JP6057402B2 - Electrode active material, method for producing the same, and lithium ion battery - Google Patents

Electrode active material, method for producing the same, and lithium ion battery Download PDF

Info

Publication number
JP6057402B2
JP6057402B2 JP2010045235A JP2010045235A JP6057402B2 JP 6057402 B2 JP6057402 B2 JP 6057402B2 JP 2010045235 A JP2010045235 A JP 2010045235A JP 2010045235 A JP2010045235 A JP 2010045235A JP 6057402 B2 JP6057402 B2 JP 6057402B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
particles
source
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010045235A
Other languages
Japanese (ja)
Other versions
JP2011181375A (en
Inventor
大野 宏次
宏次 大野
暁 忍足
暁 忍足
聖志 金村
聖志 金村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Tokyo Metropolitan University
Original Assignee
Sumitomo Osaka Cement Co Ltd
Tokyo Metropolitan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd, Tokyo Metropolitan University filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2010045235A priority Critical patent/JP6057402B2/en
Publication of JP2011181375A publication Critical patent/JP2011181375A/en
Application granted granted Critical
Publication of JP6057402B2 publication Critical patent/JP6057402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電極活物質とその製造方法及びリチウムイオン電池に関し、特に詳しくは、オリビン構造を有するリン酸塩系電極活物質の1種であり、負荷特性、サイクル特性及びエネルギー密度に優れたリチウムイオン電池の電極材料として用いて好適な電極活物質とその製造方法、及び、この電極活物質を用いた電極を備えているリチウムイオン電池に関するものである。 TECHNICAL FIELD The present invention relates to an electrode active material , a method for producing the same, and a lithium ion battery, and more particularly, is a lithium electrode active material having an olivine structure and is excellent in load characteristics, cycle characteristics, and energy density. The present invention relates to an electrode active material suitable for use as an electrode material for an ion battery, a method for producing the same , and a lithium ion battery including an electrode using the electrode active material.

近年、小型化、軽量化、高容量化が期待される電池として、リチウムイオン電池等の非水電解液系の二次電池が提案され、実用に供されている。
リチウムイオン電池は、リチウムイオンを可逆的に脱挿入可能な性質を有する正極及び負極と、非水系の電解質とにより構成されている。
リチウムイオン電池は、従来の鉛電池、ニッケルカドミウム電池、ニッケル水素電池等の二次電池と比べて、軽量かつ小型で高エネルギーを有しており、携帯用電話機、ノート型パーソナルコンピュータ等の携帯用電子機器の電源として用いられているが、近年、電気自動車、ハイブリッド自動車、電動工具等の高出力電源としても検討されている。これらの高出力電源として用いられる電池の電極活物質には、高速の充放電特性が求められている。また、発電負荷の平滑化、定置用電源、バックアップ電源等の大型電池への応用も検討されており、長期の安全性、信頼性と共に、資源的に豊富で安価であること(資源量の問題が無いこと)も重要視されている。
In recent years, non-aqueous electrolyte secondary batteries such as lithium ion batteries have been proposed and put into practical use as batteries that are expected to be reduced in size, weight, and capacity.
A lithium ion battery is composed of a positive electrode and a negative electrode having a property capable of reversibly inserting and removing lithium ions, and a non-aqueous electrolyte.
Lithium-ion batteries are lighter, smaller, and have higher energy than secondary batteries such as conventional lead batteries, nickel cadmium batteries, and nickel metal hydride batteries, and are portable for portable telephones, notebook personal computers, etc. Although it is used as a power source for electronic devices, it has recently been studied as a high-output power source for electric vehicles, hybrid vehicles, electric tools, and the like. High-speed charge / discharge characteristics are required for the electrode active materials of batteries used as these high-output power supplies. Application to large batteries such as smoothing of power generation load, stationary power supply, backup power supply, etc. is also being studied, and it is resource-rich and inexpensive with long-term safety and reliability. Is also considered important.

リチウムイオン電池の正極は、正極活物質と称されるリチウムイオンを可逆的に脱挿入可能な性質を有するリチウム含有金属酸化物、導電助剤及びバインダーを含む電極材料により構成されており、この電極材料を集電体と称される金属箔の表面に塗布することにより正極とされている。
このリチウムイオン電池の正極活物質としては、通常、コバルト酸リチウム(LiCoO)が用いられているが、その他、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、リン酸鉄リチウム(LiFePO)等のリチウム(Li)化合物が用いられている。
これらのリチウム化合物のうち、コバルト酸リチウムやニッケル酸リチウムは、人体や環境に対する毒性、資源量、充電状態の不安定性等の種々の問題点を有している。また、マンガン酸リチウムは、高温下で電解液中へ溶解するという問題点が指摘されている。
そこで、近年では、長期の安全性、信頼性に優れた、リン酸鉄リチウムに代表されるオリビン構造を有するリン酸塩系電極活物質が注目を集めている。
The positive electrode of a lithium ion battery is composed of an electrode material including a lithium-containing metal oxide called a positive electrode active material, which has a property of reversibly removing and inserting lithium ions, a conductive additive, and a binder. The material is applied to the surface of a metal foil called a current collector to form a positive electrode.
As the positive electrode active material of this lithium ion battery, lithium cobaltate (LiCoO 2 ) is usually used, but in addition, lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), iron phosphate Lithium (Li) compounds such as lithium (LiFePO 4 ) are used.
Among these lithium compounds, lithium cobaltate and lithium nickelate have various problems such as toxicity to the human body and the environment, the amount of resources, and instability of the charged state. Further, it has been pointed out that lithium manganate is dissolved in an electrolytic solution at a high temperature.
Therefore, in recent years, a phosphate-based electrode active material having an olivine structure typified by lithium iron phosphate, which has excellent long-term safety and reliability, has attracted attention.

このリン酸塩系電極活物質は電子伝導性が十分ではないために、大電流の充放電を行うためには、粒子の微細化、導電性物質との複合化等さまざまな工夫が必要であり、多くの努力がなされている。
しかしながら、粒子の微細化や導電性物質を多量に用いた複合化を行った場合、電極密度の低下を招き、引いては電池の密度低下、即ち単位容積当たりの容量低下を引き起こしてしまうという問題点がある。そこで、この問題点を解決する方法として、電子導電性物質である炭素前駆体として有機物溶液を用い、この有機物溶液と電極活物質粒子とを混合した後、乾燥し、得られた乾燥物を非酸化性雰囲気下にて熱処理し、有機物を炭化させることにより、電極活物質粒子の表面を炭素で被覆する炭素被覆法が見出された。
Since this phosphate-based electrode active material does not have sufficient electron conductivity, various measures such as finer particles and compounding with conductive materials are required to charge and discharge a large current. Many efforts have been made.
However, there is a problem in that when particles are refined or complexed using a large amount of a conductive substance, the electrode density is lowered, which in turn causes a decrease in battery density, that is, a decrease in capacity per unit volume. There is a point. Therefore, as a method for solving this problem, an organic solution is used as a carbon precursor, which is an electronically conductive material, the organic solution and electrode active material particles are mixed, dried, and the resulting dried product is non-coated. A carbon coating method has been found in which the surface of the electrode active material particles is coated with carbon by heat treatment in an oxidizing atmosphere to carbonize the organic matter.

この炭素被覆法は、電極活物質粒子の表面に、必要最少限の量の炭素を極めて効率良く被覆させることが可能で、電極密度を大きく低下させること無く、導電性の向上を図ることができるという優れた特徴を有することから、様々な提案がなされている。
これらの提案の1つに、LiFePOからなる粒子の表面を、還元糖の熱分解により生成した炭素により被覆した電極材料がある(特許文献1)。
この電極材料は、リチウム成分と、Fe成分と、P成分と、還元糖とを含む溶液または懸濁液を噴霧し、加熱することにより、容易に合成することができる。
In this carbon coating method, the surface of the electrode active material particles can be coated with the minimum amount of carbon extremely efficiently, and the conductivity can be improved without greatly reducing the electrode density. Therefore, various proposals have been made.
One of these proposals is an electrode material in which the surface of particles made of LiFePO 4 is coated with carbon generated by thermal decomposition of reducing sugar (Patent Document 1).
This electrode material can be easily synthesized by spraying and heating a solution or suspension containing a lithium component, an Fe component, a P component, and a reducing sugar.

特開2009−190957号公報JP 2009-190957 A

しかしながら、従来の炭素被覆法で得られた多くの電極材料は、LiFePO単体、もしくはLiFePO単体に若干の異種元素を含む化合物を添加したものであり、LiFePO以外の電極材料、例えば、比較的資源量が豊富であり、かつ、より高電圧で動作することから、より高エネルギー密度の電極材料としてLiMnPOやLiCoPOが期待されているが、充分な特性を有するLiMnPOやLiCoPOは、いまだに得られていない。
例えば、LiMnPOの場合、Mnが炭化反応を抑制する負触媒として働くために、LiMnPOにLiFePOで効果的な有機物による炭素被覆法を適用しても、十分な効果を得ることができない。
However, many electrode materials obtained by the conventional carbon coating method are LiFePO 4 simple substance or LiFePO 4 simple substance added with a compound containing some different elements, and electrode materials other than LiFePO 4 , for example, comparison LiMnPO 4 and LiCoPO 4 are expected as electrode materials with higher energy density because they have abundant resources and operate at higher voltages, but LiMnPO 4 and LiCoPO 4 having sufficient characteristics are expected It has not been obtained yet.
For example, in the case of LiMnPO 4 , Mn acts as a negative catalyst that suppresses the carbonization reaction. Therefore, even if a carbon coating method using an organic substance effective with LiFePO 4 is applied to LiMnPO 4 , a sufficient effect cannot be obtained.

もちろん、LiMnPOにLiFePOを固溶させた電極活物質に同様の炭素被覆を施した例も報告されてはいるが、この炭素被覆電極活物質では、固溶体とすることで粒子表面に炭化触媒であるFeが現れた結果に他ならない。
そこで、負触媒であるMnの作用に勝る十分な量のFeを電極活物質の粒子表面に生じさせるには、少なくともFe/Mn比が10/90を超える程の多量のFeを固溶させる必要があり、その結果、電気化学的な反応電位の低い領域が電極活物質全体の10%を超えることとなってしまい、高電位かつ高エネルギーというLiMnPOの有する効果を十分に発揮することができない。
Of course, an example in which a similar carbon coating is applied to an electrode active material in which LiFePO 4 is dissolved in LiMnPO 4 has been reported, but in this carbon-coated electrode active material, a carbonization catalyst is formed on the particle surface by forming a solid solution. This is the result of the appearance of Fe.
Thus, in order to generate a sufficient amount of Fe on the particle surface of the electrode active material that exceeds the action of Mn, which is a negative catalyst, it is necessary to dissolve a large amount of Fe at least so that the Fe / Mn ratio exceeds 10/90. As a result, the region where the electrochemical reaction potential is low exceeds 10% of the entire electrode active material, and the high-potential and high-energy effect of LiMnPO 4 cannot be fully exhibited. .

