JP6112200B2 - Negative electrode active material for electric device and electric device using the same - Google Patents

Negative electrode active material for electric device and electric device using the same Download PDF

Info

Publication number
JP6112200B2
JP6112200B2 JP2015522677A JP2015522677A JP6112200B2 JP 6112200 B2 JP6112200 B2 JP 6112200B2 JP 2015522677 A JP2015522677 A JP 2015522677A JP 2015522677 A JP2015522677 A JP 2015522677A JP 6112200 B2 JP6112200 B2 JP 6112200B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
alloy
electrode active
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015522677A
Other languages
Japanese (ja)
Other versions
JPWO2014199782A1 (en
Inventor
健介 山本
健介 山本
渡邉 学
学 渡邉
千葉 啓貴
啓貴 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Publication of JPWO2014199782A1 publication Critical patent/JPWO2014199782A1/en
Application granted granted Critical
Publication of JP6112200B2 publication Critical patent/JP6112200B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、電気デバイス用負極活物質、およびこれを用いた電気デバイスに関する。本発明の電気デバイス用負極活物質およびこれを用いた電気デバイスは、例えば、二次電池やキャパシタ等として電気自動車、燃料電池車およびハイブリッド電気自動車等の車両のモータ等の駆動用電源や補助電源に用いられる。   The present invention relates to a negative electrode active material for electric devices and an electric device using the same. The negative electrode active material for an electric device and the electric device using the same according to the present invention include, for example, a driving power source and an auxiliary power source for a motor of a vehicle such as an electric vehicle, a fuel cell vehicle, and a hybrid electric vehicle as a secondary battery or a capacitor Used for.

近年、大気汚染や地球温暖化に対処するため、二酸化炭素量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池などの電気デバイスの開発が盛んに行われている。   In recent years, in order to cope with air pollution and global warming, reduction of the amount of carbon dioxide has been strongly desired. In the automobile industry, there is a great expectation for reducing carbon dioxide emissions by introducing electric vehicles (EV) and hybrid electric vehicles (HEV). Electric devices such as secondary batteries for motor drive that hold the key to their practical application. Is being actively developed.

モータ駆動用二次電池としては、携帯電話やノートパソコン等に使用される民生用リチウムイオン二次電池と比較して極めて高い出力特性、および高いエネルギーを有することが求められている。したがって、全ての電池の中で最も高い理論エネルギーを有するリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。   As a secondary battery for driving a motor, it is required to have extremely high output characteristics and high energy as compared with a consumer lithium ion secondary battery used in a mobile phone, a notebook personal computer or the like. Therefore, lithium ion secondary batteries having the highest theoretical energy among all the batteries are attracting attention, and are currently being developed rapidly.

リチウムイオン二次電池は、一般に、バインダを用いて正極活物質等を正極集電体の両面に塗布した正極と、バインダを用いて負極活物質等を負極集電体の両面に塗布した負極とが、電解質層を介して接続され、電池ケースに収納される構成を有している。   Generally, a lithium ion secondary battery includes a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector using a binder, and a negative electrode in which a negative electrode active material or the like is applied to both surfaces of a negative electrode current collector using a binder. However, it has the structure connected through an electrolyte layer and accommodated in a battery case.

従来、リチウムイオン二次電池の負極には充放電サイクルの寿命やコスト面で有利な炭素・黒鉛系材料が用いられてきた。しかし、炭素・黒鉛系の負極材料ではリチウムイオンの黒鉛結晶中への吸蔵・放出により充放電がなされるため、最大リチウム導入化合物であるLiCから得られる理論容量372mAh/g以上の充放電容量が得られないという欠点がある。このため、炭素・黒鉛系負極材料で車両用途の実用化レベルを満足する容量、エネルギー密度を得るのは困難である。Conventionally, carbon / graphite-based materials that are advantageous in terms of charge / discharge cycle life and cost have been used for negative electrodes of lithium ion secondary batteries. However, since carbon / graphite-based negative electrode materials are charged / discharged by occlusion / release of lithium ions into / from graphite crystals, the charge / discharge capacity of the theoretical capacity 372 mAh / g or more obtained from LiC 6 which is the maximum lithium-introduced compound. There is a disadvantage that cannot be obtained. For this reason, it is difficult to obtain a capacity and energy density that satisfy the practical use level of the vehicle application with the carbon / graphite negative electrode material.

これに対し、負極にLiと合金化する材料を用いた電池は、従来の炭素・黒鉛系負極材料と比較しエネルギー密度が向上するため、車両用途における負極材料として期待されている。例えば、Si材料は、充放電において下記の反応式(A)のように1molあたり4.4molのリチウムイオンを吸蔵放出し、Li22Si(=Li4.4Si)においては理論容量2100mAh/gである。さらに、Si重量当りで算出した場合、3200mAh/gもの初期容量を有する。On the other hand, a battery using a material that is alloyed with Li for the negative electrode is expected as a negative electrode material for vehicle use because the energy density is improved as compared with a conventional carbon / graphite negative electrode material. For example, the Si material absorbs and releases 4.4 mol of lithium ions per mol as shown in the following reaction formula (A) in charge and discharge, and the theoretical capacity is 2100 mAh / in Li 22 Si 5 (= Li 4.4 Si). g. Furthermore, when calculated per Si weight, it has an initial capacity of 3200 mAh / g.

しかしながら、負極にLiと合金化する材料を用いたリチウムイオン二次電池は、充放電時の負極での膨張収縮が大きい。例えば、Liイオンを吸蔵した場合の体積膨張は、黒鉛材料では約1.2倍であるのに対し、Si材料ではSiとLiが合金化する際、アモルファス状態から結晶状態へ転移し大きな体積変化(約4倍)を起こすため、電極のサイクル寿命を低下させる問題があった。また、Si負極活物質の場合、容量とサイクル耐久性とはトレードオフの関係であり、高容量を示しつつサイクル耐久性を向上させることが困難であるといった問題があった。   However, a lithium ion secondary battery using a material that is alloyed with Li for the negative electrode has a large expansion and contraction in the negative electrode during charge and discharge. For example, when Li ions are occluded, the volume expansion is about 1.2 times in graphite materials, whereas in Si materials, when Si and Li are alloyed, transition from the amorphous state to the crystalline state causes a large volume change. (Approximately 4 times), there was a problem of reducing the cycle life of the electrode. In the case of the Si negative electrode active material, the capacity and the cycle durability are in a trade-off relationship, and there is a problem that it is difficult to improve the cycle durability while exhibiting a high capacity.

こうした問題を解決すべく、式;SiAlを有するアモルファス合金を含む、リチウムイオン二次電池用の負極活物質が提案されている(例えば、特表2009−517850号公報(国際公開第2007/064531号)参照)。ここで、式中x、y、zは原子パーセント値を表し、x+y+z=100、x≧55、y<22、z>0、Mは、Mn、Mo、Nb、W、Ta、Fe、Cu、Ti、V、Cr、Ni、Co、Zr、およびYの少なくとも1種からなる金属である。かかる特表2009−517850号公報に記載の発明では、段落「0008」に金属Mの含有量を最小限にすることで、高容量の他に、良好なサイクル寿命を示すことが記載されている。In order to solve such a problem, a negative electrode active material for a lithium ion secondary battery including an amorphous alloy having the formula: Si x M y Al z has been proposed (for example, JP 2009-517850 A (international publication). No. 2007/064531)). Here, x, y, and z in the formula represent atomic percentage values, and x + y + z = 100, x ≧ 55, y <22, z> 0, M represents Mn, Mo, Nb, W, Ta, Fe, Cu, It is a metal composed of at least one of Ti, V, Cr, Ni, Co, Zr, and Y. In the invention described in the Japanese translations of PCT publication No. 2009-517850, paragraph “0008” describes that, by minimizing the content of the metal M, a good cycle life is exhibited in addition to high capacity. .

しかしながら、上記特表2009−517850号公報(国際公開第2007/064531号)に記載の式;SiAlを有するアモルファス合金を有する負極を用いたリチウムイオン二次電池の場合、良好なサイクル耐久性を示すことができるとされているものの、サイクル耐久性が十分なものとはいえなかった。However, the formula described in JP-T 2009-517850 Patent Publication (WO 2007/064531); For Si x M y Al z lithium ion secondary battery using the anode having an amorphous alloy having a good Although it is said that the cycle durability can be exhibited, it cannot be said that the cycle durability is sufficient.

そこで、本発明の目的は、高いサイクル耐久性を有するリチウムイオン二次電池等の電気デバイス用負極活物質を提供することにある。   Then, the objective of this invention is providing the negative electrode active material for electric devices, such as a lithium ion secondary battery, which has high cycle durability.

本発明者らは、上記課題を解決するため、鋭意研究を行った。その結果、所定の元素の組合せであり、かつ所定の組成を有する3元系Si合金を用い、さらにその合金の表面に炭素系材料を担持させることによって、上記課題が解決されうることを見出し、本発明を完成させるに至った。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, it has been found that the above problem can be solved by using a ternary Si alloy having a predetermined composition and having a predetermined composition, and further supporting a carbon-based material on the surface of the alloy, The present invention has been completed.

すなわち、本発明は、電気デバイス用負極活物質に関する。この際、前記電気デバイス用負極活物質が、下記化学式(1):   That is, the present invention relates to a negative electrode active material for electric devices. At this time, the negative electrode active material for an electric device has the following chemical formula (1):

(上記化学式(1)において、
Mは、Ti、Zn、C、およびこれらの組み合わせからなる群から選択される少なくとも1つの金属であり、
Aは、不可避不純物であり、
x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である。)
で表される合金を含む点に特徴がある。また、炭素系材料が前記合金の表面に担持される点にも特徴がある。
(In the above chemical formula (1),
M is at least one metal selected from the group consisting of Ti, Zn, C, and combinations thereof;
A is an inevitable impurity,
x, y, z, and a represent mass% values, where 0 <x <100, 0 <y <100, 0 <z <100, and 0 ≦ a <0.5, and x + y + z + a = 100. )
It is characterized in that it contains an alloy represented by Another feature is that the carbon-based material is supported on the surface of the alloy.

本発明に係る電気デバイスの代表的な一実施形態である積層型の扁平な非双極型リチウムイオン二次電池の概要を模式的に表した断面概略図である。図1中、10はリチウムイオン二次電池(積層型電池)を;11は負極集電体を;12は正極集電体を;13は負極活物質層を;15は正極活物質層を;17は電解質層を;19は単電池層を;21は発電要素を;25は負極集電板を;27は正極集電板を;および29は電池外装材(ラミネートフィルム)を、それぞれ示す。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view schematically showing an outline of a laminated flat non-bipolar lithium ion secondary battery which is a typical embodiment of an electric device according to the present invention. In FIG. 1, 10 is a lithium ion secondary battery (stacked battery); 11 is a negative electrode current collector; 12 is a positive electrode current collector; 13 is a negative electrode active material layer; 15 is a positive electrode active material layer; 17 indicates an electrolyte layer; 19 indicates a single battery layer; 21 indicates a power generation element; 25 indicates a negative electrode current collector plate; 27 indicates a positive electrode current collector plate; and 29 indicates a battery exterior material (laminate film). 本発明に係る電気デバイスの代表的な実施形態である積層型の扁平なリチウムイオン二次電池の外観を模式的に表した斜視図である。図2中、50はリチウムイオン二次電池(積層型電池)を;57は発電要素を;58は負極集電板を;59は正極集電板を;および52は電池外装材(ラミネートフィルム)を、それぞれ示す。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view schematically showing the appearance of a stacked flat lithium ion secondary battery that is a representative embodiment of an electric device according to the present invention. In FIG. 2, 50 is a lithium ion secondary battery (laminated battery); 57 is a power generation element; 58 is a negative electrode current collector plate; 59 is a positive electrode current collector plate; and 52 is a battery exterior material (laminate film). Are shown respectively. 本発明の電気デバイス用負極活物質を構成するSi−Sn−Ti系合金の好ましい組成範囲と共に、参考例Aで成膜した合金成分をプロットして示す3元組成図である。FIG. 3 is a ternary composition diagram plotting and showing alloy components formed in Reference Example A together with a preferable composition range of the Si—Sn—Ti alloy constituting the negative electrode active material for electric devices of the present invention. 本発明の電気デバイス用負極活物質を構成するSi−Sn−Ti系合金のより好ましい組成範囲を示す3元組成図である。It is a ternary composition diagram showing a more preferable composition range of the Si—Sn—Ti based alloy constituting the negative electrode active material for electric devices of the present invention. 本発明の電気デバイス用負極活物質を構成するSi−Sn−Ti系合金のさらに好ましい組成範囲を示す3元組成図である。It is a ternary composition diagram showing a more preferable composition range of the Si—Sn—Ti based alloy constituting the negative electrode active material for electric devices of the present invention. 本発明の電気デバイス用負極活物質を構成するSi−Sn−Ti系合金の特に好ましい組成範囲を示す3元組成図である。It is a ternary composition diagram showing a particularly preferable composition range of the Si—Sn—Ti based alloy constituting the negative electrode active material for electric devices of the present invention. 参考例Aで得られた電池の初期放電容量に及ぼす負極活物質合金組成の影響を示す図である。It is a figure which shows the influence of a negative electrode active material alloy composition on the initial stage discharge capacity of the battery obtained by the reference example A. 参考例Aで得られた電池の50サイクル目の放電容量維持率に及ぼす負極活物質合金組成の影響を示す図である。It is a figure which shows the influence of the negative electrode active material alloy composition which acts on the discharge capacity maintenance factor of the 50th cycle of the battery obtained by the reference example A. 参考例Aで得られた電池の100サイクル目の放電容量維持率に及ぼす負極活物質合金組成の影響を示す図である。It is a figure which shows the influence of the negative electrode active material alloy composition which has on the discharge capacity maintenance factor of the 100th cycle of the battery obtained by the reference example A. 本発明の電気デバイス用負極活物質を構成するSi−Sn−Zn系合金の好ましい組成範囲と共に、参考例Bで成膜した合金成分をプロットして示す3元組成図である。It is a ternary composition diagram plotting and showing the alloy components formed in Reference Example B together with a preferable composition range of the Si—Sn—Zn-based alloy constituting the negative electrode active material for electric devices of the present invention. 本発明の電気デバイス用負極活物質を構成するSi−Sn−Zn系合金のより好ましい組成範囲を示す3元組成図である。It is a ternary composition diagram showing a more preferable composition range of the Si—Sn—Zn-based alloy constituting the negative electrode active material for electric devices of the present invention. 本発明の電気デバイス用負極活物質を構成するSi−Sn−Zn系合金のさらに好ましい組成範囲を示す3元組成図である。It is a ternary composition diagram showing a more preferable composition range of the Si—Sn—Zn-based alloy constituting the negative electrode active material for electric devices of the present invention. 本発明の電気デバイス用負極活物質を構成するSi−Sn−Zn系合金の特に好ましい組成範囲を示す3元組成図である。It is a ternary composition diagram showing a particularly preferable composition range of the Si—Sn—Zn-based alloy constituting the negative electrode active material for electric devices of the present invention. 参考例Bで得られた電池の初期放電容量に及ぼす負極活物質合金組成の影響を示す図面である。4 is a drawing showing the influence of the negative electrode active material alloy composition on the initial discharge capacity of the battery obtained in Reference Example B. 参考例Bで得られた電池の50サイクル目の放電容量維持率と負極活物質合金組成との関係を示す図面である。4 is a drawing showing the relationship between the discharge capacity retention ratio at the 50th cycle and the negative electrode active material alloy composition of the battery obtained in Reference Example B. 参考例Bで得られた電池の100サイクル目の放電容量維持率と負極活物質合金組成との関係を示す図である。It is a figure which shows the relationship between the discharge capacity maintenance factor of the 100th cycle of a battery obtained in Reference Example B, and a negative electrode active material alloy composition. 本発明の電気デバイス用負極活物質を構成するSi−Sn−C系合金の好ましい組成範囲と共に、参考例Cで成膜した合金成分をプロットして示す三元組成図である。FIG. 3 is a ternary composition diagram plotting and showing alloy components formed in Reference Example C together with a preferable composition range of the Si—Sn—C based alloy constituting the negative electrode active material for an electric device of the present invention. 本発明の電気デバイス用負極活物質を構成するSi−Sn−C系合金のより好ましい組成範囲を示す三元組成図である。It is a ternary composition diagram showing a more preferable composition range of the Si—Sn—C based alloy constituting the negative electrode active material for electric devices of the present invention. 本発明の電気デバイス用負極活物質を構成するSi−Sn−C系合金のさらに好ましい組成範囲を示す三元組成図である。It is a ternary composition diagram showing a more preferable composition range of the Si-Sn-C based alloy constituting the negative electrode active material for electric devices of the present invention. 本発明の電気デバイス用負極活物質を構成するSi−Sn−C系合金の特に好ましい組成範囲を示す三元組成図である。It is a ternary composition diagram showing a particularly preferable composition range of the Si—Sn—C based alloy constituting the negative electrode active material for electric devices of the present invention. 参考例Cで得られた電池の初期放電容量に及ぼす負極活物質合金組成の影響を示す図である。It is a figure which shows the influence of a negative electrode active material alloy composition on the initial stage discharge capacity of the battery obtained by the reference example C. 参考例Cで得られた電池の50サイクル目の放電容量維持率に及ぼす負極活物質合金組成の影響を示す図である。It is a figure which shows the influence of the negative electrode active material alloy composition which acts on the discharge capacity maintenance factor of the 50th cycle of the battery obtained in Reference Example C. 参考例Cで得られた電池の100サイクル目の放電容量維持率に及ぼす負極活物質合金組成の影響を示す図である。It is a figure which shows the influence of the negative electrode active material alloy composition which has on the discharge capacity maintenance factor of the 100th cycle of the battery obtained in Reference Example C. 実施例7の炭素被覆されたSi合金のオージェ電子分光法によるマッピング結果を示すカラー写真である。It is a color photograph which shows the mapping result by the Auger electron spectroscopy of the carbon coating Si alloy of Example 7.

以下、図面を参照しながら、本発明の電気デバイス用の負極活物質およびこれを用いてなる電気デバイスの実施形態を説明する。但し、本発明の技術的範囲は、特許請求の範囲の記載に基づいて定められるべきであり、以下の形態のみには制限されない。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。   Hereinafter, embodiments of a negative electrode active material for an electric device of the present invention and an electric device using the same will be described with reference to the drawings. However, the technical scope of the present invention should be determined based on the description of the scope of claims, and is not limited to the following modes. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.

以下、本発明の電気デバイス用負極活物質が適用され得る電気デバイスの基本的な構成を、図面を用いて説明する。本実施形態では、電気デバイスとしてリチウムイオン二次電池を例示して説明する。なお、本発明において「電極層」とは、負極活物質、バインダ、および必要であれば導電助剤を含む合剤層を意味するが、本明細書の説明では「負極活物質層」とも称することがある。同様に、正極側の電極層を「正極活物質層」とも称する。   Hereinafter, a basic configuration of an electric device to which the negative electrode active material for an electric device of the present invention can be applied will be described with reference to the drawings. In the present embodiment, a lithium ion secondary battery will be described as an example of an electric device. In the present invention, the “electrode layer” means a mixture layer containing a negative electrode active material, a binder, and, if necessary, a conductive additive, but is also referred to as a “negative electrode active material layer” in the description of this specification. Sometimes. Similarly, the electrode layer on the positive electrode side is also referred to as a “positive electrode active material layer”.

