JP6082645B2 - Friction material - Google Patents

Friction material Download PDF

Info

Publication number
JP6082645B2
JP6082645B2 JP2013084870A JP2013084870A JP6082645B2 JP 6082645 B2 JP6082645 B2 JP 6082645B2 JP 2013084870 A JP2013084870 A JP 2013084870A JP 2013084870 A JP2013084870 A JP 2013084870A JP 6082645 B2 JP6082645 B2 JP 6082645B2
Authority
JP
Japan
Prior art keywords
friction material
weight
epoxy compound
friction
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013084870A
Other languages
Japanese (ja)
Other versions
JP2013241575A (en
Inventor
元樹 長瀬
元樹 長瀬
弘至 土倉
弘至 土倉
木村 俊彦
俊彦 木村
優也 岩下
優也 岩下
中林 伊織
伊織 中林
宮内 理治
理治 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Toray Industries Inc
Original Assignee
Du Pont Toray Co Ltd
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd, Toray Industries Inc filed Critical Du Pont Toray Co Ltd
Priority to JP2013084870A priority Critical patent/JP6082645B2/en
Publication of JP2013241575A publication Critical patent/JP2013241575A/en
Application granted granted Critical
Publication of JP6082645B2 publication Critical patent/JP6082645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Gears, Cams (AREA)
  • Braking Arrangements (AREA)
  • Sliding-Contact Bearings (AREA)

Description

本発明は、自動車等のクラッチ板、ブレーキ板、産業機械や車両等のワッシャー、ギアー、軸及び軸受けに好適に使用される耐久性に優れた摩擦材料に関する。   The present invention relates to a friction material excellent in durability, which is suitably used for a clutch plate, a brake plate of an automobile or the like, a washer, a gear, a shaft and a bearing of an industrial machine or a vehicle.

摩擦材料は、大きな摩擦抵抗により駆動側の力を被駆動側に伝達したり、動いている物体を安全に停止させたりすることを目的として用いられ、具体的な用途としては、自動車等のクラッチ板やブレーキ板に使用される。一方、小さな摩擦抵抗により動いている物体を、より滑らかに滑らせたりすることを目的としても用いられ、具体的な用途としては、車両等のワッシャー、ギアー、軸及び軸受け等に使用される。   The friction material is used for the purpose of transmitting the driving force to the driven side with a large frictional resistance or for stopping the moving object safely. Used for plates and brake plates. On the other hand, it is also used for the purpose of sliding an object moving with a small frictional resistance more smoothly, and as a specific application, it is used for a washer, a gear, a shaft and a bearing of a vehicle or the like.

前者の摩擦材料は燒結金属等の金属摩擦材料と、有機繊維等から構成される有機質摩擦材料とがあり、自動車用自動変速機の湿式多板クラッチの摩擦材料として、殆どが有機質摩擦材料であり、ペーパー摩擦材料と呼ばれる摩擦材料が主に使用されている。一方、後者では、有機繊維等から構成される有機質摩擦材料であり、ペーパー摩擦材料と呼ばれる樹脂含浸の摩擦材料が主に使用されている。   The former friction materials include metal friction materials such as sintered metals and organic friction materials composed of organic fibers, etc., and most of them are organic friction materials as friction materials for wet multi-plate clutches in automatic transmissions for automobiles. A friction material called a paper friction material is mainly used. On the other hand, the latter is an organic friction material composed of organic fibers and the like, and a resin-impregnated friction material called a paper friction material is mainly used.

このような材料としては、アラミド繊維(東レ・デュポン社のケブラー(登録商標)、テイジン・アラミド社のトワロン(登録商標)等)を水中に分散させた後に抄紙し、乾燥後にフェノール樹脂等の熱硬化性樹脂を含浸させ、加熱・加圧成形することで製造されるものがあり、これは摩擦耐久性に優れた摩擦材料である。   As such materials, aramid fibers (Kevlar (registered trademark) of Toray DuPont, Twaron (registered trademark) of Teijin Aramid, etc.) are dispersed in water, paper is made, and after drying, heat such as phenol resin is used. Some are manufactured by impregnating a curable resin, followed by heating and pressure molding, and this is a friction material having excellent friction durability.

ペーパー摩擦材料では、耐熱性と強度に優れたアラミド繊維が表層一面に存在した樹脂成形体とすることにより、滑らかな摩擦特性を発揮することができる。ところが、近年の自動車業界においては、省エネルギー化、軽量化の追求により、各種使用部品の軽量化及び高効率化が進められている一方、エンジンは高回転、高出力化の傾向にあり、自動車用のワッシャー、ギアー、軸及び軸受けにおいても、自動車エンジンの高回転、高出力化に対応すべく、ペーパー摩擦材料に対して強度や耐熱性、摩擦低減の更なる改善が求められている。   In the paper friction material, smooth friction characteristics can be exhibited by using a resin molded body in which an aramid fiber excellent in heat resistance and strength exists on one surface. However, in recent years, in the automobile industry, various parts used have been made lighter and more efficient by pursuing energy saving and lighter weight. On the other hand, the engine tends to have higher speed and higher output. As for the washer, gear, shaft and bearing, further improvement in strength, heat resistance and friction reduction is required for the paper friction material in order to cope with high rotation and high output of the automobile engine.

そこで、バインダー的作用のある耐熱性非晶質含水アラミドフィブリッドを、高度にフィブリル化したアラミドパルプと共に水に分散させてスラリーとし、抄造することにより得た紙状物を乾燥・熱プレスすることにより、結合樹脂の含浸量を減らし、耐熱性の高い湿式摩擦材料とすることが開示されている(特許文献1参照)。しかしながら、この方法では、非晶質含水アラミドフィブリッドが微小であることから、抄造時にワイヤーメッシュの目詰まりが生じ、濾水時間が長くなる等の問題があり、また、高密度の紙状物となるために結合樹脂の含浸が不均一となり、強度及び耐久性面での課題がある。   Then, heat-resistant amorphous water-containing aramid fibrids that act as a binder are dispersed in water together with highly fibrillated aramid pulp to form a slurry, and paper-like materials obtained by papermaking are dried and hot pressed. Thus, it is disclosed that a wet friction material with high heat resistance is obtained by reducing the amount of impregnation of the binding resin (see Patent Document 1). However, in this method, since the amorphous hydrous aramid fibrids are minute, there are problems such as clogging of the wire mesh at the time of papermaking and a long drainage time, and a high density paper-like material. Therefore, the impregnation of the binder resin becomes non-uniform, and there are problems in terms of strength and durability.

一方で、紙状物の繊維状材料であるアラミド繊維と、フェノール樹脂等との接着性を向上させることで、アラミド繊維本来の耐熱性、耐摩耗性及び耐久性を生かす工夫もなされている(特許文献2〜4参照)。   On the other hand, by improving the adhesion between the aramid fiber, which is a fibrous material of paper-like material, and phenol resin, etc., a device that makes use of the heat resistance, wear resistance, and durability inherent in the aramid fiber has been made ( (See Patent Documents 2 to 4).

特許文献2、3には、水系エポキシ樹脂エマルジョン中にアラミドパルプを分散させ、次いで濾別、脱水することにより、エポキシ樹脂により表面処理されたアラミドパルプを製造し、これを用いて湿式摩擦材料を製造することにより、フェノール樹脂との接着性、無機粒子の保持性に優れる製品が得られることが開示されている。しかしながら、湿式抄紙時に、表面処理したエポキシ樹脂が水中に溶出し、抄紙排水のCOD値が高くなるため環境面で課題がある。   In Patent Documents 2 and 3, aramid pulp is dispersed in an aqueous epoxy resin emulsion, then filtered and dehydrated to produce an aramid pulp surface-treated with an epoxy resin, and a wet friction material is produced using the aramid pulp. It is disclosed that a product excellent in adhesiveness with a phenol resin and retention of inorganic particles can be obtained by manufacturing. However, when wet papermaking, the surface-treated epoxy resin elutes in water, and the COD value of papermaking wastewater becomes high, so that there is an environmental problem.

