JP6085383B1 - 通信システム - Google Patents

通信システム Download PDF

Info

Publication number
JP6085383B1
JP6085383B1 JP2016039372A JP2016039372A JP6085383B1 JP 6085383 B1 JP6085383 B1 JP 6085383B1 JP 2016039372 A JP2016039372 A JP 2016039372A JP 2016039372 A JP2016039372 A JP 2016039372A JP 6085383 B1 JP6085383 B1 JP 6085383B1
Authority
JP
Japan
Prior art keywords
user terminal
onu
olt
unit
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016039372A
Other languages
English (en)
Other versions
JP2017158031A (ja
Inventor
由美子 妹尾
由美子 妹尾
浅香 航太
航太 浅香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2016039372A priority Critical patent/JP6085383B1/ja
Application granted granted Critical
Publication of JP6085383B1 publication Critical patent/JP6085383B1/ja
Publication of JP2017158031A publication Critical patent/JP2017158031A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】OLTとの間の距離に応じて、各ONUの送信可能な情報量に生じる不公平を抑制することができる技術を提供すること。【解決手段】実施形態の通信システムは、ユーザ端末を収容する複数の加入者側終端装置と、光ファイバ伝送路を介して前記複数の加入者用装置との間で光信号を送受信する局側終端装置とを備え、局側終端装置は、ユーザ端末ごとに異なる帯域に割り当てられる一以上のサブキャリアをユーザ端末ごとのシンボルレート及び変調多値数で変調し、ユーザ端末ごとに変調された光信号を多重化して送信し、加入者側終端装置は、局側終端装置から多重化された送信された光信号から自装置が収容するユーザ端末のサブキャリアを復調する通信システムであって、局側終端装置は、ユーザ端末が単位時間当たりに送受信可能な情報量がユーザ端末間で等しくなるように、各ユーザ端末に割り当てるサブキャリア数を決定する帯域割当部を備える。【選択図】図2