まず、本発明に係る電気デバイス用負極活物質を含む負極の代表的な一実施形態であるリチウムイオン二次電池用の負極およびこれを用いてなるリチウムイオン二次電池では、セル(単電池層)の電圧が大きく、高エネルギー密度、高出力密度が達成できる。そのため本実施形態のリチウムイオン二次電池用の負極活物質を用いてなるリチウムイオン二次電池では、車両の駆動電源用や補助電源用として優れている。その結果、車両の駆動電源用等のリチウムイオン二次電池として好適に利用できる。このほかにも、携帯電話などの携帯機器向けのリチウムイオン二次電池にも十分に適用可能である。   First, in a negative electrode for a lithium ion secondary battery, which is a typical embodiment of a negative electrode including a negative electrode active material for an electric device according to the present invention, and a lithium ion secondary battery using the same, a cell (single cell layer) ) Voltage is large, and high energy density and high power density can be achieved. Therefore, the lithium ion secondary battery using the negative electrode active material for the lithium ion secondary battery of the present embodiment is excellent as a vehicle driving power source or an auxiliary power source. As a result, it can be suitably used as a lithium ion secondary battery for a vehicle driving power source or the like. In addition to this, the present invention can be sufficiently applied to lithium ion secondary batteries for portable devices such as mobile phones.

すなわち、本実施形態の対象となるリチウムイオン二次電池は、以下に説明する本実施形態のリチウムイオン二次電池用の負極活物質を用いてなるものであればよく、他の構成要件に関しては、特に制限されるべきものではない。   That is, the lithium ion secondary battery that is the subject of the present embodiment may be any one that uses the negative electrode active material for the lithium ion secondary battery of the present embodiment described below. It should not be restricted in particular.

例えば、上記リチウムイオン二次電池を形態・構造で区別した場合には、積層型(扁平型)電池、巻回型(円筒型)電池など、従来公知のいずれの形態・構造にも適用し得るものである。積層型(扁平型)電池構造を採用することで簡単な熱圧着などのシール技術により長期信頼性を確保でき、コスト面や作業性の点では有利である。   For example, when the lithium ion secondary battery is distinguished by form / structure, it can be applied to any conventionally known form / structure such as a stacked (flat) battery or a wound (cylindrical) battery. Is. By adopting a stacked (flat) battery structure, long-term reliability can be secured by a sealing technique such as simple thermocompression bonding, which is advantageous in terms of cost and workability.

また、リチウムイオン二次電池内の電気的な接続形態(電極構造)で見た場合、非双極型(内部並列接続タイプ)電池および双極型(内部直列接続タイプ)電池のいずれにも適用し得るものである。   Moreover, when viewed in terms of electrical connection form (electrode structure) in a lithium ion secondary battery, it can be applied to both non-bipolar (internal parallel connection type) batteries and bipolar (internal series connection type) batteries. Is.

リチウムイオン二次電池内の電解質層の種類で区別した場合には、電解質層に非水系の電解液等の溶液電解質を用いた溶液電解質型電池、電解質層に高分子電解質を用いたポリマー電池など従来公知のいずれの電解質層のタイプにも適用し得るものである。該ポリマー電池は、さらに高分子ゲル電解質(単にゲル電解質ともいう)を用いたゲル電解質型電池、高分子固体電解質(単にポリマー電解質ともいう)を用いた固体高分子(全固体)型電池に分けられる。   When distinguished by the type of electrolyte layer in the lithium ion secondary battery, a solution electrolyte type battery using a solution electrolyte such as a nonaqueous electrolyte solution for the electrolyte layer, a polymer battery using a polymer electrolyte for the electrolyte layer, etc. It can be applied to any conventionally known electrolyte layer type. The polymer battery is further divided into a gel electrolyte type battery using a polymer gel electrolyte (also simply referred to as gel electrolyte) and a solid polymer (all solid) type battery using a polymer solid electrolyte (also simply referred to as polymer electrolyte). It is done.

したがって、以下の説明では、本実施形態のリチウムイオン二次電池用の負極活物質を用いてなる非双極型(内部並列接続タイプ)リチウムイオン二次電池につき図面を用いてごく簡単に説明する。但し、本実施形態のリチウムイオン二次電池の技術的範囲が、これらに制限されるべきものではない。   Therefore, in the following description, the non-bipolar (internal parallel connection type) lithium ion secondary battery using the negative electrode active material for the lithium ion secondary battery of this embodiment will be described very simply with reference to the drawings. However, the technical scope of the lithium ion secondary battery of the present embodiment should not be limited to these.

<電池の全体構造>
図1は、本発明の電気デバイスの代表的な一実施形態である、扁平型(積層型)のリチウムイオン二次電池(以下、単に「積層型電池」ともいう)の全体構造を模式的に表した断面概略図である。
<Overall battery structure>
FIG. 1 schematically shows the overall structure of a flat (stacked) lithium ion secondary battery (hereinafter also simply referred to as “stacked battery”), which is a typical embodiment of the electrical device of the present invention. FIG.

図1に示すように、本実施形態の積層型電池10は、実際に充放電反応が進行する略矩形の発電要素21が、外装体であるラミネートシート29の内部に封止された構造を有する。ここで、発電要素21は、正極集電体12の両面に正極活物質層15が配置された正極と、電解質層17と、負極集電体11の両面に負極活物質層13が配置された負極とを積層した構成を有している。具体的には、1つの正極活物質層15とこれに隣接する負極活物質層13とが、電解質層17を介して対向するようにして、負極、電解質層および正極がこの順に積層されている。   As shown in FIG. 1, the stacked battery 10 of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a laminate sheet 29 that is an exterior body. . Here, in the power generation element 21, the positive electrode in which the positive electrode active material layer 15 is disposed on both surfaces of the positive electrode current collector 12, the electrolyte layer 17, and the negative electrode active material layer 13 is disposed on both surfaces of the negative electrode current collector 11. It has a configuration in which a negative electrode is laminated. Specifically, the negative electrode, the electrolyte layer, and the positive electrode are laminated in this order so that one positive electrode active material layer 15 and the negative electrode active material layer 13 adjacent thereto face each other with the electrolyte layer 17 therebetween. .

これにより、隣接する正極、電解質層、および負極は、1つの単電池層19を構成する。したがって、図1に示す積層型電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。なお、発電要素21の両最外層に位置する最外層の正極集電体には、いずれも片面のみに正極活物質層15が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図1とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層の負極集電体が位置するようにし、該最外層の負極集電体の片面または両面に負極活物質層が配置されているようにしてもよい。   Thereby, the adjacent positive electrode, electrolyte layer, and negative electrode constitute one unit cell layer 19. Therefore, it can be said that the stacked battery 10 shown in FIG. 1 has a configuration in which a plurality of single battery layers 19 are stacked and electrically connected in parallel. The positive electrode current collector 15 located on both outermost layers of the power generation element 21 has the positive electrode active material layer 15 disposed only on one side, but the active material layers may be provided on both sides. . That is, instead of using a current collector dedicated to the outermost layer provided with an active material layer only on one side, a current collector having an active material layer on both sides may be used as it is as an outermost current collector. Further, by reversing the arrangement of the positive electrode and the negative electrode as compared with FIG. 1, the outermost negative electrode current collector is positioned on both outermost layers of the power generation element 21, and one side of the outermost negative electrode current collector or A negative electrode active material layer may be disposed on both sides.

正極集電体12および負極集電体11は、各電極(正極および負極)と導通される正極集電板27および負極集電板25がそれぞれ取り付けられ、ラミネートシート29の端部に挟まれるようにしてラミネートシート29の外部に導出される構造を有している。正極集電板27および負極集電板25は、それぞれ必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体12および負極集電体11に超音波溶接や抵抗溶接等により取り付けられていてもよい。   The positive electrode current collector 12 and the negative electrode current collector 11 are attached to the positive electrode current collector plate 27 and the negative electrode current collector plate 25 that are electrically connected to the respective electrodes (positive electrode and negative electrode), and are sandwiched between the end portions of the laminate sheet 29. Thus, it has a structure led out of the laminate sheet 29. The positive electrode current collector 27 and the negative electrode current collector 25 are ultrasonically welded to the positive electrode current collector 12 and the negative electrode current collector 11 of each electrode via a positive electrode lead and a negative electrode lead (not shown), respectively, as necessary. Or resistance welding or the like.

上記で説明したリチウムイオン二次電池は、負極に特徴を有する。以下、当該負極を含めた電池の主要な構成部材について説明する。   The lithium ion secondary battery described above is characterized by a negative electrode. Hereinafter, main components of the battery including the negative electrode will be described.

<活物質層>
活物質層13または15は活物質を含み、必要に応じてその他の添加剤をさらに含む。
<Active material layer>
The active material layer 13 or 15 contains an active material, and further contains other additives as necessary.

[正極活物質層]
正極活物質層15は、正極活物質を含む。
[Positive electrode active material layer]
The positive electrode active material layer 15 includes a positive electrode active material.

(正極活物質)
正極活物質としては、例えば、金属リチウム、リチウム−遷移金属複合酸化物、リチウム−遷移金属リン酸化合物、リチウム−遷移金属硫酸化合物、固溶体系、3元系、NiMn系、NiCo系、スピネルMn系などが挙げられる。
(Positive electrode active material)
Examples of the positive electrode active material include lithium metal, lithium-transition metal composite oxide, lithium-transition metal phosphate compound, lithium-transition metal sulfate compound, solid solution system, ternary system, NiMn system, NiCo system, spinel Mn system Etc.

リチウム−遷移金属複合酸化物としては、例えば、LiMn、LiCoO、LiNiO、Li(Ni、Mn、Co)O、Li(Li、Ni、Mn、Co)O、LiFePOおよびこれらの遷移金属の一部が他の元素により置換されたもの等が挙げられる。Examples of the lithium-transition metal composite oxide include LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni, Mn, Co) O 2 , Li (Li, Ni, Mn, Co) O 2 , LiFePO 4 and Examples include those in which some of these transition metals are substituted with other elements.

固溶体系としては、xLiMO・(1−x)LiNO(0<x<1、Mは平均酸化状態が3+、Nは平均酸化状態が4+である1種類以上の遷移金属)、LiRO−LiMn(R=Ni、Mn、Co、Fe等の遷移金属元素)等が挙げられる。As a solid solution system, xLiMO 2 · (1-x) Li 2 NO 3 (0 <x <1, M is one or more transition metals having an average oxidation state of 3+ and N is an average oxidation state of 4+), LiRO 2- LiMn 2 O 4 (R = transition metal elements such as Ni, Mn, Co and Fe).

3元系としては、ニッケル・コバルト・マンガン系(複合)正極材等が挙げられる。   Examples of the ternary system include nickel / cobalt / manganese (composite) positive electrode materials.

NiMn系としては、LiNi0.5Mn1.5等が挙げられる。Examples of the NiMn system include LiNi 0.5 Mn 1.5 O 4 .

NiCo系としては、Li(NiCo)O等が挙げられる。Examples of the NiCo system include Li (NiCo) O 2 .

スピネルMn系としてはLiMn等が挙げられる。Examples of the spinel Mn system include LiMn 2 O 4 .

特開2012−185913号公報に開示される一般式:Li(2−0.5x)y(2−0.5x)(1−y)Mn1−x1.5x(式中、Liはリチウム、□は結晶構造中の空孔、Mnはマンガン、MはNiαCoβMnγ(Niはニッケル、Coはコバルト、Mnはマンガンを示し、α、β及びγは、0<α≦0.5、0≦β≦0.33、0<γ≦0.5を満足する。)を示し、x及びyは、0<x<1.00、0<y<1.00の関係を満足する。)で表され、結晶構造が空間群C2/mに帰属される層状遷移金属酸化物を正極活物質として使用してもよい。General formula disclosed in JP 2012-185913 A: Li (2-0.5x) y(2-0.5x) (1-y) Mn 1-x M 1.5x O 3 (wherein Li is lithium, □ is a vacancy in the crystal structure, Mn is manganese, M is Ni α Co β Mn γ (Ni is nickel, Co is cobalt, Mn is manganese, α, β, and γ are 0 <α .Ltoreq.0.5, 0.ltoreq..beta..ltoreq.0.33, and 0 <.gamma..ltoreq.0.5. And a layered transition metal oxide having a crystal structure belonging to the space group C2 / m may be used as the positive electrode active material.

場合によっては、2種以上の正極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、リチウム−遷移金属複合酸化物が、正極活物質として用いられる。なお、上記以外の正極活物質が用いられてもよいことは勿論である。活物質それぞれの固有の効果を発現する上で最適な粒子径が異なる場合には、それぞれの固有の効果を発現する上で最適な粒子径同士をブレンドして用いればよく、全ての活物質の粒子径を必ずしも均一化させる必要はない。   In some cases, two or more positive electrode active materials may be used in combination. Preferably, a lithium-transition metal composite oxide is used as the positive electrode active material from the viewpoint of capacity and output characteristics. Of course, positive electrode active materials other than those described above may be used. When the optimum particle size is different for expressing the unique effect of each active material, the optimum particle size may be blended and used for expressing each unique effect. It is not always necessary to make the particle diameter uniform.

正極活物質層15に含まれる正極活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1〜30μmであり、より好ましくは5〜20μmである。なお、本明細書において、特に言及がない限り、「粒子径」とは、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用いて観察される活物質粒子(観察面)の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。また、本明細書において、特に言及がない限り、「平均粒子径」の値は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数〜数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。他の構成成分の粒子径や平均粒子径も同様に定義することができる。   The average particle diameter of the positive electrode active material contained in the positive electrode active material layer 15 is not particularly limited, but is preferably 1 to 30 μm, more preferably 5 to 20 μm from the viewpoint of increasing the output. In this specification, unless otherwise specified, “particle diameter” means active material particles (observation) observed using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It means the maximum distance among the distances between any two points on the contour line. In the present specification, unless otherwise specified, the value of “average particle diameter” is within several to several tens of fields using observation means such as a scanning electron microscope (SEM) and a transmission electron microscope (TEM). The value calculated as the average value of the particle diameters of the observed particles is adopted. The particle diameters and average particle diameters of other components can be defined in the same manner.

正極活物質層15は、バインダを含みうる。   The positive electrode active material layer 15 can include a binder.

(バインダ)
バインダは、活物質同士または活物質と集電体とを結着させて電極構造を維持する目的で添加される。正極活物質層に用いられるバインダとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリアミドイミド、セルロース、カルボキシメチルセルロース(CMC)、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。中でも、ポリフッ化ビニリデン、ポリイミド、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミド、ポリアミドイミドであることがより好ましい。これらの好適なバインダは、耐熱性に優れ、さらに電位窓が非常に広く正極電位、負極電位双方に安定であり活物質層に使用が可能となる。これらのバインダは、1種単独で用いてもよいし、2種併用してもよい。
(Binder)
The binder is added for the purpose of maintaining the electrode structure by binding the active materials or the active material and the current collector. Although it does not specifically limit as a binder used for a positive electrode active material layer, For example, the following materials are mentioned. Polyethylene, polypropylene, polyethylene terephthalate (PET), polyether nitrile (PEN), polyacrylonitrile, polyimide, polyamide, polyamideimide, cellulose, carboxymethyl cellulose (CMC), ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene / butadiene Rubber (SBR), isoprene rubber, butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene copolymer, styrene / butadiene / styrene block copolymer and hydrogenated product thereof, styrene / isoprene / styrene block copolymer and Thermoplastic polymers such as hydrogenated products, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), tetrafluoroethylene hexafluoropropylene Copolymer (FEP), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), ethylene / tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene / chlorotrifluoroethylene Fluororesin such as copolymer (ECTFE), polyvinyl fluoride (PVF), vinylidene fluoride-hexafluoropropylene-based fluororubber (VDF-HFP-based fluororubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene-based fluorine Rubber (VDF-HFP-TFE fluorine rubber), vinylidene fluoride-pentafluoropropylene fluorine rubber (VDF-PFP fluorine rubber), vinylidene fluoride-pentafluoropropylene-teto Fluoroethylene fluororubber (VDF-PFP-TFE fluororubber), vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene fluororubber (VDF-PFMVE-TFE fluororubber), vinylidene fluoride-chlorotrifluoroethylene Vinylidene fluoride-based fluororubbers such as epoxy-based fluororubbers (VDF-CTFE-based fluororubbers), and epoxy resins. Among these, polyvinylidene fluoride, polyimide, styrene / butadiene rubber, carboxymethyl cellulose, polypropylene, polytetrafluoroethylene, polyacrylonitrile, polyamide, and polyamideimide are more preferable. These suitable binders are excellent in heat resistance, have a very wide potential window, are stable at both the positive electrode potential and the negative electrode potential, and can be used for the active material layer. These binders may be used alone or in combination of two.

正極活物質層中に含まれるバインダ量は、活物質を結着することができる量であれば特に限定されるものではないが、好ましくは活物質層に対して、0.5〜15質量%であり、より好ましくは1〜10質量%である。   The amount of the binder contained in the positive electrode active material layer is not particularly limited as long as it is an amount capable of binding the active material, but is preferably 0.5 to 15% by mass with respect to the active material layer. More preferably, it is 1-10 mass%.

正極(正極活物質層)は、通常のスラリーを塗布(コーティング)する方法のほか、混練法、スパッタ法、蒸着法、CVD法、PVD法、イオンプレーティング法および溶射法のいずれかの方法によって形成することができる。   The positive electrode (positive electrode active material layer) can be applied by any one of a kneading method, a sputtering method, a vapor deposition method, a CVD method, a PVD method, an ion plating method, and a thermal spraying method in addition to a method of applying (coating) a normal slurry. Can be formed.

[負極活物質層]
負極活物質層13は、負極活物質を含む。
[Negative electrode active material layer]
The negative electrode active material layer 13 includes a negative electrode active material.

(負極活物質)
負極活物質は、所定の合金を必須に含む。
(Negative electrode active material)
The negative electrode active material essentially contains a predetermined alloy.

3元系のSiSnの合金を適用し、かつその合金の表面に炭素系材料を担持させることで、充放電時の負極活物質の膨張収縮による微細化および電解液との反応を抑制するという作用が得られる。その結果として、本発明に係る負極活物質を用いた負極は、高いサイクル耐久性を有するという有用な効果が得られるのである。By applying a ternary Si x Sn y M z A a alloy and supporting a carbon-based material on the surface of the alloy, the anode active material can be refined by expansion and contraction during charge and discharge, The effect | action of suppressing reaction of this is acquired. As a result, the negative electrode using the negative electrode active material according to the present invention has a useful effect of having high cycle durability.

合金
本実施形態において、前記合金は、下記化学式(1)で表される。
Alloy In this embodiment, the alloy is represented by the following chemical formula (1).