特許文献4には、水分率15重量%以上のアラミド繊維を、エポキシ又はウレタン系バインダーで、あるいはそれらとシランカップリング剤との併用で、アラミド繊維の表面及び内部を処理した処理繊維と、メタ系アラミド繊維パルプとを用いて作製した紙に、フェノール樹脂を含浸した後、加熱硬化させることにより、未処理繊維を用いた場合よりも引張強度が向上することが開示されている。この方法によれば、抄紙排水のCOD値の問題は解消される。しかしながら、この処理繊維は水分散性が悪いため、処理繊維とメタ系アラミド繊維パルプとが不均一な状態で存在する紙状物となり、結合樹脂の含浸が不均一になることで、強度及び耐久性面で課題がある。   Patent Document 4 discloses that an aramid fiber having a moisture content of 15% by weight or more is treated with an epoxy or urethane-based binder, or a combination of these and a silane coupling agent, and a treated fiber obtained by treating the surface and the inside of an aramid fiber. It is disclosed that the tensile strength is improved as compared with the case of using untreated fibers by impregnating a phenol resin with a paper produced using a system aramid fiber pulp, followed by heat curing. According to this method, the problem of the COD value of papermaking waste water is solved. However, since this treated fiber has poor water dispersibility, the treated fiber and meta-aramid fiber pulp become a paper-like material that exists in a non-uniform state, and the impregnation of the binder resin becomes non-uniform, resulting in strength and durability. There is a problem in terms of sex.

特開2007−246590号公報(特許請求の範囲)JP 2007-246590 A (Claims) 特開平6−166984号公報(特許請求の範囲、[0009]等)JP-A-6-166984 (Claims, [0009], etc.) 特開平7−243175号公報(特許請求の範囲)JP-A-7-243175 (Claims) 特開2004−092906号公報(特許請求の範囲)JP 2004092906 (Claims)

本発明の目的は、環境にやさしく、フェノール樹脂等の熱硬化性樹脂の浸透性及び接着性が良好で、強度、耐熱性、低摩擦特性に優れる摩擦材料を提供することにある。   An object of the present invention is to provide a friction material that is environmentally friendly, has good permeability and adhesion of thermosetting resins such as phenolic resins, and is excellent in strength, heat resistance, and low friction characteristics.

本発明は上記課題を解決するため、次の手段をとるものである。   In order to solve the above problems, the present invention takes the following means.

(1)水分率15〜200重量%に調整されたポリパラフェニレンテレフタルアミド繊維骨格内に、硬化性エポキシ化合物および必要に応じて硬化剤を浸透・含浸させると共に、下記一般式(I)で表される相溶化剤を、前記硬化性エポキシ化合物との合計量として0.1重量%以上10.0重量%以下、浸透・含浸させてなるポリパラフェニレンテレフタルアミド繊維複合体を、繊維状材料として含むことを特徴とする摩擦材料。
(1) the moisture content from 15 to 200 wt% to adjust the polyparaphenylene terephthalamide fibers in the backbone, the curable epoxy compound and a curing agent optionally infiltrated-impregnated Rutotomoni, the following general formula (I) A polyparaphenylene terephthalamide fiber composite obtained by impregnating and impregnating the compatibilizing agent represented in a total amount of 0.1% by weight to 10.0% by weight with the curable epoxy compound as a fibrous material A friction material characterized by including as

(式中、R(Wherein R 1 は炭素原子数1〜10のアルキル基、または炭素原子数1〜10のアルケニル基であり、RIs an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 1 to 10 carbon atoms, and R 2 は水素原子、または炭素原子数1〜5のアルキル基または炭素原子数1〜5のアルケニル基を示す。また、Aは炭素原子数2〜4のアルキレン基を、nはオキシアルキレン基(AO)の平均付加モル数を表す1〜10の整数である。なお、−(AO)−においては、同一のオキシアルキレン基が付加していても、2種類以上のオキシアルキレン基が付加していてもよい。)Represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkenyl group having 1 to 5 carbon atoms. A is an alkylene group having 2 to 4 carbon atoms, and n is an integer of 1 to 10 representing the average added mole number of an oxyalkylene group (AO). In-(AO)-, the same oxyalkylene group may be added, or two or more oxyalkylene groups may be added. )

)硬化性エポキシ化合物が、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテルから選ばれる1種類または、2種類以上の混合物である、前記(1)に記載の摩擦材料。
(2) a curable epoxy compound, glycerol diglycidyl ether, glycerol triglycidyl ether, sorbitol polyglycidyl ether, one selected from polyglycerol polyglycidyl ether or a mixture of two or more, according to the above (1) Friction material.

)記載の硬化性エポキシ化合物が、ビスフェノール型エポキシ樹脂である、前記(1)に摩擦材料。
( 3 ) The friction material according to (1) , wherein the curable epoxy compound according to ( 3 ) is a bisphenol type epoxy resin.

)前記(1)〜()のいずれかに記載のポリパラフェニレンテレフタルアミド繊維複合体を切断してなる短繊維を繊維状材料として含み、該繊維状材料を用い湿式抄造により得られる紙状物に、熱硬化性樹脂としてフェノール樹脂を重量比で30%以上70%以下含浸させたことを特徴とする摩擦材料。
( 4 ) A short fiber obtained by cutting the polyparaphenylene terephthalamide fiber composite according to any one of (1) to ( 3 ) is included as a fibrous material, and obtained by wet papermaking using the fibrous material. A friction material, wherein a paper-like material is impregnated with a phenol resin as a thermosetting resin in a weight ratio of 30% to 70%.

)JIS法K7218に記載の限界PV値(kPa・m/s)が450以上1,000以下である前記(1)〜()のいずれかに記載の摩擦材料。
( 5 ) The friction material according to any one of (1) to ( 4 ), wherein a limit PV value (kPa · m / s) described in JIS method K7218 is 450 or more and 1,000 or less.

)前記(1)〜()いずれかに記載の摩擦材料を用いたワッシャー。
( 6 ) A washer using the friction material according to any one of (1) to ( 5 ).

)前記(1)〜()のいずれかに記載の摩擦材料を用いたギアー。
( 7 ) A gear using the friction material according to any one of (1) to ( 5 ).

)前記(1)〜()のいずれかに記載の摩擦材料を用いた軸及び軸受け。
( 8 ) A shaft and a bearing using the friction material according to any one of (1) to ( 5 ).

)前記(1)〜()のいずれかに記載の摩擦材料を用いたクラッチ板。
( 9 ) A clutch plate using the friction material according to any one of (1) to ( 5 ).

10)前記(1)〜()のいずれかに記載の摩擦材料を用いたブレーキ板。
( 10 ) A brake plate using the friction material according to any one of (1) to ( 5 ).

本発明の摩擦材料を構成する繊維状材料は、硬化性エポキシ化合物と必要に応じて相溶化剤をポリパラフェニレンテレフタルアミド繊維骨格内に浸透・含浸させた繊維複合体を含むため、抄紙排水のCOD値が低く、また、湿式抄造した紙状物に熱硬化性樹脂を含浸させたプリプレグは、耐熱性、強度及び低摩耗特性に優れている。そのため、車両及び産業用機械のワッシャー、ギアー、軸及び軸受け、クラッチ板、ブレーキ板に好適な、自動車エンジンの高回転や高出力化にも対応できる高強度、高耐熱性、低摩擦特性を有する耐久性に優れた摩擦材料を提供できる。   The fibrous material constituting the friction material of the present invention includes a fiber composite in which a curable epoxy compound and a compatibilizer as necessary are impregnated and impregnated into the polyparaphenylene terephthalamide fiber skeleton. A prepreg obtained by impregnating a thermosetting resin with a paper-like product made by wet papermaking has a low COD value and is excellent in heat resistance, strength, and low wear characteristics. Therefore, it is suitable for washers, gears, shafts and bearings, clutch plates and brake plates for vehicles and industrial machines, and has high strength, high heat resistance, and low friction characteristics that can cope with high rotation and high output of automobile engines. A friction material with excellent durability can be provided.

摩擦材料のPV値と相手材減量体積との関係を示すグラフ。The graph which shows the relationship between PV value of a friction material, and a counterpart material weight loss volume. 摩擦材料のPV値と相手材温度との関係を示すグラフ。The graph which shows the relationship between PV value of a friction material, and a counterpart material temperature.

以下、本発明の摩擦材料について詳細に説明する。
本発明の摩擦材料は、水分率15〜200重量%に調整されたポリパラフェニレンテレフタルアミド繊維骨格内に、硬化性エポキシ化合物および必要に応じて硬化剤を更には下記一般式(I)で表される相溶化剤を合計0.1重量%以上10.0重量%以下を、浸透・含浸させてなるポリパラフェニレンテレフタルアミド繊維複合体を、繊維状材料として含むものである。
Hereinafter, the friction material of the present invention will be described in detail.
In the friction material of the present invention, a curable epoxy compound and, if necessary, a curing agent are further represented by the following general formula (I) in a polyparaphenylene terephthalamide fiber skeleton adjusted to a moisture content of 15 to 200% by weight. A polyparaphenylene terephthalamide fiber composite obtained by impregnating and impregnating a total of 0.1% by weight or more and 10.0% by weight or less of the compatibilizer is included as a fibrous material.