Description

本発明は、受動光ネットワークにおける通信を多重化する技術に関する。
アクセスラインの高速化のニーズの高まりにより、世界的にFTTH(Fiber To The Home)の普及が進んでいる。一般に、FTTHサービスはPON(Passive Optical Network:受動光ネットワーク)方式で提供される。PON方式は、1つの収容局側終端装置(OLT:Optical Line Terminal)が種々の多重化方式を用いて複数の加入者装置(ONU:Optical Network Unit)を収容する方式である。PON方式は、光通信に係るリソースを複数のONUで共有できるため経済性に優れている。このようなPON方式の一つとして、ONUの通信を時分割多重(TDM:Time Division Multiplexing)によって多重化するTDM−PONがある。
PON方式では、OLTとの距離が相異なるONUの全てが一定以上の品質で通信を行えることが要求される。光ファイバ伝送では、伝送距離が延びるにつれて光信号の強度が減衰したり、波長分散等に起因する波形の歪みによって信号品質が劣化したりする場合がある。そのため、PON方式において、全ONUが送受信する光信号の信号強度が等しい場合、OLTから最も遠い距離にあるONUが通信可能であれば全ONUが通信可能となる。そのため、TDM−PONでは、光信号の速度が、OLTから最も遠い距離にあるONUが通信可能となる速度に固定されており、各ONUが単位時間あたりに送受信可能な情報量は等しくなる。
図7は、TDM−PONの構成例を示す図である。図7は、1つのOLTに、OLTとの間の距離が相異なるONU♯k(k=1、2、3、4)が接続されている例である。各ONUが送受信する光信号の信号速度は、OLTから最も遠い距離にあるONU(ここではONU#4)が通信可能である信号速度B[bit/s]に固定される。s及びmをそれぞれ、シンボル速度及び変調多値数とすると、信号速度Bと、シンボル速度s及び変調多値数mとの間には次の式(1)が成り立つ。
Figure 0006085383
例えば、非特許文献1に記載のGE−PON(Gigabit Ethernet(登録商標) PON)や、非特許文献2に記載のG−PON(Gigabit PON)ではm=2であり、シンボル速度sと信号速度Bとは等しい。また、各ONUが占有する周波数帯域は全て同じであり、同じ周波数帯域を時分割多重で共有している。
TDM−PONの下り方向通信(OLTからONUに向かう方向の通信)では、OLTは、ラウンドロビン・スケジューリング等によって、送信信号をONUごとの送信キューから1つずつ順番に取り出すとともに、順番に取り出された各送信信号に対して同じ長さの処理時間を割り当てて送信処理を行う。上述のとおり、TDM−PONでは、各ONUが単位時間あたりに送受信可能な情報量が等しいため、このようなスケジューリングで送信処理を行うことによって、OLTは、各ONUが所定の期間内に受信する情報量を等しくすることができる。これにより、TDM−PONにおいて、各ONUは下り方向通信において公平に帯域を共有することができる。
このように、従来のTDM−PONでは、OLTから最も遠い距離にあるONUが通信可能となる値に信号速度が固定されている。しかしながら、OLTに近い距離にあるONUは、本来、より高速な信号速度で通信可能である。移動体通信では、時々刻々と変化する無線基地局とユーザ端末間の距離や無線伝搬環境等に応じて、信号速度をユーザ端末ごとに可変とする適応変調技術が用いられている。例えば、適応変調技術を用いた移動体通信は、3.5G方式(HSPA:High Speed Packet Access)として実用化されている。この方式では、無線基地局に近いユーザ端末や良好な無線伝搬環境にあるユーザ端末が送受信する信号の変調多値数やシンボル速度を向上させることにより、信号速度を増大させ、システム全体のスループットを拡張することができる。この適応変調技術をTDM−PONに適用すれば、OLTに近いONUの信号速度を高速化することができ、移動体通信と同様にシステム全体のスループットを拡張することができる。
図8は、適応変調技術を適用したTDM−PONの構成例を示す図である。図8は、1つのOLTに、OLTとの間の距離が相異なるONU♯k(k=1、2、3、4)が接続されている例である。この場合、各ONUが送受信する光信号の信号速度は、OLTとの間の距離に応じて各ONUが通信可能である信号速度B[bit/s]に固定される。s及びmをそれぞれ、シンボル速度及び変調多値数とすると、信号速度Bと、シンボル速度s及び変調多値数mとの間には次の式(2)が成り立つ。
Figure 0006085383
また、各ONUが占有する周波数帯域は全て同じであり、同じ周波数帯域を時分割多重で共有している。
IEEE Standard 802.3ah ITU-T Recommendation G.984.2
ところで、移動体通信ではユーザ端末の移動によって各ユーザ端末と無線基地局との間の距離および無線伝搬環境が変化するため、適応変調技術による信号速度の高速化の恩恵を全てのユーザ端末が享受することができる。これに対して、PONでは各ONUとOLTとの間の距離が固定であるため、適応変調技術の適用による信号速度の高速化の恩恵をOLTに近い特定のONUのみが享受することになる。そのため、所定の期間内において送信が許可される時間の総和がONU間で等しくなるように送信許可期間を割当てる帯域割当方法では、OLTとの間の距離に応じて所定の期間内に送信することができる情報量に不公平が生じる可能性があった。
上記事情に鑑み、本発明は、OLTとの間の距離に応じて、各ONUの送信可能な情報量に生じる不公平を抑制することができる技術を提供することを目的としている。
本発明の一態様は、ユーザ端末を収容する複数の加入者側終端装置と、光ファイバ伝送路を介して前記複数の加入者用装置との間で光信号を送受信する局側終端装置とを備え、前記局側終端装置は、前記ユーザ端末ごとに異なる帯域に割り当てられる一以上のサブキャリアを前記ユーザ端末ごとのシンボルレート及び変調多値数で変調し、前記ユーザ端末ごとに変調された光信号を多重化して送信し、前記加入者側終端装置は、前記局側終端装置から多重化された送信された光信号から自装置が収容するユーザ端末のサブキャリアを復調する通信システムであって、前記局側終端装置は、前記ユーザ端末が単位時間当たりに送受信可能な情報量が前記ユーザ端末間で等しくなるように、各ユーザ端末に割り当てるサブキャリア数を決定する帯域割当部を備える。
本発明の一態様は、上記の通信システムであって、前記帯域割当部は、前記ユーザ端末のトラフィック量と、前記ユーザ端末が単位時間当たりに送受信可能な情報量との比が前記ユーザ端末間で等しくなるように、各ユーザ端末に割り当てるサブキャリア数を決定する。
本発明の一態様は、上記の通信システムであって、前記帯域割当部は、前記ユーザ端末が単位時間当たりに送受信可能な情報量と、前記ユーザ端末のトラフィック量との差が前記ユーザ端末間で等しくなるように、各ユーザ端末に割り当てるサブキャリア数を決定する。
本発明の一態様は、上記の通信システムであって、前記帯域割当部は、システム全体の総トラフィック量が所定の閾値を越える場合には、前記比が前記ユーザ端末間で等しくなるように各ユーザ端末に割り当てるサブキャリア数を決定し、システム全体の総トラフィック量が所定の閾値以下である場合には、前記差が前記ユーザ端末間で等しくなるように、各ユーザ端末に割り当てるサブキャリア数を決定する。
本発明により、OLTとの間の距離に応じて、各ONUの送信可能な情報量に生じる不公平を抑制することが可能となる。