上記化学式(1)において、Mは、Ti、Zn、C、およびこれらの組み合わせからなる群から選択される少なくとも1つの金属である。また、Aは、不可避不純物である。さらに、x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である。また、本明細書において、前記「不可避不純物」とは、Si合金において、原料中に存在したり、製造工程において不可避的に混入したりするものを意味する。当該不可避不純物は、本来は不要なものであるが、微量であり、Si合金の特性に影響を及ぼさないため、許容されている不純物である。   In the chemical formula (1), M is at least one metal selected from the group consisting of Ti, Zn, C, and combinations thereof. A is an inevitable impurity. Furthermore, x, y, z, and a represent mass% values, where 0 <x <100, 0 <y <100, 0 <z <100, and 0 ≦ a <0.5. , X + y + z + a = 100. In the present specification, the “inevitable impurity” means an Si alloy that exists in a raw material or is inevitably mixed in a manufacturing process. The inevitable impurities are originally unnecessary impurities, but are a very small amount and do not affect the characteristics of the Si alloy.

本実施形態では、負極活物質として、第1添加元素であるSnと、第2添加元素であるM(Ti、Zn、C、およびこれらの組み合わせからなる群から選択される少なくとも1つの金属)を選択したことによって、Li合金化の際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。   In the present embodiment, as the negative electrode active material, Sn as the first additive element and M (at least one metal selected from the group consisting of Ti, Zn, C, and combinations thereof) as the second additive element are used. By the selection, the cycle life can be improved by suppressing the phase transition of the amorphous-crystal during the Li alloying. This also makes the capacity higher than that of a conventional negative electrode active material, for example, a carbon-based negative electrode active material.

ここでLi合金化の際、アモルファス−結晶の相転移を抑制するのは、Si材料ではSiとLiとが合金化する際、アモルファス状態から結晶状態へ転移し大きな体積変化(約4倍)を起こすため、粒子自体が壊れてしまい活物質としての機能が失われるためである。そのためアモルファス−結晶の相転移を抑制することで、粒子自体の崩壊を抑制し活物質としての機能(高容量)を保持することができ、サイクル寿命も向上させることができるものである。かかる第1および第2添加元素を選定することにより、高容量で高サイクル耐久性を有するSi合金負極活物質を提供できる。   Here, in the case of Li alloying, the amorphous-crystal phase transition is suppressed because, in the Si material, when Si and Li are alloyed, the amorphous state transitions to the crystalline state and a large volume change (about 4 times) occurs. This is because the particles themselves are broken and the function as an active material is lost. Therefore, by suppressing the amorphous-crystal phase transition, it is possible to suppress the collapse of the particles themselves, to maintain the function (high capacity) as an active material, and to improve the cycle life. By selecting the first and second additive elements, a Si alloy negative electrode active material having a high capacity and a high cycle durability can be provided.

上述のように、Mは、Ti、Zn、C、およびこれらの組み合わせからなる群から選択される少なくとも1つの金属である。よって、以下、SiSnTi、SiSnZn、およびSiSnのSi合金について、それぞれ説明する。As described above, M is at least one metal selected from the group consisting of Ti, Zn, C, and combinations thereof. Therefore, hereinafter, Si x Sn y Ti z A a, the Si x Sn y Zn z A a , and Si x Sn y C z A a Si alloy will be described respectively.

〔SiSnTiで表されるSi合金〕
上記SiSnTiは、上述のように、第1添加元素であるSnと、第2添加元素であるTiを選択したことによって、Li合金化の際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
[Si x Sn y Ti z Si alloys represented by A a]
The Si x Sn y Ti z A a, as described above, and Sn is a first additional element, by selecting the Ti as the second additional element, when Li alloying, amorphous - crystalline phases The cycle life can be improved by suppressing the transition. This also makes the capacity higher than that of a conventional negative electrode active material, for example, a carbon-based negative electrode active material.

上記合金の組成において、前記x、y、およびzが、下記数式(1)または(2):   In the composition of the alloy, the x, y, and z are represented by the following formula (1) or (2):

を満たすことが好ましい。つまり、当該負極活物質の上記特性の向上を図る観点からは、図3の符号Aで示すように、第1の領域は35質量%以上78質量%以下のケイ素(Si)、7質量%以上30質量%以下の錫(Sn)、0質量%を超え37質量%以下のチタン(Ti)を含む領域であることが好ましい。また、図3の符号Bで示すように、第2の領域は、35質量%以上52質量%以下のSi、30質量%以上51質量%以下のSn、0質量%を超え35質量%以下のTiを含む領域であることが好ましい。各成分含有量が上記範囲内にあると、1000Ah/gを超える初期放電容量を得ることができ、サイクル寿命についても90%(50サイクル)を超えうる。 It is preferable to satisfy. That is, from the viewpoint of improving the above characteristics of the negative electrode active material, the first region has a silicon (Si) content of 35% by mass or more and 78% by mass or less, and 7% by mass or more, as indicated by reference symbol A in FIG. A region containing 30% by mass or less of tin (Sn) and more than 0% by mass and 37% by mass or less of titanium (Ti) is preferable. Moreover, as shown by the code | symbol B of FIG. 3, 2nd area | region is 35 mass% or more and 52 mass% or less of Si, 30 mass% or more of 51 mass% or less of Sn, more than 0 mass% and 35 mass% or less. A region containing Ti is preferable. When the content of each component is within the above range, an initial discharge capacity exceeding 1000 Ah / g can be obtained, and the cycle life can also exceed 90% (50 cycles).

なお、当該負極活物質の上記特性のさらなる向上を図る観点からは、チタンの含有量が7質量%以上の範囲とすることが望ましい。つまり、図4の符号Cで示すように、第1の領域は、35質量%以上78質量%以下のケイ素(Si)、7質量%以上30質量%以下の錫(Sn)、7質量%以上37質量%以下のチタン(Ti)を含む領域であることが好ましい。また、図4の符号Dで示すように、第2の領域は、35質量%以上52質量%以下のSi、30質量%以上51質量%以下のSn、7質量%以上35質量%以下のTiを含む領域であることが好ましい。すなわち、前記x、y、およびzが、下記数式(3)または(4):   In addition, from the viewpoint of further improving the above characteristics of the negative electrode active material, it is desirable that the titanium content is in the range of 7% by mass or more. That is, as indicated by reference C in FIG. 4, the first region has a silicon (Si) content of 35% to 78% by mass, tin (Sn) of 7% to 30% by mass, and 7% by mass or more. A region containing 37 mass% or less of titanium (Ti) is preferable. Moreover, as shown by the code | symbol D of FIG. 4, 35 mass% or more and 52 mass% or less of Si, 30 mass% or more and 51 mass% or less of Sn, 7 mass% or more and 35 mass% or less of Ti It is preferable that it is the area | region containing. That is, the x, y, and z are represented by the following formula (3) or (4):

を満たすことが好ましい。これにより、後述の参考例で示すように、50サイクル後における放電容量維持率を43%以上とすることが可能となる。 It is preferable to satisfy. As a result, as shown in a reference example described later, the discharge capacity retention rate after 50 cycles can be 43% or more.

そして、より良好なサイクル耐久性を確保する観点から、図5の符号Eで示すように、第1の領域は、35質量%以上68質量%以下のSi、7質量%以上30質量%以下のSn、18質量%以上37質量%以下のTiを含む領域であることが好ましい。また、図5の符号Fで示すように、第2の領域は、39質量%以上52質量%以下のSi、30質量%以上51質量%以下のSn、7質量%以上20質量%以下のTiを含む領域であることが望ましい。すなわち、前記x、y、およびzが、下記数式(5)または(6):   And from the viewpoint of ensuring better cycle durability, as shown by the symbol E in FIG. 5, the first region is 35 mass% to 68 mass% Si, 7 mass% to 30 mass%. A region containing Sn, 18 mass% or more and 37 mass% or less of Ti is preferable. 5, the second region includes 39% to 52% by mass of Si, 30% to 51% by mass of Sn, and 7% to 20% by mass of Ti. It is desirable that the region includes That is, the x, y, and z are represented by the following formula (5) or (6):

を満たすことが好ましい。 It is preferable to satisfy.

そして、初期放電容量およびサイクル耐久性の観点から、本実施形態の負極活物質は、図6の符号Gで示す領域の成分を含有し、残部が不可避不純物である合金を有することが特に好ましい。なお、符号Gで示す領域は、46質量%以上58質量%以下のSi、7質量%以上21質量%以下のSn、24質量%以上37質量%以下のTiを含有する領域である。すなわち、前記x、y、およびzが、下記数式(7):   From the viewpoint of initial discharge capacity and cycle durability, it is particularly preferable that the negative electrode active material of the present embodiment includes an alloy that includes a component in the region indicated by symbol G in FIG. In addition, the area | region shown with the code | symbol G is an area | region containing 46 mass% or more and 58 mass% or less of Si, 7 mass% or more and 21 mass% or less of Sn, and 24 mass% or more and 37 mass% or less of Ti. That is, the x, y, and z are represented by the following formula (7):

を満たすことが好ましい。 It is preferable to satisfy.

なお、Aは上述のように、原料や製法に由来する上記3成分以外の不純物(不可避不純物)である。前記aは、0≦a<0.5であり、0≦a<0.1であることが好ましい。   As described above, A is an impurity (unavoidable impurity) other than the three components derived from the raw materials and the manufacturing method. The a is 0 ≦ a <0.5, and preferably 0 ≦ a <0.1.

〔SiSnZnで表されるSi合金〕
上記SiSnZnAaは、上述のように、第1添加元素であるSnと、第2添加元素であるZnを選択したことによって、Li合金化の際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
[Si alloy represented by Si x Sn y Zn z A a ]
As described above, the Si x Sn y Zn z Aa is selected from the first additive element Sn and the second additive element Zn. And the cycle life can be improved. This also makes the capacity higher than that of a conventional negative electrode active material, for example, a carbon-based negative electrode active material.

上記合金の組成において、xが23を超え64未満であり、yが4以上58以下であり、zが0を超え65未満であることが好ましい。なお、この数値範囲は、図10の符号Xで示す範囲に相当する。そして、このSi合金の負極活物質は、電気デバイスの負極、例えばリチウムイオン二次電池の負極に用いられる。この場合、上記負極活物質に含有される合金は、電池の充電の際にリチウムイオンを吸収し、放電の際にリチウムイオンを放出する。   In the composition of the alloy, x is more than 23 and less than 64, y is 4 or more and 58 or less, and z is more than 0 and less than 65. This numerical range corresponds to the range indicated by the symbol X in FIG. And this negative electrode active material of Si alloy is used for the negative electrode of an electrical device, for example, the negative electrode of a lithium ion secondary battery. In this case, the alloy contained in the negative electrode active material absorbs lithium ions when the battery is charged and releases lithium ions when discharged.

より詳細に説明すると、上記負極活物質はSi合金の負極活物質であるが、その中に第1添加元素である錫(Sn)と、第2添加元素である亜鉛(Zn)とを添加したものである。そして、第1添加元素であるSnと、第2添加元素であるZnを適切に選択することによって、リチウムと合金化する際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、炭素系負極活物質よりも高容量にすることができる。   More specifically, the negative electrode active material is a negative electrode active material of a Si alloy, and tin (Sn) as a first additive element and zinc (Zn) as a second additive element are added therein. Is. And, by appropriately selecting Sn as the first additive element and Zn as the second additive element, when alloying with lithium, the amorphous-crystal phase transition is suppressed and the cycle life is improved. Can do. In addition, this can make the capacity higher than that of the carbon-based negative electrode active material.

そして、第1および第2添加元素であるSnおよびZnの組成範囲をそれぞれ最適化することにより、50サイクル後、100サイクル後にも良好なサイクル寿命を備えたSi(Si−Sn−Zn系)合金の負極活物質を得ることができる。   Then, by optimizing the composition ranges of Sn and Zn as the first and second additive elements, respectively, a Si (Si—Sn—Zn) alloy having a good cycle life after 50 cycles and 100 cycles The negative electrode active material can be obtained.

このとき、Si−Sn−Zn系合金から成る上記負極活物質において、前記xが23を超える場合は1サイクル目の放電容量を十分に確保することができる。また、yが4以上の場合は、50サイクル目における良好な放電容量維持率を十分に確保することができる。前記x、y、zが上記組成の範囲内であれば、サイクル耐久性が向上し、100サイクル目における良好な放電容量維持率(例えば、50%以上)を十分に確保することができる。   At this time, in the negative electrode active material made of a Si—Sn—Zn-based alloy, when x exceeds 23, a sufficient discharge capacity at the first cycle can be ensured. In addition, when y is 4 or more, a satisfactory discharge capacity retention rate at the 50th cycle can be sufficiently secured. When x, y, and z are within the range of the above composition, cycle durability is improved, and a satisfactory discharge capacity retention rate (for example, 50% or more) at the 100th cycle can be sufficiently secured.

なお、当該Si合金負極活物質の上記特性のさらなる向上を図る観点からは、上記合金の組成において、23<x<64、4≦y<34、2<z<65で示される図11の符号Aで示す範囲とすることが望ましい。さらに、23<x<44、34<y<58、0<z<43を満たす図11の符号Bで示す範囲とすることが望ましい。これによって、表2に示すように、50サイクルでは92%以上、100サイクルでは55%を超える放電容量維持率を得ることができる。そして、より良好なサイクル耐久性を確保する観点からは、23<x<64、4<y<34、27<z<61を満たす図12の符号Cで示す範囲とすることが望ましい。また、23<x<34、34<y<58、8<z<43を満たす図12の符号Dで示す範囲とすることが望ましい。これによってサイクル耐久性が向上し、表2に示すように、100サイクルで65%を超える放電容量維持率を得ることができる。   In addition, from the viewpoint of further improving the above characteristics of the Si alloy negative electrode active material, in the composition of the above alloy, reference numerals in FIG. 11 represented by 23 <x <64, 4 ≦ y <34, and 2 <z <65. A range indicated by A is desirable. Further, it is desirable that the range shown by the symbol B in FIG. 11 satisfying 23 <x <44, 34 <y <58, and 0 <z <43. As a result, as shown in Table 2, it is possible to obtain a discharge capacity maintenance rate of 92% or more in 50 cycles and over 55% in 100 cycles. From the standpoint of ensuring better cycle durability, it is desirable that the range shown by the symbol C in FIG. 12 satisfy 23 <x <64, 4 <y <34, and 27 <z <61. In addition, it is desirable that the range shown by the symbol D in FIG. 12 satisfy 23 <x <34, 34 <y <58, and 8 <z <43. As a result, cycle durability is improved, and as shown in Table 2, a discharge capacity maintenance rate exceeding 65% can be obtained in 100 cycles.

さらには、23<x<58、4<y<24、38<z<61を満たす図13の符号Eで示す範囲、23<x<38、24≦y<35、27<z<53を満たす図13の符号Fで示す範囲、23<x<38、35<y<40、27<z<44を満たす図13の符号Gで示す範囲、または23<x<29、40≦y<58、13<z<37を満たす図13の符号Hで示す範囲とすることが望ましい。これによってサイクル耐久性が向上し、表2に示すように、100サイクルで75%を超える放電容量維持率を得ることができる。   Furthermore, the range indicated by the symbol E in FIG. 13 satisfying 23 <x <58, 4 <y <24, 38 <z <61, 23 <x <38, 24 ≦ y <35, and 27 <z <53 are satisfied. A range indicated by reference sign F in FIG. 13, a range indicated by reference sign G in FIG. 13 satisfying 23 <x <38, 35 <y <40, 27 <z <44, or 23 <x <29, 40 ≦ y <58, It is desirable that the range shown by the symbol H in FIG. 13 satisfying 13 <z <37. As a result, cycle durability is improved, and as shown in Table 2, a discharge capacity maintenance rate exceeding 75% can be obtained in 100 cycles.

なお、Aは上述のように、原料や製法に由来する上記3成分以外の不純物(不可避不純物)である。前記aは、0≦a<0.5であり、0≦a<0.1であることがより好ましい。   As described above, A is an impurity (unavoidable impurity) other than the three components derived from the raw materials and the manufacturing method. The a is 0 ≦ a <0.5, and more preferably 0 ≦ a <0.1.

〔SiSnで表されるSi合金〕
上記SiSnは、上述のように、第1添加元素であるSnと、第2添加元素であるCを選択したことによって、Li合金化の際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
[Si alloy represented by Si x Sn y C z A a ]
As described above, the Si x Sn y C z A a is selected from the first additive element Sn and the second additive element C, so that an amorphous-crystalline phase is formed during Li alloying. The cycle life can be improved by suppressing the transition. This also makes the capacity higher than that of a conventional negative electrode active material, for example, a carbon-based negative electrode active material.

上記合金の組成において、前記xが29以上であることが好ましい。なお、この数値範囲は、図17の符号Aで示す範囲に相当する。上記組成を有することにより、高容量を発現するのみならず、50サイクル後、100サイクル後も高い放電容量を維持しうる。   In the alloy composition, x is preferably 29 or more. This numerical range corresponds to the range indicated by the symbol A in FIG. By having the said composition, not only high capacity | capacitance is expressed but a high discharge capacity can be maintained also after 50 cycles after 100 cycles.

なお、当該負極活物質の上記特性のさらなる向上を図る観点からは、前記xが29以上63以下、前記yが14以上48以下、前記zが11以上48以下の範囲であることが好ましい。なお、この数値範囲は図18の符号Bで示す範囲に相当する。   From the viewpoint of further improving the above-described characteristics of the negative electrode active material, it is preferable that x is in the range of 29 to 63, y is 14 to 48, and z is 11 to 48. This numerical range corresponds to the range indicated by the symbol B in FIG.

そして、より良好なサイクル耐久性を確保する観点からは、前記xが29以上44以下、前記yが14以上48以下、前記zが11以上48以下の範囲であることが好ましい。なお、この数値範囲は図19の符号Cで示す範囲に相当する。   From the viewpoint of ensuring better cycle durability, it is preferable that x is in the range of 29 to 44, y is in the range of 14 to 48, and z is in the range of 11 to 48. This numerical range corresponds to the range indicated by the symbol C in FIG.

さらには、前記xが29以上40以下、前記yが34以上48以下(したがって、12≦z≦37)の範囲とすることが好ましい。なお、この数値範囲は図20の符号Dで示す範囲に相当する。   Furthermore, it is preferable that x is in the range of 29 to 40 and y is in the range of 34 to 48 (and therefore 12 ≦ z ≦ 37). This numerical range corresponds to the range indicated by the symbol D in FIG.

なお、Aは上述のように、原料や製法に由来する上記3成分以外の不純物(不可避不純物)である。前記aは、0≦a<0.5であり、0≦a<0.1であることが好ましい。   As described above, A is an impurity (unavoidable impurity) other than the three components derived from the raw materials and the manufacturing method. The a is 0 ≦ a <0.5, and preferably 0 ≦ a <0.1.