本発明は、上記の課題を解決するためになされたものであって、高負荷特性、高サイクル特性及び高エネルギー密度を実現することが可能な電極活物質及びリチウムイオン電池を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an electrode active material and a lithium ion battery capable of realizing high load characteristics, high cycle characteristics, and high energy density. And

本発明者等は、上記課題を解決するために鋭意検討を行った結果、LiDO(但し、AはMn、Coの群から選択される1種または2種、DはP、Si、Sの群から選択される1種または2種以上、0<w≦4、0<x≦1.5)からなる粒子の表面を、有機物を非酸化性雰囲気下にて熱処理し炭化してなる有機系炭素質の物質と、Fe及びNiのいずれか1種または2種を含む物質とを含む被覆層により被覆すれば、高負荷特性、高サイクル特性及び高エネルギー密度を有する電極活物質が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have determined that Li w A x DO 4 (where A is one or two selected from the group of Mn and Co, D is P, The surface of particles composed of one or more selected from the group of Si and S, 0 <w ≦ 4, 0 <x ≦ 1.5) is carbonized by heat-treating organic matter in a non-oxidizing atmosphere. An electrode active material having high load characteristics, high cycle characteristics, and high energy density when coated with a coating layer containing an organic carbonaceous material and a material containing one or two of Fe and Ni Has been found, and the present invention has been completed.

すなわち、本発明の請求項1記載の電極活物質は、LiDO(但し、AはMn、Coの群から選択される1種または2種、DはP、Si、Sの群から選択される1種または2種以上、0<w≦4、0<x≦1.5)からなる粒子の表面を、有機物を非酸化性雰囲気下にて熱処理し炭化してなる有機系炭素質の電子伝導性物質及びFe及びNiのいずれか1種または2種を含む物質を含有する被覆層により被覆してなり、前記有機系炭素質の電子伝導性物質は、前記Fe及びNiのいずれか1種または2種を含む物質と接触してなることを特徴とする。 That is, the electrode active material according to claim 1 of the present invention is Li w A x DO 4 (where A is one or two selected from the group of Mn and Co, D is a group of P, Si, and S) Organic carbon obtained by carbonizing the surface of particles consisting of one or more selected from the group consisting of 0 <w ≦ 4, 0 <x ≦ 1.5) in a non-oxidizing atmosphere. The organic carbonaceous electron conductive material is either Fe or Ni. The organic carbonaceous electron conductive material is coated with a coating layer containing a material containing any one or two of Fe and Ni. Or in contact with a substance containing one or two kinds.

本発明の請求項2記載の電極活物質は、請求項1記載の電極活物質において、前記Fe及びNiのいずれか1種または2種を含む物質は、Fe化合物またはNi化合物であることを特徴とする。 The electrode active material according to claim 2 of the present invention is the electrode active material according to claim 1, wherein the substance containing any one or two of Fe and Ni is an Fe compound or a Ni compound. And

本発明の請求項3記載の電極活物質の製造方法は、請求項1または2記載の電極活物質の製造方法であって、前記LiThe method for producing an electrode active material according to claim 3 of the present invention is the method for producing an electrode active material according to claim 1 or 2, wherein the Li w A x DODO 4 粒子を、E源を水を主成分とする溶媒中に溶解した溶液中に投入し、撹拌して懸濁液とし、この懸濁液を乾燥後、熱処理して、表面処理LiThe particles are put into a solution obtained by dissolving the E source in a solvent containing water as a main component, and stirred to form a suspension. w A x DODO 4 粒子とし、この表面処理LiThis surface treatment Li w A x DODO 4 粒子を、炭素源となる有機物を含む溶液中に投入し、撹拌してスラリーとし、このスラリーを乾燥して粉体とし、この粉体を非酸化性雰囲気下にて熱処理することを特徴とする。The particles are put into a solution containing an organic substance serving as a carbon source, stirred to form a slurry, the slurry is dried to form a powder, and the powder is heat-treated in a non-oxidizing atmosphere. .

本発明の請求項4記載の電極活物質の製造方法は、請求項3記載の電極活物質の製造方法において、前記E源は、Fe、Niの群から選択される1種または2種を含む化合物であることを特徴とする。The electrode active material manufacturing method according to claim 4 of the present invention is the electrode active material manufacturing method according to claim 3, wherein the E source includes one or two selected from the group of Fe and Ni. It is a compound.

本発明の請求項5記載のリチウムイオン電池は、請求項1または2記載の電極活物質を用いた電極を備えてなることを特徴とする。 A lithium ion battery according to claim 5 of the present invention is characterized by comprising an electrode using the electrode active material according to claim 1 or 2 .

本発明の電極活物質によれば、LiDO(但し、AはMn、Coの群から選択される1種または2種、DはP、Si、Sの群から選択される1種または2種以上、0<w≦4、0<x≦1.5)からなる粒子の表面を、有機物を非酸化性雰囲気下にて熱処理し炭化してなる有機系炭素質の物質と、Fe及びNiのいずれか1種または2種を含む物質とを含む被覆層により被覆したので、オリビン構造を有するLiDOの表面が必要最少限の電子導電性を有する被覆層により被覆されることとなり、したがって、電圧、エネルギー密度、負荷特性を大幅に向上させることができ、長期のサイクル安定性及び安全性にも優れている。 According to the electrode active material of the present invention, Li w A x DO 4 (where A is one or two selected from the group of Mn and Co, and D is one selected from the group of P, Si, and S) An organic carbonaceous material obtained by heat-treating and carbonizing an organic substance in a non-oxidizing atmosphere on the surface of a particle composed of seeds or two or more, 0 <w ≦ 4, 0 <x ≦ 1.5), having covered with a covering layer which contains a substance comprising any one or two of Fe and Ni, coated with a coating layer having an electron conductivity of Li w a x surface of DO 4 requires minimum having an olivine structure Therefore, the voltage, energy density, and load characteristics can be greatly improved, and the long-term cycle stability and safety are excellent.

本発明のリチウムイオン電池によれば、本発明の電極活物質を用いた電極を備えたので、高電圧、高エネルギー密度、高負荷特性を有するとともに、長期のサイクル安定性及び安全性に優れたリチウムイオン電池を提供することができる。   According to the lithium ion battery of the present invention, since the electrode using the electrode active material of the present invention is provided, it has high voltage, high energy density, high load characteristics, and excellent long-term cycle stability and safety. A lithium ion battery can be provided.

本発明の第1の実施形態の電極活物質を示す断面図である。It is sectional drawing which shows the electrode active material of the 1st Embodiment of this invention. 本発明の第2の実施形態の電極活物質を示す断面図である。It is sectional drawing which shows the electrode active material of the 2nd Embodiment of this invention. 本発明の第3の実施形態の電極活物質を示す断面図である。It is sectional drawing which shows the electrode active material of the 3rd Embodiment of this invention. 本発明の第4の実施形態の電極活物質を示す断面図である。It is sectional drawing which shows the electrode active material of the 4th Embodiment of this invention. 本発明の実施例1の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of Example 1 of this invention. 本発明の実施例2の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of Example 2 of this invention. 本発明の実施例3の充放電曲線を示す図である。It is a figure which shows the charging / discharging curve of Example 3 of this invention.

本発明の電極活物質及びリチウムイオン電池を実施するための形態について説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
The form for implementing the electrode active material and lithium ion battery of this invention is demonstrated.
This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.

[第1の実施形態]
(電極活物質)
図1は、本発明の第1の実施形態の電極活物質を示す断面図であり、この電極活物質1は、LiDO(但し、AはMn、Coの群から選択される1種または2種、DはP、Si、Sの群から選択される1種または2種以上、0<w≦4、0<x≦1.5)からなる粒子(以下、LiDO粒子と略称する)2の表面が、LiGO(但し、EはFe、Niの群から選択される1種または2種、GはP、Si、Sの群から選択される1種または2種以上、0<y≦2、0<z≦1.5)を含む被覆層3により被覆されている。
[First Embodiment]
(Electrode active material)
FIG. 1 is a cross-sectional view showing an electrode active material according to a first embodiment of the present invention. The electrode active material 1 is Li w A x DO 4 (where A is selected from the group of Mn and Co). 1 type or 2 types, D is 1 type or 2 types or more selected from the group of P, Si, S, 0 <w ≦ 4, 0 <x ≦ 1.5) (hereinafter referred to as Li w A x The surface of DO 2 particles is abbreviated as Li y E z GO 4 (where E is one or two selected from the group Fe, Ni, G is selected from the group P, Si, S) 1 or 2 or more, 0 <y ≦ 2, 0 <z ≦ 1.5).

上記のAについては、Mn、Coの群から選択される1種または2種が、また、Dについては、P、Si、Sの群から選択される1種または2種以上が、高い放電電位、豊富な資源量、安全性等の点から好ましい。
この粒子2の平均粒径は5nm以上かつ500nm以下が好ましく、より好ましくは20nm以上かつ200nm以下である。
その理由は、平均粒径が5nmより小さいと、充放電による体積変化により結晶構造が破壊される虞があるからであり、また、平均粒径が500nmより大きいと、粒子内部への電子の供給量が不足し、利用効率が低下するからである。
For A, one or two selected from the group of Mn and Co, and for D, one or more selected from the group of P, Si, and S are high discharge potentials. From the viewpoint of abundant resources and safety.
The average particle size of the particles 2 is preferably 5 nm or more and 500 nm or less, more preferably 20 nm or more and 200 nm or less.
The reason is that if the average particle size is smaller than 5 nm, the crystal structure may be destroyed due to the volume change due to charge / discharge, and if the average particle size is larger than 500 nm, electrons are supplied into the particles. This is because the amount is insufficient and the utilization efficiency is lowered.

被覆層3の厚みは0.1nm以上かつ25nm以下が好ましく、より好ましくは1nm以上かつ5nm以下である。
その理由は、厚みが0.1nmより薄いと、炭化触媒能が不十分となり、したがって、電子導電性が不十分となり、その結果、電子の供給量が不足するからであり、また、厚みが25nmより厚いと、電極活物質1中の活物質の割合が減少し、活物質が有効に利用され難くなるからである。
The thickness of the coating layer 3 is preferably 0.1 nm or more and 25 nm or less, more preferably 1 nm or more and 5 nm or less.
The reason is that if the thickness is less than 0.1 nm, the carbonization catalytic ability becomes insufficient, and therefore, the electronic conductivity becomes insufficient, resulting in insufficient supply of electrons, and the thickness becomes 25 nm. This is because if the thickness is larger, the ratio of the active material in the electrode active material 1 is reduced, and the active material is hardly used effectively.

このように、粒子2の平均粒径及び被覆層3の厚みを勘案すると、この電極活物質1の平均粒径は5nm以上かつ550nm以下、好ましくは20nm以上かつ250nm以下となる。
この電極活物質1は、平均粒径の範囲がシャープで単分散性に優れているので、この電極活物質1をリチウムイオン電池の正電極に用いた場合、この正電極の電気的特性が極めて均一なものとなり、特性のバラツキも極めて小さなものとなる。したがって、得られたリチウムイオン電池は、高電圧、高エネルギー密度、高負荷特性を有するとともに、長期のサイクル安定性及び安全性に優れたものとなる。
Thus, taking into consideration the average particle diameter of the particles 2 and the thickness of the coating layer 3, the average particle diameter of the electrode active material 1 is 5 nm to 550 nm, preferably 20 nm to 250 nm.
Since the electrode active material 1 has a sharp average particle size range and excellent monodispersibility, when the electrode active material 1 is used as a positive electrode of a lithium ion battery, the electrical characteristics of the positive electrode are extremely high. It becomes uniform and the variation in characteristics becomes extremely small. Therefore, the obtained lithium ion battery has high voltage, high energy density, high load characteristics, and excellent long-term cycle stability and safety.