本発明におけるポリパラフェニレンテレフタルアミド(以下、「PPTA」称する。)とは、テレフタル酸とパラフェニレンジアミンを重縮合して得られる重合体であるが、少量のジカルボン酸及びジアミンを共重合したものも使用することができ、得られる重合体又は共重合体の数平均分子量は通常20,000〜25,000の範囲内が好ましい。   In the present invention, polyparaphenylene terephthalamide (hereinafter referred to as “PPTA”) is a polymer obtained by polycondensation of terephthalic acid and paraphenylene diamine, which is obtained by copolymerizing a small amount of dicarboxylic acid and diamine. The number average molecular weight of the resulting polymer or copolymer is usually preferably in the range of 20,000 to 25,000.

PPTA繊維の製造方法の代表例としては、PPTAを濃硫酸に溶解して、18〜20重量%の粘調な溶液とし、これを紡糸口金から吐出して、わずかの間空気中に紡出後、水中へ紡糸する。この時、口金吐出時のせん断速度を25,000〜50,000sec−1にするのが好ましい。その後、紡糸浴中で凝固した繊維を水酸化ナトリウム水溶液で中和処理した後、100〜150℃で、好ましくは20秒間以下熱処理することにより、水分率が15〜200重量%の範囲内にあるPPTA繊維を調製することができる。 As a typical example of the production method of PPTA fiber, PPTA is dissolved in concentrated sulfuric acid to obtain a viscous solution of 18 to 20% by weight, and this is discharged from a spinneret and after being spun in air for a short time. Spin into water. At this time, it is preferable to set the shear rate during discharge of the die to 25,000 to 50,000 sec −1 . Thereafter, the fiber solidified in the spinning bath is neutralized with an aqueous sodium hydroxide solution and then heat-treated at 100 to 150 ° C., preferably 20 seconds or less, so that the moisture content is in the range of 15 to 200% by weight. PPTA fibers can be prepared.

硬化性エポキシ化合物は、脂肪族エポキシ化合物、芳香環を有するエポキシ化合物のいずれも使用でき、これらを併用することもできる。   As the curable epoxy compound, either an aliphatic epoxy compound or an epoxy compound having an aromatic ring can be used, and these can be used in combination.

脂肪族エポキシ化合物としては、グリセロール、ソルビトール、ポリグリセロールなどの多価アルコールのグリシジルエーテル化合物から選ばれる1種または、2種以上の混合物であることが好ましい。例えば、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテルなどが挙げられる。これらの中でも、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテルが特に好ましく用いられる。   The aliphatic epoxy compound is preferably one or a mixture of two or more selected from glycidyl ether compounds of polyhydric alcohols such as glycerol, sorbitol, and polyglycerol. Examples thereof include glycerol diglycidyl ether, glycerol triglycidyl ether, polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, trimethylolpropane polyglycidyl ether, pentaerythritol polyglycidyl ether, and the like. Among these, glycerol diglycidyl ether, glycerol triglycidyl ether, sorbitol polyglycidyl ether, and polyglycerol polyglycidyl ether are particularly preferably used.

芳香環を有するエポキシ化合物としては、ビスフェノール型エポキシ樹脂から選ばれる1種または、2種以上の混合物であることが好ましい。例えば、ビス(4−ヒドロキシフェニル)メタン[ビスフェノールF]、2,2−ビス(4−ヒドロキシフェニル)プロパン[ビスフェノールA]、2,2−ビス(3−メチル−4−ヒドロキシフェニル)プロパン[ビスフェノールC]などのグリシジルエーテル化物が挙げられる。これらの中でも、常温で液状の、ビスフェノールA、ビスフェノールFのグリシジルエーテル化物が特に好ましく用いられる。   The epoxy compound having an aromatic ring is preferably one or a mixture of two or more selected from bisphenol type epoxy resins. For example, bis (4-hydroxyphenyl) methane [bisphenol F], 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], 2,2-bis (3-methyl-4-hydroxyphenyl) propane [bisphenol C] and the like. Among these, glycidyl etherified products of bisphenol A and bisphenol F that are liquid at room temperature are particularly preferably used.

硬化剤としては、アミン化合物が好ましく、三級アミン化合物が特に好ましい。例えば、ジメチルオクチルアミン、ジメチルデシルアミン、ジメチルラウリルアミンや、脂肪族一級アミンにエチレンオキサイドを付加した長鎖アルキルポリオキシエチレン型三級アミンなどが挙げられる。   As the curing agent, an amine compound is preferable, and a tertiary amine compound is particularly preferable. Examples thereof include dimethyloctylamine, dimethyldecylamine, dimethyllaurylamine, and long-chain alkylpolyoxyethylene type tertiary amine obtained by adding ethylene oxide to an aliphatic primary amine.

相溶化剤は、下記一般式(I)で表されるグリコールエーテル系化合物が好ましく用いられる。Rの炭素原子数が大きくなると、水溶性が低下するため水分率の高いPPTA繊維に浸透・含浸し難くなる。nが大きくなると、高分子量化することによりPPTA繊維に浸透・含浸し難くなる。相溶化剤は、硬化性エポキシ化合物よりも親水性の化合物であることが望ましい。 As the compatibilizer, a glycol ether compound represented by the following general formula (I) is preferably used. When the number of carbon atoms in R 1 is increased, water solubility is lowered, so that it is difficult to penetrate and impregnate PPTA fibers having a high moisture content. When n becomes large, it becomes difficult to penetrate and impregnate PPTA fibers by increasing the molecular weight. The compatibilizer is preferably a hydrophilic compound rather than a curable epoxy compound.

上記一般式(I)において、Rは炭素原子数1〜10、好ましくは炭素原子数4〜8のアルキル基またはアルケニル基であり、R は水素原子、または炭素原子数1〜5のアルキル基または炭素原子数1〜5のアルケニル基を示す。好ましくは、R は水素原子である。また、Aは炭素原子数2〜4のアルキレン基、好ましくは炭素原子数2〜3のアルキレン基であり、nはオキシアルキレン基(AO)の平均付加モル数を表す1〜10の整数、好ましくは2〜8である。なお、−(AO)−においては、同一のオキシアルキレン基が付加していても、2種類以上のオキシアルキレン基が付加していてもよい。 In the general formula (I), R 1 is an alkyl group or alkenyl group having 1 to 10 carbon atoms, preferably 4 to 8 carbon atoms, and R 2 is a hydrogen atom or alkyl having 1 to 5 carbon atoms. A group or an alkenyl group having 1 to 5 carbon atoms; Preferably, R 2 is a hydrogen atom. A is an alkylene group having 2 to 4 carbon atoms, preferably an alkylene group having 2 to 3 carbon atoms, and n is an integer of 1 to 10 representing the average number of moles added of the oxyalkylene group (AO), preferably Is 2-8. In-(AO)-, the same oxyalkylene group may be added, or two or more oxyalkylene groups may be added.

一般式(I)で示される化合物の具体例としては、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノ2−エチルヘキシルエーテル、ジプロピレングリコールモノブチルエーテル、ポリプロピレングリコール(n=3)グリセリルエーテルなどが挙げられる。グリコールエーテル系化合物は、それぞれ単独で使用してもよいし、2種類以上を適宜組み合わせて使用してもよい。   Specific examples of the compound represented by the general formula (I) include diethylene glycol monobutyl ether, diethylene glycol mono 2-ethylhexyl ether, dipropylene glycol monobutyl ether, polypropylene glycol (n = 3) glyceryl ether and the like. The glycol ether compounds may be used alone or in combination of two or more.

本発明のPPTA繊維複合体では、硬化性エポキシ化合物及び相溶化剤の繊維への含浸量は、これらの合計量として、好ましくは0.1重量%以上10.0重量%以下である。ここで、「含浸量」は、PPTA繊維の水分率を0%に換算したときの繊維重量に対する値である。望ましい含浸量は、それぞれ、0.1〜2.0重量%であり、特に好ましくは0.2〜1.0重量%である。   In the PPTA fiber composite of the present invention, the amount of impregnation into the fiber of the curable epoxy compound and the compatibilizer is preferably 0.1 wt% or more and 10.0 wt% or less as the total amount thereof. Here, the “impregnation amount” is a value relative to the fiber weight when the moisture content of the PPTA fiber is converted to 0%. Desirable amounts of impregnation are each 0.1 to 2.0% by weight, particularly preferably 0.2 to 1.0% by weight.