(Si合金表面への炭素系材料の担持)
本発明に係るSi合金は、その表面に炭素系材料が担持(被覆)される点に特徴を有する。かような特徴を有する表面に炭素系材料が担持(被覆)されたSi合金(以下、単に「炭素担持Si合金」または「炭素被覆Si合金」とも称する)を含む負極活物質を用いたリチウムイオン二次電池等の電気デバイスは、高いサイクル耐久性を有する。
(Carbon material support on Si alloy surface)
The Si alloy according to the present invention is characterized in that a carbon-based material is supported (coated) on the surface thereof. Lithium ion using a negative electrode active material including a Si alloy (hereinafter also simply referred to as “carbon-supported Si alloy” or “carbon-coated Si alloy”) in which a carbon-based material is supported (coated) on the surface having such characteristics. An electric device such as a secondary battery has high cycle durability.

本明細書において、「担持」または「被覆」とは、炭素系材料がSi合金の少なくとも一部の表面に化学的または物理的に結合していることを意味する。また、Si合金の表面に炭素系材料が担持(被覆)したか否かは、製造したまたは電極から採取(分離)した炭素担持Si合金(負極活物質)において、炭素系材料が合金粒子に付着した状態で観察されることによって確認でき、合金の炭素系材料による被覆率が15mol%以上である場合を「Si合金の表面に炭素系材料が担持(被覆)した」状態であると定義する。このため、従来、行っているような負極活物質、導電助剤(炭素系材料)及びバインダとの単純な混合によっては、導電助剤は負極活物質には担持されないまたは合金の炭素系材料による被覆率が15mol%未満でしか担持されない。なお、炭素系材料の合金表面への担持(被覆)状態は、走査型電子顕微鏡(SEM)等の公知の手段によって、容易に確認できる。   In this specification, “support” or “coating” means that the carbon-based material is chemically or physically bonded to at least a part of the surface of the Si alloy. Whether or not a carbon-based material is supported (coated) on the surface of the Si alloy depends on whether the carbon-based material adheres to the alloy particles in the carbon-supported Si alloy (negative electrode active material) that is manufactured or collected (separated) from the electrode. The case where the coverage of the alloy with the carbon-based material is 15 mol% or more is defined as “the carbon-based material is supported (coated) on the surface of the Si alloy”. For this reason, depending on the simple mixing of the negative electrode active material, the conductive auxiliary agent (carbon-based material) and the binder as conventionally performed, the conductive auxiliary agent is not supported on the negative electrode active material or depends on the carbon-based material of the alloy. It is supported only when the coverage is less than 15 mol%. In addition, the carrying | support (coating) state to the alloy surface of a carbonaceous material can be confirmed easily by well-known means, such as a scanning electron microscope (SEM).

なぜ、上記のような特徴を有するSi合金を用いた電気デバイスのサイクル耐久性が向上するのか、詳細な理由は不明であるが、以下の理由が考えられる。   The detailed reason is unclear why the cycle durability of the electric device using the Si alloy having the above-described characteristics is improved, but the following reasons are conceivable.

上述したように、Si合金は充放電時の膨張収縮が激しいため、微粉化したり、表面積増加に伴う電解液との反応(酸化)などが原因でサイクル耐久性の劣化が問題とされている。また、上記特許文献1に記載の式:SiAlを有するアモルファス合金を有する負極を用いたリチウムイオン二次電池では、式:SiAlを有するアモルファス合金であっても、純度の高いSi活物質と同様、十分に膨張収縮を抑えることができない。このため、充放電時の膨張収縮による活物質(粒子)の微細化により、活物質の比表面積が増加し、電解液の分解が促進され、電解液の枯渇や電解液の分解による副反応生成物が生成し、導電性の妨げとなる。As described above, since the Si alloy is severely expanded and contracted during charging and discharging, deterioration in cycle durability is a problem due to pulverization or reaction (oxidation) with the electrolyte accompanying an increase in surface area. In the lithium ion secondary battery using the negative electrode having the amorphous alloy having the formula: Si x M y Al z described in Patent Document 1, even if the amorphous alloy has the formula: Si x M y Al z Like the high purity Si active material, the expansion and contraction cannot be sufficiently suppressed. For this reason, the active material (particles) is refined due to expansion and contraction during charge and discharge, the specific surface area of the active material is increased, decomposition of the electrolyte is promoted, and side reactions are generated due to electrolyte depletion and electrolyte decomposition. An object is formed, which hinders conductivity.

また、上記特許文献1に記載のアモルファス合金は、Si(半導体)を含むため、十分な導電性が確保されない。このため、当該アモルファス合金を活物質として使用する場合には、導電助剤の添加が必要となるが、従来の導電助剤の添加では均一に分散させることが難しく、局所的に導電性の高い活物質と低い活物質が混在する構造になることが多かった。これらの理由により、従来の技術では、高いサイクル特性を維持することが困難であった。   Moreover, since the amorphous alloy described in Patent Document 1 contains Si (semiconductor), sufficient conductivity is not ensured. For this reason, when the amorphous alloy is used as an active material, it is necessary to add a conductive additive. However, it is difficult to uniformly disperse the conventional conductive additive, and locally highly conductive. In many cases, the active material and the low active material are mixed. For these reasons, it has been difficult for conventional techniques to maintain high cycle characteristics.

これに対して、本発明では、SiSn(M=Ti、Zn、C、またはこれらの組み合わせ)の合金(粒子)を適用し、かつ当該合金(粒子)表面に炭素系材料を担持(被覆)させる。このため、合金表面の炭素系材料の存在により、合金(粒子)表面と電解液との反応性を抑制することができるため、過剰な電解液の分解反応、およびそれに伴う副反応物の生成を抑制することが可能となる。また、導電助剤を添加する従来の方法とは異なり、導電性の高い炭素系材料が合金(粒子)表面に存在するため、合金(粒子)の導電性が確保され、合金全体に高い導電性を付与することができる。これにより、例えば、リチウムイオン二次電池に適用される場合には、Liイオン挿入時において、合金粒子の充電深度の均一化を促す効果をもたらし、過度にLiイオンが挿入されて劣化しやすくなる合金粒子を排除することができる。In contrast, in the present invention, an alloy (particle) of Si x Sn y M z A a (M = Ti, Zn, C, or a combination thereof) is applied, and the surface of the alloy (particle) is carbon-based. The material is supported (coated). For this reason, the presence of the carbon-based material on the alloy surface can suppress the reactivity between the surface of the alloy (particles) and the electrolytic solution. It becomes possible to suppress. In addition, unlike conventional methods in which a conductive additive is added, a highly conductive carbon-based material exists on the surface of the alloy (particles), so that the conductivity of the alloy (particles) is ensured and the entire alloy has high conductivity. Can be granted. Thereby, for example, when applied to a lithium ion secondary battery, when Li ions are inserted, an effect of promoting uniform charge depth of the alloy particles is brought about, and Li ions are excessively inserted and easily deteriorated. Alloy particles can be eliminated.

すなわち、本発明に係る負極活物質は、合金粒子ではなく炭素系材料が電解液と接触するため、電解液の(特にケイ素による)分解反応を抑制でき、炭素系材料が最表面に存在することにより導電性を向上できる。したがって、本発明に係る負極活物質は、サイクル特性、さらには初期容量及びサイクル特性を向上できる。   That is, since the negative electrode active material according to the present invention is not an alloy particle but a carbon-based material is in contact with the electrolytic solution, the decomposition reaction of the electrolytic solution (particularly due to silicon) can be suppressed, and the carbon-based material exists on the outermost surface. Thus, the conductivity can be improved. Therefore, the negative electrode active material according to the present invention can improve cycle characteristics, and further, initial capacity and cycle characteristics.

なお、上記メカニズムは推測によるものであり、本発明は上記メカニズムに何ら制限されるものではない。   In addition, the said mechanism is based on estimation and this invention is not restrict | limited to the said mechanism at all.

合金(粒子)表面に炭素系材料が担持(被覆)する。ここで、合金の炭素系材料による被覆率(担持率)は、特に制限されない。サイクル特性(サイクル耐久性)の向上効果、導電性の向上効果などを考慮すると、合金の炭素系材料による被覆率は、好ましくは50〜400mol%であり、より好ましくは100〜400mol%であり、さらにより好ましくは250〜400mol%である。   A carbon-based material is supported (coated) on the surface of the alloy (particle). Here, the coverage (support rate) of the alloy with the carbon-based material is not particularly limited. Considering the effect of improving the cycle characteristics (cycle durability), the effect of improving the conductivity, the coverage of the alloy with the carbon-based material is preferably 50 to 400 mol%, more preferably 100 to 400 mol%, More preferably, it is 250-400 mol%.

本明細書において、「合金の炭素系材料による被覆率(担持率)」は、以下のような方法で測定・算出した値を採用する。なお、本明細書では、「合金の炭素系材料による被覆率(担持率)(mol%)」を単に「炭素被覆率(mol%)」とも称する。   In this specification, a value measured and calculated by the following method is adopted as the “covering rate (support rate) of the alloy with the carbon-based material”. In the present specification, the “coverage (support rate) (mol%) of the alloy with a carbon-based material” is also simply referred to as “carbon coverage (mol%)”.

<合金の炭素系材料による被覆率(担持率)の測定>
炭素系材料が担持された合金の炭素被覆率は、下記測定条件で、オージェ電子分光法を用いて、ケイ素のモル比率及び炭素のモル比率を測定する。
<Measurement of coverage (support rate) of alloy with carbon-based material>
The carbon coverage of the alloy on which the carbon-based material is supported is determined by measuring the molar ratio of silicon and the molar ratio of carbon using Auger electron spectroscopy under the following measurement conditions.

次に、上記で測定されたケイ素のモル比率及び炭素のモル比率を用いて、下記式に従って、ケイ素のモル比率に対する炭素のモル比率を算出し、得られた値を炭素被覆率(下記表4中の「ケイ素に対する炭素被覆率」)(mol%)とする。   Next, using the mole ratio of silicon and the mole ratio of carbon measured above, the mole ratio of carbon to the mole ratio of silicon was calculated according to the following formula, and the obtained value was expressed as the carbon coverage (Table 4 below). "Carbon coverage with respect to silicon")) (mol%).

ここで、合金の炭素系材料による被覆率(担持率)を上記好ましい範囲に制御する方法は、特に制限されない。具体的には、合金および炭素系材料を適当な割合で混合した後、物理的または化学的に処理して、炭素系材料を合金表面に化学的または物理的に結合(担持)させる方法が使用できる。   Here, the method for controlling the coverage (support rate) of the alloy with the carbon-based material within the above preferable range is not particularly limited. Specifically, a method is used in which an alloy and a carbon-based material are mixed in an appropriate ratio and then physically or chemically treated to chemically or physically bond (support) the carbon-based material on the alloy surface. it can.

上記方法において、合金および炭素系材料の混合比は、特に制限されない。具体的には、炭素系材料を、合金および炭素系材料の合計量を100重量部とした場合に、好ましくは1〜25重量部の割合で、より好ましくは5〜25重量部の割合で、特に好ましくは10〜25重量部の割合で、合金と混合する。このような混合比によると、合金の炭素系材料による被覆率(担持率)を上記したような好ましい範囲に容易に制御できる。また、このような混合比によれば、炭素系材料が合金表面に均一に担持(被覆)できる。   In the above method, the mixing ratio of the alloy and the carbon-based material is not particularly limited. Specifically, when the total amount of the carbon-based material and the alloy and the carbon-based material is 100 parts by weight, the ratio is preferably 1 to 25 parts by weight, more preferably 5 to 25 parts by weight. Especially preferably, it mixes with an alloy in the ratio of 10-25 weight part. According to such a mixing ratio, the coverage (support rate) of the alloy with the carbon-based material can be easily controlled within the preferable range as described above. Further, according to such a mixing ratio, the carbon-based material can be uniformly supported (coated) on the alloy surface.

炭素系材料は、特に制限されず、通常、導電助剤として使用される炭素系材料が使用できる。具体的には、アセチレンブラック、ファーネスブラック、カーボンブラック、チャンネルブラック、グラファイトなどが挙げられる。これらのうち、担持維持性の観点から、炭素系材料はLiイオンの挿入脱離の起こりにくいまたは起こらない低結晶性を有することが好ましく、アセチレンブラック、炭素繊維を使用することがより好ましい。また、炭素系材料の形状もまた、特に制限されず、粒子形態でも繊維形態でもよい。担持のしやすさの点から、粒子形態が好ましく、導電性の点からは、繊維形態が好ましい。炭素系材料の大きさもまた、特に制限されない。例えば、炭素系材料が粒子形態の場合には、平均粒子径(2次粒子径)が、好ましくは10〜200nmであり、より好ましくは20〜150nmである。また、炭素系材料が繊維形態の場合には、直径が、好ましくは20〜500nmであり、より好ましくは50〜300nmであり、長さが、好ましくは5〜20μmであり、より好ましくは8〜15μmである。このような大きさであれば、炭素系材料が容易に合金表面に担持できる。また、このような大きさであれば、炭素系材料が合金表面に均一に担持できる。   The carbon-based material is not particularly limited, and a carbon-based material that is usually used as a conductive additive can be used. Specific examples include acetylene black, furnace black, carbon black, channel black, and graphite. Of these, from the viewpoint of supporting and maintaining properties, the carbon-based material preferably has low crystallinity in which insertion or desorption of Li ions hardly occurs or does not occur, and it is more preferable to use acetylene black or carbon fiber. Further, the shape of the carbon-based material is not particularly limited, and may be in a particle form or a fiber form. From the viewpoint of easy loading, a particle form is preferable, and from a conductive point, a fiber form is preferable. The size of the carbon-based material is not particularly limited. For example, when the carbonaceous material is in the form of particles, the average particle size (secondary particle size) is preferably 10 to 200 nm, more preferably 20 to 150 nm. Moreover, when a carbonaceous material is a fiber form, a diameter becomes like this. Preferably it is 20-500 nm, More preferably, it is 50-300 nm, Length is preferably 5-20 micrometers, More preferably, it is 8- 15 μm. With such a size, the carbon-based material can be easily supported on the alloy surface. Moreover, if it is such a magnitude | size, a carbonaceous material can carry | support uniformly on the alloy surface.

また、上記方法において、炭素系材料を合金表面に化学的または物理的に結合(担持)させるための物理的または化学的な処理方法は、特に制限されず、剪断により合金中に炭素系材料の少なくとも一部を埋設する方法、合金および炭素系材料表面の官能基を介して化学的に結合させる方法などが挙げられる。より具体的には、メカノケミカル法、液相法、焼結法、気相蒸着(CVD)法などが挙げられる。   In the above method, the physical or chemical treatment method for chemically or physically bonding (supporting) the carbon-based material to the surface of the alloy is not particularly limited, and the carbon-based material is incorporated into the alloy by shearing. Examples thereof include a method of embedding at least a part, a method of chemically bonding via functional groups on the surface of the alloy and the carbon-based material, and the like. More specifically, a mechanochemical method, a liquid phase method, a sintering method, a vapor deposition (CVD) method, and the like can be given.

炭素系材料を合金表面に化学的または物理的に結合(担持)させるための物理的または化学的な処理条件は、特に制限されず、使用される方法によって適切に選択できる。例えば、メカノケミカル法を使用する場合には、回転速度(処理回転速度)が、好ましく3000〜8000rpm、より好ましくは4000〜7000rpmである。また、負荷動力が、好ましく200〜400W、より好ましくは250〜300Wである。処理時間は、好ましく10〜60分、より好ましくは20〜50分である。このような条件であれば、炭素系材料を、上記好ましい被覆率(担持率)で合金表面に担持(被覆)できる。また、炭素系材料が合金表面に均一に担持できる。   The physical or chemical treatment conditions for chemically or physically bonding (supporting) the carbon-based material to the alloy surface are not particularly limited and can be appropriately selected depending on the method used. For example, when the mechanochemical method is used, the rotation speed (processing rotation speed) is preferably 3000 to 8000 rpm, more preferably 4000 to 7000 rpm. Further, the load power is preferably 200 to 400 W, more preferably 250 to 300 W. The treatment time is preferably 10 to 60 minutes, more preferably 20 to 50 minutes. Under such conditions, the carbon-based material can be supported (coated) on the alloy surface at the above preferable coverage (support rate). Further, the carbon-based material can be uniformly supported on the alloy surface.

(Si合金の2次粒子径のD50値)
本発明に係るSi合金の大きさは、特に制限されないが、レーザー回折法により得られた2次粒子径のD50値が、0.01μmを超え20μm未満であることが好ましい。このような大きさのSi合金を含む負極活物質を用いたリチウムイオン二次電池等の電気デバイスは、高いサイクル耐久性を有する。2次粒子径のD50値は、サイクル耐久性の観点から、0.4〜10μmであることが好ましく、より好ましくは、2.5〜7μmである。このような大きさの合金粒子であれば、炭素系材料が合金粒子表面に効率よく担持でき、また、合金の膨張収縮を抑制して、担持した炭素系材料が合金表面から剥離することを有効に抑制・防止できる。
(D50 value of secondary particle diameter of Si alloy)
The size of the Si alloy according to the present invention is not particularly limited, but the D50 value of the secondary particle diameter obtained by the laser diffraction method is preferably more than 0.01 μm and less than 20 μm. An electric device such as a lithium ion secondary battery using a negative electrode active material containing a Si alloy having such a size has high cycle durability. The D50 value of the secondary particle diameter is preferably 0.4 to 10 μm, more preferably 2.5 to 7 μm, from the viewpoint of cycle durability. With such an alloy particle size, the carbon-based material can be efficiently supported on the surface of the alloy particle, and it is effective that the supported carbon-based material is peeled off from the alloy surface by suppressing the expansion and contraction of the alloy. Can be suppressed and prevented.

本発明において、D50値は、レーザー式粒度分布計により算出された、粒度分布データをもとに、D50;メディアン径、すなわち中間値の粒子径を算出し、その値を採用する。また、本発明において、レーザー式粒度分布計はレーザ回折/散乱式粒度分布測定装置(株式会社堀場製作所製、型式:LA−920)を用いる。   In the present invention, the D50 value is calculated based on the particle size distribution data calculated by a laser type particle size distribution meter, and D50; median diameter, that is, an intermediate particle diameter is calculated. In the present invention, the laser particle size distribution analyzer uses a laser diffraction / scattering particle size distribution measuring device (manufactured by Horiba, Ltd., model: LA-920).

(Si合金)
Si合金の形状としては、特に制限はなく、球状、楕円状、円柱状、多角柱状、鱗片状、不定形などでありうる。
(Si alloy)
The shape of the Si alloy is not particularly limited, and may be spherical, elliptical, cylindrical, polygonal, scaly, indefinite, or the like.

合金の製造方法
本形態に係る組成式SiSnを有する合金の製造方法としては、特に制限されるものではなく、従来公知の各種の製造方法を利用して製造することができる。即ち、製造方法による合金状態・特性の違いはほとんどないので、ありとあらゆる製造方法が適用できる。
As a method for producing an alloy having a composition formula Si x Sn y M z A a according to the manufacturing method according to this embodiment of the alloy is not limited in particular, be prepared by utilizing the manufacturing method of the conventionally known various it can. That is, since there is almost no difference in alloy state and characteristics depending on the manufacturing method, various manufacturing methods can be applied.