(電極活物質の製造方法)
本実施形態の電極活物質の製造方法は、LiDO粒子を、E源を水を主成分とする溶媒中に溶解した溶液中に投入し、撹拌して懸濁液とし、この懸濁液に、高温、高圧下にて水熱処理を施し、LiDO粒子の表面に、LiGO(但し、EはFe、Niの群から選択される1種または2種、GはP、Si、Sの群から選択される1種または2種以上、0<y≦2、0<z≦1.5)を含む被覆層を形成する方法である。
(Method for producing electrode active material)
In the method for producing an electrode active material of the present embodiment, Li w A x DO 4 particles are put into a solution in which an E source is dissolved in a solvent containing water as a main component, and stirred to obtain a suspension. The suspension is subjected to hydrothermal treatment under high temperature and high pressure, and Li y E z GO 4 (wherein E is one selected from the group consisting of Fe and Ni) is applied to the surface of Li w A x DO 4 particles. Two, G is a method of forming a coating layer containing one or more selected from the group of P, Si, and S, 0 <y ≦ 2, 0 <z ≦ 1.5).

このLiDO粒子は、Li源、A源及びD源を、これらのモル比(Li源:A源:D源)がw:x:1となるように水を主成分とする溶媒に投入し、撹拌してLiDOの前駆体溶液とし、この前駆体溶液を耐圧容器に入れ、高温、高圧下、例えば、120℃以上かつ250℃以下、0.2MPa以上にて、1時間以上かつ24時間以下、水熱処理を行うことにより得ることができる。
Li源としては、例えば、水酸化リチウム(LiOH)、炭酸リチウム(LiCO)等のLi化合物が、A源としては、Mn、Coの群から選択される1種または2種の化合物が、D源としては、P、Si、Sの群から選択される1種または2種以上の化合物が、用いられる。
この場合、水熱処理時の温度、圧力及び時間を調整することにより、LiDO粒子の粒子径を所望の大きさに制御することが可能である。
The Li w A x DO 4 particles are mainly composed of water such that a Li source, an A source, and a D source have a molar ratio (Li source: A source: D source) of w: x: 1. Put into a solvent and stir to make a precursor solution of Li w A x DO 4 , put this precursor solution in a pressure vessel, and at high temperature and high pressure, for example, 120 ° C. or higher and 250 ° C. or lower, 0.2 MPa or higher In addition, it can be obtained by performing hydrothermal treatment for 1 hour or more and 24 hours or less.
Examples of the Li source include Li compounds such as lithium hydroxide (LiOH) and lithium carbonate (Li 2 CO 3 ), and examples of the A source include one or two compounds selected from the group of Mn and Co. As the D source, one or more compounds selected from the group of P, Si, and S are used.
In this case, it is possible to control the particle diameter of Li w A x DO 4 particles to a desired size by adjusting the temperature, pressure, and time during hydrothermal treatment.

このようにして得られたLiDO粒子を、E源を水を主成分とする溶媒中に溶解した溶液中に投入し、撹拌して懸濁液とする。
E源としては、Fe、Niの群から選択される1種または2種を含む化合物、例えば、塩化鉄(II)(FeCl)、硫酸鉄(II)(FeSO)、酢酸鉄(II)(Fe(CHCOO))、塩化ニッケル(II)(NiCl)、硫酸ニッケル(II)(NiSO)、酢酸ニッケル(II)(Ni(CHCOO))、及びこれらの水和物、の群から選択された1種または2種以上が好適に用いられる。
この水を主成分とする溶媒としては、例えば、水の他、アルコール類、ケトン類、エーテル類等を含む水溶液等を用いることができるが、使い易さ、安全性の点から水が好ましい。
The Li w A x DO 4 particles thus obtained are put into a solution in which the E source is dissolved in a solvent containing water as a main component, and stirred to obtain a suspension.
As the E source, a compound containing one or two selected from the group of Fe and Ni, for example, iron (II) chloride (FeCl 2 ), iron (II) sulfate (FeSO 4 ), iron (II) acetate (Fe (CH 3 COO) 2 ), nickel chloride (II) (NiCl 2 ), nickel sulfate (II) (NiSO 4 ), nickel acetate (II) (Ni (CH 3 COO) 2 ), and their hydration One or two or more selected from the group of products are preferably used.
As the solvent containing water as a main component, for example, an aqueous solution containing alcohols, ketones, ethers and the like can be used in addition to water, but water is preferable from the viewpoint of ease of use and safety.

この懸濁液中のE源の濃度は、特に限定されるものではないが、LiDO粒子の表面に、LiGOを含む被覆層を均一に形成するためには、0.5質量%以上かつ10質量%以下が好ましい。 The concentration of the E source in this suspension is not particularly limited, but in order to uniformly form a coating layer containing Li y E z GO 4 on the surface of Li w A x DO 4 particles, 0.5 mass% or more and 10 mass% or less are preferable.

次いで、この懸濁液に、高温、高圧下にて水熱処理を施し、粒子表面にてAイオンとEイオンとの交換を行わせしめ、懸濁液中のLiDO粒子の表面に、LiGO(但し、EはFe、Niの群から選択される1種または2種、GはP、Si、Sの群から選択される1種または2種以上、0<y≦2、0<z≦1.5)を含む被覆層を形成する。この場合、G=Dとなる。
この高温高圧の条件は、LiGOが生成する温度、圧力及び時間の範囲であればよく、例えば、水熱処理時の温度は120℃以上かつ250℃以下が好ましく、150℃以上かつ220℃以下がより好ましい。また、この水熱処理時の圧力は0.2MPa以上が好ましく、0.4MPa以上がより好ましい。また、水熱処理時間は、水熱処理時の温度にもよるが、1時間以上かつ24時間以下が好ましく、3時間以上かつ12時間以下がより好ましい。
Next, this suspension is subjected to hydrothermal treatment at high temperature and high pressure to cause exchange of A ions and E ions on the particle surface, and on the surface of Li w A x DO 4 particles in the suspension. , Li y E z GO 4 (where E is one or two selected from the group of Fe and Ni, G is one or more selected from the group of P, Si and S, 0 <y ≦ 2, 0 <z ≦ 1.5) is formed. In this case, G = D.
The high temperature and high pressure conditions may be in the range of the temperature, pressure and time at which Li y E z GO 4 is produced. For example, the temperature during hydrothermal treatment is preferably 120 ° C. or more and 250 ° C. or less, and 150 ° C. or more and 220 degrees C or less is more preferable. Further, the pressure during the hydrothermal treatment is preferably 0.2 MPa or more, and more preferably 0.4 MPa or more. The hydrothermal treatment time depends on the temperature during the hydrothermal treatment, but is preferably 1 hour to 24 hours, more preferably 3 hours to 12 hours.

以上により、LiDO粒子2の表面が、LiGOを含む被覆層3により被覆され、平均粒径が5nm以上かつ550nm以下の電極活物質1を、容易に作製することができる。 Thus, the surface of the Li w A x DO 4 particles 2, Li y E z GO 4 is coated with a coating layer 3 containing an average particle diameter electrode active material 1 of 5nm or more and 550nm or less, easily manufactured be able to.

なお、LiDO粒子を、E源を水を主成分とする溶媒中に溶解した溶液中に投入する代わりに、Li源、E源及びG源を、モル比でy:z:1の割合となるように、水を主成分とする溶媒中に溶解した溶液中に投入し、得られた懸濁液に、高温、高圧下にて水熱処理を施すこととしても、LiDO粒子2の表面を、LiGOを含む被覆層3により被覆することができる。 Instead of putting Li w A x DO 4 particles into a solution in which E source is dissolved in a solvent containing water as a main component, Li source, E source and G source are mixed at a molar ratio of y: z: so that 1 ratio, water was added to a solution dissolved in a solvent composed mainly, to the resulting suspension, high temperature, as is subjected to hydrothermal treatment under high pressure, Li w a The surface of the x DO 4 particle 2 can be coated with the coating layer 3 containing Li y E z GO 4 .

この場合、Li源としては、例えば、水酸化リチウム(LiOH)、炭酸リチウム(LiCO)、塩化リチウム(LiCl)、リン酸リチウム(LiPO)等のリチウム無機酸塩、酢酸リチウム(LiCHCOO)、蓚酸リチウム((COOLi))等のリチウム有機酸塩、及びこれらの水和物の群から選択された1種または2種以上が好適に用いられる。
また、G源としては、オルトリン酸(HPO)、メタリン酸(HPO)等のリン酸、リン酸二水素アンモニウム(NHPO)、リン酸水素二アンモニウム((NHHPO)、リン酸アンモニウム((NHPO)、及びこれらの水和物等のリン酸源、酸化ケイ素(SiO)、シリコンテトラメトキシド(Si(OCH)等のSi源、硫酸二アンモニウム((NHSO)、硫酸(HSO)等のS源、の群から選択された1種または2種以上が好適に用いられる。
In this case, examples of the Li source include lithium inorganic acid salts such as lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ), lithium chloride (LiCl), lithium phosphate (Li 3 PO 4 ), and lithium acetate. One or two or more selected from the group consisting of lithium organic acid salts such as (LiCH 3 COO) and lithium oxalate ((COOLi) 2 ) and hydrates thereof are preferably used.
The G source includes phosphoric acid such as orthophosphoric acid (H 3 PO 4 ) and metaphosphoric acid (HPO 3 ), ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ), ammonium phosphate ((NH 4 ) 3 PO 4 ), and phosphate sources such as hydrates thereof, silicon oxide (SiO 2 ), silicon tetramethoxide (Si (OCH 3 ) 4 ) One or more selected from the group of Si sources such as diammonium sulfate ((NH 4 ) 2 SO 4 ) and S sources such as sulfuric acid (H 2 SO 4 ) are preferably used.

以上説明したように、本実施形態の電極活物質1によれば、LiDO粒子2の表面を、LiGOを含む被覆層3により被覆したので、オリビン構造を有するLiDOの表面を、必要最少限の電子導電性を有するLiGOを含む被覆層により被覆することとなり、したがって、電圧、エネルギー密度、負荷特性を大幅に向上させることができ、さらには、長期のサイクル安定性及び安全性を大幅に向上させることができる。 As described above, according to the electrode active material 1 of the present embodiment, the surface of the Li w A x DO 4 particles 2 is coated with the coating layer 3 containing Li y E z GO 4, and thus has an olivine structure. The surface of Li w A x DO 4 will be covered with a coating layer containing Li y E z GO 4 having the minimum necessary electronic conductivity, and therefore the voltage, energy density and load characteristics will be greatly improved. Furthermore, long-term cycle stability and safety can be greatly improved.

本実施形態の電極活物質の製造方法によれば、LiDO粒子を、E源を水を主成分とする溶媒中に溶解した溶液中に投入し、撹拌して懸濁液とし、この懸濁液に、高温、高圧下にて水熱処理を施し、LiDO粒子の表面に、LiGO(但し、EはFe、Niの群から選択される1種または2種、GはP、Si、Sの群から選択される1種または2種以上、0<y≦2、0<z≦1.5)を含む被覆層を形成するので、電圧、エネルギー密度、負荷特性が大幅に向上した電極活物質を容易に作製することができる。したがって、長期のサイクル安定性及び安全性が大幅に向上した電極活物質を、安定的に供給することができる。 According to the method for producing an electrode active material of this embodiment, Li w A x DO 4 particles are put into a solution in which an E source is dissolved in a solvent containing water as a main component, and stirred to obtain a suspension. The suspension is hydrothermally treated under high temperature and high pressure, and Li y E z GO 4 (where E is selected from the group consisting of Fe and Ni) is formed on the surface of Li w A x DO 4 particles. A coating layer containing one or more species, two or more selected from the group consisting of P, Si, and S, and 0 <y ≦ 2, 0 <z ≦ 1.5). An electrode active material having greatly improved energy density and load characteristics can be easily produced. Therefore, it is possible to stably supply an electrode active material with greatly improved long-term cycle stability and safety.

