラスが結晶化しないことである。   The glass used for this sealing needs to satisfy the following characteristics. The material must be close to the thermal expansion coefficient of the magnetic material. Excellent chemical durability that is not affected by water, polishing liquid or cleaning liquid. Do not react with magnetic materials. The glass is stable and does not crystallize in the heat treatment step.

これらの要求に対して従来は、PbO−B23−SiO2系や、PbO−B23−SiO2−Al23系の低温封着ガラスが使われていたが、化学的耐久性、耐水性は不十分であった。 Conventionally, PbO—B 2 O 3 —SiO 2 or PbO—B 2 O 3 —SiO 2 —Al 2 O 3 low temperature sealing glass has been used to meet these requirements. Durability and water resistance were insufficient.

この問題を解決するために、特開平06−135736に開示されているPbO−B23−SiO2−Al23−TeO2系の低温封着ガラスが開発された。この公報に開示されているガラス組成物は、耐水性向上のためにPbOをTeO2、SiO2に置き換え、CuOを添加することを特徴としたものであった。
特開平06−135736号
In order to solve this problem, a low-temperature sealing glass based on PbO—B 2 O 3 —SiO 2 —Al 2 O 3 —TeO 2 disclosed in Japanese Patent Laid-Open No. 06-135736 has been developed. The glass composition disclosed in this publication is characterized in that PbO is replaced with TeO 2 or SiO 2 and CuO is added to improve water resistance.
Japanese Patent Laid-Open No. 06-135736

しかし近年、洗浄工程などでは廃液の管理や、換気設備等の設置など取扱いに負担の大きい有機溶剤が敬遠され、水や水系洗浄剤を使った工程が増えており、更に耐水性の優れたガラスが必要とされている。しかし前述したPbO−B23−SiO2−Al23−TeO2系の低温封着ガラスでは、この環境に対応するためには不十分で、更なる耐水性の向上が望まれていた。 However, in recent years, organic solvents, which have a heavy burden on handling such as management of waste liquid and installation of ventilation equipment, have been avoided in the cleaning process, etc., and processes using water and water-based cleaning agents are increasing, and glass with excellent water resistance. Is needed. However, the PbO—B 2 O 3 —SiO 2 —Al 2 O 3 —TeO 2 type low-temperature sealing glass described above is insufficient to cope with this environment, and further improvement in water resistance is desired. It was.

そこで、本発明は磁気ヘッド用封着ガラスに関し、磁気ヘッド製造時の化学的耐久性、特に耐水性を向上させたものを提供することを目的とする。   SUMMARY OF THE INVENTION The present invention relates to a sealing glass for a magnetic head, and an object thereof is to provide a glass having improved chemical durability, particularly water resistance, when the magnetic head is manufactured.

上記課題を解決するために、本発明者はPbO、SiO2、TeO2、B23、Al23およびFe23を含有する磁気ヘッド用ガラス組成物を鋭意研究の結果、TiO2、SrO、La23の少なくとも1種の成分を含有させることにより、従来の低温封着ガラスの他の特性を劣化することなく、耐水性が向上するガラス組成を見出した。他の特性とは、熱膨張係数、軟化温度、磁性材料と反応性、熱処理工程で結晶化しないことである。 In order to solve the above-mentioned problems, the present inventor has intensively studied a glass composition for a magnetic head containing PbO, SiO 2 , TeO 2 , B 2 O 3 , Al 2 O 3 and Fe 2 O 3 as a result of TiO 2. The present inventors have found a glass composition in which water resistance is improved without deteriorating other properties of a conventional low-temperature sealing glass by containing at least one component of 2 , SrO, and La 2 O 3 . Other properties are thermal expansion coefficient, softening temperature, reactivity with magnetic materials, and no crystallization in the heat treatment process.