第1実施形態のPONシステム100の構成例を示す図である。 第1実施形態のOLT2の送信機能に係る構成を示すブロック図である。 第2実施形態におけるSC割当計算の流れを示すフローチャートである。 第3実施形態におけるSC割当計算の流れを示すフローチャートである。 第4実施形態におけるSC割当計算の流れを示すフローチャートである。 第5実施形態のPONシステム100aの構成例を示す図である。 TDM−PONの構成例を示す図である。 適応変調技術を適用したTDM−PONの構成例を示す図である。
<第1実施形態>
図1は、第1実施形態のPONシステム100の構成例を示す図である。PONシステム100は、複数のONU1(ONU1−1〜1−4)(加入者側終端装置)と、複数のONU1を収容するOLT2(局側終端装置)とを備え、複数のONU1とOLT2との間の光信号の送受信をOFDM(Orthogonal Frequency Division Multiplexing)によって多重化する通信システムである。OFDMは、ユーザ端末ごとに異なる帯域に割り当てられる一以上の搬送波(Sub-carrier:サブキャリア)(以下、「SC」という。)を使用し、各SCをそれぞれ異なるデータでデジタル変調して並列伝送する多重化方式である。OFDMでは、SCごとに異なるシンボルレート(シンボル速度)及び変調多値数を設定可能であるため、伝送速度を柔軟に変更することが可能である。このようなPONシステムを、OFDMA(Orthogonal Frequency Division Multiplexing Access)−PONという。
図1において、複数のONU1とOLT2との間の距離は、各ONU1の間で相異なる。各ONU1−k(k=1、2、3、4)に付記されているB、s、m及びxは、ONU1−kが単位時間当たりに送信できる情報量[bit/s]、ONU1−kのシンボル速度、変調多値数、ONU1−kに割り当てられたSC数を表している。各ONU1は、光ファイバ伝送路101及び光合分波手段102を介してOLT2に接続される。
光合分波手段102は、光ファイバやPLC(Planar Lightwave Circuit)により作成された光カプラなどである。図1では各ONUとOLTとの間に1つの光合分波手段102が接続されているが、2つ以上の光合分波手段102が直列に接続されてもよい。ONU1−k(k=1、2、3、4)は、OLT2のSC割当計算によってそれぞれのONU1−kに割り当てられた周波数帯域を占有して光信号を送信する。ここで、s、m、xのそれぞれを、ONU1−kのシンボル速度、ONU1−kの変調多値数、ONU1−kに割り当てられたSC数とすると、ONU1−kが単位時間あたりに送信可能な情報量[bit/s]Bは次の式(3)で表される。
Figure 0006085383
シンボル速度s及び変調多値数mは、OLT2とONU1との間の距離や光ファイバ伝送路101の伝搬特性に依存する。そのため、OLT2は、ONU1との間で監視信号を定期的に送受信することによってONU1との間における信号強度の減衰量や波長分散量等を測定する。OLT2は、これらの測定値に基づいて各ONU1に対するシンボル速度s及び変調多値数mを決定する。なお、OLT2とONU1との間の距離や光ファイバ伝送路101の伝搬特性が経時的に大きく変化しない場合、OLT2は、各ONU1のシンボル速度s及び変調多値数mを所定の初期値に固定してもよい。
一方で光ファイバ伝送では、伝送距離が小さいほど信号強度の減衰量が小さく、波長分散等に起因する波形歪みが小さい。そのため、OLT2に近いONU1については、シンボル速度s及び変調多値数mを大きい値に設定することで、各ONU1−kが単位時間あたりに送信可能な情報量Bを増大できる可能性がある。この場合、光信号は、2値位相変調(BPSK:Binary Phase-Shift-Keying)や4値位相変調(QPSK:Quadrature Phase-Shift-Keying)、8値位相変調(8PSK)、・・・の様にONU1ごとに異なる直交変調フォーマットで周波数分割される。
ここで、本実施形態のOLT2は、SC割当計算によって、次の式(4)が満たされるSC数xを算出することで、各ONU1−k(k=1、2、3、4)に割り当てるSC数を決定する。
Figure 0006085383
ONU1−kのシンボル速度s、ONU1−kの変調多値数m、ONU1−kに割り当てられたSC数xが式(4)を満たすのに最も近い整数となるように決定されることにより、各ONU1−kが単位時間内に送受信可能な情報量が等しくなり、各ONU1が公平に伝送帯域を共有することができる。
図2は、第1実施形態のOLT2の送信機能に係る構成を示すブロック図である。OLT2は、OLT送信器媒体アクセス制御部(OLT−Tx−MAC:Optical Line Terminal - Transmitter - Media Access Control)21、OLT送信器物理符号化副層(OLT−Tx−PCS:Optical Line Terminal - Transmitter - Physical Coding Sublayer)22及びOLT送信器物理媒体依存部23(OLT−Tx−PMD:Optical Line Terminal - Transmitter - Physical Medium Dependent)を備える。OLT−Tx−MAC21は、信号分離部211(DEMUX:De-multiplexer)、SHP部212−k(k=1、2、3、4)、信号多重部213(MUX:Multiplexer)、PON−MAC部214及びSC割当部215を備える。
信号分離部211は、上位層から出力された送信信号を、各ONU1−k宛ての送信信号に分離する。信号分離部211は、分離されたONU1−kごとの送信信号を、対応するSHP部212−kにそれぞれ出力する。
SHP部212−kは、信号分離部211から出力されたONU−k宛ての送信信号を、下り方向通信のトラフィック量がB[bit/s]となるように制御して出力する。
信号多重部213は、各SHP部212−kから出力された送信信号を多重化してPON−MAC部214に出力する。
PON−MAC部214は、信号多重部213から出力された送信信号を送信するためのMACフレームを生成する。PON−MAC部214は、生成したMACフレームをOLT−Tx−PCS22に出力する。
SC割当部215(帯域割当部)は、SC割当制御部232から通知されるシンボル速度s及び変調多値数mに基づいて上述のSC割当計算を実行することにより、各ONU1−kに割り当てるサブチャネル数を決定する。なお、各ONU1−kのシンボル速度s及び変調多値数mは一般に固定値として割り当てられるため、SC割当部215は、SC割当制御部232から通知されるシンボル速度s及び変調多値数mを予め初期値として保持していてもよい。
続いて、OLT−Tx−PCS22について説明する。OLT−Tx−PCS22は、信号分離部221(DEMUX:De-multiplexer)、PCS部222−k及び信号多重部(MUX:Multiplexer)223を備える。
信号分離部221は、PON−MAC部214から出力されたMACフレームを各ONU1−k宛ての送信信号に分離する。信号分離部221は、分離されたONU1−kごとの送信信号を、対応するPCS部222−kにそれぞれ出力する。
PCS部222−kは、対応するONU1−k宛ての送信信号を符号化する。PCS部222−kは、符号化した送信信号を信号多重部223に出力する。
信号多重部223は、各PCS部222−kから出力された送信信号を多重化してOLT−Tx−PMD23に出力する。
続いて、OLT−Tx−PMD23について説明する。OLT−Tx−PMD23は、信号分離部231(DEMUX:De-multiplexer)、SC割当制御部232、MAP部233−k、逆フーリエ変換部234及び電気−光変換部235を備える。