本実施形態のリチウムイオン電池によれば、本実施形態の電極活物質1をリチウムイオン電池の正電極に用いたので、高電圧、高エネルギー密度、高負荷特性を有するとともに、長期のサイクル安定性及び安全性に優れたリチウムイオン電池を提供することができる。   According to the lithium ion battery of this embodiment, since the electrode active material 1 of this embodiment is used for the positive electrode of the lithium ion battery, it has high voltage, high energy density, high load characteristics, and long-term cycle stability. In addition, a lithium ion battery excellent in safety can be provided.

[第2の実施形態]
(電極活物質)
図2は、本発明の第2の実施形態の電極活物質を示す断面図であり、この電極活物質11が第1の実施形態の電極活物質1と異なる点は、第1の実施形態の電極活物質1では、LiDO粒子2の表面をLiGOを含む被覆層3により被覆しただけであるのに対し、本実施形態の電極活物質11では、被覆層3の表面を、さらに、炭素質を含む(第2の)被覆層12により被覆した点であり、この点以外の構成については、第1の実施形態の電極活物質1と全く同様であるから、説明を省略する。
[Second Embodiment]
(Electrode active material)
FIG. 2 is a cross-sectional view showing the electrode active material according to the second embodiment of the present invention. The difference between the electrode active material 11 and the electrode active material 1 according to the first embodiment is that of the first embodiment. In the electrode active material 1, the surface of the Li w A x DO 4 particles 2 is only covered with the coating layer 3 containing Li y E z GO 4 , whereas in the electrode active material 11 of the present embodiment, the coating layer 3 is further covered with a (second) coating layer 12 containing carbonaceous matter, and the configuration other than this point is exactly the same as the electrode active material 1 of the first embodiment. The description is omitted.

炭素質を含む被覆層12は、炭素源となる有機物を非酸化性雰囲気下にて熱処理することにより生成した炭素質を含む電子導電性物質からなる導電層である。
この炭素質を含む電子導電性物質としては、炭素を30質量%以上かつ100質量%以下含有することが好ましく、50質量%以上かつ100質量%以下含有することがより好ましい。
この炭素質を含む電子導電性物質は、炭素を30質量%以上かつ100質量%以下含有することで、電極活物質11に所望の電子伝導性を付与することができる。
The coating layer 12 containing carbon is a conductive layer made of an electronic conductive material containing carbon produced by heat-treating an organic substance serving as a carbon source in a non-oxidizing atmosphere.
The carbon-containing electronic conductive material preferably contains 30% by mass or more and 100% by mass or less, and more preferably contains 50% by mass or more and 100% by mass or less.
The electron conductive material containing carbonaceous matter can impart desired electron conductivity to the electrode active material 11 by containing 30% by mass or more and 100% by mass or less of carbon.

被覆層12の厚みは0.1nm以上かつ25nm以下が好ましく、より好ましくは1nm以上かつ5nm以下である。
その理由は、厚みが0.1nmより薄いと、被覆層12自体の電子導電性が不十分となり、その結果、電極活物質11としての電子導電性が大きく低下するからであり、また、厚みが25nmより厚いと、電極活物質11中の活物質の割合が減少し、活物質が有効に利用され難くなるからである。
The thickness of the coating layer 12 is preferably 0.1 nm or more and 25 nm or less, more preferably 1 nm or more and 5 nm or less.
The reason is that if the thickness is less than 0.1 nm, the electronic conductivity of the coating layer 12 itself is insufficient, and as a result, the electronic conductivity as the electrode active material 11 is greatly reduced. This is because if the thickness is larger than 25 nm, the ratio of the active material in the electrode active material 11 is reduced, and the active material is hardly used effectively.

このように、粒子2の平均粒径、被覆層3の厚み及び被覆層12の厚みを勘案すると、この電極活物質11の平均粒径は5nm以上かつ600nm以下、好ましくは20nm以上かつ300nm以下となる。
この電極活物質11は、平均粒径の範囲がシャープで単分散性に優れているので、この電極活物質11をリチウムイオン電池の正電極に用いた場合、この正電極の電気的特性が極めて均一なものとなり、特性のバラツキも極めて小さなものとなる。したがって、得られたリチウムイオン電池は、高電圧、高エネルギー密度、高負荷特性を有するとともに、長期のサイクル安定性及び安全性に優れたものとなる。
Thus, taking into consideration the average particle size of the particles 2, the thickness of the coating layer 3, and the thickness of the coating layer 12, the average particle size of the electrode active material 11 is 5 nm or more and 600 nm or less, preferably 20 nm or more and 300 nm or less. Become.
Since this electrode active material 11 has a sharp average particle diameter range and excellent monodispersibility, when this electrode active material 11 is used as a positive electrode of a lithium ion battery, the electrical characteristics of this positive electrode are extremely high. It becomes uniform and the variation in characteristics becomes extremely small. Therefore, the obtained lithium ion battery has high voltage, high energy density, high load characteristics, and excellent long-term cycle stability and safety.

(電極活物質の製造方法)
本実施形態の電極活物質の製造方法は、LiDO粒子を、E源を水を主成分とする溶媒中に溶解した溶液中に投入し、撹拌して懸濁液とし、この懸濁液に、高温、高圧下にて水熱処理を施し、LiDO粒子の表面に、LiGO(但し、EはFe、Niの群から選択される1種または2種、GはP、Si、Sの群から選択される1種または2種以上、0<y≦2、0<z≦1.5)を含む被覆層を形成し、次いで、この被覆層が形成されたLiDO粒子を、炭素源となる有機物を含む溶液中に投入し、撹拌してスラリーとし、このスラリーを乾燥して粉体を得、この粉体を非酸化性雰囲気下にて熱処理する方法である。
なお、この方法では、LiDO粒子の表面にLiGOを含む被覆層を形成する工程までは、第1の実施形態の電極活物質の製造方法と全く同様である。
(Method for producing electrode active material)
In the method for producing an electrode active material of the present embodiment, Li w A x DO 4 particles are put into a solution in which an E source is dissolved in a solvent containing water as a main component, and stirred to obtain a suspension. The suspension is subjected to hydrothermal treatment under high temperature and high pressure, and Li y E z GO 4 (wherein E is one selected from the group consisting of Fe and Ni) is applied to the surface of Li w A x DO 4 particles. 2 and G is one or more selected from the group consisting of P, Si, and S, and 0 <y ≦ 2, 0 <z ≦ 1.5), and then the coating layer The Li w A x DO 4 particles formed with is put into a solution containing an organic substance serving as a carbon source, stirred to form a slurry, and the slurry is dried to obtain a powder. The powder is made non-oxidizing This is a method of heat treatment in an atmosphere.
In this method, the process up to the step of forming a coating layer containing Li y E z GO 4 on the surface of Li w A x DO 4 particles is exactly the same as the method for producing the electrode active material of the first embodiment. .

ここでは、この被覆層が形成されたLiDO粒子を、炭素源となる有機物を含む溶液中に投入し、撹拌してスラリーとする。
この炭素源となる有機物としては、非酸化性雰囲気下にて熱処理することにより炭素を生成する有機物であればよく、特に制限はされないが、例えば、ヘキサノール、オクタノール等の高級一価アルコール、アリルアルコール、プロピノール(プロパルギルアルコール)、テルピネオール等の不飽和一価アルコール、ポリビニルアルコール(PVA)等が挙げられる。
Here, the Li w A x DO 4 particles on which the coating layer is formed are put into a solution containing an organic substance serving as a carbon source, and stirred to obtain a slurry.
The organic substance serving as the carbon source is not particularly limited as long as it is an organic substance that generates carbon by heat treatment in a non-oxidizing atmosphere. For example, higher monohydric alcohols such as hexanol and octanol, allyl alcohol , Unsaturated monohydric alcohols such as propynol (propargyl alcohol) and terpineol, polyvinyl alcohol (PVA), and the like.

このスラリー中の炭素源となる有機物の濃度は、特に限定されるものではないが、被覆層上の表面に、炭素質を含む被覆層12を均一に形成するためには、1質量%以上かつ25質量%以下が好ましい。   The concentration of the organic substance serving as the carbon source in the slurry is not particularly limited, but in order to uniformly form the coating layer 12 containing carbonaceous material on the surface of the coating layer, it is 1% by mass or more and 25 mass% or less is preferable.

この炭素源となる有機物を溶解させる溶媒としては、この有機物が溶解するものであればよく、特に制限されないが、例えば、水、メタノール、エタノール、1−プロパノール、2−プロパノール(イソプロピルアルコール:IPA)、ブタノール、ペンタノール、ヘキサノール、オクタノール、ジアセトンアルコール等のアルコール類、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ−ブチロラクトン等のエステル類、ジエチルエーテル、エチレングルコールモノメチルエーテル(メチルセロソルブ)、エチレングルコールモノエチルエーテル(エチルセロソルブ)、エチレングルコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、アセチルアセトン、シクロヘキサノン等のケトン類、ジメチルホルムアミド、N,N−ジメチルアセトアセトアミド、N−メチルピロリドン等のアミド類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類等を挙げることができる。これらは、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。   The solvent for dissolving the organic substance serving as the carbon source is not particularly limited as long as it dissolves the organic substance. For example, water, methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol: IPA) , Butanol, pentanol, hexanol, octanol, diacetone alcohol and other alcohols, ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, esters such as γ-butyrolactone, diethyl ether , Ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), Ethers such as ethylene glycol monomethyl ether and diethylene glycol monoethyl ether, ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), acetylacetone and cyclohexanone, dimethylformamide, N, N-dimethylacetoacetamide, N-methyl Examples include amides such as pyrrolidone and glycols such as ethylene glycol, diethylene glycol, and propylene glycol. These may be used alone or in combination of two or more.

次いで、このスラリーを乾燥して粉体を得、この粉体を窒素雰囲気等の非酸化性雰囲気下にて熱処理する。
この熱処理の条件は、炭素源となる有機物から炭素が生成する温度及び時間の範囲であればよく、例えば、温度は500℃以上かつ1000℃以下、時間は、熱処理時の温度にもよるが、1時間以上かつ24時間以下が好ましい。
Next, the slurry is dried to obtain a powder, and the powder is heat-treated in a non-oxidizing atmosphere such as a nitrogen atmosphere.
The conditions for this heat treatment may be in the range of the temperature and time at which carbon is generated from the organic substance serving as the carbon source. For example, the temperature is 500 ° C. or more and 1000 ° C. or less, and the time depends on the temperature during the heat treatment, 1 hour or more and 24 hours or less are preferable.

以上により、LiDO粒子2の表面が、LiGOを含む被覆層3及び炭素質を含む被覆層12により被覆され、平均粒径が5nm以上かつ600nm以下、好ましくは20nm以上かつ300nm以下の電極活物質11を、容易に作製することができる。 As described above, the surface of the Li w A x DO 4 particles 2 is covered with the coating layer 3 containing Li y E z GO 4 and the coating layer 12 containing carbonaceous material, and the average particle diameter is 5 nm or more and 600 nm or less, preferably The electrode active material 11 having a thickness of 20 nm or more and 300 nm or less can be easily produced.

以上説明したように、本実施形態の電極活物質11によれば、LiDO粒子2の表面を、LiGOを含む被覆層3及び炭素質を含む被覆層12により被覆したので、オリビン構造を有するLiDOの表面を、必要最少限の電子導電性を有するLiGOを含む被覆層3及び導電性に優れた炭素質を含む被覆層12により被覆することとなり、したがって、電圧、エネルギー密度、負荷特性を大幅に向上させることができ、さらには、長期のサイクル安定性及び安全性を大幅に向上させることができる。 As described above, according to the electrode active material 11 of the present embodiment, the surface of the Li w A x DO 4 particles 2 is covered with the coating layer 3 containing Li y E z GO 4 and the coating layer 12 containing carbonaceous matter. Since the surface of Li w A x DO 4 having an olivine structure is coated, the coating layer 3 containing Li y E z GO 4 having the minimum necessary electronic conductivity and the coating layer containing carbonaceous material having excellent conductivity Therefore, the voltage, energy density, and load characteristics can be greatly improved, and the long-term cycle stability and safety can be greatly improved.