本発明の請求項1に対応する発明は、磁気ヘッド用ガラス組成物において、酸化物基準の質量%表示でPbO:50〜70%、B23:1〜8%、SiO2:10〜20、TeO2:10〜30%、Al23:0.5〜8%、Fe23:0.1〜5、MnO:0〜5%、TiO2、SrOおよびLa23の少なくとも1種を0.05〜5%の組成を含有するものとした。 The invention corresponding to claim 1 of the present invention is the glass composition for a magnetic head, wherein PbO: 50 to 70%, B 2 O 3 : 1 to 8%, SiO 2 : 10 to 10% in terms of mass% based on oxide. 20, TeO 2: 10~30%, Al 2 O 3: 0.5~8%, Fe 2 O 3: 0.1~5, MnO: 0~5%, of TiO 2, SrO and La 2 O 3 At least one of them contained 0.05 to 5% composition.

本発明の請求項2に対応する発明は、請求項1に対応する磁気ヘッド用ガラス組成物において、熱膨張係数が85〜140×10-7/℃であるものとした。 The invention corresponding to claim 2 of the present invention is such that the thermal expansion coefficient of the glass composition for a magnetic head corresponding to claim 1 is 85 to 140 × 10 −7 / ° C.

ここで、本発明を構成する各成分の限定理由を以下に示す。PbOは主要成分であり軟化点を下げる効果がある。その含有量は50〜70%(以下%とは特に断りのない限り質量%を意味する。)である。PbOの含有量が70%を超えるとガラスの化学的耐久性が著しく悪くなる。50%未満では軟化温度が高くなり所定の作業温度での焼成が困難となる。好ましくは55〜66%、さらに好ましくは58〜66%である。   Here, the reason for limitation of each component which comprises this invention is shown below. PbO is a main component and has the effect of lowering the softening point. The content is 50 to 70% (hereinafter,% means mass% unless otherwise specified). When the content of PbO exceeds 70%, the chemical durability of the glass is remarkably deteriorated. If it is less than 50%, the softening temperature becomes high and firing at a predetermined working temperature becomes difficult. Preferably it is 55 to 66%, more preferably 58 to 66%.

23はガラス形成成分として必須成分であり、その含有量は1〜8%である。B23の含有量が8%を超えるとガラスの軟化温度が高くなり所定の作業温度での焼成が困難となり、更に化学的耐久性が悪くなる。一方、1%未満ではガラスが不安定になって結晶化しやすくなる。好ましくは1.5〜6%、さらに好ましくは1.5〜5%である。 B 2 O 3 is an essential component as a glass forming component, and its content is 1 to 8%. When the content of B 2 O 3 exceeds 8%, the softening temperature of the glass becomes high, and baking at a predetermined working temperature becomes difficult, and the chemical durability is further deteriorated. On the other hand, if it is less than 1%, the glass becomes unstable and tends to crystallize. Preferably it is 1.5 to 6%, More preferably, it is 1.5 to 5%.

SiO2はガラス形成成分として必須成分であり化学的耐久性に効果がある。その含有量は10〜20%である。SiO2の含有量が20%を超えると軟化温度が高くなり所定の作業温度での焼成が困難となる。10%未満ではガラスが不安定になって結晶化しやすくなる。好ましくは10〜18%、さらに好ましくは11〜17%である。 SiO 2 is an essential component as a glass forming component and is effective in chemical durability. Its content is 10-20%. When the content of SiO 2 exceeds 20%, the softening temperature becomes high and firing at a predetermined working temperature becomes difficult. If it is less than 10%, the glass becomes unstable and tends to crystallize. Preferably it is 10-18%, More preferably, it is 11-17%.

TeO2は、ガラスの化学的耐久性、特に耐水性に効果があり、その含有量は10〜30%である。TeO2の含有量が30%を超えると、軟化点が低くなり所定の作業温度での焼成が困難となる。10%未満では化学的耐久性、特に耐水性が悪くなる。好ましくは10〜25%、さらに好ましくは10〜18%である。 TeO 2 is effective for the chemical durability of the glass, particularly the water resistance, and its content is 10 to 30%. When the content of TeO 2 exceeds 30%, the softening point becomes low and firing at a predetermined working temperature becomes difficult. If it is less than 10%, the chemical durability, particularly the water resistance, deteriorates. Preferably it is 10-25%, More preferably, it is 10-18%.