硬化剤を併用する場合、硬化剤の含浸量は0.02〜1.0重量%が好ましく、特に好ましくは0.04〜0.5重量%である。硬化性エポキシ化合物と硬化剤を浸透・含浸させたPPTA繊維複合体では、硬化剤の触媒効果により硬化性エポキシ化合物が反応しやすくなることで、より短時間で、後述する硬化性エポキシ化合物のエージングを終了することができる。   When a curing agent is used in combination, the impregnation amount of the curing agent is preferably 0.02 to 1.0% by weight, particularly preferably 0.04 to 0.5% by weight. In PPTA fiber composites that have been impregnated and impregnated with a curable epoxy compound and a curing agent, the curable epoxy compound is likely to react due to the catalytic effect of the curing agent, so that the aging of the curable epoxy compound described later can be performed in a shorter time. Can be terminated.

次に、PPTA繊維複合体の製造方法を詳細に説明する。
先ず、水分率が15〜200重量%の範囲内にあるPPTA繊維に、硬化性エポキシ化合物、硬化性エポキシ化合物と硬化剤、硬化性エポキシ化合物と相溶化剤、又は、硬化性エポキシ化合物と相溶化剤と硬化剤を付与し、PPTA繊維骨格内にこれらの薬剤を浸透・含浸させる。
Next, the manufacturing method of a PPTA fiber composite is demonstrated in detail.
First, PPTA fibers having a moisture content in the range of 15 to 200% by weight are compatibilized with a curable epoxy compound, a curable epoxy compound and a curing agent, a curable epoxy compound and a compatibilizing agent, or a curable epoxy compound. An agent and a curing agent are applied, and these agents are permeated and impregnated into the PPTA fiber skeleton.

薬剤を浸透・含浸させるPPTA繊維の水分率が15重量%以上の場合、平衡水分率よりも高い水分を含有する乾燥前の状態であるため、結晶サイズが比較的小さく、PPTA繊維結晶間の間隙が広いので、硬化性エポキシ化合物や相溶化剤を繊維骨格内に浸透・含浸させることが容易である。また、水分率が200重量%以下であれば、繊維の巻き出しや巻き取り操作も容易である。水分率が20〜50重量%の範囲内にあることが、より好ましい。   When the moisture content of the PPTA fiber to be infiltrated and impregnated with the drug is 15% by weight or more, the crystal size is relatively small because the moisture content is higher than the equilibrium moisture content, and the gap between the PPTA fiber crystals is relatively small. Therefore, it is easy to permeate and impregnate the fiber skeleton with a curable epoxy compound or a compatibilizing agent. Further, when the moisture content is 200% by weight or less, the fiber unwinding and winding operations are easy. It is more preferable that the moisture content is in the range of 20 to 50% by weight.

浸透・含浸させた後、乾燥して、PPTA繊維の水分率を15重量%未満、より好ましくは10重量%未満、更に好ましくは3〜10重量%の範囲内とし、繊維表面及び繊維内部に、硬化性エポキシ化合物のコーティング層、硬化性エポキシ化合物と相溶化剤のコーティング層、あるいは、硬化性エポキシ化合物と相溶化剤と硬化剤のコーティング層を形成する。   After impregnating and impregnating, the moisture content of the PPTA fiber is less than 15% by weight, more preferably less than 10% by weight, and still more preferably in the range of 3 to 10% by weight. A coating layer of a curable epoxy compound, a coating layer of a curable epoxy compound and a compatibilizing agent, or a coating layer of a curable epoxy compound, a compatibilizing agent and a curing agent is formed.

薬剤を浸透・含浸させたPPTA繊維複合体は、乾燥により繊維骨格内の水分を除去することで、繊維表面及び繊維内部に、エポキシ化合物や相溶化剤を強固に含浸させることができる。また、当該乾燥は、エポキシ化合物を硬化させるためのエージングの役割も果たす。その結果、PPTA繊維複合体を水中に分散させた場合(すなわち湿式抄造時)でも、含浸させた薬剤が水中に溶出するのを抑制できるので、抄紙排水のCOD値が高くなる恐れが無い。   The PPTA fiber composite impregnated and impregnated with a chemical agent can be impregnated with an epoxy compound or a compatibilizing agent firmly on the fiber surface and inside the fiber by removing moisture in the fiber skeleton by drying. The drying also serves as an aging for curing the epoxy compound. As a result, even when the PPTA fiber composite is dispersed in water (that is, during wet papermaking), it is possible to suppress the impregnated drug from eluting into the water, so that there is no possibility that the COD value of papermaking wastewater increases.

薬剤を浸透・含浸させたPPTA繊維複合体の乾燥は、任意の製造段階で実施することができ、例えば、水分率の高いPPTA繊維複合体を乾燥した後にボビンに巻き取る方法、水分率の高いPPTA繊維複合体を一旦ボビンに巻き取った後ボビンから巻き出して乾燥する方法、水分率の高いPPTA繊維複合体を巻き取ったボビンを乾燥条件下に曝す方法のいずれを採用してもよい。   The PPTA fiber composite impregnated with and impregnated with the drug can be dried at any production stage. For example, the PPTA fiber composite having a high water content is dried and wound on a bobbin, or the water content is high. Either a method in which the PPTA fiber composite is once wound around a bobbin and then unwound from the bobbin and dried, or a method in which the bobbin wound with the PPTA fiber composite having a high moisture content is exposed to dry conditions may be employed.

乾燥方法も、PPTA繊維の水分率を15重量%未満、より好ましくは10重量%未満にできる方法であれば、加熱乾燥(50〜300℃、好ましくは70〜250℃)、熱風乾燥、減圧乾燥、マイクロ波乾燥、高周波乾燥などを採用することができ、これらの方法を併用することもできる。   If the moisture content of the PPTA fiber is less than 15% by weight, more preferably less than 10% by weight, drying by heating (50 to 300 ° C., preferably 70 to 250 ° C.), hot air drying, reduced pressure drying is possible. Further, microwave drying, high-frequency drying, and the like can be employed, and these methods can be used in combination.

硬化性エポキシ化合物及び相溶化剤を、PPTA繊維に付与する場合は、予め、硬化性エポキシ化合物と相溶化剤を、硬化性エポキシ化合物/相溶化剤=2/8〜8/2(重量比)の割合で含有する薬剤原液を調製しておき、この薬剤原液を上記のPPTA繊維に付与し、薬剤を含浸・浸透させるのがよい。薬剤原液を水などの溶媒で希釈した薬剤希釈液を用いてもよい。硬化剤は、なくても反応は進行するが、用いる硬化性エポキシ化合物の特性、所望の反応速度などによっては、使用してもよい。   When the curable epoxy compound and the compatibilizer are applied to the PPTA fiber, the curable epoxy compound and the compatibilizer are preliminarily set to be curable epoxy compound / compatibilizer = 2/8 to 8/2 (weight ratio). It is preferable to prepare a stock solution containing this ratio, apply this stock solution to the PPTA fiber, and impregnate and permeate the drug. A drug diluent obtained by diluting a drug stock solution with a solvent such as water may be used. The reaction proceeds without a curing agent, but may be used depending on the characteristics of the curable epoxy compound used, the desired reaction rate, and the like.

薬剤原液には、その他の成分として、油剤、非イオン界面活性剤などの浸透剤、シリコーン系化合物、フッ素系化合物、有機界面活性剤などの平滑剤、オキサゾリンや酸無水物などの樹脂改良剤、シラン系やイソシアネート系などのカップリング剤などが、それぞれ20重量%以下の量、含有されていてもよい。   In the drug stock solution, as other components, oil agents, penetrants such as nonionic surfactants, smootheners such as silicone compounds, fluorine compounds, organic surfactants, resin modifiers such as oxazolines and acid anhydrides, A coupling agent such as silane or isocyanate may be contained in an amount of 20% by weight or less.

上記の薬剤原液あるいは薬剤希釈液を、PPTA繊維に付与する方法は、特に限定されるものではなく、従来公知の任意の方法が採用されてよく、例えば、浸漬給油法、スプレー給油法、ローラー給油法、計量ポンプを用いたガイド給油法などの方法で付与される。   The method for applying the drug stock solution or the drug diluent to the PPTA fiber is not particularly limited, and any conventionally known method may be employed. For example, immersion oil supply method, spray oil supply method, roller oil supply And a guide oiling method using a metering pump.