本実施形態の電極活物質の製造方法によれば、被覆層が形成されたLiDO粒子を、炭素源となる有機物を含む溶液中に投入し、撹拌してスラリーとし、次いで、このスラリーを乾燥して粉体を得、この粉体を窒素雰囲気等の非酸化性雰囲気下にて熱処理するので、電圧、エネルギー密度、負荷特性が大幅に向上した電極活物質を容易に作製することができる。したがって、長期のサイクル安定性及び安全性が大幅に向上した電極活物質を、安定的に供給することができる。 According to the method for producing an electrode active material of the present embodiment, Li w A x DO 4 particles on which a coating layer is formed are put into a solution containing an organic substance serving as a carbon source, stirred to obtain a slurry, This slurry is dried to obtain a powder, and this powder is heat-treated in a non-oxidizing atmosphere such as a nitrogen atmosphere, so that an electrode active material with greatly improved voltage, energy density, and load characteristics can be easily produced. be able to. Therefore, it is possible to stably supply an electrode active material with greatly improved long-term cycle stability and safety.

本実施形態のリチウムイオン電池によれば、本実施形態の電極活物質11をリチウムイオン電池の正電極に用いたので、高電圧、高エネルギー密度、高負荷特性を有するとともに、長期のサイクル安定性及び安全性に優れたリチウムイオン電池を提供することができる。   According to the lithium ion battery of this embodiment, since the electrode active material 11 of this embodiment is used for the positive electrode of the lithium ion battery, it has high voltage, high energy density, high load characteristics, and long-term cycle stability. In addition, a lithium ion battery excellent in safety can be provided.

[第3の実施形態]
(電極活物質)
図3は、本発明の第3の実施形態の電極活物質を示す断面図であり、この電極活物質21が第1の実施形態の電極活物質1と異なる点は、第1の実施形態の電極活物質1では、LiDO粒子2の表面をLiGOを含む被覆層3により被覆したのに対し、本実施形態の電極活物質21では、LiDO粒子2の表面を、LiGO(但し、EはFe、Niの群から選択される1種または2種、GはP、Si、Sの群から選択される1種または2種以上、0<y≦2、0<z≦1.5)と炭素質の電子伝導性物質との複合体からなる被覆層22により被覆した点であり、この点以外の構成については、第1の実施形態の電極活物質1と全く同様であるから、説明を省略する。
[Third Embodiment]
(Electrode active material)
FIG. 3 is a cross-sectional view showing an electrode active material according to a third embodiment of the present invention. The difference between the electrode active material 21 and the electrode active material 1 according to the first embodiment is that of the first embodiment. In the electrode active material 1, the surface of the Li w A x DO 4 particles 2 was covered with the coating layer 3 containing Li y E z GO 4 , whereas in the electrode active material 21 of the present embodiment, Li w A x DO The surface of the four particles 2 is Li y E z GO 4 (where E is one or two selected from the group of Fe and Ni, G is one or two selected from the group of P, Si and S) Seeds or more, 0 <y ≦ 2, 0 <z ≦ 1.5) and a coating layer 22 made of a composite of a carbonaceous electron conductive material. Since it is completely the same as the electrode active material 1 of 1 embodiment, description is abbreviate | omitted.

LiGOと炭素質の電子伝導性物質との複合体からなる被覆層22は、LiGO(但し、EはFe、Niの群から選択される1種または2種、GはP、Si、Sの群から選択される1種または2種以上、0<y≦2、0<z≦1.5)と、炭素源となる有機物を非酸化性雰囲気下にて熱処理することにより生成した炭素質を含む電子導電性物質とを含む導電層である。 The coating layer 22 made of a composite of Li y E z GO 4 and a carbonaceous electron conductive material is Li y E z GO 4 (where E is one or two selected from the group of Fe and Ni) , G is one or more selected from the group of P, Si, and S, 0 <y ≦ 2, 0 <z ≦ 1.5), and an organic substance serving as a carbon source in a non-oxidizing atmosphere It is a conductive layer containing an electronic conductive material containing carbonaceous material produced by heat treatment.

この被覆層22は、炭素質を含む電子導電性物質を炭素に換算した場合、炭素として30質量%以上かつ99質量%以下含有することが好ましく、50質量%以上かつ95質量%以下含有することがより好ましい。
この炭素質を含む電子導電性物質は、炭素質を炭素換算値で30質量%以上かつ99質量%以下含有することで、電極活物質21に所望の電子伝導性を付与することができる。
This coating layer 22 preferably contains 30% by mass or more and 99% by mass or less as carbon, and contains 50% by mass or more and 95% by mass or less as carbon when an electronically conductive substance containing carbon is converted to carbon. Is more preferable.
The electron conductive material containing carbonaceous material can impart desired electronic conductivity to the electrode active material 21 by containing the carbonaceous material in a carbon conversion value of 30% by mass or more and 99% by mass or less.

被覆層22の厚みは0.1nm以上かつ25nm以下が好ましく、より好ましくは2nm以上かつ10nm以下である。
その理由は、厚みが0.1nmより薄いと、被覆層22自体の電子導電性が不十分となり、その結果、電極活物質21としての電子導電性が大きく低下するからであり、また、厚みが25nmより厚いと、電極活物質21中の活物質の割合が減少し、活物質が有効に利用され難くなるからである。
The thickness of the coating layer 22 is preferably 0.1 nm or more and 25 nm or less, more preferably 2 nm or more and 10 nm or less.
The reason is that if the thickness is less than 0.1 nm, the electronic conductivity of the coating layer 22 itself is insufficient, and as a result, the electronic conductivity as the electrode active material 21 is greatly reduced. This is because if the thickness is larger than 25 nm, the ratio of the active material in the electrode active material 21 is reduced, and the active material is hardly used effectively.

このように、粒子2の平均粒径及び被覆層22の厚みを勘案すると、この電極活物質21の平均粒径は5nm以上かつ550nm以下、好ましくは20nm以上かつ300nm以下となる。
この電極活物質21は、平均粒径の範囲がシャープで単分散性に優れているので、この電極活物質21をリチウムイオン電池の正電極に用いた場合、この正電極の電気的特性が極めて均一なものとなり、特性のバラツキも極めて小さなものとなる。したがって、得られたリチウムイオン電池は、高電圧、高エネルギー密度、高負荷特性を有するとともに、長期のサイクル安定性及び安全性に優れたものとなる。
Thus, taking into consideration the average particle diameter of the particles 2 and the thickness of the coating layer 22, the average particle diameter of the electrode active material 21 is 5 nm to 550 nm, preferably 20 nm to 300 nm.
Since this electrode active material 21 has a sharp average particle diameter range and excellent monodispersibility, when this electrode active material 21 is used for the positive electrode of a lithium ion battery, the electrical characteristics of this positive electrode are extremely high. It becomes uniform and the variation in characteristics becomes extremely small. Therefore, the obtained lithium ion battery has high voltage, high energy density, high load characteristics, and excellent long-term cycle stability and safety.

(電極活物質の製造方法)
本実施形態の電極活物質の製造方法は、LiDO粒子を、Li源、E源及びG源をモル比(Li源:E源:G源)でy:z:1の割合で含むとともに炭素源となる有機物を含む溶液中に投入し、撹拌してスラリーとし、このスラリーを乾燥して粉体を得、この粉体を非酸化性雰囲気下にて熱処理する方法である。
(Method for producing electrode active material)
In the method for producing an electrode active material according to the present embodiment, Li w A x DO 4 particles are mixed in a molar ratio of Li source, E source and G source (Li source: E source: G source) and a ratio of y: z: 1. And is stirred into a slurry, dried to obtain a powder, and the powder is heat-treated in a non-oxidizing atmosphere.

Li源としては、例えば、水酸化リチウム(LiOH)、炭酸リチウム(LiCO)、塩化リチウム(LiCl)、リン酸リチウム(LiPO)等のリチウム無機酸塩、酢酸リチウム(LiCHCOO)、蓚酸リチウム((COOLi))等のリチウム有機酸塩、及びこれらの水和物の群から選択された1種または2種以上が好適に用いられる。
E源としては、Fe、Niの群から選択される1種または2種を含む化合物、例えば、塩化鉄(II)(FeCl)、硫酸鉄(II)(FeSO)、酢酸鉄(II)(Fe(CHCOO))、塩化ニッケル(II)(NiCl)、硫酸ニッケル(II)(NiSO)、酢酸ニッケル(II)(Ni(CHCOO))、及びこれらの水和物、の群から選択された1種または2種以上が好適に用いられる。
Examples of the Li source include lithium inorganic acid salts such as lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ), lithium chloride (LiCl), and lithium phosphate (Li 3 PO 4 ), lithium acetate (LiCH 3). One or more selected from the group of lithium organic acid salts such as (COO) and lithium oxalate ((COOLi) 2 ), and hydrates thereof are preferably used.
As the E source, a compound containing one or two selected from the group of Fe and Ni, for example, iron (II) chloride (FeCl 2 ), iron (II) sulfate (FeSO 4 ), iron (II) acetate (Fe (CH 3 COO) 2 ), nickel chloride (II) (NiCl 2 ), nickel sulfate (II) (NiSO 4 ), nickel acetate (II) (Ni (CH 3 COO) 2 ), and their hydration One or two or more selected from the group of products are preferably used.

G源としては、オルトリン酸(HPO)、メタリン酸(HPO)等のリン酸、リン酸二水素アンモニウム(NHPO)、リン酸水素二アンモニウム((NHHPO)、リン酸アンモニウム((NHPO)、及びこれらの水和物等のリン酸源、酸化ケイ素(SiO)、シリコンテトラメトキシド(Si(OCH)等のSi源、硫酸二アンモニウム((NHSO)、硫酸(HSO)等のS源、の群から選択された1種または2種以上が好適に用いられる。
この炭素源となる有機物、及び炭素源となる有機物を溶解させる溶媒については、第3の実施形態の炭素源となる有機物、及び炭素源となる有機物を溶解させる溶媒と全く同様である。
Examples of the G source include phosphoric acid such as orthophosphoric acid (H 3 PO 4 ) and metaphosphoric acid (HPO 3 ), ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), and diammonium hydrogen phosphate ((NH 4 ) 2. HPO 4 ), ammonium phosphate ((NH 4 ) 3 PO 4 ), and phosphate sources such as hydrates thereof, silicon oxide (SiO 2 ), silicon tetramethoxide (Si (OCH 3 ) 4 ), etc. One or more selected from the group of Si sources, S sources such as diammonium sulfate ((NH 4 ) 2 SO 4 ) and sulfuric acid (H 2 SO 4 ) are preferably used.
The organic substance that becomes the carbon source and the solvent that dissolves the organic substance that becomes the carbon source are exactly the same as the organic substance that becomes the carbon source and the solvent that dissolves the organic substance that becomes the carbon source in the third embodiment.

粉体を窒素雰囲気等の非酸化性雰囲気下にて熱処理する際の条件は、LiGOが生成するとともに炭素源となる有機物から炭素が生成する温度及び時間の範囲であればよく、例えば、温度は500℃以上かつ1000℃以下、時間は、熱処理時の温度にもよるが、1時間以上かつ24時間以下が好ましい。 The conditions for heat-treating the powder in a non-oxidizing atmosphere such as a nitrogen atmosphere may be in the temperature and time range in which Li y E z GO 4 is generated and carbon is generated from an organic substance that is a carbon source. For example, the temperature is preferably 500 ° C. or more and 1000 ° C. or less, and the time is preferably 1 hour or more and 24 hours or less, although it depends on the temperature during the heat treatment.