Al23は、ガラスの安定化に効果があり、その含有量は0.5〜8%、好ましくは1〜7%まで添加することができる。但し8%を超えると軟化温度が高くなり所定の作業温度での焼成が困難となる。0.5%未満ではガラスの安定化に効果がない。 Al 2 O 3 is effective in stabilizing the glass, and its content can be added to 0.5 to 8%, preferably 1 to 7%. However, if it exceeds 8%, the softening temperature becomes high and firing at a predetermined working temperature becomes difficult. If it is less than 0.5%, there is no effect in stabilizing the glass.

Fe23は磁性材料との反応性を抑える効果があり、その含有量は0.05〜5%である。Fe23の含有量が5%を超えると、熱処理時に結晶化しやすくなり安定したガラスが得られなくなる。また、Fe23は着色成分でもあり含有量が5%を超えると着色が強くなり、光学顕微鏡を利用してのクラック発生の判別が難しくなるため好ましくない。Fe23の含有量が0.05%未満では上記効果を期待できない。好ましくは0.1〜3%、さらに好ましくは0.1〜1.5%である。 Fe 2 O 3 has an effect of suppressing reactivity with the magnetic material, and its content is 0.05 to 5%. If the content of Fe 2 O 3 exceeds 5%, it becomes easy to crystallize during heat treatment and a stable glass cannot be obtained. Further, Fe 2 O 3 is also a coloring component, and if the content exceeds 5%, coloring becomes strong, and it becomes difficult to determine the occurrence of cracks using an optical microscope. If the content of Fe 2 O 3 is less than 0.05%, the above effect cannot be expected. Preferably it is 0.1 to 3%, More preferably, it is 0.1 to 1.5%.

TiO2、SrO、La23はガラスの化学的耐久性を向上させる効果があり、その合量は0.05〜5%まで、好ましくは0.1〜3%までである。3成分の合量が5%を超えると結晶化しやすくなり安定したガラスが得られなくなる。0.05%未満ではガラスの化学的耐久性向上の効果はない。TiO2は0〜5%、SrOは0〜5%、La23は0〜5%である。好ましくは、SrOを必須成分とし、SrO含有量を0.05〜5%とする。 TiO 2, SrO, La 2 O 3 is effective for improving chemical durability of the glass, the total amount is up from 0.05 to 5%, preferably up to 0.1% to 3%. If the total amount of the three components exceeds 5%, crystallization tends to occur and a stable glass cannot be obtained. If it is less than 0.05%, there is no effect of improving the chemical durability of the glass. TiO 2 is 0 to 5%, SrO is 0 to 5%, La 2 O 3 is 0 to 5%. Preferably, SrO is an essential component and the SrO content is 0.05 to 5%.

MnOは必須成分ではないが磁性材料との反応性を抑える効果があり、その含有量は0〜5%まで、好ましくは3%までである。MnOの含有量が5%を超えると、熱処理時に結晶化しやすくなり安定したガラスが得られなくなる。また、MnOは着色成分でもあり含有量が5%を超えると着色が強くなり、光学顕微鏡を利用してのクラック発生の判別が難しくなるため好ましくない。   Although MnO is not an essential component, it has an effect of suppressing reactivity with the magnetic material, and its content is 0 to 5%, preferably 3%. If the content of MnO exceeds 5%, crystallization is likely to occur during heat treatment, and a stable glass cannot be obtained. Further, MnO is also a coloring component, and when the content exceeds 5%, coloring becomes strong, and it becomes difficult to determine the occurrence of cracks using an optical microscope, which is not preferable.