PPTA繊維複合体では、繊維骨格内に浸透・含浸させた硬化性エポキシ化合物によって、結合樹脂との濡れ性、接着性が向上し、紙状物又はこれを積層してシート状の繊維基材を形成した際に、PPTA繊維の一部が結合樹脂の層から抜ける現象や、シート状の繊維基材が相互に剥離する現象を防止する効果がある。また、繊維骨格内に浸透・含浸させた相溶化剤によって、結合樹脂との濡れ性が向上することで、結合樹脂中へのPPTA繊維の分散性が高められると共に、水との親和性が向上することで、湿式抄造時におけるPPTA繊維の水分散性が良好となり、均一性に優れる紙状物を製造できる。   In PPTA fiber composites, the curable epoxy compound that has penetrated and impregnated into the fiber skeleton improves the wettability and adhesiveness with the binding resin, and a paper-like material or a laminate of this is used to form a sheet-like fiber substrate. When formed, there is an effect of preventing a phenomenon in which part of the PPTA fiber comes off from the binder resin layer and a phenomenon in which the sheet-like fiber base material peels from each other. In addition, the compatibilizing agent impregnated and impregnated into the fiber skeleton improves the wettability with the binding resin, thereby improving the dispersibility of PPTA fibers in the binding resin and improving the affinity with water. By doing so, the water dispersibility of the PPTA fiber at the time of wet papermaking becomes good, and a paper-like material having excellent uniformity can be produced.

上記の方法で製造されたPPTA繊維複合体を1〜100mm、好ましくは1〜50mmに切断した短繊維(カットファイバー)を、繊維状材料の少なくとも一部として用い、従来法に準じて、繊維状物を湿式抄造し紙状物を製造する。湿式抄造した紙状物は、適宜な温度(例えば80〜150℃)で乾燥する。   A short fiber (cut fiber) obtained by cutting the PPTA fiber composite produced by the above method into 1 to 100 mm, preferably 1 to 50 mm, is used as at least a part of the fibrous material, Paper is made by wet papermaking. The wet papermaking material is dried at an appropriate temperature (for example, 80 to 150 ° C.).

PPTA繊維複合体の配合量は、繊維状材料全量に対して、50〜100重量%が好ましく、より好ましくは70〜97重量%、更に好ましくは80〜95重量%である。配合量が少なすぎるとPPTA繊維複合体による効果が得られ難くなる。   The blending amount of the PPTA fiber composite is preferably 50 to 100% by weight, more preferably 70 to 97% by weight, and still more preferably 80 to 95% by weight with respect to the total amount of the fibrous material. When there are too few compounding quantities, the effect by a PPTA fiber composite will become difficult to be acquired.

PPTA繊維複合体以外の繊維状材料としては、フィブリル化できる繊維が好ましく、例えば、アクリル繊維、アラミド繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、セルロース繊維、液晶ポリエステル系繊維、羊毛繊維などを用いることができる。これらの繊維の中で、耐熱性と高強度の観点から、アラミド繊維、アクリル繊維、セルロース繊維が好ましく、摩耗特性の観点から、更に好ましいのはアラミド繊維である。アラミド繊維の中でも、特にパラ系アラミドが好ましい。最も好ましいのは、パラ系アラミド繊維を高度にフィブリル化したアラミドパルプである。   As the fibrous material other than the PPTA fiber composite, fibers that can be fibrillated are preferable. For example, acrylic fibers, aramid fibers, polyparaphenylenebenzobisoxazole fibers, cellulose fibers, liquid crystal polyester fibers, wool fibers, and the like are used. it can. Among these fibers, aramid fibers, acrylic fibers, and cellulose fibers are preferable from the viewpoint of heat resistance and high strength, and aramid fibers are more preferable from the viewpoint of wear characteristics. Of the aramid fibers, para-aramid is particularly preferable. Most preferred is highly fibrillated aramid pulp from para-aramid fibers.

そして、前記のようにして形成された紙状物に、結合樹脂としてフェノール樹脂等の熱硬化性樹脂をメタノールやアセトンなどの有機溶剤にて溶解させ含浸させる。適宜、摩擦調整材や無機材料を添加できる。含浸方法は、スプレーなどによる吹き付け法、熱硬化性樹脂が入った浴にディップする方法などがあるが、特に限定されない。含浸率は形成された紙状物に対して等量の熱硬化性樹脂が好ましく、樹脂比率が30%よりも少なくなると、耐熱性は向上するが樹脂との接着性が低下し、強度低下するので好ましくなく、樹脂比率が70%を超えると耐熱性の低下、摩擦特性の向上につながり好ましくないので、適宜設定できる。   Then, the paper-like material formed as described above is impregnated by dissolving a thermosetting resin such as a phenol resin as a binding resin in an organic solvent such as methanol or acetone. A friction modifier or an inorganic material can be added as appropriate. Examples of the impregnation method include a spraying method using a spray and the like, and a method of dipping in a bath containing a thermosetting resin, but are not particularly limited. As for the impregnation rate, an equal amount of thermosetting resin is preferable with respect to the formed paper-like material, and when the resin ratio is less than 30%, the heat resistance is improved, but the adhesiveness with the resin is lowered and the strength is lowered. Therefore, it is not preferable, and if the resin ratio exceeds 70%, it is not preferable because it leads to a decrease in heat resistance and an improvement in frictional characteristics, and can be set as appropriate.

その後、熱硬化性樹脂等を含浸した紙状物から60℃以下の温度で揮発成分を除去しプリプレグを作製する。   Thereafter, volatile components are removed from the paper-like material impregnated with a thermosetting resin or the like at a temperature of 60 ° C. or lower to prepare a prepreg.

その後、プリプレグをプレス機等を用いて130℃以上190℃以下で1分以上15分以下、圧力50kgf/cm以上500kgf/cm以下で加熱プレスし、得られた熱硬化性樹脂成形体に130〜190℃の高温処理を施し硬化させることにより摩擦材料とする。摩擦材料は、必要に応じて任意の大きさや形状に裁断したり、成形加工したりして、自動車や産業用建機・機械の低摩擦材として、ワッシャー、ギアー、軸及び軸受け、クラッチ板、ブレーキ板などの摩擦材料として利用できる。 Thereafter, the prepreg is heated and pressed at 130 ° C. or more and 190 ° C. or less for 1 minute or more and 15 minutes or less at a pressure of 50 kgf / cm 2 or more and 500 kgf / cm 2 or less, and the resulting thermosetting resin molding is obtained. A high temperature treatment at 130 to 190 ° C. is applied and cured to obtain a friction material. Friction materials are cut into any size and shape as necessary, and processed as low-friction materials for automobiles and industrial construction machines / machines. Washers, gears, shafts and bearings, clutch plates, It can be used as a friction material for brake plates.

以下に実施例をあげて本発明を更に具体的に説明するが、本発明は、実施例に限定されるものではない。なお、実施例中の「%」及び「部」は特に断りのない限り、それぞれ「重量%」及び「重量部」を示す。   EXAMPLES The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to the examples. In the examples, “%” and “parts” represent “% by weight” and “parts by weight”, respectively, unless otherwise specified.

[実施例1]
PPTA(分子量約20,000)1kgを4kgの濃硫酸に溶解し、直径0.1mmのホールを1,000個有する口金からせん断速度30,000sec−1となるよう吐出し、4℃の水中に紡糸した後、10%の水酸化ナトリウム水溶液で、10℃×15秒の条件で中和処理し、その後、110℃×15秒間熱処理をして、水分率35%の乾燥前のPPTA繊維(水分率0%換算のとき総繊度1,670dtex)を調製した。
[Example 1]
1 kg of PPTA (molecular weight of about 20,000) is dissolved in 4 kg of concentrated sulfuric acid, and discharged from a die having 1,000 holes with a diameter of 0.1 mm so as to have a shear rate of 30,000 sec −1 and into 4 ° C. water. After spinning, it was neutralized with 10% aqueous sodium hydroxide under conditions of 10 ° C. × 15 seconds, and then heat treated at 110 ° C. × 15 seconds to give PPTA fibers (moisture content) with a moisture content of 35% before drying. A total fineness of 1,670 dtex) was prepared when the rate was converted to 0%.