以上により、LiDO粒子2の表面が、LiGOと炭素質の電子伝導性物質との複合体からなる被覆層22により被覆され、平均粒径が5nm以上かつ550nm以下、好ましくは20nm以上かつ300nm以下の電極活物質21を、容易に作製することができる。 As described above, the surface of the Li w A x DO 4 particle 2 is covered with the coating layer 22 made of the composite of Li y E z GO 4 and the carbonaceous electron conductive material, and the average particle diameter is 5 nm or more and 550 nm. Hereinafter, the electrode active material 21 preferably having a thickness of 20 nm or more and 300 nm or less can be easily produced.

以上説明したように、本実施形態の電極活物質21によれば、LiDO粒子2の表面を、LiGOと炭素質の電子伝導性物質との複合体からなる被覆層22により被覆したので、オリビン構造を有するLiDOの表面を、必要最少限の電子導電性を有するLiGO及び導電性に優れた炭素質の電子伝導性物質を含む被覆層22により被覆することとなり、したがって、電圧、エネルギー密度、負荷特性を大幅に向上させることができ、さらには、長期のサイクル安定性及び安全性を大幅に向上させることができる。 As described above, according to the electrode active material 21 of the present embodiment, the surface of the Li w A x DO 4 particle 2 is made of a composite of Li y E z GO 4 and a carbonaceous electron conductive material. Since the surface of Li w A x DO 4 having an olivine structure is covered with the covering layer 22, Li y E z GO 4 having the minimum necessary electronic conductivity and a carbonaceous electron conductive material having excellent conductivity Therefore, the voltage, energy density, and load characteristics can be greatly improved, and long-term cycle stability and safety can be greatly improved.

本実施形態の電極活物質の製造方法によれば、LiDO粒子を、Li源、E源、G源及び炭素源となる有機物を含む溶液中に投入し、撹拌してスラリーとし、このスラリーを乾燥して粉体を得、この粉体を非酸化性雰囲気下にて熱処理するので、電圧、エネルギー密度、負荷特性が大幅に向上した電極活物質を容易に作製することができる。したがって、長期のサイクル安定性及び安全性が大幅に向上した電極活物質を、安定的に供給することができる。 According to the method for producing an electrode active material of the present embodiment, Li w A x DO 4 particles are put into a solution containing an organic substance serving as a Li source, an E source, a G source, and a carbon source, and stirred to form a slurry. The slurry is dried to obtain a powder, and the powder is heat-treated in a non-oxidizing atmosphere, so that an electrode active material with greatly improved voltage, energy density, and load characteristics can be easily produced. . Therefore, it is possible to stably supply an electrode active material with greatly improved long-term cycle stability and safety.

本実施形態のリチウムイオン電池によれば、本実施形態の電極活物質21をリチウムイオン電池の正電極に用いたので、高電圧、高エネルギー密度、高負荷特性を有するとともに、長期のサイクル安定性及び安全性に優れたリチウムイオン電池を提供することができる。   According to the lithium ion battery of this embodiment, since the electrode active material 21 of this embodiment is used for the positive electrode of the lithium ion battery, it has high voltage, high energy density, high load characteristics, and long-term cycle stability. In addition, a lithium ion battery excellent in safety can be provided.

[第4の実施形態]
(電極活物質)
図4は、本発明の第4の実施形態の電極活物質を示す断面図であり、この電極活物質31が第1の実施形態の電極活物質1と異なる点は、第1の実施形態の電極活物質1では、LiDO粒子2の表面をLiGOを含む被覆層3により被覆したのに対し、本実施形態の電極活物質31では、LiDO粒子2の表面を、有機物を非酸化性雰囲気下にて熱処理し炭化してなる有機系炭素質の電子伝導性物質及びFe及びNiのいずれか1種または2種を含む物質を含有するとともに、この有機系炭素質の電子伝導性物質がFe及びNiのいずれか1種または2種を含む物質と接触してなる被覆層32により被覆した点であり、この点以外の構成については、第1の実施形態の電極活物質1と全く同様であるから、説明を省略する。
[Fourth Embodiment]
(Electrode active material)
FIG. 4 is a cross-sectional view showing an electrode active material according to a fourth embodiment of the present invention. The difference between the electrode active material 31 and the electrode active material 1 according to the first embodiment is that of the first embodiment. In the electrode active material 1, the surface of the Li w A x DO 4 particles 2 was coated with the coating layer 3 containing Li y E z GO 4 , whereas in the electrode active material 31 of the present embodiment, Li w A x DO The surface of the four particles 2 contains an organic carbonaceous electron conductive substance obtained by heat-treating an organic substance in a non-oxidizing atmosphere and carbonized, and a substance containing one or two of Fe and Ni. The organic carbonaceous electron conductive material is coated with a coating layer 32 formed in contact with a material containing either one or two of Fe and Ni. Since it is completely the same as the electrode active material 1 of 1 embodiment Description thereof will be omitted.

この被覆層32は、炭素源となる有機物を非酸化性雰囲気下にて熱処理することにより生成した炭素質を含む電子導電性物質と、Fe及びNiのいずれか1種または2種を含む物質とを含有したものである。   The coating layer 32 includes an electronically conductive material containing carbon produced by heat-treating an organic substance serving as a carbon source in a non-oxidizing atmosphere, and a material containing any one or two of Fe and Ni. Is contained.

この被覆層32は、炭素質を含む電子導電性物質を炭素に換算した場合、炭素として30質量%以上かつ99質量%以下含有することが好ましく、50質量%以上かつ95質量%以下含有することがより好ましい。
この炭素質を含む電子導電性物質は、炭素質を炭素換算値で30質量%以上かつ99質量%以下含有することで、電極活物質31に所望の電子伝導性を付与することができる。
また、Fe及びNiのいずれか1種または2種を含む物質としては、例えば、酸化鉄(II)(FeO)、塩化鉄(II)(FeCl)、硫酸鉄(II)(FeSO)、酢酸鉄(II)(Fe(CHCOO))、酸化ニッケル(II)(NiO)、塩化ニッケル(II)(NiCl)、硫酸ニッケル(II)(NiSO)、酢酸ニッケル(II)(Ni(CHCOO)等が挙げられる。
The coating layer 32 preferably contains 30% by mass or more and 99% by mass or less as carbon, and contains 50% by mass or more and 95% by mass or less as carbon when the carbon-containing electronic conductive material is converted to carbon. Is more preferable.
The electron conductive material containing carbonaceous material can impart desired electronic conductivity to the electrode active material 31 by containing the carbonaceous material in a carbon equivalent value of 30% by mass or more and 99% by mass or less.
Examples of the substance containing one or two of Fe and Ni include, for example, iron oxide (II) (FeO), iron chloride (II) (FeCl 2 ), iron sulfate (II) (FeSO 4 ), Iron (II) acetate (Fe (CH 3 COO) 2 ), nickel (II) oxide (NiO), nickel chloride (II) (NiCl 2 ), nickel sulfate (II) (NiSO 4 ), nickel acetate (II) ( Ni (CH 3 COO) 2 and the like.

被覆層32の厚みは0.1nm以上かつ30nm以下が好ましく、より好ましくは1nm以上かつ5nm以下である。
その理由は、厚みが0.1nmより薄いと、被覆層32自体の電子導電性が不十分となり、その結果、電極活物質31としての電子導電性が大きく低下するからであり、また、厚みが30nmより厚いと、電極活物質31中の活物質の割合が減少し、活物質が有効に利用され難くなるからである。
The thickness of the coating layer 32 is preferably 0.1 nm or more and 30 nm or less, more preferably 1 nm or more and 5 nm or less.
The reason is that if the thickness is less than 0.1 nm, the electronic conductivity of the coating layer 32 itself is insufficient, and as a result, the electronic conductivity as the electrode active material 31 is greatly reduced. This is because if the thickness is larger than 30 nm, the ratio of the active material in the electrode active material 31 is reduced, and the active material is hardly used effectively.

このように、LiDO粒子2の平均粒径及び被覆層32の厚みを勘案すると、この電極活物質31の平均粒径は5nm以上かつ600nm以下、好ましくは20nm以上かつ400nm以下となる。
この電極活物質31は、平均粒径の範囲がシャープで単分散性に優れているので、この電極活物質31をリチウムイオン電池の正電極に用いた場合、この正電極の電気的特性が極めて均一なものとなり、特性のバラツキも極めて小さなものとなる。したがって、得られたリチウムイオン電池は、高電圧、高エネルギー密度、高負荷特性を有するとともに、長期のサイクル安定性及び安全性に優れたものとなる。
Thus, taking into consideration the average particle diameter of Li w A x DO 4 particles 2 and the thickness of the coating layer 32, the average particle diameter of the electrode active material 31 is 5 nm or more and 600 nm or less, preferably 20 nm or more and 400 nm or less. Become.
Since this electrode active material 31 has a sharp average particle size range and excellent monodispersibility, when this electrode active material 31 is used as a positive electrode of a lithium ion battery, the electrical characteristics of this positive electrode are extremely high. It becomes uniform and the variation in characteristics becomes extremely small. Therefore, the obtained lithium ion battery has high voltage, high energy density, high load characteristics, and excellent long-term cycle stability and safety.

(電極活物質の製造方法)
本実施形態の電極活物質の製造方法は、LiDO粒子を、E源を水を主成分とする溶媒中に溶解した溶液中に投入し、撹拌して懸濁液とし、この懸濁液を乾燥後、熱処理して、表面処理LiDO粒子とし、この表面処理LiDO粒子を、炭素源となる有機物を含む溶液中に投入し、撹拌してスラリーとし、このスラリーを乾燥して粉体とし、この粉体を非酸化性雰囲気下にて熱処理する方法である。
(Method for producing electrode active material)
In the method for producing an electrode active material of the present embodiment, Li w A x DO 4 particles are put into a solution in which an E source is dissolved in a solvent containing water as a main component, and stirred to obtain a suspension. The suspension is dried and then heat-treated to form surface-treated Li w A x DO 4 particles. The surface-treated Li w A x DO 4 particles are put into a solution containing an organic substance as a carbon source and stirred. In this method, a slurry is formed, the slurry is dried to obtain a powder, and the powder is heat-treated in a non-oxidizing atmosphere.

まず、LiDO粒子を、E源を水を主成分とする溶媒中に溶解した溶液中に投入し、撹拌して、懸濁液とする。
E源としては、Fe、Niの群から選択される1種または2種を含む化合物、例えば、塩化鉄(II)(FeCl)、硫酸鉄(II)(FeSO)、酢酸鉄(II)(Fe(CHCOO))、塩化ニッケル(II)(NiCl)、硫酸ニッケル(II)(NiSO)、酢酸ニッケル(II)(Ni(CHCOO))、及びこれらの水和物、の群から選択された1種または2種以上が好適に用いられる。
この水を主成分とする溶媒としては、例えば、水の他、アルコール類、ケトン類、エーテル類等を含む水溶液等を用いることができるが、使い易さ、安全性の点から水が好ましい。
First, Li w A x DO 4 particles are put into a solution obtained by dissolving E source in a solvent containing water as a main component, and stirred to obtain a suspension.
As the E source, a compound containing one or two selected from the group of Fe and Ni, for example, iron (II) chloride (FeCl 2 ), iron (II) sulfate (FeSO 4 ), iron (II) acetate (Fe (CH 3 COO) 2 ), nickel chloride (II) (NiCl 2 ), nickel sulfate (II) (NiSO 4 ), nickel acetate (II) (Ni (CH 3 COO) 2 ), and their hydration One or two or more selected from the group of products are preferably used.
As the solvent containing water as a main component, for example, an aqueous solution containing alcohols, ketones, ethers and the like can be used in addition to water, but water is preferable from the viewpoint of ease of use and safety.