本発明のガラス組成物は、磁気ヘッド用封着ガラスであるので、磁気ヘッドに用いられる磁性材料との熱膨張係数がマッチングしていなければ、熱処理工程、研磨工程、洗浄工程などで、ガラスにクラックが入ったり剥がれたりする。この磁性材料には主にフェライト系のものが使用されており、このフェライト系磁性材料では、Fe23含有量により熱膨張係数が変化し、現在使用されているものでは、熱膨張係数が90〜135×10-7/℃のものがそのほとんどである。したがって、本発明のガラス組成物の熱膨張係数は、その磁性材料とのマッチングを考え、85〜140×10-7/℃が好ましい。 Since the glass composition of the present invention is a sealing glass for a magnetic head, if the thermal expansion coefficient does not match the magnetic material used for the magnetic head, the glass composition is subjected to a heat treatment process, a polishing process, a cleaning process, etc. Cracks or peels off. Ferrite-based materials are mainly used for this magnetic material. In this ferrite-based magnetic material, the thermal expansion coefficient changes depending on the Fe 2 O 3 content. Most of them are 90 to 135 × 10 −7 / ° C. Therefore, the thermal expansion coefficient of the glass composition of the present invention is preferably 85 to 140 × 10 −7 / ° C. in consideration of matching with the magnetic material.

磁性材料は750℃を超える温度になると、磁気特性が劣化するため、低温で熱処理を行うことが必要である。本発明のガラス組成物を磁気ヘッド用磁性材料との封着に使用する場合、500〜750℃の熱処理で封着が可能である。熱処理温度とガラスの軟化点には相関があり、本発明のガラス組成物の軟化点は650℃以下が好ましい。熱処理温度は、軟化点+100℃でガラスが完全に溶融し、良好な封着が行える。このため、軟化点が650℃を超えると750℃の熱処理で封着が難しくなる。   When the temperature of the magnetic material exceeds 750 ° C., the magnetic properties deteriorate, so it is necessary to perform heat treatment at a low temperature. When the glass composition of the present invention is used for sealing with a magnetic material for a magnetic head, sealing can be performed by heat treatment at 500 to 750 ° C. There is a correlation between the heat treatment temperature and the softening point of the glass, and the softening point of the glass composition of the present invention is preferably 650 ° C. or lower. The heat treatment temperature is a softening point + 100 ° C., and the glass is completely melted, so that good sealing can be performed. For this reason, if the softening point exceeds 650 ° C., sealing becomes difficult by heat treatment at 750 ° C.

本発明のガラス組成物の熱膨張係数は、磁性材料の熱膨張係数に近く、水、研磨液、洗浄液に侵されない化学的耐久性に優れて、磁性材料と反応せず、さらにガラスが安定で熱処理工程においてガラスが結晶化しない。したがって、このガラス組成物を、例えば、所定の形状、大きさのガラスロッド又は角棒に成型し、500℃〜750℃の熱処理を行えば、磁気ヘッド用の磁性材料の封着に用いることができる。なお、本発明は請求項1記載の組成からなるものでも実用可能であるが、本発明の目的・効果を損なわない範囲で他の成分を添加することも可能である。   The thermal expansion coefficient of the glass composition of the present invention is close to the thermal expansion coefficient of the magnetic material, is excellent in chemical durability that is not affected by water, polishing liquid, and cleaning liquid, does not react with the magnetic material, and the glass is stable. Glass does not crystallize in the heat treatment process. Therefore, for example, if this glass composition is molded into a glass rod or square bar having a predetermined shape and size and subjected to heat treatment at 500 ° C. to 750 ° C., it can be used for sealing a magnetic material for a magnetic head. it can. The present invention is practical even with the composition according to claim 1, but it is also possible to add other components within a range that does not impair the object and effect of the present invention.