具体的には、例えば、組成式SiSnを有する合金の粒子形態の製造方法(合金化処置方法)としては固相法、液相法、気相法があるが、例えば、メカニカルアロイ法、アークプラズマ溶融法等を利用することができる。Specifically, for example, as a manufacturing method (alloying treatment method) of a particle form of an alloy having the composition formula Si x Sn y M z A a , there are a solid phase method, a liquid phase method, and a gas phase method. Further, a mechanical alloy method, an arc plasma melting method, or the like can be used.

また、本発明に係るSi合金は、上記合金化処理(例えば、メカニカルアロイ法)後、必要であれば、粉砕処理および/または焼成処理を行ってもよい。   Further, the Si alloy according to the present invention may be subjected to a pulverization process and / or a firing process, if necessary, after the alloying process (for example, mechanical alloy method).

合金化処理後に粉砕処理を行う場合には、粉砕条件は特に制限されないが、通常、400〜800rpmの速度で、5分〜100時間、好ましくは30分〜4時間行うことができる。   When the pulverization treatment is performed after the alloying treatment, the pulverization conditions are not particularly limited. However, the pulverization conditions are usually 400 to 800 rpm, 5 minutes to 100 hours, preferably 30 minutes to 4 hours.

また、合金化処理後または粉砕処理後に焼成処理を行う場合の、焼成条件は、特に制限されない。なお、焼成処理を行うことによって、Si合金のBET比表面積は下がる。得られるSi合金のBET比表面積を考慮すると、焼成温度は、好ましくは80〜300℃である。また、焼成時間は、好ましくは0.5〜3時間である。このような条件下で焼成処理を行うことによって、Si合金のBET比表面積を適切に調節できる。   In addition, the firing conditions when performing the firing treatment after the alloying treatment or the pulverization treatment are not particularly limited. In addition, the BET specific surface area of Si alloy falls by performing a baking process. Considering the BET specific surface area of the obtained Si alloy, the firing temperature is preferably 80 to 300 ° C. The firing time is preferably 0.5 to 3 hours. By performing the firing treatment under such conditions, the BET specific surface area of the Si alloy can be adjusted appropriately.

上記の粒子の形態に製造する方法では、該粒子(炭素担持Si合金)にバインダ、および必要であれば導電助剤や粘度調整溶剤を加えてスラリーを調整し、該スラリーを用いてスラリー電極を形成することができる。そのため、量産化(大量生産)し易く、実際の電池用電極として実用化しやすい点で優れている。   In the method of manufacturing in the above particle form, a slurry is prepared by adding a binder and, if necessary, a conductive additive or a viscosity adjusting solvent to the particles (carbon-supported Si alloy), and a slurry electrode is formed using the slurry. Can be formed. Therefore, it is excellent in that it is easy to mass-produce (mass production) and to be practically used as an actual battery electrode.

以上、負極活物質層に必須に含まれる所定の合金について説明したが、負極活物質層はその他の負極活物質を含んでいてもよい。上記所定の合金以外の負極活物質としては、天然黒鉛、人造黒鉛、カーボンブラック、活性炭、カーボンファイバー、コークス、ソフトカーボン、もしくはハードカーボンなどのカーボン、SiやSnなどの純金属や上記所定の組成比を外れる合金系活物質、あるいはTiO、Ti、TiO、もしくはSiO、SiO、SnOなどの金属酸化物、Li4/3Ti5/3もしくはLiMnNなどのリチウムと遷移金属との複合酸化物、Li−Pb系合金、Li−Al系合金、Liなどが挙げられる。ただし、上記所定の合金を負極活物質として用いることにより奏される作用効果を十分に発揮させるという観点からは、負極活物質の全量100質量%に占める上記所定の合金(炭素担持Si合金)の含有量は、好ましくは50〜100質量%であり、より好ましくは80〜100質量%であり、さらに好ましくは90〜100質量%であり、特に好ましくは95〜100質量%であり、最も好ましくは100質量%である。As described above, the predetermined alloy included in the negative electrode active material layer has been described, but the negative electrode active material layer may contain other negative electrode active materials. Examples of the negative electrode active material other than the predetermined alloy include natural graphite, artificial graphite, carbon black, activated carbon, carbon fiber, coke, soft carbon, carbon such as hard carbon, pure metal such as Si and Sn, and the predetermined composition. Alloy-based active material out of ratio, or metal oxide such as TiO, Ti 2 O 3 , TiO 2 , SiO 2 , SiO, SnO 2 , lithium such as Li 4/3 Ti 5/3 O 4 or Li 7 MnN And transition metal complex oxides, Li—Pb alloys, Li—Al alloys, Li, and the like. However, from the viewpoint of sufficiently exerting the effects exhibited by using the predetermined alloy as the negative electrode active material, the predetermined alloy (carbon-supported Si alloy) occupying 100% by mass of the total amount of the negative electrode active material. The content is preferably 50 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, particularly preferably 95 to 100% by mass, and most preferably 100% by mass.

続いて、負極活物質層13は、バインダを含む。   Subsequently, the negative electrode active material layer 13 includes a binder.

(バインダ)
バインダは、活物質同士または活物質と集電体とを結着させて電極構造を維持する目的で添加される。負極活物質層に用いられるバインダの種類についても特に制限はなく、正極活物質層に用いられるバインダとして上述したものが同様に用いられうる。よって、ここでは詳細な説明は省略する。
(Binder)
The binder is added for the purpose of maintaining the electrode structure by binding the active materials or the active material and the current collector. There is no restriction | limiting in particular also about the kind of binder used for a negative electrode active material layer, What was mentioned above as a binder used for a positive electrode active material layer can be used similarly. Therefore, detailed description is omitted here.

なお、負極活物質層中に含まれるバインダ量は、活物質を結着することができる量であれば特に限定されるものではないが、好ましくは負極活物質層に対して、0.5〜20質量%であり、より好ましくは1〜15質量%である。   The amount of the binder contained in the negative electrode active material layer is not particularly limited as long as it is an amount capable of binding the active material, but is preferably 0.5 to It is 20 mass%, More preferably, it is 1-15 mass%.

(正極および負極活物質層15、13に共通する要件)
以下に、正極および負極活物質層15、13に共通する要件につき、説明する。
(Requirements common to the positive and negative electrode active material layers 15 and 13)
The requirements common to the positive and negative electrode active material layers 15 and 13 will be described below.

正極活物質層15および負極活物質層13は、必要に応じて、導電助剤、電解質塩(リチウム塩)、イオン伝導性ポリマー等を含む。   The positive electrode active material layer 15 and the negative electrode active material layer 13 include a conductive additive, an electrolyte salt (lithium salt), an ion conductive polymer, and the like as necessary.

導電助剤
本発明に係る炭素担持Si合金は、合金表面に予め炭素系材料が担持(被覆)している。このため、本発明に係る負極活物質層は、導電助剤を含む必要はない。ここで、導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、アセチレンブラック等のカーボンブラック、グラファイト、気相成長炭素繊維などの炭素材料が挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
Conductive aid In the carbon-supported Si alloy according to the present invention, a carbon-based material is supported (coated) on the alloy surface in advance. For this reason, the negative electrode active material layer which concerns on this invention does not need to contain a conductive support agent. Here, the conductive auxiliary agent refers to an additive blended to improve the conductivity of the positive electrode active material layer or the negative electrode active material layer. Examples of the conductive assistant include carbon materials such as carbon black such as acetylene black, graphite, and vapor grown carbon fiber. When the active material layer contains a conductive additive, an electronic network inside the active material layer is effectively formed, which can contribute to improvement of the output characteristics of the battery.

負極活物質層または正極活物質層が導電助剤を含む場合の、活物質層へ混入されてなる導電助剤の含有量は、活物質層の総量に対して、1質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上の範囲である。また、活物質層へ混入されてなる導電助剤の含有量は、活物質層の総量に対して、15質量%以下、より好ましくは10質量%以下、さらに好ましくは7質量%以下の範囲である。活物質自体の電子導電性は低く導電助剤の量によって電極抵抗を低減できる活物質層での導電助剤の配合比(含有量)を上記範囲内に規定することで以下の効果が発現される。即ち、電極反応を阻害することなく、電子導電性を十分に担保することができ、電極密度の低下によるエネルギー密度の低下を抑制でき、ひいては電極密度の向上によるエネルギー密度の向上を図ることができる。   When the negative electrode active material layer or the positive electrode active material layer contains a conductive auxiliary agent, the content of the conductive auxiliary agent mixed into the active material layer is preferably 1% by mass or more with respect to the total amount of the active material layer. Is 3% by mass or more, more preferably 5% by mass or more. In addition, the content of the conductive additive mixed in the active material layer is 15% by mass or less, more preferably 10% by mass or less, and further preferably 7% by mass or less with respect to the total amount of the active material layer. is there. By defining the compounding ratio (content) of the conductive aid in the active material layer within the above range, the electronic conductivity of the active material itself is low and the electrode resistance can be reduced by the amount of the conductive aid. The That is, it is possible to sufficiently ensure the electronic conductivity without hindering the electrode reaction, to suppress the decrease in the energy density due to the decrease in the electrode density, and to improve the energy density due to the increase in the electrode density. .

また、上記導電助剤とバインダの機能を併せ持つ導電性結着剤をこれら導電助剤とバインダに代えて用いてもよいし、あるいはこれら導電助剤とバインダの一方ないし双方と併用してもよい。導電性結着剤としては、既に市販のTAB−2(宝泉株式会社製)を用いることができる。   Moreover, the conductive binder having the functions of the conductive assistant and the binder may be used in place of the conductive assistant and the binder, or may be used in combination with one or both of the conductive assistant and the binder. . As the conductive binder, commercially available TAB-2 (manufactured by Hosen Co., Ltd.) can be used.

電解質塩(リチウム塩)
電解質塩(リチウム塩)としては、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。
Electrolyte salt (lithium salt)
Examples of the electrolyte salt (lithium salt) include Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.

イオン伝導性ポリマー
イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
Ion conductive polymer Examples of the ion conductive polymer include polyethylene oxide (PEO) -based and polypropylene oxide (PPO) -based polymers.

正極活物質層および負極活物質層中に含まれる成分の配合比は、特に限定されない。配合比は、非水溶媒二次電池についての公知の知見を適宜参照することにより、調整されうる。   The compounding ratio of the components contained in the positive electrode active material layer and the negative electrode active material layer is not particularly limited. The mixing ratio can be adjusted by appropriately referring to known knowledge about the non-aqueous solvent secondary battery.

各活物質層(集電体片面の活物質層)の厚さについても特に制限はなく、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、各活物質層の厚さは、電池の使用目的(出力重視、エネルギー重視など)、イオン伝導性を考慮し、通常1〜500μm程度、好ましくは2〜100μmである。   There is no particular limitation on the thickness of each active material layer (active material layer on one side of the current collector), and conventionally known knowledge about the battery can be referred to as appropriate. For example, the thickness of each active material layer is usually about 1 to 500 μm, preferably 2 to 100 μm in consideration of the intended use of the battery (emphasis on output, energy, etc.) and ion conductivity.

<集電体>
集電体11、12は導電性材料から構成される。集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。
<Current collector>
The current collectors 11 and 12 are made of a conductive material. The size of the current collector is determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used.

集電体の厚さについても特に制限はない。集電体の厚さは、通常は1〜100μm程度である。   There is no particular limitation on the thickness of the current collector. The thickness of the current collector is usually about 1 to 100 μm.

集電体の形状についても特に制限されない。図1に示す積層型電池10では、集電箔のほか、網目形状(エキスパンドグリッド等)等を用いることができる。   The shape of the current collector is not particularly limited. In the laminated battery 10 shown in FIG. 1, in addition to the current collector foil, a mesh shape (such as an expanded grid) can be used.

なお、負極活物質をスパッタ法等により薄膜合金を負極集電体12上に直接形成する場合には、集電箔を用いるのが望ましい。   In the case where the negative electrode active material is formed directly on the negative electrode current collector 12 by sputtering or the like, it is desirable to use a current collector foil.

集電体を構成する材料に特に制限はない。例えば、金属や、導電性高分子材料または非導電性高分子材料に導電性フィラーが添加された樹脂が採用されうる。   There is no particular limitation on the material constituting the current collector. For example, a metal or a resin in which a conductive filler is added to a conductive polymer material or a non-conductive polymer material can be employed.

具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位、集電体へのスパッタリングによる負極活物質の密着性等の観点からは、アルミニウム、ステンレス、銅、ニッケルが好ましい。   Specifically, examples of the metal include aluminum, nickel, iron, stainless steel, titanium, and copper. In addition to these, a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of a combination of these metals can be preferably used. Moreover, the foil by which aluminum is coat | covered on the metal surface may be sufficient. Of these, aluminum, stainless steel, copper, and nickel are preferable from the viewpoints of electronic conductivity, battery operating potential, and adhesion of the negative electrode active material by sputtering to the current collector.

また、導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、およびポリオキサジアゾールなどが挙げられる。かような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性を有するため、製造工程の容易化または集電体の軽量化の点において有利である。   Examples of the conductive polymer material include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, and polyoxadiazole. Since such a conductive polymer material has sufficient conductivity without adding a conductive filler, it is advantageous in terms of facilitating the manufacturing process or reducing the weight of the current collector.

非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン−ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、またはポリスチレン(PS)などが挙げられる。かような非導電性高分子材料は、優れた耐電位性または耐溶媒性を有しうる。   Non-conductive polymer materials include, for example, polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamideimide (PAI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA) , Polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), or polystyrene (PS). Such a non-conductive polymer material may have excellent potential resistance or solvent resistance.

上記の導電性高分子材料または非導電性高分子材料には、必要に応じて導電性フィラーが添加されうる。特に、集電体の基材となる樹脂が非導電性高分子のみからなる場合は、樹脂に導電性を付与するために必然的に導電性フィラーが必須となる。   A conductive filler may be added to the conductive polymer material or the non-conductive polymer material as necessary. In particular, when the resin used as the base material of the current collector is made of only a non-conductive polymer, a conductive filler is inevitably necessary to impart conductivity to the resin.

導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性、またはリチウムイオン遮断性に優れた材料として、金属および導電性カーボンなどが挙げられる。金属としては、特に制限はないが、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In、Sb、およびKからなる群から選択される少なくとも1種の金属もしくはこれらの金属を含む合金または金属酸化物を含むことが好ましい。また、導電性カーボンとしては、特に制限はない。好ましくは、アセチレンブラック、バルカン、ブラックパール、カーボンナノファイバー、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、およびフラーレンからなる群より選択される少なくとも1種を含むものである。   The conductive filler can be used without particular limitation as long as it is a substance having conductivity. For example, metals, conductive carbon, etc. are mentioned as a material excellent in electroconductivity, electric potential resistance, or lithium ion barrier | blocking property. The metal is not particularly limited, but at least one metal selected from the group consisting of Ni, Ti, Al, Cu, Pt, Fe, Cr, Sn, Zn, In, Sb, and K, or these metals It is preferable to contain an alloy or metal oxide containing. Moreover, there is no restriction | limiting in particular as electroconductive carbon. Preferably, it includes at least one selected from the group consisting of acetylene black, vulcan, black pearl, carbon nanofiber, ketjen black, carbon nanotube, carbon nanohorn, carbon nanoballoon, and fullerene.

導電性フィラーの添加量は、集電体に十分な導電性を付与できる量であれば特に制限はなく、一般的には、5〜35質量%程度である。   The amount of the conductive filler added is not particularly limited as long as it is an amount capable of imparting sufficient conductivity to the current collector, and is generally about 5 to 35% by mass.

<電解質層>
電解質層17を構成する電解質としては、液体電解質またはポリマー電解質が用いられうる。
<Electrolyte layer>
A liquid electrolyte or a polymer electrolyte can be used as the electrolyte constituting the electrolyte layer 17.

液体電解質は、有機溶媒にリチウム塩(電解質塩)が溶解した形態を有する。有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート(MPC)等のカーボネート類が例示される。   The liquid electrolyte has a form in which a lithium salt (electrolyte salt) is dissolved in an organic solvent. Examples of the organic solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), Examples include carbonates such as methylpropyl carbonate (MPC).

また、リチウム塩としては、Li(CFSON、Li(CSON、LiPF、LiBF、LiAsF、LiTaF、LiClO、LiCFSO等の電極の活物質層に添加され得る化合物を採用することができる。As the lithium salt, Li (CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiAsF 6, LiTaF 6, LiClO 4, LiCF 3 SO 3 , etc. A compound that can be added to the active material layer of the electrode can be employed.

一方、ポリマー電解質は、電解液を含むゲル電解質と、電解液を含まない真性ポリマー電解質とに分類される。   On the other hand, the polymer electrolyte is classified into a gel electrolyte containing an electrolytic solution and an intrinsic polymer electrolyte containing no electrolytic solution.

ゲル電解質は、イオン伝導性ポリマーからなるマトリックスポリマーに、上記の液体電解質(電解液)が注入されてなる構成を有する。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導を遮断することが容易になる点で優れている。   The gel electrolyte has a configuration in which the liquid electrolyte (electrolytic solution) is injected into a matrix polymer made of an ion conductive polymer. The use of a gel polymer electrolyte as the electrolyte is superior in that the fluidity of the electrolyte is lost and it is easy to block ion conduction between the layers.

マトリックスポリマーとして用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、およびこれらの共重合体等が挙げられる。かようなポリアルキレンオキシド系ポリマーには、リチウム塩などの電解質塩がよく溶解しうる。   Examples of the ion conductive polymer used as the matrix polymer include polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof. In such polyalkylene oxide polymers, electrolyte salts such as lithium salts can be well dissolved.

ゲル電解質中の上記液体電解質(電解液)の割合としては、特に制限されるべきものではないが、イオン伝導度などの観点から、数質量%〜98質量%程度とするのが望ましい。本実施形態では、電解液の割合が70質量%以上の、電解液が多いゲル電解質について、特に効果がある。   The ratio of the liquid electrolyte (electrolytic solution) in the gel electrolyte is not particularly limited, but is preferably about several mass% to 98 mass% from the viewpoint of ionic conductivity. In the present embodiment, the gel electrolyte having a large amount of electrolytic solution having a ratio of the electrolytic solution of 70% by mass or more is particularly effective.

なお、電解質層が液体電解質やゲル電解質や真性ポリマー電解質から構成される場合には、電解質層にセパレータを用いてもよい。セパレータ(不織布を含む)の具体的な形態としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィンからなる微多孔膜や多孔質の平板、更には不織布が挙げられる。   In the case where the electrolyte layer is composed of a liquid electrolyte, a gel electrolyte, or an intrinsic polymer electrolyte, a separator may be used for the electrolyte layer. Specific examples of the separator (including non-woven fabric) include a microporous film made of polyolefin such as polyethylene and polypropylene, a porous flat plate, and a non-woven fabric.