この懸濁液中のE源の濃度は、特に限定されるものではないが、LiDO粒子の表面を処理するために十分な濃度である必要があり、1質量%以上かつ10質量%以下が好ましい。 The concentration of E source in this suspension is not particularly limited, but it needs to be a concentration sufficient to treat the surface of Li w A x DO 4 particles. The mass% or less is preferable.

次いで、この懸濁液を乾燥後、熱処理する。
熱処理する際の条件は、LiDO粒子の表面を処理するのに十分な温度及び時間の範囲であればよく、例えば、温度は400℃以上かつ900℃以下、時間は、熱処理時の温度にもよるが、1時間以上かつ48時間以下が好ましい。
このようにして、LiDO粒子2に表面処理が施された表面処理LiDO粒子が得られる。
The suspension is then heat treated after drying.
Conditions for the heat treatment may be in a range of temperature and time sufficient to treat the surface of Li w A x DO 4 particles. For example, the temperature is 400 ° C. or more and 900 ° C. or less, and the time is the time of heat treatment Depending on the temperature, it is preferably 1 hour or more and 48 hours or less.
In this way, Li w A x DO 4 particles 2 surface treatment surface-treated in Li w A x DO 4 particles.

次いで、この表面処理LiDO粒子を、炭素源となる有機物を含む溶液中に投入し、撹拌してスラリーとする。
この炭素源となる有機物としては、非酸化性雰囲気下にて熱処理することにより炭素を生成する有機物であればよく、特に制限はされないが、例えば、ヘキサノール、オクタノール等の高級一価アルコール、アリルアルコール、プロピノール(プロパルギルアルコール)、テルピネオール等の不飽和一価アルコール、ポリビニルアルコール(PVA)等が挙げられる。
Next, the surface-treated Li w A x DO 4 particles are put into a solution containing an organic substance serving as a carbon source, and stirred to obtain a slurry.
The organic substance serving as the carbon source is not particularly limited as long as it is an organic substance that generates carbon by heat treatment in a non-oxidizing atmosphere. For example, higher monohydric alcohols such as hexanol and octanol, allyl alcohol , Unsaturated monohydric alcohols such as propynol (propargyl alcohol) and terpineol, polyvinyl alcohol (PVA), and the like.

このスラリー中の炭素源となる有機物の濃度は、特に限定されるものではないが、表面処理LiDO粒子の表面に、有機系炭素質の電子伝導性物質及びFe及びNiのいずれか1種または2種を含む物質を含有する被覆層32を均一に形成するためには、1質量%以上かつ25質量%以下が好ましい。
この炭素源となる有機物を溶解させる溶媒は、第2の実施形態の炭素源となる有機物を溶解させる溶媒と全く同様である。
The concentration of the organic substance serving as a carbon source in the slurry is not particularly limited, and any of organic carbonaceous electron conductive material and Fe and Ni is formed on the surface of the surface-treated Li w A x DO 4 particles. In order to uniformly form the coating layer 32 containing a substance containing one or two kinds, the content is preferably 1% by mass or more and 25% by mass or less.
The solvent for dissolving the organic substance serving as the carbon source is exactly the same as the solvent for dissolving the organic substance serving as the carbon source in the second embodiment.

次いで、このスラリーを乾燥して粉体を得、この粉体を窒素雰囲気等の非酸化性雰囲気下にて熱処理する。
この熱処理の条件は、炭素源となる有機物から炭素が生成する温度及び時間の範囲であればよく、例えば、温度は500℃以上かつ1000℃以下、時間は、熱処理時の温度にもよるが、1時間以上かつ24時間以下が好ましい。
Next, the slurry is dried to obtain a powder, and the powder is heat-treated in a non-oxidizing atmosphere such as a nitrogen atmosphere.
The conditions for this heat treatment may be in the range of the temperature and time at which carbon is generated from the organic substance serving as the carbon source. For example, the temperature is 500 ° C. or more and 1000 ° C. or less, and the time depends on the temperature during the heat treatment, 1 hour or more and 24 hours or less are preferable.

この熱処理により、炭素源となる有機物から炭素が生成し、この炭素が表面処理LiDO粒子の表面を覆うこととなる。この際、生成した炭素は、LiDO粒子の表面処理された部分に存在するFe及びNiのいずれか1種または2種を含む物質と接触することとなる。
これにより、LiDO粒子の表面には、有機物を非酸化性雰囲気下にて熱処理し炭化してなる有機系炭素質の電子伝導性物質、すなわち炭素と、Fe及びNiのいずれか1種または2種を含む物質、すなわちFe化合物あるいはNi化合物と、を含む被覆層32が形成されることとなる。
By this heat treatment, carbon is generated from an organic substance serving as a carbon source, and this carbon covers the surface of the surface-treated Li w A x DO 4 particles. At this time, the produced carbon comes into contact with a substance containing any one or two of Fe and Ni present in the surface-treated portion of the Li w A x DO 4 particles.
Thereby, on the surface of Li w A x DO 4 particles, an organic carbonaceous electron conductive material obtained by heat-treating and carbonizing an organic substance in a non-oxidizing atmosphere, that is, any of carbon, Fe, and Ni The covering layer 32 containing the substance containing one or two kinds, that is, the Fe compound or the Ni compound is formed.

以上により、LiDO粒子2の表面に、有機物を非酸化性雰囲気下にて熱処理し炭化してなる有機系炭素質の電子伝導性物質及びFe及びNiのいずれか1種または2種を含む物質を含有するとともに、この有機系炭素質の電子伝導性物質がFe及びNiのいずれか1種または2種を含む物質と接触してなる被覆層32を形成することができる。 As described above, on the surface of Li w A x DO 4 particles 2, an organic carbonaceous electron conductive material obtained by heat-treating and carbonizing an organic substance in a non-oxidizing atmosphere, and any one or two of Fe and Ni It is possible to form a coating layer 32 that contains a substance containing a seed and is brought into contact with a substance containing any one or two of Fe and Ni.

以上説明したように、本実施形態の電極活物質31によれば、LiDO粒子2の表面を、有機物を非酸化性雰囲気下にて熱処理し炭化してなる有機系炭素質の電子伝導性物質及びFe及びNiのいずれか1種または2種を含む物質を含有するとともに、この有機系炭素質の電子伝導性物質がFe及びNiのいずれか1種または2種を含む物質と接触してなる被覆層32により被覆したので、電圧、エネルギー密度、負荷特性を大幅に向上させることができ、さらには、長期のサイクル安定性及び安全性を大幅に向上させることができる。 As described above, according to the electrode active material 31 of the present embodiment, the surface of the Li w A x DO 4 particles 2 is an organic carbonaceous material obtained by heat-treating and carbonizing an organic substance in a non-oxidizing atmosphere. An organic conductive substance and a substance containing one or two of Fe and Ni, and the organic carbonaceous electronic conductive substance contains one or two of Fe and Ni; Since it coat | covered with the coating layer 32 formed in contact, a voltage, an energy density, and a load characteristic can be improved significantly, Furthermore, long-term cycle stability and safety | security can be improved significantly.

本実施形態の電極活物質の製造方法によれば、LiDO粒子を、E源を水を主成分とする溶媒中に溶解した溶液中に投入し、撹拌して懸濁液とし、この懸濁液を乾燥後、熱処理して、表面処理LiDO粒子とし、この表面処理LiDO粒子を、炭素源となる有機物を含む溶液中に投入し、撹拌してスラリーとし、このスラリーを乾燥して粉体とし、この粉体を非酸化性雰囲気下にて熱処理するので、電圧、エネルギー密度、負荷特性が大幅に向上した電極活物質を容易に作製することができる。したがって、長期のサイクル安定性及び安全性が大幅に向上した電極活物質を、安定的に供給することができる。 According to the method for producing an electrode active material of this embodiment, Li w A x DO 4 particles are put into a solution in which an E source is dissolved in a solvent containing water as a main component, and stirred to obtain a suspension. The suspension is dried and then heat-treated to form surface-treated Li w A x DO 4 particles. The surface-treated Li w A x DO 4 particles are put into a solution containing an organic substance serving as a carbon source and stirred. This slurry is dried to form a powder, and this powder is heat-treated in a non-oxidizing atmosphere, so that an electrode active material with greatly improved voltage, energy density, and load characteristics can be easily produced. be able to. Therefore, it is possible to stably supply an electrode active material with greatly improved long-term cycle stability and safety.

本実施形態のリチウムイオン電池によれば、本実施形態の電極活物質31をリチウムイオン電池の正電極に用いたので、高電圧、高エネルギー密度、高負荷特性を有するとともに、長期のサイクル安定性及び安全性に優れたリチウムイオン電池を提供することができる。   According to the lithium ion battery of this embodiment, since the electrode active material 31 of this embodiment is used for the positive electrode of the lithium ion battery, it has high voltage, high energy density, high load characteristics, and long-term cycle stability. In addition, a lithium ion battery excellent in safety can be provided.

以下、実施例1〜9及び比較例1、2により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely by Examples 1-9 and Comparative Examples 1 and 2, this invention is not limited by these Examples.

(LiMnPO粒子の合成)
実施例1〜3、9及び比較例1共通のLiMnPOを、以下のようにして作製した。
Li源及びP源としてLiPOを、Mn源としてMnSO・5HOを用い、これらをモル比でLi:Mn:P=3:1:1となるように純水に溶解して前駆体溶液200mLを作製した。
(Synthesis of LiMnPO 4 particles)
LiMnPO 4 common to Examples 1 to 3 and 9 and Comparative Example 1 was produced as follows.
Li 3 PO 4 was used as the Li source and P source, MnSO 4 .5H 2 O was used as the Mn source, and these were dissolved in pure water so that the molar ratio was Li: Mn: P = 3: 1: 1. 200 mL of the precursor solution was prepared.

次いで、この前駆体溶液を耐圧容器に入れ、170℃にて24時間、水熱合成を行った。この反応後に室温になるまで冷却し、沈殿しているケーキ状の反応生成物を得た。
次いで、この沈殿物を蒸留水にて5回水洗して不純物を洗い流し、その後、乾燥しないように含水率30%に保持し、ケーキ状のLiMnPOとした。
このケーキ状のLiMnPOから若干量の試料を採取し、70℃にて2時間真空乾燥させて得られた粉体をX線回折法にて同定したところ、単相のLiMnPOが生成していることが確認された。
Subsequently, this precursor solution was put into a pressure vessel and hydrothermal synthesis was performed at 170 ° C. for 24 hours. After this reaction, the reaction mixture was cooled to room temperature to obtain a precipitated cake-like reaction product.
Next, the precipitate was washed with distilled water 5 times to wash away impurities, and then kept at a water content of 30% so as not to be dried, to obtain cake-like LiMnPO 4 .
A small amount of sample was taken from this cake-like LiMnPO 4 and vacuum-dried at 70 ° C. for 2 hours, and the powder obtained was identified by X-ray diffraction. As a result, single-phase LiMnPO 4 was produced. It was confirmed that

(LiCoPO粒子の合成)
実施例4〜6及び比較例2共通のLiCoPOを、以下のようにして作製した。
Li源及びP源としてLiPOを、Co源としてCoSO・7HOを用い、これらをモル比でLi:Co:P=3:1:1となるように純水に溶解して前駆体溶液200mLを作製した。
(Synthesis of LiCoPO 4 particles)
LiCoPO 4 common to Examples 4 to 6 and Comparative Example 2 was produced as follows.
Li 3 PO 4 was used as the Li source and P source, CoSO 4 .7H 2 O was used as the Co source, and these were dissolved in pure water so that the molar ratio was Li: Co: P = 3: 1: 1. 200 mL of the precursor solution was prepared.