信号分離部231は、信号多重部223から出力された送信信号を各ONU1−k宛ての送信信号に分離する。信号分離部231は、分離されたONU1−kごとの送信信号を、対応するMAP部233−kにそれぞれ出力する。
SC割当制御部232(帯域割当部)は、各ONU1−kのシンボル速度s及び変調多値数mをSC割当部215に通知する。SC割当制御部232は、OLT−Tx−MAC21のSC割当部215によって各ONU1−kに割り当てられたサブキャリア数xを、各ONU1−kに対応するMAP部233−kのそれぞれに通知する。また、SC割当制御部232は、各ONU1と自装置との間の距離や、光ファイバ伝送路101の伝搬特性等に基づいて、各ONU1−kに設定するシンボル速度s及び変調多値数mを決定する。SC割当制御部232は、決定したシンボル速度s及び変調多値数mを、対応するMAP部233−kに通知する。
MAP部233−kは、ONU1−k宛ての送信信号を、SC割当制御部232から通知されたサブキャリア数x、シンボル速度s及び変調多値数mの送信シンボルにマッピングする。MAP部233−kは、マッピングにより生成されたONU1−k宛ての送信シンボルを逆フーリエ変換部234に出力する。
逆フーリエ変換部234は、各MAP部233−kから出力された送信シンボルを逆フーリエ変換することにより、サブキャリアごとのOFDMシンボルを生成する。逆フーリエ変換部234は、生成したサブキャリアごとのOFDMシンボルを多重化してOFDM信号を生成し、電気−光変換部235に出力する。
電気−光変換部235は、逆フーリエ変換部234から出力されたOFDM信号を光信号に変換して光ファイバ伝送路101に出力する。
このように構成された第1実施形態のPONシステム100は、各ONU−kが単位時間内に送受信可能な情報量が等しくなるようにサブキャリア数を決定するOLT2を備える。このような構成を備えることにより、ONU1とOLT2と間の距離が固定であるPONシステム100の多重化方式にOFDMA方式を採用した場合において、適応変調制御の適用によって得られるシステム全体でのスループット増大の恩恵を、全てのONU1が公平に享受できるようになる。
本実施形態では、OLT−Tx−MAC21、OLT−Tx−PCS22、及び、OLT−Tx−PMD23内にそれぞれ、信号分離部(DEMUX)や信号多重部(MUX)を備え、送信信号の多重と分離を繰り返す構成とした。これは、OLT−Tx−MAC21とOLT−Tx−PCS22との間、及び、OLT−Tx−PCS22とOLT−Tx−PMD23との間のインタフェース数を減らして、接続の簡易化や経済化を図るためである。しかし、このように送信信号の多重と分離を繰り返す構成は必ずしも必要ではなく、OLT−Tx−MAC21内の信号多重部(MUX)、OLT−Tx−PCS22内の信号分離部(DEMUX)と信号多重部(MUX)、及び、OLT−Tx−PMD23内の信号分離部(DEMUX)を省略した構成であってもよい。
また、波長分割多重(WDM:Wavelength Division Multiplexing)方式の採用により、1波長あたりの信号速度を高速化することなくシステム帯域を拡張することができるWDM/OFDMAシステムにおいても、上記と同様の方法でサブキャリア数を決定することによって、適応変調制御の適用によって得られるシステム全体でのスループット増大の恩恵を、全てのONU1が公平に享受できるようになる。
<第2実施形態>
第1実施形態のPONシステム100では、OLT2は、OFDMAにおける帯域割当において、各ONU1が単位時間内に送受信可能な情報量が等しくなるように各ONU1のサブキャリア数を決定した。しかしながら、各ONU1に生じるトラフィック量(以下、「入力トラフィック量」という。)は各ONU1に収容されるユーザ端末の上り通信の要求や、上位層からの下り通信の要求に応じて異なる。そのため、PONシステム100に対する入力トラフィック量が多く、フレームロスが発生している状況では、各ONU1が単位時間内に送信可能な情報量を公平にしても、各ONU1に生じる入力トラフィック量の差によっては、各ONU1の間でフレームロス率に差が生じ、実質的に送受信可能な情報量(以下、「実質情報量」という。)に不公平が生じることが考えられる。
そこで、第2実施形態のPONシステム100では、OLT2が、各ONU1のフレームロス率が公平になるようなSC割当計算を行う。これにより、上記のようにフレームロスが発生している状況において、各ONU1の間のトラフィック量の差に起因して生じる実質情報量の不公平を抑制することができる。
具体的には、フレームロスが発生している状況は、単位時間あたりに送信可能な情報量がBであるONU1−kに対して、Bより大きな入力トラフィック量Yが発生している状況であると考えられる。そのため、この場合、BとYとの間には次の式(5)が成り立つと仮定する。
Figure 0006085383
また、ONU1−kにおけるフレームロス率は、次の式(6)のように表すことができる。
Figure 0006085383
ここで、第2実施形態のOLT2は、式(6)によって表されるフレームロス率を、各ONU1−kにおけるトラフィックの混雑の度合いを示す混雑度Zとして用い、各ONU1の混雑度Zが等しくなるようにSC割当計算を行う。例えばk=1、2、3、4とした場合、OLT2は、各ONU1−kの混雑度Zが次の式(7)に最も近づくように、各ONU1−kのSC数xを決定する。
Figure 0006085383
図3は、第2実施形態におけるSC割当計算の流れを示すフローチャートである。まず、SC割当部215が、式(6)によって混雑度Zを算出する(ステップS101)。SC割当部215は、ループ回数iをインクリメントし、混雑度Zの公平性を表す第1のフェアネスインデックスf(i)を次の式(8)によって算出する(ステップS102)。なお、ループ回数iは、フローチャートの開始時において予め1に初期化される。
Figure 0006085383
続いて、SC割当部215は、混雑度Zが最大値をとるkをk_maxとして算出し、混雑度Zが最小値をとるkをk_minとして算出する(ステップS103)。
SC割当部215は、ONU1−k_minに割り当てられたSC数xk_minを1減少させ、減少分のSC数1をONU1−k_maxのSC数xk_maxに追加する(ステップS104)。具体的には、この操作は次の式(9)及び式(10)によって表される。
Figure 0006085383
Figure 0006085383
続いて、SC割当部215は、Zの公平性を表す第2のフェアネスインデックスf(i)を次の式(11)によって算出する(ステップS105)。
Figure 0006085383
SC割当部215は、この時点における各ONU1−kのSC数x、各ONU1−kが単位時間あたりに送信可能な情報量B、第1のフェアネスインデックスf(i)及び第2のフェアネスインデックスf(i)が、次の式(12)、式(13)及び式(14)を満たすか否かを判定する(ステップS106)。
Figure 0006085383
Figure 0006085383
Figure 0006085383
式(12)は、各ONU1−kには0以上のSC数xが割り当てられることを規定する条件である。式(13)におけるBmaxは、OLT−Tx−MAC21、OLT−Tx−PCS22及びOLT−Tx−PMD23の最大伝送容量のうちの最小値を示す。すなわち、式(13)は、各ONU1−kが単位時間あたりに送信可能な情報量Bの総和は、上記最大伝送量の最小値を越えられないことを規定する条件である。式(14)におけるdf(i)は、i回目のループにおけるフェアネスインデックスの改善量を意味する。すなわち、式(14)は、i回目のループにおけるフェアネスインデックスの改善量が、i−1回目のループにおけるフェアネスインデックスの改善量と異なることを規定する条件である。