真性ポリマー電解質は、上記のマトリックスポリマーに支持塩(リチウム塩)が溶解してなる構成を有し、可塑剤である有機溶媒を含まない。したがって、電解質層が真性ポリマー電解質から構成される場合には電池からの液漏れの心配がなく、電池の信頼性が向上しうる。   The intrinsic polymer electrolyte has a structure in which a supporting salt (lithium salt) is dissolved in the matrix polymer, and does not include an organic solvent that is a plasticizer. Therefore, when the electrolyte layer is composed of an intrinsic polymer electrolyte, there is no fear of liquid leakage from the battery, and the reliability of the battery can be improved.

ゲル電解質や真性ポリマー電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。   The matrix polymer of the gel electrolyte or the intrinsic polymer electrolyte can exhibit excellent mechanical strength by forming a crosslinked structure. In order to form a crosslinked structure, thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte using an appropriate polymerization initiator. A polymerization treatment may be performed.

<集電板およびリード>
電池外部に電流を取り出す目的で、集電板を用いてもよい。集電板は集電体やリードに電気的に接続され、電池外装材であるラミネートシートの外部に取り出される。
<Current collector plate and lead>
A current collecting plate may be used for the purpose of taking out the current outside the battery. The current collector plate is electrically connected to the current collector and the lead, and is taken out of the laminate sheet that is a battery exterior material.

集電板を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましく、より好ましくは軽量、耐食性、高導電性の観点からアルミニウム、銅などが好ましい。なお、正極集電板と負極集電板とでは、同一の材質が用いられてもよいし、異なる材質が用いられてもよい。   The material which comprises a current collector plate is not specifically limited, The well-known highly electroconductive material conventionally used as a current collector plate for lithium ion secondary batteries can be used. As a constituent material of the current collector plate, for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable, and aluminum is more preferable from the viewpoint of light weight, corrosion resistance, and high conductivity. Copper or the like is preferable. Note that the same material may be used for the positive electrode current collector plate and the negative electrode current collector plate, or different materials may be used.

正極端子リードおよび負極端子リードに関しても、必要に応じて使用する。正極端子リードおよび負極端子リードの材料は、公知のリチウムイオン二次電池で用いられる端子リードを用いることができる。なお、電池外装材29から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆するのが好ましい。   The positive terminal lead and the negative terminal lead are also used as necessary. As the material of the positive terminal lead and the negative terminal lead, a terminal lead used in a known lithium ion secondary battery can be used. It should be noted that the part taken out from the battery outer packaging material 29 has a heat insulating property so as not to affect the product (for example, automobile parts, particularly electronic devices) by contacting with peripheral devices or wiring and causing leakage. It is preferable to coat with a heat shrinkable tube or the like.

<電池外装材>
電池外装材29としては、公知の金属缶ケースを用いることができるほか、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースが用いられうる。該ラミネートフィルムには、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。
<Battery exterior material>
As the battery exterior material 29, a known metal can case can be used, and a bag-like case using a laminate film containing aluminum that can cover the power generation element can be used. For example, a laminate film having a three-layer structure in which PP, aluminum, and nylon are laminated in this order can be used as the laminate film, but the laminate film is not limited thereto. A laminate film is desirable from the viewpoint that it is excellent in high output and cooling performance, and can be suitably used for a battery for large equipment for EV and HEV.

なお、上記のリチウムイオン二次電池は、従来公知の製造方法により製造することがで
きる。
In addition, said lithium ion secondary battery can be manufactured with a conventionally well-known manufacturing method.

<リチウムイオン二次電池の外観構成>
図2は、積層型の扁平なリチウムイオン二次電池の外観を表した斜視図である。
<Appearance structure of lithium ion secondary battery>
FIG. 2 is a perspective view showing the appearance of a stacked flat lithium ion secondary battery.

図2に示すように、積層型の扁平なリチウムイオン二次電池50では、長方形状の扁平な形状を有しており、その両側部からは電力を取り出すための正極集電板59、負極集電板58が引き出されている。発電要素57は、リチウムイオン二次電池50の電池外装材52によって包まれ、その周囲は熱融着されており、発電要素57は、正極集電板59および負極集電板58を外部に引き出した状態で密封されている。ここで、発電要素57は、図1に示すリチウムイオン二次電池(積層型電池)10の発電要素21に相当するものである。発電要素57は、正極(正極活物質層)13、電解質層17および負極(負極活物質層)15で構成される単電池層(単セル)19が複数積層されたものである。   As shown in FIG. 2, the stacked flat lithium ion secondary battery 50 has a rectangular flat shape, and a positive current collector 59 for taking out power from both sides thereof, a negative current collector, and the like. The electric plate 58 is pulled out. The power generation element 57 is wrapped by the battery outer packaging material 52 of the lithium ion secondary battery 50 and the periphery thereof is heat-sealed. The power generation element 57 pulls out the positive electrode current collector plate 59 and the negative electrode current collector plate 58 to the outside. Sealed. Here, the power generation element 57 corresponds to the power generation element 21 of the lithium ion secondary battery (stacked battery) 10 shown in FIG. The power generation element 57 is formed by laminating a plurality of single battery layers (single cells) 19 including a positive electrode (positive electrode active material layer) 13, an electrolyte layer 17, and a negative electrode (negative electrode active material layer) 15.

なお、上記リチウムイオン二次電池は、積層型の扁平な形状のもの(ラミネートセル)に制限されるものではない。巻回型のリチウムイオン電池では、円筒型形状のもの(コインセル)や角柱型形状(角型セル)のもの、こうした円筒型形状のものを変形させて長方形状の扁平な形状にしたようなもの、更にシリンダー状セルであってもよいなど、特に制限されるものではない。上記円筒型や角柱型の形状のものでは、その外装材に、ラミネートフィルムを用いてもよいし、従来の円筒缶(金属缶)を用いてもよいなど、特に制限されるものではない。好ましくは、発電要素がアルミニウムラミネートフィルムで外装される。当該形態により、軽量化が達成されうる。   The lithium ion secondary battery is not limited to a laminated flat shape (laminate cell). In a wound type lithium ion battery, a cylindrical shape (coin cell), a prismatic shape (square cell), or such a cylindrical shape deformed into a rectangular flat shape Further, it may be a cylindrical cell, and is not particularly limited. The cylindrical or prismatic shape is not particularly limited, for example, a laminate film or a conventional cylindrical can (metal can) may be used as the exterior material. Preferably, the power generation element is covered with an aluminum laminate film. With this configuration, weight reduction can be achieved.

また、図2に示す正極集電板59、負極集電板58の取り出しに関しても、特に制限されるものではない。正極集電板59と負極集電板58とを同じ辺から引き出すようにしてもよいし、正極集電板59と負極集電板58をそれぞれ複数に分けて、各辺から取り出すようにしてもよいなど、図2に示すものに制限されるものではない。また、巻回型のリチウムイオン電池では、集電板に変えて、例えば、円筒缶(金属缶)を利用して端子を形成すればよい。   Further, the removal of the positive electrode current collector plate 59 and the negative electrode current collector plate 58 shown in FIG. 2 is not particularly limited. The positive electrode current collector plate 59 and the negative electrode current collector plate 58 may be drawn out from the same side, or the positive electrode current collector plate 59 and the negative electrode current collector plate 58 may be divided into a plurality of parts and taken out from each side. It is not limited to the one shown in FIG. Further, in a wound type lithium ion battery, instead of the current collector plate, for example, a terminal may be formed using a cylindrical can (metal can).

上記したように、本実施形態のリチウムイオン二次電池用の負極活物質を用いてなる負極ならびにリチウムイオン二次電池は、電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの大容量電源として、好適に利用することができる。即ち、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に好適に利用することができる。   As described above, the negative electrode and the lithium ion secondary battery using the negative electrode active material for the lithium ion secondary battery of the present embodiment are large vehicles such as electric vehicles, hybrid electric vehicles, fuel cell vehicles, and hybrid fuel cell vehicles. It can be suitably used as a capacity power source. That is, it can be suitably used for a vehicle driving power source and an auxiliary power source that require high volume energy density and high volume output density.

なお、上記実施形態では、電気デバイスとして、リチウムイオン電池を例示したが、これに制限されるわけではなく、他のタイプの二次電池、さらには一次電池にも適用できる。また、電池だけではなくキャパシタにも適用できる。   In the above embodiment, the lithium ion battery is exemplified as the electric device. However, the present invention is not limited to this, and can be applied to other types of secondary batteries and further to primary batteries. Moreover, it can be applied not only to batteries but also to capacitors.

本発明を、以下の実施例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。   The invention is explained in more detail using the following examples. However, the technical scope of the present invention is not limited only to the following examples.

はじめに、参考例として、本発明に係る電気デバイス用負極活物質を構成する上記化学式(1)で表されるSi合金についての性能評価を行った。   First, as a reference example, performance evaluation was performed on the Si alloy represented by the chemical formula (1) constituting the negative electrode active material for an electric device according to the present invention.

(参考例A):SiSnTiについての性能評価
[1]負極の作製
スパッタ装置として、独立制御方式の3元DCマグネトロンスパッタ装置(大和機器工業株式会社製、コンビナトリアルスパッタコーティング装置、ガン−サンプル間距離:約100mm)を使用し、厚さ20μmのニッケル箔から成る基板(集電体)上に、下記の条件のもとで、各組成を有する負極活物質合金の薄膜をそれぞれ成膜することによって、都合40種の負極サンプルを得た(参考例1−1〜1−26および参考例1’−1〜1’−14)。
(Reference Example A): Si x Sn y Ti z A as the performance evaluation [1] Preparation sputtering apparatus of a negative electrode for a, 3-way DC magnetron sputtering device independent control system (Yamato Equipment Industries Co., combinatorial sputter coating apparatus A thin film of a negative electrode active material alloy having each composition under the following conditions on a substrate (current collector) made of nickel foil having a thickness of 20 μm. Forty types of negative electrode samples were obtained by forming each film (Reference Examples 1-1 to 1-26 and Reference Examples 1′-1 to 1′-14).

(1)ターゲット(株式会社高純度化学研究所製、純度:4N)
Si:50.8mm径、3mm厚さ(厚さ2mmの無酸素銅製バッキングプレート付)
Sn:50.8mm径、5mm厚さ
Ti:50.8mm径、5mm厚さ。
(1) Target (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity: 4N)
Si: 50.8 mm diameter, 3 mm thickness (with 2 mm thick oxygen-free copper backing plate)
Sn: 50.8 mm diameter, 5 mm thickness Ti: 50.8 mm diameter, 5 mm thickness.

(2)成膜条件
ベース圧力:〜7×10−6Pa
スパッタガス種:Ar(99.9999%以上)
スパッタガス導入量:10sccm
スパッタ圧力:30mTorr
DC電源:Si(185W)、Sn(0〜40W)、Ti(0〜150W)
プレスパッタ時間:1min.
スパッタ時間:10min.
基板温度:室温(25℃)。
(2) Film formation conditions Base pressure: ˜7 × 10 −6 Pa
Sputtering gas type: Ar (99.9999% or more)
Sputtering gas introduction amount: 10 sccm
Sputtering pressure: 30 mTorr
DC power supply: Si (185 W), Sn (0 to 40 W), Ti (0 to 150 W)
Pre-sputtering time: 1 min.
Sputtering time: 10 min.
Substrate temperature: room temperature (25 ° C.).

すなわち、上記のようなSiターゲット、SnターゲットおよびTiターゲットを使用し、スパッタ時間を10分に固定し、DC電源のパワーを上記の範囲でそれぞれ変化させることによって、Ni基板上にアモルファス状態の合金薄膜を成膜し、種々の組成の合金薄膜を備えた負極サンプルを得た。   That is, using the Si target, Sn target, and Ti target as described above, the sputtering time is fixed to 10 minutes, and the power of the DC power source is changed within the above range, whereby an amorphous alloy is formed on the Ni substrate. A thin film was formed, and negative electrode samples provided with alloy thin films having various compositions were obtained.

なお、前記(2)についてサンプル作製の数例を示せば、参考例1−17では、DC電源1(Siターゲット):185W、DC電源2(Snターゲット):30W、DC電源3(Tiターゲット):150Wとした。また、参考例1’−2では、DC電源1(Siターゲット):185W、DC電源2(Snターゲット):22W、DC電源3(Tiターゲット):0Wとした。さらに、参考例1’−7では、DC電源1(Siターゲット):185W、DC電源2(Snターゲット):0W、DC電源3(Tiターゲット):30Wとした。   In addition, if the example of sample preparation is shown about said (2), in the reference example 1-17, DC power supply 1 (Si target): 185W, DC power supply 2 (Sn target): 30W, DC power supply 3 (Ti target) : 150 W. In Reference Example 1'-2, the DC power source 1 (Si target): 185 W, the DC power source 2 (Sn target): 22 W, and the DC power source 3 (Ti target): 0 W. Further, in Reference Example 1'-7, the DC power source 1 (Si target): 185 W, the DC power source 2 (Sn target): 0 W, and the DC power source 3 (Ti target): 30 W.

これら合金薄膜の成分組成を表1および図3に示す。   The component compositions of these alloy thin films are shown in Table 1 and FIG.

(3)分析方法
組成分析:SEM・EDX分析(JEOL社)、EPMA分析(JEOL社)
膜厚測定(スパッタレート算出のため):膜厚計(東京インスツルメンツ)
膜状態分析:ラマン分光測定(ブルカー社)。
(3) Analysis method Composition analysis: SEM / EDX analysis (JEOL), EPMA analysis (JEOL)
Film thickness measurement (for sputter rate calculation): Film thickness meter (Tokyo Instruments)
Film state analysis: Raman spectroscopy (Bruker).

[2]電池の作製
上記により得られた各負極サンプルとリチウム箔(本城金属株式会社製、直径15mm、厚さ200μm)から成る対極とをセパレータ(セルガード社製セルガード2400)を介して対向させたのち、電解液を注入することによってCR2032型コインセルをそれぞれ作製した。
[2] Production of Battery Each negative electrode sample obtained above and a counter electrode made of lithium foil (Honjo Metal Co., Ltd., diameter: 15 mm, thickness: 200 μm) are opposed to each other through a separator (Celgard Cellguard 2400). Then, CR2032-type coin cells were produced by injecting an electrolyte solution.

なお、上記電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を1:1の容積比で混合した混合非水溶媒中に、LiPF(六フッ化リン酸リチウム)を1Mの濃度となるように溶解させたものを用いた。As the above electrolyte solution, ethylene carbonate (EC) and diethyl carbonate (DEC) 1: in a mixed nonaqueous solvent were mixed at a volume ratio, the concentration of LiPF 6 a (lithium hexafluorophosphate) 1M What was dissolved so that it might become was used.

[3]電池の充放電試験
上記により得られたそれぞれの電池に対して下記の充放電試験を実施した。
[3] Battery Charging / Discharging Test The following charging / discharging test was performed on each battery obtained as described above.

すなわち、充放電試験機(北斗電工株式会社製 HJ0501SM8A)を使用し、300K(27℃)の温度に設定された恒温槽(エスペック株式会社製 PFU−3K)中にて、充電過程(評価対象である負極へのLi挿入過程)では、定電流・定電圧モードとして、0.1mAにて2Vから10mVまで充電した。その後、放電過程(上記負極からのLi脱離過程)では、定電流モードとし、0.1mA、10mVから2Vまで放電した。以上の充放電サイクルを1サイクルとして、これを100回繰り返した。   That is, using a charge / discharge tester (HJ0501SM8A manufactured by Hokuto Denko Co., Ltd.), in a thermostatic chamber (PFU-3K manufactured by Espec Co., Ltd.) set at a temperature of 300K (27 ° C), In a process of inserting Li into a certain negative electrode), the battery was charged from 2 V to 10 mV at 0.1 mA as a constant current / constant voltage mode. Thereafter, in the discharge process (Li desorption process from the negative electrode), the constant current mode was set, and discharge was performed from 0.1 mA, 10 mV to 2 V. The above charging / discharging cycle was made into 1 cycle, and this was repeated 100 times.

そして、50サイクルおよび100サイクル目の放電容量を求め、1サイクル目の放電容量に対する維持率を算出した。この結果を表1に併せて示す。この際、放電容量は、合金重量当りで算出した値を示している。なお、「放電容量(mAh/g)」は、pure Siまたは合金重量当りのものであり、Si−Sn−M合金(Si−M合金、pure SiまたはSi−Sn合金)へLiが反応する時の容量を示す。なお、本明細書中で「初期容量」と表記しているものが、初期サイクル(1サイクル目)の「放電容量(mAh/g)」に相当するものである。   And the discharge capacity of 50th cycle and 100th cycle was calculated | required, and the maintenance factor with respect to the discharge capacity of 1st cycle was computed. The results are also shown in Table 1. At this time, the discharge capacity indicates a value calculated per alloy weight. The “discharge capacity (mAh / g)” is per pure Si or alloy weight, and when Li reacts with Si—Sn—M alloy (Si—M alloy, pure Si or Si—Sn alloy). Indicates capacity. In addition, what is described as “initial capacity” in this specification corresponds to “discharge capacity (mAh / g)” of the initial cycle (first cycle).

また、50サイクル目または100サイクル目の「放電容量維持率(%)」は、「初期容量からどれだけ容量を維持しているか」の指標を表す。放電容量維持率(%)の計算式は下記の通りである。   The “discharge capacity maintenance ratio (%)” at the 50th or 100th cycle represents an index of “how much capacity is maintained from the initial capacity”. The calculation formula of the discharge capacity retention rate (%) is as follows.

この結果を表1に併せて示す。また、図7では1サイクル目の放電容量と合金組成の関係を示す。さらに、図8および図9では50サイクルおよび100サイクル目の放電容量維持率と合金組成の関係をそれぞれ示す。なお、放電容量は、合金重量当りで算出した値を示している。   The results are also shown in Table 1. FIG. 7 shows the relationship between the discharge capacity at the first cycle and the alloy composition. Further, FIG. 8 and FIG. 9 show the relationship between the discharge capacity retention rate and the alloy composition at the 50th and 100th cycles, respectively. The discharge capacity indicates a value calculated per alloy weight.

以上の結果、各成分が特定範囲内、すなわち図3で示される範囲A内または範囲B内にあるSi−Sn−Ti系合金を負極活物質として用いた参考例A(表1参照)の電池においては、図7で示すように、少なくとも1000mAh/gを超える初期容量を備えている。そして、図8および図9に示すように、50サイクル後では91%以上、100サイクル後でも43%以上の放電容量維持率を示すことが確認された。   As a result, the battery of Reference Example A (see Table 1) using the Si—Sn—Ti-based alloy in which each component is in a specific range, that is, in the range A or the range B shown in FIG. As shown in FIG. 7, it has an initial capacity of at least 1000 mAh / g. Then, as shown in FIGS. 8 and 9, it was confirmed that the discharge capacity retention rate was 91% or more after 50 cycles and 43% or more after 100 cycles.