本発明の磁気ヘッド用ガラス組成物はPbO、SiO2、TeO2、B23、Al23およびFe23を必須成分とし、TiO2、SrOおよびLa23の少なくとも1種を含有することで、化学的耐久性、特に耐水性が向上したものである。また、その他の磁気ヘッドの封着に要求される特性も満足するガラスであるので、磁気ヘッド用材料の封着に好適である。 The glass composition for a magnetic head of the present invention contains PbO, SiO 2 , TeO 2 , B 2 O 3 , Al 2 O 3 and Fe 2 O 3 as essential components, and at least one of TiO 2 , SrO and La 2 O 3. The chemical durability, particularly water resistance, is improved by containing. Further, since the glass satisfies the characteristics required for sealing other magnetic heads, it is suitable for sealing magnetic head materials.

本発明の磁気ヘッド用ガラス組成物は、酸化物基準の質量%表示でPbO:50〜70%、B23:1〜8%、SiO2:10〜20、TeO2:10〜30%、Al23:0.5〜8%、Fe23:0.1〜5、MnO:0〜5%、TiO2、SrO及びLa23の少なくとも1種を0.05〜5%の組成を有することを特徴とする。 The glass composition for a magnetic head of the present invention is expressed by mass% based on oxide, PbO: 50 to 70%, B 2 O 3 : 1 to 8%, SiO 2 : 10 to 20, TeO 2 : 10 to 30%. Al 2 O 3 : 0.5 to 8%, Fe 2 O 3 : 0.1 to 5, MnO: 0 to 5%, TiO 2 , SrO and La 2 O 3 at least one of 0.05 to 5 % Composition.

そして、上記組成となるように、原料を調合してバッチ原料として、このバッチ原料を白金ルツボに入れ、1100〜1400℃の電気炉中で、1〜3時間加熱して溶融させた後、鉄板上に流し出してガラスブロックを得た。このガラスブロックを除冷した後、切断研磨して所定形状のガラスロッドや角棒に成形する。または除冷後のガラスブロックを切断した後、リドロー加工して所定形状のガラスロッドや角棒に成形する。   Then, the raw materials are prepared so as to have the above composition, and the batch raw materials are put into a platinum crucible and heated and melted in an electric furnace at 1100 to 1400 ° C. for 1 to 3 hours. The glass block was obtained by pouring upward. After the glass block is cooled, it is cut and polished to form a glass rod or square bar having a predetermined shape. Alternatively, after the glass block after cooling is cut, it is redrawn and formed into a glass rod or square bar having a predetermined shape.

以下、表1を参照して本発明の実施例および比較例を詳細に説明する。本発明が下記実施例に限定されるものでないことはもとよりである。   Hereinafter, examples and comparative examples of the present invention will be described in detail with reference to Table 1. Of course, the present invention is not limited to the following examples.

(実施例1)表1に記載してあるように、PbO:63.1%、B23:2.9%、SiO2:14.1%、TeO2:15.4%、Al23:3.9%、Fe23:0.5、SrO:0.1%となるように、原料を調合してバッチ原料とする。このバッチ原料を白金ルツボにいれ1200℃の電気炉中で2時間加熱溶融させた後、鉄板上に流し出してガラスブロックを成形し、一晩かけて除冷した。 (Example 1) As described in Table 1, PbO: 63.1%, B 2 O 3 : 2.9%, SiO 2 : 14.1%, TeO 2 : 15.4%, Al 2 The raw materials are prepared so as to be batch raw materials so that O 3 : 3.9%, Fe 2 O 3 : 0.5, and SrO: 0.1%. The batch material was placed in a platinum crucible and heated and melted in an electric furnace at 1200 ° C. for 2 hours, and then poured onto an iron plate to form a glass block, which was then cooled overnight.

このようにして得られたガラスの特性を以下に示すようにして測定した。   The properties of the glass thus obtained were measured as follows.