ステップS106において上記3つの条件が満たされた場合(ステップS106−YES)、SC割当部215は、ステップS104において算出されたx_max及びx_minをSC割当部内の出力表に書き込む(ステップS107)。そして、SC割当部215は、ステップS101に処理を戻し、さらなるフェアネスインデックスの改善のためにステップS101〜S106の処理を繰り返し実行する。一方、ステップS106において上記3つの条件のうちのいずれかの条件が満たされない場合(ステップS106−NO)、SC割当部215はSC割当計算を終了する。SC割当部215はSC割当計算の終了後、SC割当計算によって決定したxが記載された出力表に基づいて、SHP部212−kの出力レートBを設定する。同時に、SC割当部215はSC割当計算によって決定したxが記載された出力表に基づき、SC割当制御部232を介して、各MAP部233−kのサブキャリア数xを設定する。
なお、式(14)は、SC割当計算が必要以上に継続されることを抑制する効果を持つ。例えば、10回目のループにおけるSC数の割り当て結果がx=2、x=2、x=3、x=4であり、11回目のループにおけるSC数の割り当て結果がx=2、x=2、x=4、x=3であり、12回目のループにおけるSC数の割り当て結果が10回目のループと同じ割り当て結果となってしまう場合、フェアネスインデックスの改善効果は飽和しているにもかかわらずSC割当計算が終了しない状況が発生しうる。式(14)の左辺は、フェアネスインデックスの改善効果が飽和した状況において0となる。そのため、式(14)によって示される条件によってSC割当計算が必要以上に継続されてしまうことを抑制することができる。
このように構成された第2実施形態のPONシステム100は、各ONU−kが一定時間内に送受信可能な情報量を平準化しつつ、各ONU1の混雑度が公平になるようにSC割当計算を行うOLT2を備える。このような構成を備えることにより、ONU1とOLT2と間の距離が固定であるPONシステム100においてOFDMA方式を採用した場合に、各ONU1のフレームロス率を公平にすることができる。その結果、適応変調制御の適用によって得られるシステム全体でのスループット増大の恩恵を、トラフィック量の異なるONU1が公平に享受できるようになる。
<第3実施形態>
第2実施形態のPONシステム100では、OLT2は、OFDMAにおける帯域割当において、各ONU1が送受信する情報量を平準化しつつ、各ONU1のフレームロス率が公平となるようにサブキャリア数を決定した。しかしながら、各ONU1においてフレームロスが発生しておらず、帯域に十分な空きがある場合において混雑度を公平化した場合、トラフィック量の多いONU1には大きな帯域が割当てられ、トラフィック量が少ないONU1には小さな帯域が割当てられることとなり、各ONU1が送受信可能な情報量に不公平が生じてしまう可能性がある。そのため、大きなトラフィックがバースト的に発生すると、トラフィック量の少ないONU1において優先的にフレームロスが生じてしまう可能性がある。このような不公平は、入力トラフィック量の差に起因して生じる各ONU1の間の空き帯域の差によって、バースト的に生じる大きなトラフィックに対する処理能力(以下、「バースト処理能力」という。)が各ONU1で異なってしまうことが原因であると考えらえる。
そこで、第3実施形態のPONシステム100では、各ONU1において帯域に十分な空きがある場合、OLT2が、各ONU1における帯域の空き容量が公平となるようにSC割当計算を行う。これにより、各ONU1において帯域に十分な空きがある状況において、各ONU1のバースト処理能力に生じる不公平を抑制することができる。
具体的には、各ONU1−kにおける帯域の空き容量Zは、単位時間当たりに送受信可能な情報量Bと、入力トラフィック量Yとを用いて次の式(15)のように表される。
Figure 0006085383
ここで、OLT2は、各ONU1−kにおいて、入力トラフィック量に対して十分に大きな帯域の空き容量が確保されている場合、式(15)によって表される帯域の空き容量Zが各ONU1で等しくなるようにSC割当計算を行う。例えば、k=1、2、3、4とした場合、OLT2は、各ONU1−kの帯域の空き容量Zが次の式(16)に最も近づくように、各ONU1−kのSC数xを決定する。
Figure 0006085383
図4は、第3実施形態におけるSC割当計算の流れを示すフローチャートである。まず、SC割当部215が、式(15)によって帯域の空き容量Zを算出する(ステップS201)。SC割当部215は、ループ回数iをインクリメントし、空き容量Zの公平性を表す第1のフェアネスインデックスf(i)を式(8)によって算出する(ステップS202)。なお、ループ回数iは、フローチャートの開始時において予め1に初期化される。
続いて、SC割当部215は、空き容量Zが最大値をとるkをk_maxとして算出し、空き容量Zが最小値をとるkをk_minとして算出する(ステップS203)。
SC割当部215は、ONU1−k_maxに割り当てられたSC数xk_maxを1減少させ、減少分のSC数1をONU1−k_minのSC数xk_minに追加する(ステップS204)。具体的には、この操作は式(17)及び式(18)によって表される。
Figure 0006085383
Figure 0006085383
続いて、SC割当部215は、Zの公平性を表す第2のフェアネスインデックスf(i)を式(11)によって算出する(ステップS205)。
SC割当部215は、この時点における各ONU1−kのSC数x、各ONU1−kが単位時間当たりに送信可能な情報量B、第1のフェアネスインデックスf(i)及び第2のフェアネスインデックスf(i)が、式(12)、式(13)及び式(14)を満たすか否かを判定する(ステップS206)。
ステップS206において上記3つの条件が満たされた場合(ステップS206−YES)、SC割当部215は、ステップS104において算出されたx_max及びx_minを対応するMAP部233−kに設定する(ステップS207)。そして、SC割当部215は、ステップS201に処理を戻し、さらなるフェアネスインデックスの改善のためにステップS201〜S206の処理を繰り返し実行する。一方、ステップS206において上記3つの条件のうちのいずれかの条件が満たされない場合(ステップS206−NO)、SC割当部215はSC割当計算を終了する。
このように構成された第3実施形態のPONシステム100は、各ONU−kが一定時間内に送受信可能な情報量を平準化しつつ、各ONU1の帯域の空き容量が公平になるようにSC割当計算を行うOLT2を備える。このような構成を備えることにより、ONU1とOLT2と間の距離が固定であるPONシステム100においてOFDMA方式を採用した場合に、各ONU1のバースト処理能力を公平にすることができる。その結果、適応変調制御の適用によって得られるシステム全体でのスループット増大の恩恵を、トラフィック量の異なるONU1が公平に享受できるようになる。
<第4実施形態>
第4実施形態のPONシステム100では、全てのONU1におけるトラフィック量の総和(以下、「総トラフィック量」という。)に応じて、混雑度を公平にするSC割当計算又は空き帯域を公平にするSC割当計算のいずれかを選択して実行する。
具体的には、OLT2は、総トラフィック量が所定の閾値を超過したか否かの判定結果に基づいて、いずれのSC割当計算を実行するかを判断する。この場合の判定条件は、次の式(19)によって表される。