このPPTA繊維に、硬化性エポキシ化合物としてソルビトールポリグリシジルエーテルを40部、相溶化剤としてジエチレングリコールモノ2−エチルヘキシルエーテル60部、硬化剤としてラウリルアミンエチレンオキサイド10モル付加体5部を含有する薬剤原液を付与し、硬化性エポキシ化合物と相溶化剤と硬化剤をPPTA繊維に浸透・含浸させた後、ボビンに巻き取り、水分率35%のPPTA繊維複合体を製造した。含浸量(対絶乾繊維重量換算)は、硬化性エポキシ化合物が0.5%、相溶化剤が0.5%、硬化剤が0.06%であった。   A drug stock solution containing 40 parts of sorbitol polyglycidyl ether as a curable epoxy compound, 60 parts of diethylene glycol mono-2-ethylhexyl ether as a compatibilizer, and 5 parts of laurylamine ethylene oxide 10 mol adduct as a curing agent is added to this PPTA fiber. After applying and impregnating the PPTA fiber with a curable epoxy compound, a compatibilizer and a curing agent, the PPTA fiber was wound around a bobbin to produce a PPTA fiber composite having a moisture content of 35%. The amount of impregnation (in terms of dry fiber weight) was 0.5% for the curable epoxy compound, 0.5% for the compatibilizing agent, and 0.06% for the curing agent.

この後、このPPTA繊維複合体をボビンから巻き出し、コンピュートリータ処理機(リッツラー社製)を用いて、3.9Nの張力での緊張下130℃20秒間、加熱乾燥・エージングして巻き取り、水分率が6.9%のPPTA繊維複合体を得た。得られたPPTA繊維複合体を3mmに切断し、PPTA繊維複合体の短繊維を得た。   Thereafter, the PPTA fiber composite is unwound from the bobbin, and is wound by heating, drying and aging at 130 ° C. for 20 seconds under a tension of 3.9 N using a compute treater (manufactured by Ritzler), A PPTA fiber composite having a moisture content of 6.9% was obtained. The obtained PPTA fiber composite was cut into 3 mm to obtain PPTA fiber composite short fibers.

パラ系アラミドパルプ(デュポン社製、商品名:ケブラー、CSF260ml)、上記で得たPPTA繊維複合体の短繊維(1.67dtex×3mm)をそれぞれ10/90とする配合で水中に順次添加混合し、1%濃度の水性スラリーを調製した。この水性スラリーを用いて抄造し、乾燥後、紙状物を得た。この抄紙排水のCODは、所定の排出基準値をクリアーしていた。   Para-aramid pulp (manufactured by DuPont, trade name: Kevlar, CSF 260 ml) and the PPTA fiber composite short fiber (1.67 dtex × 3 mm) obtained above were added and mixed sequentially in water with a composition of 10/90 respectively. A 1% strength aqueous slurry was prepared. Papermaking was performed using this aqueous slurry, and a paper-like product was obtained after drying. The COD of this papermaking wastewater cleared a predetermined discharge standard value.

次に、得られた目付が197.1g/mの紙状物をレゾール型フェノール樹脂を等量のメタノールで希釈した樹脂液に浸漬させて、含浸させた後、60℃で20分間乾燥して樹脂重量比が51%(紙状物重量比が49%)のプリプレグを得た。 Next, the obtained paper material having a basis weight of 197.1 g / m 2 is immersed in a resin solution obtained by diluting a resol-type phenol resin with an equal amount of methanol, impregnated, and then dried at 60 ° C. for 20 minutes. Thus, a prepreg having a resin weight ratio of 51% (paper weight ratio of 49%) was obtained.

このプリプレグを7枚重ねとし、金型に入れ加熱プレス機を用いて160℃で5分間、圧力200kgf/cmで加熱プレスを行った。この際、金型及び上蓋鉄板を予め160℃程度まで加熱しておき、始めの30秒間で上蓋鉄板の自重で脱気作業を行い、その後、圧力30kgf/cmでのプレスと圧力開放を2、3回繰り返した後、圧力200kgf/cmで5分間保持した。更にプレス後、170℃で3時間の熱硬化処理を行い、摩擦材料を得た。 Seven prepregs were stacked, placed in a mold, and heated and pressed at 160 ° C. for 5 minutes at a pressure of 200 kgf / cm 2 using a heating press. At this time, the mold and the upper lid iron plate are heated to about 160 ° C. in advance, and the degassing work is performed by the weight of the upper lid iron plate for the first 30 seconds, and then the press and pressure release at a pressure of 30 kgf / cm 2 are performed. After repeating three times, the pressure was maintained at 200 kgf / cm 2 for 5 minutes. Further, after the pressing, a thermosetting treatment was performed at 170 ° C. for 3 hours to obtain a friction material.

[比較例1]
パラ系アラミドパルプ(デュポン社製、商品名:ケブラー、CSF260ml)、パラ系アラミド短繊維(東レ・デュポン社製、商品名:ケブラー、1.67dtex×3mm)をそれぞれ10/90とする配合で水中に順次添加混合し、1%濃度の水性スラリーを調製した。この水性スラリーを用いて抄造し、乾燥後、目付201.6g/mの紙状物を得た。そして、この紙状物を実施例1と同じ方法でプリプレグならびに7枚重ねの摩擦材料を得た。
[Comparative Example 1]
Para-aramid pulp (manufactured by DuPont, trade name: Kevlar, CSF 260 ml), para-aramid short fibers (manufactured by Toray DuPont, trade name: Kevlar, 1.67 dtex × 3 mm) are each formulated to be 10/90 in water. 1% aqueous slurry was prepared. Papermaking was performed using this aqueous slurry, and after drying, a paper-like material having a basis weight of 201.6 g / m 2 was obtained. A prepreg and a seven-layered friction material were obtained from this paper-like material in the same manner as in Example 1.

[比較例2]
実施例1において、紡糸及び中和処理した後、200℃×15秒間熱処理して、水分率7%のPPTA繊維(水分率0%換算のとき総繊度1,670dtex)を調製した。得られたPPTA繊維に実施例1と同様の薬剤原液を付与し、水分率7%のPPTA繊維複合体を得た。得られたPPTA繊維複合体を3mmに切断し、PPTA繊維複合体の短繊維を得た。
[Comparative Example 2]
In Example 1, after spinning and neutralizing treatment, heat treatment was performed at 200 ° C. for 15 seconds to prepare a PPTA fiber having a moisture content of 7% (total fineness of 1,670 dtex when converted to a moisture content of 0%). The obtained PPTA fiber was applied with the same drug stock solution as in Example 1 to obtain a PPTA fiber composite having a moisture content of 7%. The obtained PPTA fiber composite was cut into 3 mm to obtain PPTA fiber composite short fibers.

パラ系アラミドパルプ(デュポン社製、商品名:ケブラー、CSF260ml)、上記で得たPPTA繊維複合体の短繊維(1.67dtex×3mm)をそれぞれ10/90とする配合で水中に順次添加混合し、1%濃度の水性スラリーを調製した後、この水性スラリーを用いて抄造、乾燥することにより紙状物を得た。このときの抄紙排水のCODは、所定の排出基準値を超えていたため、紙状物を用いた摩擦材料の評価は実施しなかった。   Para-aramid pulp (manufactured by DuPont, trade name: Kevlar, CSF 260 ml) and the PPTA fiber composite short fiber (1.67 dtex × 3 mm) obtained above were added and mixed sequentially in water with a composition of 10/90 respectively. After preparing a 1% concentration aqueous slurry, paper was obtained by making paper and drying using this aqueous slurry. Since the COD of the papermaking waste water at this time exceeded a predetermined discharge standard value, evaluation of the friction material using a paper-like material was not performed.

<評価試験>
(1)引張強度、引張弾性率、曲げ強度、曲げ弾性率;
作製した摩擦材料について、ASTM D638号の方法により引張強度、引張弾性率を、ASTM D790号の方法により曲げ強度、曲げ弾性率を測定した。
<Evaluation test>
(1) Tensile strength, tensile modulus, flexural strength, flexural modulus;
About the produced friction material, the tensile strength and the tensile elastic modulus were measured by the method of ASTM D638, and the bending strength and the bending elastic modulus were measured by the method of ASTM D790.

(2)摩擦特性;
鈴木式摩耗試験機を使用し、試験条件は、サンプルは30mm×30mm×2mm、相手(リング)材料は「S45C」、リング面積は200mm、相手材料(S45C)、試験開始時の重量に対する摩耗量の割合(減耗率)、試験速度0.15m/sec、荷重165N、500N、667N、1,000N、1,340N、滑り距離13km、N=3にて測定した。
(2) Friction characteristics;
Using Suzuki type abrasion tester, test conditions, the sample is 30 mm × 30 mm × 2 mm, partner (ring) material "S45C", the ring area 200 mm 2, the counter material (S45C), wear on the weight at the start of the test The ratio (amount of wear) of the quantity, the test speed was 0.15 m / sec, the load was 165 N, 500 N, 667 N, 1,000 N, 1,340 N, the sliding distance was 13 km, and N = 3.