ガラス転移点および軟化点…ガラスブロックの一部を切り出し、このガラス塊を100メッシュ以下の粉末とした。そして、示差熱分析装置を用いて、昇温速度10℃/分でそれぞれの温度を測定したところ、転移点379℃、軟化点465℃であった。軟化点が465℃であるので、実際の封着時の熱処理温度が565℃程度となることから、磁性材料の磁気特性を劣化させることなく封着を行うことができる。   Glass transition point and softening point: A part of the glass block was cut out, and this glass lump was made into powder of 100 mesh or less. And when each temperature was measured with the temperature increase rate of 10 degree-C / min using the differential thermal analyzer, they were the transition point 379 degreeC and the softening point 465 degreeC. Since the softening point is 465 ° C., the heat treatment temperature at the time of actual sealing is about 565 ° C. Therefore, sealing can be performed without deteriorating the magnetic properties of the magnetic material.

熱膨張係数…ガラスブロックから切り出したものを、5φ×20mmのサイズに加工し、示差膨張計を用いて昇温速度10℃/分で、30〜300℃までの平均熱膨張係数を測定したところ、95×10-7/℃であった。したがって、このガラスは熱膨張係数が90〜100×10-7/℃までの磁性材料の封着に用いることができる。 Thermal expansion coefficient: When cut out from a glass block, it was processed into a size of 5φ × 20 mm, and an average thermal expansion coefficient from 30 to 300 ° C. was measured at a temperature rising rate of 10 ° C./min using a differential dilatometer. 95 × 10 −7 / ° C. Therefore, this glass can be used for sealing magnetic materials having a thermal expansion coefficient of 90 to 100 × 10 −7 / ° C.

化学的耐久性…ガラスブロックから切り出したものを、10×10×10mmのサイズに加工し、全表面を鏡面仕上げした。そして、85℃の蒸留水中に2時間浸漬した後、ガラス表面の変色の有無を肉眼で判定した。その結果、ガラス表面に変色は見られず、優れた化学的耐久性を備えたものであった。したがって、磁性材料を封着後、研磨等の工程を得てもガラス部分が侵食されないので、ヘッドの摺動部に段差が生じたり、溶出析出物がヘッドに付着したりしてヘッドの機能を損なわせることがない。   Chemical durability: A material cut out from a glass block was processed into a size of 10 × 10 × 10 mm, and the entire surface was mirror-finished. And after immersing in distilled water of 85 degreeC for 2 hours, the presence or absence of the discoloration of the glass surface was determined with the naked eye. As a result, no discoloration was observed on the glass surface, and it had excellent chemical durability. Therefore, after sealing the magnetic material, the glass part is not eroded even if a process such as polishing is performed, so that there is a step in the sliding part of the head, or elution deposits adhere to the head, thereby functioning the head. There is no damage.

ガラス安定性…ガラスブロックから切り出したものを、0.5×0.5×30mmのガラスロッドに成形し、アルミナ基板上に載置した状態で、750℃で1時間の熱処理をし、室温まで冷却した後、50倍の光学顕微鏡でガラス表面を観察した。その結果、結晶の析出は見られなかった。したがって、結晶析出による封着強度の低下を防ぐことができる。このガラス自体は、上記したように、565℃程度の熱処理で十分封着することはできるが、本評価では、磁性材料の磁気特性の劣化が生じない限度の高温で評価した。   Glass stability: A glass block cut out from a glass block is molded into a 0.5 × 0.5 × 30 mm glass rod and placed on an alumina substrate, and then heat treated at 750 ° C. for 1 hour, to room temperature After cooling, the glass surface was observed with a 50 × optical microscope. As a result, no precipitation of crystals was observed. Therefore, it is possible to prevent a decrease in sealing strength due to crystal precipitation. As described above, the glass itself can be sufficiently sealed by heat treatment at about 565 ° C., but in this evaluation, the glass was evaluated at a high temperature that does not cause deterioration of the magnetic properties of the magnetic material.