Figure 0006085383
式(19)においてHは総トラフィック量を表し、Hは総トラフィック量の閾値を表す。OLT2は、式(19)が満たされる場合には混雑度を公平にするSC割当計算を選択し、式(19)が満たされない場合には空き帯域を公平にするSC割当計算を選択する。
図5は、第4実施形態におけるSC割当計算の流れを示すフローチャートである。まず、SC割当部215は、式(19)により、総トラフィック量Hが閾値Hを超過しているか否かを判定する(ステップS301)。総トラフィック量Hが閾値Hを超過している場合(ステップS301−YES)、SC割当部215は、混雑度Zを算出し(ステップS302)、ステップS304〜S309を実行する。ステップS302、S304〜S309は、第2実施形態におけるSC割当計算の流れ(ステップS101〜S107)と同様である。これにより、SC割当部215は、総トラフィック量Hが閾値Hを超過している場合には、混雑度を公平にするSC割当計算を実行する。
一方、総トラフィック量Hが閾値H以下である場合(ステップS301−NO)、SC割当部215は、空き帯域Zを算出し(ステップS303)、ステップS310〜S312を実行する。ステップS303、S310〜S312は、第3実施形態におけるSC割当計算の流れ(ステップS201〜S204)と同様である。これにより、SC割当部215は、総トラフィック量Hが閾値H以下である場合には、空き帯域を公平にするSC割当計算を実行する。
このように構成された第4実施形態のPONシステム100は、空き帯域が十分に確保されていない状況では混雑度を公平にするSC割当計算を実行し、空き帯域が十分に確保されている状況では空き帯域を公平にするSC割当計算を実行するOLT2を備える。このような構成を備えることにより、ONU1とOLT2と間の距離が固定であるPONシステム100においてOFDMA方式を採用した場合に、各ONU1のフレームロス率を公平にするとともに、各ONU1のバースト処理能力を公平にすることができる。その結果、適応変調制御の適用によって得られるシステム全体でのスループット増大の恩恵を、トラフィック量の異なるONU1が公平に享受できるようになる。
<第5実施形態>
第1〜第4実施形態のPONシステム100では、各ONU1はOLT2との間における光信号の強度の減衰や波長分散量に応じてシンボル速度s及び変調多値数mを決定した。一方で、OFDMAを適用したPONシステム100において、ONU1−kはOLT2のSC割当計算によって割り当てられた周波数帯域を占有して信号を送信する。ここで、シンボル速度s、変調多値数mが等しい複数のONU1に対して同一の周波数帯域を割り当て、さらに同一の周波数帯域を割り当てた複数のONU1宛ての信号を時分割多重で送信することにより、時間及び周波数帯域の両方での多重化を実現することができる。このような多重化を行うことにより、第5実施形態のPONシステム100では、SCの割り当てのみによる帯域割当よりも粒度の細かい帯域割当が可能となり、帯域をより有効に活用することができる。
図6は、第5実施形態のPONシステム100aの構成例を示す図である。PONシステム100aは、OLT2との間の距離が近しいONU1で構成される複数のONU群200−1〜200−4と、これらの各ONU群200を収容するOLT2とを備える。PONシステム100aは、複数のONU群200とOLT2との間の光信号の送受信をOFDM及びTDMで多重化するOFDMA/TDMA−PONシステムである。以下では簡単のため、各ONU群200−k(k=1、2、3、4)にはj(j=1、2、…、J)台のONU1が含まれると仮定する。また、ONU群200−kに含まれるj台目のONU1をONU1−k−jと記載する。
ONU群200−kに含まれるONU1(ONU1−k−1〜ONU1−k−J)には、同じシンボル速度s及び変調多値数mが割り当てられる。よって、ONU群200−kに含まれるONU1が単位時間あたりに送信できる情報量は式(1)で表される。ONU群200−kに含まれるONU1には、同一帯域が時分割多重によって公平に分割される。
ここで、単位時間内に送受信可能な情報量をONU群200の単位で等しくするためには、OLT2は、第1実施形態と同様の方法で、各ONU群200−kに割り当てるSC数xを式(4)が満たされるように決定すればよい。また、単位時間内の混雑度をONU群200の単位で等しくするためには、OLT2は、第2実施形態と同様の方法で、各ONU群200−kに割り当てるSC数xを式(7)が満たされるように決定すればよい。
また、帯域の空き容量をONU群200の単位で等しくするためには、OLT2は、第3実施形態と同様の方法で、各ONU群200−kに割り当てるSC数xを式(16)が満たされるように決定すればよい。この場合、各ONU群200−kにおける総トラフィック量Yは、上位ネットワークからONU1−k−1〜ONU1−k−Jへの下り通信のトラフィック量の総和や、各ONU1−k−jに収容されるユーザ端末の上り通信のトラフィック量の総和とすればよい。
このように構成された第5実施形態のPONシステム100aは、自装置との間の距離が近しいONU1で構成されるONU群200のそれぞれに割り当てる周波数帯域を、各ONU群200の単位で実質情報量が公平になるように決定するとともに、各ONU群200に割り当てた周波数帯域を公平に時分割して各ONU群200のONU1に割り当てるOLT2を備える。このような構成を備えることにより、ONU1とOLT2と間の距離が固定であるPONシステム100において、適応変調制御の適用によって得られるシステム全体でのスループット増大の恩恵を、システム内の全ONU1が公平に享受できるようになる。
<変形例>
上述した実施形態におけるOLT2をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
本発明は、ONUとOLTと間の距離が固定であるPONシステムに適用可能である。
100,100a…PON(Passive Optical Network)システム、101…光ファイバ伝送路、102…光合分波手段、1,1−1〜1−4,1−1−1〜1−4−J…ONU(Optical Network Unit)、2…OLT(Optical Line Terminal)、21…OLT送信器媒体アクセス制御部(OLT−Tx−MAC:Optical Line Terminal - Transmitter - Media Access Control)、211…信号分離部(DEMUX:De-multiplexer)、212,212−1〜212−4…SHP部、213…信号多重部(MUX:Multiplexer)、214…PON−MAC部、215…SC(Sub-carrier)割当部、22…OLT送信器物理符号化副層(OLT−Tx−PCS:Optical Line Terminal - Transmitter - Physical Coding Sublayer)、221…信号分離部(DEMUX)、222,222−1〜222−4…PCS部、223…信号多重部(MUX)、23…OLT送信器物理媒体依存部(OLT−Tx−PMD:Optical Line Terminal - Transmitter - Physical Medium Dependent)、231…信号分離部(DEMUX)、232…SC割当制御部、233,233−1〜233−4…MAP部、234…逆フーリエ変換部(IFFT:Inverse Fast Fourier Transform)、235…電気−光変換(E/O)部、200,200−1〜200−4…ONU群