PV値:JIS法のK7218(A法)に準拠した。荷重と周速度条件は以下の通り。
125(kPa・m/sec):加圧力 167(N)×周速度0.15(m/sec)
375(kPa・m/sec):加圧力 500(N)×周速度0.15(m/sec)
500(kPa・m/sec):加圧力 667(N)×周速度0.15(m/sec)
750(kPa・m/sec):加圧力1,000(N)×周速度0.15(m/sec)
1,000(kPa・m/sec):加圧力1,340(N)×周速度0.15(m/sec)
走行距離:13km
限界PV値の判断:熱硬化性樹脂(レゾール型フェノール)の硬化温度(175℃)とした。175℃以上では摩擦材料が炭化を開始するので好ましくない。
PV value: compliant with JIS method K7218 (A method). The load and peripheral speed conditions are as follows.
125 (kPa · m / sec): Applied pressure 167 (N) x Peripheral speed 0.15 (m / sec)
375 (kPa · m / sec): Applied pressure 500 (N) x Peripheral speed 0.15 (m / sec)
500 (kPa · m / sec): Applied pressure 667 (N) x Peripheral speed 0.15 (m / sec)
750 (kPa · m / sec): Applied pressure 1,000 (N) x Peripheral speed 0.15 (m / sec)
1,000 (kPa · m / sec): Pressure 1,340 (N) x Peripheral speed 0.15 (m / sec)
Mileage: 13km
Judgment of limit PV value: It was set as the curing temperature (175 degreeC) of a thermosetting resin (resole type phenol). Above 175 ° C., the friction material starts to carbonize, which is not preferable.

摩擦材減量体積:下記式より求めた。
摩擦前重さ(g)−摩擦後重さ(g)=減量重さ(Δg)
摩擦材の比重(ρ)
摩擦減量体積(v)=減量重さ(Δg)/ 比重(ρ)
Friction material weight loss: determined from the following formula.
Weight before friction (g)-Weight after friction (g) = Weight loss (Δg)
Specific gravity of friction material (ρ)
Friction weight loss volume (v) = weight loss weight (Δg) / specific gravity (ρ)

摩擦係数:下記式より求めた。
摩擦係数(μ)=摩擦トルク(T)/荷重(N)
Friction coefficient: determined from the following formula.
Friction coefficient (μ) = Friction torque (T) / Load (N)

相手材温度:摩擦金属リングの実測値。   Counterpart material temperature: Measured value of friction metal ring.

相手材減量体積:下記式より求めた。
摩擦前相手材重さ(g)−摩擦後相手材重さ(g)=相手材減量重さ(Δg)
相手材摩擦材の比重(ρ)
相手材摩擦減量体積(v)=相手材減量重さ(Δg)/ 比重(ρ)
Counterpart material weight loss volume: determined from the following formula.
Pre-friction mating material weight (g)-Post-friction mating material weight (g) = mating material weight loss (Δg)
Specific gravity of mating material (ρ)
Mating material friction weight loss (v) = Mating material weight loss (Δg) / Specific gravity (ρ)

(3)摩擦材料の組成分析;
赤外分光分析(FT-IR)により赤外線吸収スペクトル波長(cm−1)を測定した。
測定機:フーリエ変換赤外分光光度計(島津製)IR Prestig-21。
(3) Composition analysis of friction material;
The infrared absorption spectrum wavelength (cm −1 ) was measured by infrared spectroscopic analysis (FT-IR).
Measuring instrument: Fourier transform infrared spectrophotometer (manufactured by Shimadzu) IR Prestig-21.

上記の実施例1及び比較例1で得られた摩擦材料について、上述した評価試験により評価した。その結果を表1、表2、図1、図2に示す。   The friction materials obtained in Example 1 and Comparative Example 1 were evaluated by the evaluation test described above. The results are shown in Table 1, Table 2, FIG. 1 and FIG.

表1より、繊維状材料として、本発明のPPTA繊維複合体を用いた実施例1の摩擦材料は、比較例1の摩擦材料に比べて、ボイドが無く、高密度で繊維体積比率(Vf)が高く、引張強度、引張弾性率、破断強度、曲げ強度及び曲げ弾性率の点で優れ、耐熱性、機械的強度及び耐久性に優れる摩擦材料となり得ることがわかる。これは、繊維材料とフェノール樹脂との接着性が向上したことに起因するものである。   From Table 1, the friction material of Example 1 using the PPTA fiber composite of the present invention as the fibrous material has no voids and has a high density and a fiber volume ratio (Vf) compared to the friction material of Comparative Example 1. It can be seen that the friction material is excellent in terms of tensile strength, tensile elastic modulus, breaking strength, bending strength and bending elastic modulus, and excellent in heat resistance, mechanical strength and durability. This is due to the improved adhesion between the fiber material and the phenol resin.

表2より、PV値が大きくなると摩擦材の減量体積は多くなる傾向にあるが、実施例1は比較例1より少なく、摩擦耐久性に優れている。また、摩擦係数は逆に小さくなる傾向にあるが、実施例1は比較例1より若干小さく、低摩擦特性に優れた摩擦材料である。   From Table 2, although the weight loss volume of the friction material tends to increase as the PV value increases, Example 1 is less than Comparative Example 1 and is excellent in friction durability. Although the friction coefficient tends to be smaller, Example 1 is a friction material that is slightly smaller than Comparative Example 1 and excellent in low friction characteristics.

赤外線吸収スペクトル波長において、ソルビトールポリグリシジルエーテルエポキシ樹
脂の特定波長は1,180cm−1と830cm−1である(材料実践工学)ことから、実施例1の1,195cm−1の830cm−1が該当する。しかし、比較例1は1,268cm−1と805cm−1であり該当しないので、赤外線吸収スペクトル波長を特定することにより、摩擦材料内のソルビトールポリグリシジルエーテルエポキシ樹脂の有無を検証することができた。なお、レゾール型フェノール樹脂の赤外線吸収スペクトル波長3,300cm−1は容易に検証できた。
In the infrared absorption spectrum wavelength, the specific wavelengths of sorbitol polyglycidyl ether epoxy resin are 1,180 cm −1 and 830 cm −1 (material practical engineering), and therefore, 195 cm −1 of 1,195 cm −1 in Example 1 is applicable. To do. However, since Comparative Example 1 is 1,268 cm −1 and 805 cm −1 and is not applicable, the presence or absence of sorbitol polyglycidyl ether epoxy resin in the friction material could be verified by specifying the infrared absorption spectrum wavelength. . The infrared absorption spectrum wavelength of 3,300 cm −1 of the resol type phenolic resin could be easily verified.

図1より、PV値が大きくなると、相手材(鋼材:S45C)減量体積は多くなるが、実施例1は比較例1に比べて少なく、相手材の耐久性は優れている。   As shown in FIG. 1, when the PV value increases, the weight loss volume of the counterpart material (steel material: S45C) increases, but Example 1 is smaller than Comparative Example 1 and the durability of the counterpart material is excellent.

図2より、PV値が大きくなると、相手材温度は高くなるが、実施例1は比較例1に比べて低く、PV値が450kPa・m/s以上1,000kPa・m/s以下では実施例1の温度は限界の175℃以上にはなりにくく、摩擦耐久性に優れている。なお、比較例1ではPV値が500kPa・m/s以上ではすでに摩擦材料は炭化を開始した。   As shown in FIG. 2, when the PV value is increased, the counterpart material temperature is increased. However, Example 1 is lower than Comparative Example 1, and the PV value is 450 kPa · m / s or more and 1,000 kPa · m / s or less. The temperature of No. 1 is unlikely to exceed the limit of 175 ° C. and is excellent in friction durability. In Comparative Example 1, the friction material already started to be carbonized when the PV value was 500 kPa · m / s or more.

本発明の摩擦材料は、耐熱性、機械的特性及び摩擦耐久性に優れていることから、車両用及び産業機械用の低摩擦材料などに好適に用いられる。   Since the friction material of the present invention is excellent in heat resistance, mechanical properties, and friction durability, it is suitably used for low friction materials for vehicles and industrial machines.