フェライトとの反応性…ガラスブロックから切り出したものを、3×3×10mmのサイズに加工し、これを鏡面状態に仕上げた単結晶フェライト上に載置した状態で、軟化点+100℃で1時間の熱処理をした。その後、室温まで冷却してから、ガラスとフェライトとの断面を研磨仕上げし、その界面を500倍の光学顕微鏡で観察した。その結果、フェライト面にガラスとの反応による侵食は生じていなかった。したがって、このガラスを用いて封着を行っても磁性材料の磁気特性の劣化は生じないものである。   Reactivity with ferrite: Cut out from glass block, processed to 3 × 3 × 10 mm size, and placed on single-crystal ferrite finished in mirror surface, softening point + 100 ° C. for 1 hour The heat treatment was performed. Then, after cooling to room temperature, the cross section of glass and ferrite was polished and the interface was observed with a 500 times optical microscope. As a result, no corrosion occurred on the ferrite surface due to the reaction with glass. Therefore, even if sealing is performed using this glass, the magnetic properties of the magnetic material do not deteriorate.

(実施例2〜9)表1に記載してあるように、原料を調合してバッチ原料としたものを白金ルツボで、表1に記載した溶融条件で溶融した後、実施例1と同様に、鉄板上に流し出してガラスブロックを成形後、一晩かけて除冷した。   (Examples 2 to 9) As described in Table 1, after the raw materials were prepared and batch raw materials were melted with a platinum crucible under the melting conditions described in Table 1, the same as in Example 1 Then, the glass block was cast on an iron plate and then cooled overnight.

そして、このガラスブロックから特性評価用のサンプルを上記実施例1と同様に作成し、評価したところ、ガラス転移点は320〜382℃となっており、軟化点は395〜501℃となった。したがって、熱処理温度は495〜601℃程度となり、磁性材料の磁気特性を劣化させることなく封着を行うことができる。   And when the sample for characteristic evaluation was created from this glass block similarly to the said Example 1, and it evaluated, the glass transition point was 320-382 degreeC and the softening point became 395-501 degreeC. Therefore, the heat treatment temperature is about 495 to 601 ° C., and sealing can be performed without deteriorating the magnetic properties of the magnetic material.

熱膨張係数は91〜130×10-7/℃となり、熱膨張係数が86〜135×10-7/℃までの磁性材料の封着に用いることができる。 The thermal expansion coefficient is 91 to 130 × 10 −7 / ° C., and can be used for sealing magnetic materials having a thermal expansion coefficient of 86 to 135 × 10 −7 / ° C.

化学的耐久性の評価では、すべてのサンプルでガラス表面に変色が表れたものはなく、実施例1と同様にこれらのガラスを用いて磁性材料を封着してもヘッドの機能を損なわせることがない。   In the evaluation of chemical durability, none of the samples showed any discoloration on the glass surface, and even if these glasses were used to seal the magnetic material as in Example 1, the function of the head was impaired. There is no.

ガラス安定性の評価では、すべてのサンプルを50倍の光学顕微鏡で観察したが、結晶の析出しているものはなかった。したがって、これらガラスを用いて磁性材料を封着しても封着強度の低下の心配はない。   In the evaluation of the glass stability, all samples were observed with a 50 × optical microscope, but no crystals were precipitated. Therefore, even if the magnetic material is sealed using these glasses, there is no fear of a decrease in sealing strength.

フェライトとの反応性の評価では、すべてのサンプルのガラスとフェライトとの界面を500倍の光学顕微鏡で観察したが、フェライト面にガラスとの反応による侵食は生じていなかった。したがって、これらガラスを用いて磁性材料を封着しても磁気特性を劣化させるものではない。   In the evaluation of reactivity with ferrite, the interface between the glass and ferrite of all the samples was observed with a 500-fold optical microscope, but no erosion due to reaction with the glass occurred on the ferrite surface. Therefore, even if a magnetic material is sealed using these glasses, the magnetic properties are not deteriorated.

本発明の磁気ヘッド用ガラス組成物は、単独または耐火性フィラーを混合することによって、電子回路部品用ペーストの結合材、電子回路の絶縁層、電子回路の誘電体層、オーバーコート材、光部品の封着、接着材、ガラス、セラミックス、金属等の封着、接着材、真空封止材等に使用することができる。
The glass composition for a magnetic head of the present invention can be used alone or mixed with a refractory filler to bond a paste for an electronic circuit component, an insulating layer for an electronic circuit, a dielectric layer for an electronic circuit, an overcoat material, and an optical component It can be used for sealing, adhesives, sealing of glass, ceramics, metals, adhesives, vacuum sealing materials and the like.