Claims (1)

  1. ユーザ端末を収容する複数の加入者側終端装置と、光ファイバ伝送路を介して前記複数の加入者用装置との間で光信号を送受信する局側終端装置とを備え、前記局側終端装置は、前記ユーザ端末ごとに異なる帯域に割り当てられる一以上のサブキャリアを前記ユーザ端末ごとのシンボルレート及び変調多値数で変調し、前記ユーザ端末ごとに変調された光信号を多重化して送信し、前記加入者側終端装置は、前記局側終端装置から多重化され送信された光信号から自装置が収容するユーザ端末のサブキャリアを復調する通信システムであって、
    前記局側終端装置は、
    前記ユーザ端末が単位時間当たりに送受信可能な情報量が前記ユーザ端末間で等しくなるように、各ユーザ端末に割り当てるサブキャリア数を決定する帯域割当部を備え、
    前記帯域割当部は、
    システム全体の総トラフィック量が所定の閾値を越える場合には、前記ユーザ端末のトラフィック量と、前記ユーザ端末が単位時間当たりに送受信可能な情報量との比が前記ユーザ端末間で等しくなるように、各ユーザ端末に割り当てるサブキャリア数を決定し、
    システム全体の総トラフィック量が所定の閾値以下である場合には、前記ユーザ端末が単位時間当たりに送受信可能な情報量と、前記ユーザ端末のトラフィック量との差が前記ユーザ端末間で等しくなるように、各ユーザ端末に割り当てるサブキャリア数を決定する、
    通信システム。
JP2016039372A 2016-03-01 2016-03-01 通信システム Active JP6085383B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016039372A JP6085383B1 (ja) 2016-03-01 2016-03-01 通信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016039372A JP6085383B1 (ja) 2016-03-01 2016-03-01 通信システム