(参考例B):SiSnZnについての性能評価
[1]負極の作製
参考例Aの(1)におけるターゲットの「Ti:50.8mm径、5mm厚さ」を「Zn:50.8mm径、3mm厚さ」に変更した。さらに(2)におけるDC電源の「Ti(0〜150W)」を「Zn(0〜150W)」に変更した。上記変更を除いては、参考例Aと同様の方法で、都合46種の負極サンプルを作製した(参考例2−1〜2−32および参考例2’−1〜2’−14)。
(Reference Example B): Performance Evaluation for Si x Sn y Zn z A a [1] Production of Negative Electrode “Ti: 50.8 mm diameter, 5 mm thickness” of the target in (1) of Reference Example A was changed to “Zn: “50.8 mm diameter, 3 mm thickness”. Furthermore, “Ti (0 to 150 W)” of the DC power source in (2) was changed to “Zn (0 to 150 W)”. Except for the above changes, 46 negative electrode samples were produced in the same manner as in Reference Example A (Reference Examples 2-1 to 2-32 and Reference Examples 2′-1 to 2′-14).

すなわち、上記のようなSiターゲット、SnターゲットおよびZnターゲットを使用しスパッタ時間を10分に固定し、DC電源のパワーを上記の範囲でそれぞれ変化させた。このようにして、Ni基板上にアモルファス状態の合金薄膜を成膜し、種々の組成の合金薄膜を備えた負極サンプルを得た。   That is, the Si target, Sn target, and Zn target as described above were used, the sputtering time was fixed at 10 minutes, and the power of the DC power source was changed within the above range. In this manner, an amorphous alloy thin film was formed on the Ni substrate, and negative electrode samples provided with alloy thin films having various compositions were obtained.

なお、前記(2)におけるDC電源について、サンプル作製条件の数例を示せば、参考例2−4では、DC電源1(Siターゲット)を185W、DC電源2(Snターゲット)を22W、DC電源3(Znターゲット)を100Wとした。また、参考例2’−2では、DC電源1(Siターゲット)を185W、DC電源2(Snターゲット)を30W、DC電源3(Znターゲット)を0Wとした。さらに、参考例2’−5では、DC電源1(Siターゲット)を185W、DC電源2(Snターゲット)を0W、DC電源3(Znターゲット)を25Wとした。   As for the DC power source in (2), if several examples of sample preparation conditions are shown, in Reference Example 2-4, the DC power source 1 (Si target) is 185 W, the DC power source 2 (Sn target) is 22 W, and the DC power source. 3 (Zn target) was 100 W. In Reference Example 2'-2, the DC power source 1 (Si target) was 185 W, the DC power source 2 (Sn target) was 30 W, and the DC power source 3 (Zn target) was 0 W. Furthermore, in Reference Example 2'-5, the DC power source 1 (Si target) was 185 W, the DC power source 2 (Sn target) was 0 W, and the DC power source 3 (Zn target) was 25 W.

これら合金薄膜の成分組成を表2に示す。なお、得られた合金薄膜の分析は、参考例Aと同様の分析法、分析装置によった。   Table 2 shows the component compositions of these alloy thin films. The obtained alloy thin film was analyzed by the same analysis method and analysis apparatus as in Reference Example A.

[2]電池の作製
参考例Aと同様の方法でCR2032型コインセルを作製した。
[2] Production of Battery A CR2032-type coin cell was produced in the same manner as in Reference Example A.

[3]電池の充放電試験
参考例Aと同様の方法で電池の充放電試験を行った。この結果を表2に併せて示す。
[3] Battery Charge / Discharge Test A battery charge / discharge test was performed in the same manner as in Reference Example A. The results are also shown in Table 2.

以上の結果、各成分が特定範囲内、すなわち図10で示される範囲X内にあるSi−Sn−Zn系合金を負極活物質として用いた参考例B(表2参照)の電池においては、図14で示すように少なくとも1000mAh/gを超える初期容量を備えている。そして、図15および図16で示すように、図10の範囲X内にあるSi−Sn−Zn系合金の負極活物質は、50サイクル後では92%以上、100サイクル後でも50%を超える放電容量維持率を示すことが確認された(参考例2−1〜2−32参照)。   As a result, in the battery of Reference Example B (see Table 2) using the Si—Sn—Zn-based alloy in which each component is in a specific range, that is, in the range X shown in FIG. 14 has an initial capacity of at least 1000 mAh / g. As shown in FIGS. 15 and 16, the negative electrode active material of the Si—Sn—Zn-based alloy in the range X of FIG. 10 has a discharge exceeding 92% after 50 cycles and exceeding 50% even after 100 cycles. It was confirmed that the capacity retention rate was exhibited (see Reference Examples 2-1 to 2-32).

(参考例C):SiSnについての性能評価
[1]負極の作製
参考例Aの(1)におけるターゲットの「Ti:50.8mm径、5mm厚さ」を「C:50.8mm径、3mm厚さ(厚さ2mmの無酸素銅製バッキングプレート付)」に変更した。また、(2)におけるDC電源の「Ti(0〜150W)」を「C(0〜150W)」に変更した。上記変更を除いては、参考例Aと同様の方法で、都合34種の負極サンプルを作製した(参考例3−1〜3−22および参考例3’−1〜3’−12)。
(Reference Example C): Performance Evaluation for Si x Sn y C z A a [1] Production of Negative Electrode “Ti: 50.8 mm diameter, 5 mm thickness” of the target in (1) of Reference Example A was changed to “C: 50.8 mm diameter, 3 mm thickness (with 2 mm thick oxygen-free copper backing plate) ”. Also, “Ti (0 to 150 W)” of the DC power source in (2) was changed to “C (0 to 150 W)”. Except for the above changes, 34 negative electrode samples were produced in the same manner as in Reference Example A (Reference Examples 3-1 to 3-22 and Reference Examples 3′-1 to 3′-12).

なお、前記(2)について、サンプル作製の数例を示せば、参考例3−16では、DC電源1(Siターゲット)を185W、DC電源2(Snターゲット)を35W、DC電源3(Cターゲット)を110Wとした。また、参考例3’−2では、DC電源1(Siターゲット)を185W、DC電源2(Snターゲット)を22W、DC電源3(Cターゲット)を0Wとした。さらに、参考例3’−7では、DC電源1(Siターゲット)を185W、DC電源2(Snターゲット)を0W、DC電源3(Cターゲット)を30Wとした。   Regarding (2), if several examples of sample preparation are shown, in Reference Example 3-16, the DC power source 1 (Si target) is 185 W, the DC power source 2 (Sn target) is 35 W, and the DC power source 3 (C target) ) Was 110 W. In Reference Example 3'-2, the DC power source 1 (Si target) was 185 W, the DC power source 2 (Sn target) was 22 W, and the DC power source 3 (C target) was 0 W. Furthermore, in Reference Example 3'-7, the DC power source 1 (Si target) was 185 W, the DC power source 2 (Sn target) was 0 W, and the DC power source 3 (C target) was 30 W.

これら合金薄膜の成分組成を表3および図17に示す。   The component compositions of these alloy thin films are shown in Table 3 and FIG.

[2]電池の作製
参考例Aと同様の方法でCR2032型コインセルを作製した。
[2] Production of Battery A CR2032-type coin cell was produced in the same manner as in Reference Example A.

[3]電池の充放電試験
参考例Aと同様の方法で電池の充放電試験を行った。この結果を表3に併せて示す。
[3] Battery Charge / Discharge Test A battery charge / discharge test was performed in the same manner as in Reference Example A. The results are also shown in Table 3.

以上の結果、29質量%以上のSiを含有する、すなわち図18で示される範囲B内にあるSi−Sn−C系合金を負極活物質として用いた参考例C(表3参照)の電池においては、図21で示すように少なくとも1000mAh/gを超える初期容量を備えている。そして、図22および図23で示すように、図18で示される範囲B内にあるSi−Sn−C系合金の負極活物質は、50サイクル後では92%以上、100サイクル後でも45%以上の放電容量維持率を示すことが確認された(参考例3−1〜3−22参照)。   As a result, in the battery of Reference Example C (see Table 3) using Si—Sn—C alloy containing 29 mass% or more of Si, that is, within the range B shown in FIG. 18, as the negative electrode active material. Has an initial capacity of at least 1000 mAh / g as shown in FIG. As shown in FIGS. 22 and 23, the negative electrode active material of the Si—Sn—C alloy within the range B shown in FIG. 18 is 92% or more after 50 cycles and 45% or more after 100 cycles. (See Reference Examples 3-1 to 3-22).

次に、実施例として、上記参考例Aと同様にして製造したSi合金(Si60Sn20Ti20)を負極活物質として用いた負極活物質層を有する電気デバイス用負極についての性能評価を行った。Next, as an example, performance evaluation was performed on a negative electrode for an electric device having a negative electrode active material layer using a Si alloy (Si 60 Sn 20 Ti 20 ) produced in the same manner as in Reference Example A as a negative electrode active material. It was.

なお、前記Si60Sn20Ti20と、その他の本発明に用いられる合金(SiSnTi、SiSnZn、およびSiSnのうち、Si60Sn20Ti20以外のもの)についても、Si60Sn20Ti20を用いた下記の実施例と同一または類似する結果が得られる。この理由は、Si合金のサイクル耐久性を向上させるために重要なのは、合金への炭素系材料の被覆であるためである。また、合金への炭素系材料の被覆に加えて、活物質中のSiのアモルファス化の進行度合いがSi合金のサイクル耐久性の向上に重要であると考えられ、Ti、ZnおよびC(第2添加元素)は、Si材料を合金化してアモルファス状態を進行しやすくするためのものである。よって、Ti以外のZnおよびCを用いたSiSnZn、およびSiSnであっても、Siのアモルファス状態が進行するほどサイクル耐久性が向上すると考えられる。すなわち、このような同様の特性を有する合金を用いた場合には、合金の種類を変更したとしても同様の結果が得られうる。The Si 60 Sn 20 Ti 20 and other alloys used in the present invention (Si x Sn y Ti z A a , Si x Sn y Zn z A a , and Si x Sn y C z A a , For Si 60 Sn 20 Ti 20 other than Si 60 Sn 20 Ti 20 , the same or similar results as in the following examples using Si 60 Sn 20 Ti 20 are obtained. This is because, in order to improve the cycle durability of the Si alloy, it is important to coat the alloy with a carbon-based material. Further, in addition to the coating of the carbon-based material on the alloy, it is considered that the progress of Si amorphization in the active material is important for improving the cycle durability of the Si alloy, and Ti, Zn and C (second The additive element) is for alloying the Si material to facilitate the progress of the amorphous state. Therefore, it is considered that the cycle durability improves as the amorphous state of Si progresses even with Si x Sn y Zn z A a using Zn and C other than Ti, and Si x Sn y C z A a. . That is, when an alloy having such similar characteristics is used, the same result can be obtained even if the type of the alloy is changed.

(実施例1)
[Si合金の製造]
Si合金は、メカニカルアロイ法(または、アークプラズマ溶融法)により製造した。具体的には、ドイツ フリッチュ社製遊星ボールミル装置P−6を用いて、ジルコニア製粉砕ポットにジルコニア製粉砕ボールと各合金の各原料粉末を投入し、600rpm、24時間かけて合金化させ(合金化処理)、その後400rpmで1時間、粉砕処理を実施した。得られたSi合金の平均粒子径(D50)は6μmであった。
Example 1
[Manufacture of Si alloy]
The Si alloy was manufactured by a mechanical alloy method (or arc plasma melting method). Specifically, using a planetary ball mill device P-6 manufactured by Fricht, Germany, zirconia pulverized balls and raw material powders of each alloy were charged into a zirconia pulverized pot and alloyed at 600 rpm for 24 hours (alloys). ), And then pulverization was performed at 400 rpm for 1 hour. The average particle diameter (D50) of the obtained Si alloy was 6 μm.

[負極の作製]
上記で製造したSi合金75質量部(Si60Sn20Ti20、平均粒子径(D50):6μm)と、炭素系材料としてアセチレンブラック(平均粒子径:30nm)25質量部とを、メカノケミカル複合化装置(ホソカワミクロン製)を用いて、処理回転速度 6000rpm、負荷動力 300Wの条件で、30分間、炭素担持処理を行った。また、炭素被覆状態については、走査型電子顕微鏡(SEM)による観察した。ここで得られた炭素被覆されたSi合金について、下記オージェ電子分光法を用いて、炭素被覆率を測定し、結果を下記表4に示す。
[Production of negative electrode]
75 parts by mass of the Si alloy produced above (Si 60 Sn 20 Ti 20 , average particle diameter (D50): 6 μm) and 25 parts by mass of acetylene black (average particle diameter: 30 nm) as a carbon-based material are mechanochemical composite Carbon support treatment was performed for 30 minutes under the conditions of a treatment rotational speed of 6000 rpm and a load power of 300 W using a chemical conversion device (manufactured by Hosokawa Micron). The carbon coating state was observed with a scanning electron microscope (SEM). For the carbon-coated Si alloy obtained here, the carbon coverage was measured using the following Auger electron spectroscopy, and the results are shown in Table 4 below.

負極活物質である上記で製造した炭素被覆されたSi合金 85質量部と、バインダであるポリアミドイミド 15質量部と、を混合し、N−メチルピロリドンに分散させて負極スラリーを得た。次いで、得られた負極スラリーを、銅箔よりなる負極集電体の両面にそれぞれ負極活物質層の厚さが30μmとなるように均一に塗布し、真空中で24時間乾燥させて、負極を得た。   85 parts by mass of the carbon-coated Si alloy produced above as a negative electrode active material and 15 parts by mass of polyamideimide as a binder were mixed and dispersed in N-methylpyrrolidone to obtain a negative electrode slurry. Next, the obtained negative electrode slurry was uniformly applied to both surfaces of a negative electrode current collector made of copper foil so that the thickness of the negative electrode active material layer was 30 μm, and dried in a vacuum for 24 hours. Obtained.

[正極の作製]
正極活物質であるLi1.85Ni0.18Co0.10Mn0.87を、特開2012−185913号公報の実施例1(段落0046)に記載の手法により作製した。そして、この正極活物質90質量部と、導電助剤であるアセチレンブラック5質量部と、バインダであるポリフッ化ビニリデン5質量部と、を混合し、N−メチルピロリドンに分散させて正極スラリーを得た。次いで、得られた正極スラリーを、アルミニウム箔よりなる正極集電体の両面にそれぞれ正極活物質層の厚さが30μmとなるように均一に塗布し、乾燥させて、正極を得た。
[Production of positive electrode]
Li 1.85 Ni 0.18 Co 0.10 Mn 0.87 O 3 which is a positive electrode active material was produced by the method described in Example 1 (paragraph 0046) of JP2012-185913. Then, 90 parts by mass of the positive electrode active material, 5 parts by mass of acetylene black as a conductive auxiliary agent, and 5 parts by mass of polyvinylidene fluoride as a binder are mixed and dispersed in N-methylpyrrolidone to obtain a positive electrode slurry. It was. Next, the obtained positive electrode slurry was uniformly applied to both surfaces of a positive electrode current collector made of aluminum foil so that the thickness of the positive electrode active material layer was 30 μm, and dried to obtain a positive electrode.

[電池の作製]
上記で作製した正極と、負極とを対向させ、この間にセパレータ(ポリオレフィン、膜厚20μm)を配置した。次いで、負極、セパレータ、および正極の積層体をコインセル(CR2032、材質:ステンレス鋼(SUS316))の底部側に配置した。さらに、正極と負極との間の絶縁性を保つためガスケットを装着し、下記電解液をシリンジにより注入し、スプリングおよびスペーサを積層し、コインセルの上部側を重ねあわせ、かしこめることにより密閉して、リチウムイオン二次電池を得た。
[Production of battery]
The positive electrode produced above and the negative electrode were made to face each other, and a separator (polyolefin, film thickness: 20 μm) was disposed therebetween. Next, the laminate of the negative electrode, the separator, and the positive electrode was disposed on the bottom side of a coin cell (CR2032, material: stainless steel (SUS316)). Furthermore, in order to maintain insulation between the positive electrode and the negative electrode, a gasket is attached, the following electrolyte is injected with a syringe, a spring and a spacer are stacked, the upper side of the coin cell is overlapped, and sealed by caulking. Thus, a lithium ion secondary battery was obtained.

なお、上記電解液としては、エチレンカーボネート(EC)およびジエチルカーボネート(DEC)を、EC:DEC=1:2(体積比)の割合で混合した有機溶媒に、支持塩である六フッ化リン酸リチウム(LiPF)を、濃度が1mol/Lとなるように溶解させたものを用いた。In addition, as said electrolyte solution, hexafluorophosphoric acid which is a supporting salt in the organic solvent which mixed ethylene carbonate (EC) and diethyl carbonate (DEC) in the ratio of EC: DEC = 1: 2 (volume ratio). lithium (LiPF 6), was used as the concentration was such that 1 mol / L.

(実施例2)
負極の作製において、Si合金及び炭素系材料としてアセチレンブラックの量を、それぞれ、80重量部および20重量部に変更したこと以外は、実施例1と同様の方法で負極および電池を作製した。なお、得られた炭素被覆されたSi合金について、下記オージェ電子分光法を用いて、炭素被覆率を測定し、結果を下記表4に示す。
(Example 2)
In the production of the negative electrode, a negative electrode and a battery were produced in the same manner as in Example 1 except that the amounts of acetylene black as the Si alloy and the carbon-based material were changed to 80 parts by weight and 20 parts by weight, respectively. For the obtained carbon-coated Si alloy, the carbon coverage was measured using the following Auger electron spectroscopy, and the results are shown in Table 4 below.

(実施例3)
負極の作製において、Si合金及びアセチレンブラック(炭素系材料)の量を、それぞれ、85重量部および15重量部に変更したこと以外は、実施例1と同様の方法で負極および電池を作製した。なお、得られた炭素被覆されたSi合金について、下記オージェ電子分光法を用いて、炭素被覆率を測定し、結果を下記表4に示す。
(Example 3)
In the production of the negative electrode, a negative electrode and a battery were produced in the same manner as in Example 1 except that the amounts of the Si alloy and acetylene black (carbon-based material) were changed to 85 parts by weight and 15 parts by weight, respectively. For the obtained carbon-coated Si alloy, the carbon coverage was measured using the following Auger electron spectroscopy, and the results are shown in Table 4 below.

(実施例4)
負極の作製において、Si合金及びアセチレンブラック(炭素系材料)の量を、それぞれ、90重量部および10重量部に変更したこと以外は、実施例1と同様の方法で負極および電池を作製した。なお、得られた炭素被覆されたSi合金について、下記オージェ電子分光法を用いて、炭素被覆率を測定し、結果を下記表4に示す。
Example 4
In the production of the negative electrode, a negative electrode and a battery were produced in the same manner as in Example 1 except that the amounts of the Si alloy and acetylene black (carbon-based material) were changed to 90 parts by weight and 10 parts by weight, respectively. For the obtained carbon-coated Si alloy, the carbon coverage was measured using the following Auger electron spectroscopy, and the results are shown in Table 4 below.

(実施例5)
負極の作製において、Si合金及びアセチレンブラック(炭素系材料)の量を、それぞれ、95重量部および5重量部に変更したこと以外は、実施例1と同様の方法で負極および電池を作製した。なお、得られた炭素被覆されたSi合金について、下記オージェ電子分光法を用いて、炭素被覆率を測定し、結果を下記表4に示す。
(Example 5)
In the production of the negative electrode, a negative electrode and a battery were produced in the same manner as in Example 1, except that the amounts of the Si alloy and acetylene black (carbon-based material) were changed to 95 parts by weight and 5 parts by weight, respectively. For the obtained carbon-coated Si alloy, the carbon coverage was measured using the following Auger electron spectroscopy, and the results are shown in Table 4 below.