Claims (10)

水分率15〜200重量%に調整されたポリパラフェニレンテレフタルアミド繊維骨格内に、硬化性エポキシ化合物および必要に応じて硬化剤を、浸透・含浸させると共に、下記一般式(I)で表される相溶化剤を、前記硬化性エポキシ化合物との合計量として0.1重量%以上10.0重量%以下、浸透・含浸させてなるポリパラフェニレンテレフタルアミド繊維複合体を、繊維状材料として含むことを特徴とする摩擦材料。
(式中、R は炭素原子数1〜10のアルキル基、または炭素原子数1〜10のアルケニル基であり、R は水素原子、または炭素原子数1〜5のアルキル基または炭素原子数1〜5のアルケニル基を示す。また、Aは炭素原子数2〜4のアルキレン基を、nはオキシアルキレン基(AO)の平均付加モル数を表す1〜10の整数である。なお、−(AO)−においては、同一のオキシアルキレン基が付加していても、2種類以上のオキシアルキレン基が付加していてもよい。)
The water content from 15 to 200 wt% to adjust the polyparaphenylene terephthalamide fibers in the backbone, the curable epoxy compound and a curing agent as necessary, Rutotomoni infiltrated-impregnated, is represented by the following general formula (I) The total amount of the compatibilizing agent is 0.1% by weight or more and 10.0% by weight or less as a total amount with the curable epoxy compound, and a polyparaphenylene terephthalamide fiber composite formed by impregnation and impregnation is included as a fibrous material A friction material characterized by that.
(In the formula, R 1 is an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 1 to 10 carbon atoms, and R 2 is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or the number of carbon atoms. 1 to 5 represents an alkenyl group, A represents an alkylene group having 2 to 4 carbon atoms, and n represents an integer of 1 to 10 representing the average number of added moles of an oxyalkylene group (AO). In (AO)-, the same oxyalkylene group may be added, or two or more oxyalkylene groups may be added.)
硬化性エポキシ化合物が、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテルから選ばれる1種類または、2種類以上の混合物である、請求項に記載の摩擦材料。 The friction material according to claim 1 , wherein the curable epoxy compound is one kind or a mixture of two or more kinds selected from glycerol diglycidyl ether, glycerol triglycidyl ether, sorbitol polyglycidyl ether, and polyglycerol polyglycidyl ether. 硬化性エポキシ化合物が、ビスフェノール型エポキシ樹脂である、請求項に記載の摩擦材料。 The friction material according to claim 1 , wherein the curable epoxy compound is a bisphenol type epoxy resin. 請求項1〜のいずれかに記載のポリパラフェニレンテレフタルアミド繊維複合体を切断してなる短繊維を繊維状材料として含み、該繊維状材料を用い湿式抄造により得られる紙状物に、熱硬化性樹脂としてフェノール樹脂を重量比で30%以上70%以下含浸させたことを特徴とする摩擦材料。 A short fiber obtained by cutting the polyparaphenylene terephthalamide fiber composite according to any one of claims 1 to 3 is contained as a fibrous material, and a paper-like material obtained by wet papermaking using the fibrous material is heated. A friction material characterized by impregnating a phenol resin as a curable resin with a weight ratio of 30% or more and 70% or less. JIS法K7218に記載の限界PV値(kPa・m/s)が450以上1,000以下である請求項1〜のいずれかに記載の摩擦材料。 The friction material according to any one of claims 1 to 4 , wherein a limit PV value (kPa · m / s) described in JIS method K7218 is 450 or more and 1,000 or less. 請求項1〜のいずれかに記載の摩擦材料を用いたワッシャー。 A washer using the friction material according to any one of claims 1 to 5 . 請求項1〜のいずれかに記載の摩擦材料を用いたギアー。 The gear using the friction material in any one of Claims 1-5 . 請求項1〜のいずれかに記載の摩擦材料を用いた軸及び軸受け。 Shaft and bearings with friction material according to any one of claims 1-5. 請求項1〜のいずれかに記載の摩擦材料を用いたクラッチ板。 A clutch plate using the friction material according to any one of claims 1 to 5 . 請求項1〜5のいずれかに記載の摩擦材料を用いたブレーキ板。
A brake plate using the friction material according to claim 1.
JP2013084870A 2012-04-23 2013-04-15 Friction material Active JP6082645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013084870A JP6082645B2 (en) 2012-04-23 2013-04-15 Friction material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012097568 2012-04-23
JP2012097568 2012-04-23
JP2013084870A JP6082645B2 (en) 2012-04-23 2013-04-15 Friction material

Publications (2)

Publication Number Publication Date
JP2013241575A JP2013241575A (en) 2013-12-05
JP6082645B2 true JP6082645B2 (en) 2017-02-15

Family

ID=49842779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013084870A Active JP6082645B2 (en) 2012-04-23 2013-04-15 Friction material

Country Status (1)

Country Link
JP (1) JP6082645B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160535A (en) * 2015-02-26 2016-09-05 東レ・デュポン株式会社 Polyparaphenylene terephthalamide fiber composite and manufacturing method therefor
JP2016160536A (en) * 2015-02-26 2016-09-05 東レ・デュポン株式会社 Short fiber for polyamide composite and polyamide composite
CN108202558A (en) * 2016-12-19 2018-06-26 巨大机械工业股份有限公司 Carbon fibre rim and its manufacturing method
JP7018692B2 (en) * 2017-03-03 2022-02-14 東レ・デュポン株式会社 Fiber reinforced material and fiber reinforced polypropylene resin composite material
JP6442034B2 (en) * 2017-12-20 2018-12-19 東レ・デュポン株式会社 Polyparaphenylene terephthalamide fiber composite pulp
CN114412945A (en) * 2022-03-07 2022-04-29 平阳鼎诚机械有限公司 Brake part for oil extraction equipment and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2988211B2 (en) * 1992-09-02 1999-12-13 住友化学工業株式会社 Hydrous aromatic polyamide pulp and method for producing the same
JP3219626B2 (en) * 1994-01-17 2001-10-15 日本アラミド有限会社 Aromatic polyamide pulp and method for producing the same
JP3980784B2 (en) * 1999-02-18 2007-09-26 曙ブレーキ工業株式会社 Friction material for brake
JP2004092906A (en) * 2002-06-28 2004-03-25 Du Pont Toray Co Ltd Fiber composite material

Also Published As

Publication number Publication date
JP2013241575A (en) 2013-12-05

Similar Documents

Publication Publication Date Title
JP6082645B2 (en) Friction material
TWI591233B (en) Method for producing carbon fiber coating sizing agent, carbon fiber coating sizing agent, method for producing carbon fiber reinforced composite material and carbon fiber reinforced composite material
JP5477312B2 (en) Sizing agent-coated carbon fiber bundle and method for producing the same
JP5864172B2 (en) Polyparaphenylene terephthalamide fiber composite, its production method and its use
Yuan et al. Preparation and characterization of a polyimide coating on the surface of carbon fibers
Liu et al. Enhancement on interlaminar shear strength and tribological properties in water of ultra high molecular weight polyethylene/glass fabric/phenolic laminate composite by surface modification of fillers
JP5475265B2 (en) Method for producing aromatic polyamide fiber cord for reinforcement
JP5251342B2 (en) Carbon fiber web manufacturing method
JP2010120992A (en) Fiber-reinforced resin composition for sliding member, and laminated sliding member
JP2007246590A (en) Friction material
Li et al. Interfacial tailoring of basalt fiber/epoxy composites by metal–organic framework based oil containers for promoting its mechanical and tribological properties
CN106544924A (en) A kind of alumina fibre strengthens the preparation method of paper friction material
JP6442034B2 (en) Polyparaphenylene terephthalamide fiber composite pulp
JP2004092906A (en) Fiber composite material
EP0129022A2 (en) Process for making dry friction material
JP7325161B2 (en) Aromatic polyamide fiber, aromatic polyamide fiber pulp, and method for producing the same
JP6338029B1 (en) Sizing agent-coated carbon fiber bundle, thermoplastic resin composition, molded product, method for producing sizing agent-coated carbon fiber bundle, and method for producing molded product
JP6296588B2 (en) Process for producing polyparaphenylene terephthalamide fiber composite pulp
Liu et al. Chemical modification on UHMWPE microparticles to improve the interfacial and tribological properties of UHMWPE/carbon fabric/phenolic laminate in water environment
Resmi et al. Effect of charcoal on formaldehyde emission, mechanical, thermal and dynamic properties of resol resin
JP2019060046A (en) Aramid short fiber and resin composite material containing the same
KR20130090449A (en) Gear pump
JP4008785B2 (en) Underwater sliding member and manufacturing method thereof
CA3081568C (en) Microfibrillated cellulose-containing composition, prepreg, molding, and method for producing prepreg
JP2004256560A (en) Wet friction material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R150 Certificate of patent or registration of utility model

Ref document number: 6082645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250