Publications (2)

Publication Number Publication Date
JP6085383B1 true JP6085383B1 (ja) 2017-02-22
JP2017158031A JP2017158031A (ja) 2017-09-07

Family

ID=58095286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016039372A Active JP6085383B1 (ja) 2016-03-01 2016-03-01 通信システム

Country Status (1)

Country Link
JP (1) JP6085383B1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022014092A (ja) 2020-07-06 2022-01-19 富士通株式会社 光伝送装置および光伝送方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137073A1 (ja) * 2009-05-28 2010-12-02 富士通テレコムネットワークス株式会社 Ponシステム、ponシステムにおける局側装置およびその制御方法
WO2013136512A1 (ja) * 2012-03-16 2013-09-19 富士通株式会社 光送信装置および光送信方法
JP2014120788A (ja) * 2012-12-13 2014-06-30 Nippon Telegr & Teleph Corp <Ntt> 通信システム及び通信システムの制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137073A1 (ja) * 2009-05-28 2010-12-02 富士通テレコムネットワークス株式会社 Ponシステム、ponシステムにおける局側装置およびその制御方法
WO2013136512A1 (ja) * 2012-03-16 2013-09-19 富士通株式会社 光送信装置および光送信方法
JP2014120788A (ja) * 2012-12-13 2014-06-30 Nippon Telegr & Teleph Corp <Ntt> 通信システム及び通信システムの制御方法

Also Published As

Publication number Publication date
JP2017158031A (ja) 2017-09-07

Similar Documents

Publication Publication Date Title
EP3043496B1 (en) Device and method for transmitting multicarrier signals
Anagnostopoulos et al. Dynamic operation of flexi-grid OFDM-based networks
KR20080073216A (ko) 무선 통신 시스템에서의 기준 신호 생성 방법 및 장치
CN109756292B (zh) 无源光网络***,数据传输方法、装置
EP2399356A2 (en) Output demultiplexing for dynamic bandwidth allocation in passive optical networks
CN111698581B (zh) 用于在无源光网络中控制突发的上游传输的设备和方法
JP2012175269A (ja) 動的帯域割当方法及び光通信ネットワーク
Zhu et al. Multi-path fragmentation-aware advance reservation provisioning in elastic optical networks
KR20140112903A (ko) 다파장 광통신시스템에서 상향 전송 파장 할당 장치 및 방법
KR20130093788A (ko) Ofdma-pon 기반의 tdma-pon 서비스를 위한 융합 수동형 광가입자망
KR20140099275A (ko) 파장 대역 할당 방법
CN108141403B (zh) 中继传输***、中继传输方法以及中继传输装置
JP6079909B1 (ja) 局舎端末、光ネットワーク及び帯域割当方法
JP4969367B2 (ja) 動的帯域割当方法、光端局装置、動的帯域割当プログラム
JP5815499B2 (ja) 通信システム及び通信システムの制御方法
JP6085383B1 (ja) 通信システム
US20140219659A1 (en) Method of allocating upstream bandwidth resource and method of transmitting upstream data in orthogonal frequency division multiple access-open optical subscriber network
JP5692344B1 (ja) 局舎端末、光アクセスネットワーク及び通信方法
JP6852957B2 (ja) 加入者側光終端装置
KR20150062710A (ko) 직교 주파수 분할 다중화 방식의 수동형 광가입자망에서 광종단장치의 부반송파 할당 방법 및 이를 지원하는 장치
JP5935915B1 (ja) 通信装置、光ネットワーク及び通信方法
JP6451753B2 (ja) 局舎端末、光ネットワーク及び帯域割当方法
JP6461765B2 (ja) 端局装置及び帯域割当方法
KR102201238B1 (ko) 직교 주파수 분할 다중접속 수동형 광 네트워크, 및 그 네트워크의 상향 대역폭 자원할당방법
JP5900677B1 (ja) 通信装置、光ネットワーク及び通信方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170127

R150 Certificate of patent or registration of utility model

Ref document number: 6085383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150