Claims (2)

酸化物基準の質量%表示でPbO:50〜70%、B23:1〜8%、SiO2:10〜20、TeO2:10〜30%、Al23:0.5〜8%、Fe23:0.1〜5、MnO:0〜5%、TiO2、SrOおよびLa23の少なくとも1種を0.05〜5%の組成を含有することを特徴とする磁気ヘッド用ガラス組成物。 PbO by mass% based on oxide: 50~70%, B 2 O 3 : 1~8%, SiO 2: 10~20, TeO 2: 10~30%, Al 2 O 3: 0.5~8 %, Fe 2 O 3 : 0.1 to 5, MnO: 0 to 5%, TiO 2 , SrO and La 2 O 3 are contained in a composition of 0.05 to 5%. A glass composition for a magnetic head. 熱膨張係数が85〜140×10-7/℃であることを特徴とする請求項1記載の磁気ヘッド用ガラス組成物。 2. The glass composition for a magnetic head according to claim 1, wherein the coefficient of thermal expansion is 85 to 140 × 10 −7 / ° C.
JP2003420758A 2003-12-18 2003-12-18 Glass composition for magnetic head Pending JP2005182894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003420758A JP2005182894A (en) 2003-12-18 2003-12-18 Glass composition for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003420758A JP2005182894A (en) 2003-12-18 2003-12-18 Glass composition for magnetic head

Publications (1)

Publication Number Publication Date
JP2005182894A true JP2005182894A (en) 2005-07-07

Family

ID=34782189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003420758A Pending JP2005182894A (en) 2003-12-18 2003-12-18 Glass composition for magnetic head

Country Status (1)

Country Link
JP (1) JP2005182894A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014028713A (en) * 2012-07-31 2014-02-13 Nippon Electric Glass Co Ltd Glass for electrode formation and electrode formation material using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014028713A (en) * 2012-07-31 2014-02-13 Nippon Electric Glass Co Ltd Glass for electrode formation and electrode formation material using the same

Similar Documents

Publication Publication Date Title
JP5318466B2 (en) Low melting point lead-free solder glass and use thereof
JP4136346B2 (en) Sealing composition
KR100472804B1 (en) Heat Resistant Glass Composition
JP6983971B2 (en) Glass composition and glass fiber
JP5764084B2 (en) Glass composition, glass composition for chemical strengthening, tempered glass article, cover glass for display and method for producing tempered glass article
TW201527249A (en) Glass for chemical strengthening, chemically-strengthened glass, and method for producing chemically-strengthened glass
JP2008162881A (en) Method for producing electronic component passivated by lead free glass
TW201527248A (en) Glass for chemical strengthening and chemically strengthened glass
KR101311109B1 (en) High-zirconia casting refractory material
KR100984753B1 (en) Process for melting glass
JP2005139031A (en) Heat resistant glass
JP2007063105A (en) Nonlead glass composition
JP4537092B2 (en) Glass composition and magnetic head
JPH06183774A (en) Glass composition
JPH0624998B2 (en) Alkali free glass
JP3741526B2 (en) Substrate glass for display devices
CN112851113B (en) Glass composition
CN110885187A (en) Alkali-free glass
JP3770670B2 (en) Substrate glass for display devices
JP2000095541A (en) Low melting temperature composite solder glass, additive for the same and use of the same
JP4183697B2 (en) Manufacturing method of substrate glass for display devices
JP2007161524A (en) Bismuth-based glass composition
JP2005182894A (en) Glass composition for magnetic head
JP3411057B2 (en) High zirconia fused cast refractories
JP3670489B2 (en) Method for producing soda-lime glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A977 Report on retrieval

Effective date: 20080814

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081226