(実施例6)
負極の作製において、Si合金及びアセチレンブラック(炭素系材料)の量を、それぞれ、99重量部および1重量部に変更したこと以外は、実施例1と同様の方法で負極および電池を作製した。なお、得られた炭素被覆されたSi合金について、下記オージェ電子分光法を用いて、炭素被覆率を測定し、結果を下記表4に示す。
(Example 6)
In the production of the negative electrode, a negative electrode and a battery were produced in the same manner as in Example 1 except that the amounts of the Si alloy and acetylene black (carbon-based material) were changed to 99 parts by weight and 1 part by weight, respectively. For the obtained carbon-coated Si alloy, the carbon coverage was measured using the following Auger electron spectroscopy, and the results are shown in Table 4 below.

(実施例7)
負極の作製において、炭素系材料として、気相成長法により作製した炭素材料(直径200nm×長さ10μmの炭素繊維)をアセチレンブラックの代わりに使用したこと以外は、実施例1と同様の方法で負極および電池を作製した。なお、得られた炭素被覆されたSi合金について、下記オージェ電子分光法を用いて、炭素被覆率を測定し、結果を下記表4に示す。また、得られた炭素被覆されたSi合金のオージェ電子分光法の測定で得られたマッピング結果を図24に示す。
(Example 7)
In the production of the negative electrode, the same method as in Example 1 was used except that a carbon material (carbon fiber having a diameter of 200 nm and a length of 10 μm) produced by a vapor deposition method was used instead of acetylene black as the carbon-based material. A negative electrode and a battery were produced. For the obtained carbon-coated Si alloy, the carbon coverage was measured using the following Auger electron spectroscopy, and the results are shown in Table 4 below. Further, FIG. 24 shows the mapping result obtained by the Auger electron spectroscopy measurement of the obtained carbon-coated Si alloy.

(比較例1)
実施例1における[Si合金の製造]と同様にして、Si合金(Si60Sn20Ti20、平均粒子径(D50):6μm)を製造した。
(Comparative Example 1)
In the same manner as in [Production of Si alloy] in Example 1, a Si alloy (Si 60 Sn 20 Ti 20 , average particle diameter (D50): 6 μm) was produced.

上記で製造したSi合金(炭素非被覆) 90質量部と、アセチレンブラック 10質量部と、を乾式混合した。なお、乾式混合後に得られたSi合金について、下記オージェ電子分光法を用いて、炭素被覆率を測定し、結果を下記表4に示す。   90 parts by mass of the Si alloy (carbon non-coated) produced above and 10 parts by mass of acetylene black were dry mixed. In addition, about the Si alloy obtained after dry-mixing, the carbon coverage was measured using the following Auger electron spectroscopy, and the result is shown in Table 4 below.

負極活物質である上記で得られた混合物 85質量部と、バインダであるポリアミドイミド 15質量部と、を混合し、N−メチルピロリドンに分散させて負極スラリーを得た。次いで、得られた負極スラリーを、銅箔よりなる負極集電体の両面にそれぞれ負極活物質層の厚さが30μmとなるように均一に塗布し、真空中で24時間乾燥させて、負極を得た。   85 parts by mass of the mixture obtained above as a negative electrode active material and 15 parts by mass of polyamideimide as a binder were mixed and dispersed in N-methylpyrrolidone to obtain a negative electrode slurry. Next, the obtained negative electrode slurry was uniformly applied to both surfaces of a negative electrode current collector made of copper foil so that the thickness of the negative electrode active material layer was 30 μm, and dried in a vacuum for 24 hours. Obtained.

(比較例2)
実施例1における[Si合金の製造]と同様にして、Si合金(Si60Sn20Ti20、平均粒子径(D50):6μm)を製造した。
(Comparative Example 2)
In the same manner as in [Production of Si alloy] in Example 1, a Si alloy (Si 60 Sn 20 Ti 20 , average particle diameter (D50): 6 μm) was produced.

上記で製造したSi合金(炭素非被覆) 95質量部と、アセチレンブラック 5質量部と、を乾式混合した。なお、乾式混合後に得られたSi合金について、下記オージェ電子分光法を用いて、炭素被覆率を測定し、結果を下記表4に示す。   95 parts by mass of the Si alloy (carbon uncoated) produced above and 5 parts by mass of acetylene black were dry mixed. In addition, about the Si alloy obtained after dry-mixing, the carbon coverage was measured using the following Auger electron spectroscopy, and the result is shown in Table 4 below.

負極活物質である上記で得られた混合物 85質量部と、バインダであるポリアミドイミド 15質量部と、を混合し、N−メチルピロリドンに分散させて負極スラリーを得た。次いで、得られた負極スラリーを、銅箔よりなる負極集電体の両面にそれぞれ負極活物質層の厚さが30μmとなるように均一に塗布し、真空中で24時間乾燥させて、負極を得た。   85 parts by mass of the mixture obtained above as a negative electrode active material and 15 parts by mass of polyamideimide as a binder were mixed and dispersed in N-methylpyrrolidone to obtain a negative electrode slurry. Next, the obtained negative electrode slurry was uniformly applied to both surfaces of a negative electrode current collector made of copper foil so that the thickness of the negative electrode active material layer was 30 μm, and dried in a vacuum for 24 hours. Obtained.

<性能評価>
[Si合金の炭素系材料による被覆率(炭素被覆率)の測定]
炭素被覆率は、下記測定条件で、オージェ電子分光法を用いて、ケイ素のモル比率及び炭素のモル比率を測定した。
<Performance evaluation>
[Measurement of Si Alloy Carbon Coverage (Carbon Coverage)]
For the carbon coverage, the molar ratio of silicon and the molar ratio of carbon were measured using Auger electron spectroscopy under the following measurement conditions.

次に、上記で測定されたケイ素のモル比率及び炭素のモル比率を用いて、下記式に従って、ケイ素のモル比率に対する炭素のモル比率を算出し、得られた値を炭素被覆率(下記表4中の「ケイ素に対する炭素被覆率」)(mol%)とする。   Next, using the mole ratio of silicon and the mole ratio of carbon measured above, the mole ratio of carbon to the mole ratio of silicon was calculated according to the following formula, and the obtained value was expressed as the carbon coverage (Table 4 below). "Carbon coverage with respect to silicon")) (mol%).

[Si合金の平均粒子径(D50)]
レーザ回折/散乱式粒度分布測定装置(株式会社堀場製作所製、型式:LA−920)を用いて、粒度分布データを測定し、当該データをもとに、Si合金の平均粒子径(D50;メディアン径)を算出する。
[Average particle diameter of Si alloy (D50)]
The particle size distribution data was measured using a laser diffraction / scattering type particle size distribution measuring apparatus (manufactured by Horiba, Ltd., model: LA-920), and based on the data, the average particle diameter (D50; median of Si alloy) Diameter) is calculated.

[サイクル耐久性の評価]
上記で作製した各リチウムイオン二次電池について以下の方法でサイクル耐久性評価を行った。各電池について、30℃の雰囲気下、定電流定電圧方式(CCCV、電流:0.1C、20時間で終止)で4.2Vまで充電し、10分間休止させた後、定電流(CC、電流:0.1C)で2Vまで放電し、放電後10分間休止させた。この充放電過程を1サイクル目とし、2サイクル目以降は充電および放電ともに0.5C(充電におけるCCCVは4時間で終止)としたことを除いては、1サイクル目と同様の充放電条件にて50サイクルまでの充放電試験を行った。1サイクル目の放電容量に対する50サイクル目の放電容量の割合(放電容量維持率[%])を求めた結果を、下記の表4に示す。
[Evaluation of cycle durability]
The cycle durability of each lithium ion secondary battery produced above was evaluated by the following method. Each battery was charged to 4.2 V in a constant current and constant voltage method (CCCV, current: 0.1 C, terminated in 20 hours) in an atmosphere of 30 ° C., paused for 10 minutes, and then constant current (CC, current : 0.1 C) to 2 V, and rested for 10 minutes after the discharge. This charge and discharge process is the first cycle, and the charge and discharge conditions are the same as those for the first cycle except that the charge and discharge are 0.5C for the second and subsequent cycles. The charge / discharge test was performed up to 50 cycles. The ratio of the discharge capacity at the 50th cycle to the discharge capacity at the 1st cycle (discharge capacity retention rate [%]) is shown in Table 4 below.

上記表4の結果から、Si合金表面を炭素系材料で担持した負極活物質は、高いエネルギー密度および高いサイクル耐久性を示すことが理解される。   From the results of Table 4 above, it is understood that the negative electrode active material having the Si alloy surface supported by a carbon-based material exhibits high energy density and high cycle durability.

本出願は、2013年6月12日に出願された日本特許出願番号2013−123981号に基づいており、その開示内容は、参照され、全体として、組み入れられている。   This application is based on the JP Patent application number 2013-123981 for which it applied on June 12, 2013, The content of an indication is referred and is incorporated as a whole.

Claims (19)

下記化学式(1):
(上記化学式(1)において、
Mは、Tiであり、
Aは、不可避不純物であり、
x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である。)
で表される合金を含む電気デバイス用負極活物質であって、
炭素系材料が前記合金の表面に担持され、
前記x、y、およびzが、下記数式(3)または(4)
を満たす、電気デバイス用負極活物質。
The following chemical formula (1):
(In the above chemical formula (1),
M is Ti,
A is an inevitable impurity,
x, y, z, and a represent mass% values, where 0 <x <100, 0 <y <100, 0 <z <100, and 0 ≦ a <0.5, and x + y + z + a = 100. )
A negative electrode active material for an electrical device comprising an alloy represented by:
A carbon-based material is supported on the surface of the alloy,
Said x, y, and z are following formula (3) or (4) :
Satisfying negative electrode active material for electrical devices.
前記x、y、およびzが、下記数式(5)または(6):
を満たす、請求項に記載の電気デバイス用負極活物質。
The x, y, and z are represented by the following formula (5) or (6):
The negative electrode active material for an electric device according to claim 1 , wherein
前記x、y、およびzが、下記数式(7):
を満たす、請求項に記載の電気デバイス用負極活物質。
The x, y, and z are the following formula (7):
The negative electrode active material for an electric device according to claim 2 , wherein
下記化学式(1):
(上記化学式(1)において、
Mは、Znであり、
Aは、不可避不純物であり、
x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である。)
で表される合金を含む電気デバイス用負極活物質であって、
炭素系材料が前記合金の表面に担持され、
前記xが23を超え64未満であり、yが4以上34未満であり、zが0を超え65未満である、電気デバイス用負極活物質。
The following chemical formula (1):
(In the above chemical formula (1),
M is Zn;
A is an inevitable impurity,
x, y, z, and a represent mass% values, where 0 <x <100, 0 <y <100, 0 <z <100, and 0 ≦ a <0.5, and x + y + z + a = 100. )
A negative electrode active material for an electrical device comprising an alloy represented by:
A carbon-based material is supported on the surface of the alloy,
The negative electrode active material for an electric device, wherein x is more than 23 and less than 64, y is 4 or more and less than 34, and z is more than 0 and less than 65.
(上記化学式(1)において、
Mは、Znであり、
Aは、不可避不純物であり、
x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である。)
で表される合金を含む電気デバイス用負極活物質であって、
炭素系材料が前記合金の表面に担持され、
前記xが23を超え44未満であり、yが34以上58以下であり、zが0を超え65未満である、電気デバイス用負極活物質。
(In the above chemical formula (1),
M is Zn;
A is an inevitable impurity,
x, y, z, and a represent mass% values, where 0 <x <100, 0 <y <100, 0 <z <100, and 0 ≦ a <0.5, and x + y + z + a = 100. )
A negative electrode active material for an electrical device comprising an alloy represented by:
A carbon-based material is supported on the surface of the alloy,
The negative electrode active material for an electric device, wherein x is more than 23 and less than 44, y is 34 or more and 58 or less, and z is more than 0 and less than 65.
前記zが27を超え61未満である、請求項に記載の電気デバイス用負極活物質。 The negative electrode active material for an electric device according to claim 4 , wherein the z is greater than 27 and less than 61. 前記xが34未満である、請求項に記載の電気デバイス用負極活物質。 The negative electrode active material for an electric device according to claim 5 , wherein x is less than 34. 前記yが24未満であり、前記zが38を超える、請求項に記載の電気デバイス用負極活物質。 The negative electrode active material for an electric device according to claim 6 , wherein the y is less than 24 and the z exceeds 38. 前記xが24以上38未満である、請求項に記載の電気デバイス用負極活物質。 The negative electrode active material for an electric device according to claim 6 , wherein the x is 24 or more and less than 38. 前記xが38未満であり、前記yが40未満であり、前記zが27を超える、請求項に記載の電気デバイス用負極活物質。 The negative electrode active material for an electric device according to claim 5 , wherein the x is less than 38, the y is less than 40, and the z exceeds 27. 前記xが29未満であり、前記yが40以上である、請求項に記載の電気デバイス用負極活物質。 The negative electrode active material for an electric device according to claim 5 , wherein x is less than 29 and y is 40 or more. 下記化学式(1):
(上記化学式(1)において、
Mは、Cであり、
Aは、不可避不純物であり、
x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である。)
で表される合金を含む電気デバイス用負極活物質であって、
炭素系材料が前記合金の表面に担持され、
前記xが29以上である、電気デバイス用負極活物質。
The following chemical formula (1):
(In the above chemical formula (1),
M is C,
A is an inevitable impurity,
x, y, z, and a represent mass% values, where 0 <x <100, 0 <y <100, 0 <z <100, and 0 ≦ a <0.5, and x + y + z + a = 100. )
A negative electrode active material for an electrical device comprising an alloy represented by:
A carbon-based material is supported on the surface of the alloy,
The negative electrode active material for electric devices whose said x is 29 or more.
前記xが63以下であり、前記yが14以上48以下であり、前記zが11以上48以下である、請求項12に記載の電気デバイス用負極活物質。 The negative electrode active material for an electric device according to claim 12 , wherein the x is 63 or less, the y is 14 or more and 48 or less, and the z is 11 or more and 48 or less. 前記xが44以下である、請求項13に記載の電気デバイス用負極活物質。 The negative electrode active material for an electric device according to claim 13 , wherein x is 44 or less. 前記xが40以下であり、前記yが34以上である、請求項14に記載の電気デバイス用負極活物質。 The negative electrode active material for an electric device according to claim 14 , wherein x is 40 or less and y is 34 or more. 前記合金の炭素系材料による被覆率が50〜400mol%である、請求項1〜15のいずれか1項に記載の電気デバイス用負極活物質。 The negative electrode active material for an electrical device according to any one of claims 1 to 15 , wherein a coverage of the alloy with a carbon-based material is 50 to 400 mol%. 前記合金の炭素系材料による被覆率が100〜400mol%である、請求項16に記載の電気デバイス用負極活物質。 The negative electrode active material for an electric device according to claim 16 , wherein a coverage of the alloy with a carbon-based material is 100 to 400 mol%. 前記合金の炭素系材料による被覆率が250〜400mol%である、請求項17に記載の電気デバイス用負極活物質。 The negative electrode active material for an electric device according to claim 17 , wherein a coverage of the alloy with a carbon-based material is 250 to 400 mol%. 請求項1〜18のいずれか1項に記載の電気デバイス用負極活物質を含む、電気デバイス To any one of claims 1 to 18 containing a negative electrode active material for an electric device according electrical device
JP2015522677A 2013-06-12 2014-05-19 Negative electrode active material for electric device and electric device using the same Active JP6112200B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013123981 2013-06-12
JP2013123981 2013-06-12
PCT/JP2014/063249 WO2014199782A1 (en) 2013-06-12 2014-05-19 Anode active material for electrical device, and electrical device using same

Publications (2)

Publication Number Publication Date
JPWO2014199782A1 JPWO2014199782A1 (en) 2017-02-23
JP6112200B2 true JP6112200B2 (en) 2017-04-12

Family

ID=52022083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015522677A Active JP6112200B2 (en) 2013-06-12 2014-05-19 Negative electrode active material for electric device and electric device using the same

Country Status (2)

Country Link
JP (1) JP6112200B2 (en)
WO (1) WO2014199782A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6292317B2 (en) * 2014-12-17 2018-03-20 日産自動車株式会社 Negative electrode active material for electric device and electric device using the same
JP6819220B2 (en) * 2016-10-28 2021-01-27 日産自動車株式会社 Negative electrode for electrical devices and electrical devices using them
JP6848981B2 (en) * 2016-11-22 2021-03-24 日産自動車株式会社 Negative electrode for electrical devices and electrical devices using them
JP2019050108A (en) * 2017-09-08 2019-03-28 日産自動車株式会社 Electrode active material slurry

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4464173B2 (en) * 2003-03-26 2010-05-19 キヤノン株式会社 Electrode material for lithium secondary battery, electrode structure having the electrode material, and secondary battery having the electrode structure
JP2004349016A (en) * 2003-05-20 2004-12-09 Matsushita Electric Ind Co Ltd Charge and discharge method of nonaqueous electrolyte secondary battery
JP2005243431A (en) * 2004-02-26 2005-09-08 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP5348878B2 (en) * 2007-02-21 2013-11-20 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5614307B2 (en) * 2011-01-26 2014-10-29 株式会社Gsユアサ Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPWO2014199782A1 (en) 2017-02-23
WO2014199782A1 (en) 2014-12-18

Similar Documents

Publication Publication Date Title
JP6020591B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6040996B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6098719B2 (en) Negative electrode active material for electric device and electric device using the same
WO2014080885A1 (en) Negative electrode for electrical device, and electrical device using same
JP6493414B2 (en) Negative electrode active material for electric device and electric device using the same
JP6040997B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JPWO2014080893A1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6327362B2 (en) Negative electrode active material for electric device and electric device using the same
JP6040994B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6112200B2 (en) Negative electrode active material for electric device and electric device using the same
JP6488690B2 (en) Negative electrode for electric device and electric device using the same
JP6561461B2 (en) Negative electrode for electric device and electric device using the same
JP6459479B2 (en) Negative electrode for electric device and electric device using the same
JP6232764B2 (en) Negative electrode for electric device and electric device using the same
JP6112199B2 (en) Negative electrode active material for electric device and electric device using the same
JP6083471B2 (en) Negative electrode active material for electric device and electric device using the same
JP6485028B2 (en) Negative electrode active material for electric device and electric device using the same
WO2016098213A1 (en) Negative-electrode active material for electrical device, and electrical device using same
JP6292317B2 (en) Negative electrode active material for electric device and electric device using the same
WO2014080898A1 (en) Negative electrode for electric device and electric device using same
WO2014080903A1 (en) Negative electrode for electric device and electric device using same
JP2016027529A (en) Negative electrode for electric device and electric device using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170227

R151 Written notification of patent or utility model registration

Ref document number: 6112200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151