次いで、この前駆体溶液を耐圧容器に入れ、170℃にて24時間、水熱合成を行った。この反応後に室温になるまで冷却し、沈殿しているケーキ状の反応生成物を得た。
次いで、この沈殿物を蒸留水にて5回水洗して不純物を洗い流し、その後、乾燥しないように含水率30%に保持し、ケーキ状のLiCoPOとした。
このケーキ状のLiCoPOから若干量の試料を採取し、70℃にて2時間真空乾燥させて得られた粉体をX線回折法にて同定したところ、単相のLiCoPOが生成していることが確認された。
Subsequently, this precursor solution was put into a pressure vessel and hydrothermal synthesis was performed at 170 ° C. for 24 hours. After this reaction, the reaction mixture was cooled to room temperature to obtain a precipitated cake-like reaction product.
Next, the precipitate was washed with distilled water 5 times to wash away impurities, and then kept at a moisture content of 30% so as not to be dried, to obtain cake-like LiCoPO 4 .
A small amount of sample was taken from the cake-like LiCoPO 4 and vacuum-dried at 70 ° C. for 2 hours. The powder obtained was identified by X-ray diffraction. As a result, single-phase LiCoPO 4 was produced. It was confirmed that

(実施例1)
LiMnPO95質量%に対し、Li源としてLiCHCOOを、Fe源としてFe(CHCOO)を、リン酸源として(NHHPOを、LiFePOに換算して5質量%含むように、これらの各質量を調整して純水中に投入し、撹拌して懸濁させ、得られたスラリーを乾燥後、600℃にて6時間、熱処理を行い、粉体を得た。
次いで、この粉体95質量%に対し、ポリビニルアルコール10%水溶液を、ポリビニルアルコール固形分で5質量%となるように添加し、懸濁したスラリーとし、このスラリーを乾燥後、600℃にて1時間、熱処理を行い、図2に示す構造の実施例1の電極活物質を得た。
Example 1
LiMnPO 4 95% by mass, LiCH 3 COO as the Li source, Fe (CH 3 COO) 2 as the Fe source, (NH 4 ) 2 HPO 4 as the phosphoric acid source, and 5% by mass in terms of LiFePO 4 Each of these masses was adjusted so as to be contained, poured into pure water, stirred and suspended, and the obtained slurry was dried and then heat-treated at 600 ° C. for 6 hours to obtain a powder. .
Next, a 10% aqueous solution of polyvinyl alcohol is added to 95% by mass of the powder so that the solid content of polyvinyl alcohol is 5% by mass to obtain a suspended slurry. Heat treatment was performed for a time, and the electrode active material of Example 1 having the structure shown in FIG. 2 was obtained.

(実施例2)
LiMnPO95質量%に対し、ポリビニルアルコール10%水溶液を、ポリビニルアルコール固形分で5質量%となるように添加し、さらに、Li源としてLiCHCOOを、Fe源としてFe(CHCOO)を、リン酸源として(NHHPOを、LiFePOに換算して4質量%含むように、これらの各質量を調整して投入し、撹拌して懸濁させ、得られたスラリーを乾燥後、600℃にて1時間、熱処理を行い、図3に示す構造の実施例2の電極活物質を得た。
(Example 2)
LiMnPO 4 to 95 wt%, polyvinyl alcohol 10% aqueous solution, was added in an amount of 5 wt% polyvinyl alcohol solids, addition, LiCH 3 COO as Li source, as Fe source Fe (CH 3 COO) 2 And (NH 4 ) 2 HPO 4 as a phosphoric acid source, each of these masses is adjusted so as to be contained in an amount of 4% by mass in terms of LiFePO 4 , and the resulting slurry is stirred and suspended. After drying, heat treatment was performed at 600 ° C. for 1 hour to obtain an electrode active material of Example 2 having the structure shown in FIG.

(実施例3)
LiMnPO95質量%に対し、Fe源として塩化鉄(II)(FeCl)を5質量%含むように、これらLiMnPO及び塩化鉄(II)(FeCl)の各質量を調整して純水中に投入し、撹拌して懸濁させ、この懸濁液を乾燥後、600℃にて6時間、熱処理を行い、粉体を得た。
次いで、この粉体95質量%に対し、ポリビニルアルコール10%水溶液を、ポリビニルアルコール固形分で5質量%となるように添加し、懸濁したスラリーとし、このスラリーを乾燥後、600℃にて1時間、熱処理を行い、図4に示す構造の実施例3の電極活物質を得た。
Example 3
Pure water is prepared by adjusting each mass of LiMnPO 4 and iron chloride (II) (FeCl 2 ) so that 95 mass% of LiMnPO 4 contains 5 mass% of iron chloride (II) (FeCl 2 ) as an Fe source. The suspension was stirred and suspended, and the suspension was dried and then heat-treated at 600 ° C. for 6 hours to obtain a powder.
Next, a 10% aqueous solution of polyvinyl alcohol is added to 95% by mass of the powder so that the solid content of polyvinyl alcohol is 5% by mass to obtain a suspended slurry. Heat treatment was performed for a time, and an electrode active material of Example 3 having the structure shown in FIG. 4 was obtained.

(実施例4)
LiCoPO95質量%に対し、Li源としてLiCHCOOを、Fe源としてFe(CHCOO)を、リン酸源として(NHHPOを、LiFePOに換算して5質量%含むように、これらの各質量を調整して純水中に投入し、撹拌して懸濁させ、得られたスラリーを乾燥後、600℃にて6時間、熱処理を行い、粉体を得た。
次いで、この粉体95質量%に対し、ポリビニルアルコール10%水溶液を、ポリビニルアルコール固形分で5質量%となるように添加し、懸濁したスラリーとし、このスラリーを乾燥後、600℃にて1時間、熱処理を行い、図2に示す構造の実施例4の電極活物質を得た。
Example 4
5% by mass in terms of LiCoPO 4 95% by mass in terms of LiCH 3 COO as the Li source, Fe (CH 3 COO) 2 as the Fe source, (NH 4 ) 2 HPO 4 as the phosphoric acid source, and LiFePO 4 Each of these masses was adjusted so as to be contained, poured into pure water, stirred and suspended, and the obtained slurry was dried and then heat-treated at 600 ° C. for 6 hours to obtain a powder. .
Next, a 10% aqueous solution of polyvinyl alcohol is added to 95% by mass of the powder so that the solid content of polyvinyl alcohol is 5% by mass to obtain a suspended slurry. Heat treatment was performed for a time, and an electrode active material of Example 4 having the structure shown in FIG. 2 was obtained.

(実施例5)
LiCoPO95質量%に対し、ポリビニルアルコール10%水溶液を、ポリビニルアルコール固形分で5質量%となるように添加し、さらに、Li源としてLiCHCOOを、Fe源としてFe(CHCOO)を、リン酸源として(NHHPOを、LiFePOに換算して4質量%含むように、これらの各質量を調整して投入し、撹拌して懸濁させ、得られたスラリーを乾燥後、600℃にて1時間、熱処理を行い、図3に示す構造の実施例5の電極活物質を得た。
(Example 5)
With respect to 95% by mass of LiCoPO 4, a 10% aqueous solution of polyvinyl alcohol is added so that the solid content of polyvinyl alcohol is 5% by mass. Further, LiCH 3 COO as a Li source and Fe (CH 3 COO) 2 as an Fe source And (NH 4 ) 2 HPO 4 as a phosphoric acid source, each of these masses is adjusted so as to be contained in an amount of 4% by mass in terms of LiFePO 4 , and the resulting slurry is stirred and suspended. After drying, heat treatment was performed at 600 ° C. for 1 hour to obtain an electrode active material of Example 5 having the structure shown in FIG.

(実施例6)
LiCoPO95質量%に対し、Fe源として塩化鉄(II)(FeCl)を5質量%含むように、これらLiCoPO及び塩化鉄(II)(FeCl)の各質量を調整して純水中に投入し、撹拌して懸濁させ、この懸濁液を乾燥後、600℃にて6時間、熱処理を行い、粉体を得た。
次いで、この粉体95質量%に対し、ポリビニルアルコール10%水溶液を、ポリビニルアルコール固形分で5質量%となるように添加し、懸濁したスラリーとし、このスラリーを乾燥後、600℃にて1時間、熱処理を行い、図4に示す構造の実施例6の電極活物質を得た。
(Example 6)
Pure water is prepared by adjusting each mass of LiCoPO 4 and iron chloride (II) (FeCl 2 ) so that 95 mass% of LiCoPO 4 contains 5 mass% of iron (II) chloride (FeCl 2 ) as an Fe source. The suspension was stirred and suspended, and the suspension was dried and then heat-treated at 600 ° C. for 6 hours to obtain a powder.
Next, a 10% aqueous solution of polyvinyl alcohol is added to 95% by mass of the powder so that the solid content of polyvinyl alcohol is 5% by mass to obtain a suspended slurry. Heat treatment was performed for a time, and an electrode active material of Example 6 having the structure shown in FIG. 4 was obtained.

(実施例7)
実施例3のLiMnPOをLiMn0.5Co0.5POに替えた他は、実施例3に準じて、図4に示す構造の実施例7の電極活物質を得た。
(Example 7)
The electrode active material of Example 7 having the structure shown in FIG. 4 was obtained according to Example 3, except that LiMnPO 4 of Example 3 was replaced with LiMn 0.5 Co 0.5 PO 4 .

(実施例8)
実施例3のLiMnPOをLiMnSiOに替えた他は、実施例3に準じて、図4に示す構造の実施例7の電極活物質を得た。
(Example 8)
The electrode active material of Example 7 having the structure shown in FIG. 4 was obtained according to Example 3 except that LiMnPO 4 of Example 3 was replaced with Li 2 MnSiO 4 .

(実施例9)
実施例3のFe源である塩化鉄(II)(FeCl)をNi源である塩化ニッケル(NiCl)に替えた他は、実施例3に準じて、図4に示す構造の実施例9の電極活物質を得た。
Example 9
Example 9 of the structure shown in FIG. 4 is the same as Example 3 except that iron chloride (II) (FeCl 2 ) as the Fe source in Example 3 is replaced with nickel chloride (NiCl 2 ) as the Ni source. An electrode active material was obtained.

(比較例1)
LiMnPO95質量%に対し、ポリビニルアルコール10%水溶液を、ポリビニルアルコール固形分で7質量%となるように添加し、懸濁したスラリーとし、このスラリーを乾燥後、600℃にて1時間、熱処理を行い、比較例1の電極活物質を得た。
(Comparative Example 1)
A 10% aqueous solution of polyvinyl alcohol is added to 95% by mass of LiMnPO 4 so that the solid content of polyvinyl alcohol is 7% by mass to obtain a suspended slurry. The slurry is dried and then heat treated at 600 ° C. for 1 hour. The electrode active material of Comparative Example 1 was obtained.

(比較例2)
LiCoPO95質量%に対し、ポリビニルアルコール10%水溶液を、ポリビニルアルコール固形分で7質量%となるように添加し、懸濁したスラリーとし、このスラリーを乾燥後、600℃にて1時間、熱処理を行い、比較例2の電極活物質を得た。
(Comparative Example 2)
A 10% aqueous solution of polyvinyl alcohol is added to 95% by mass of LiCoPO 4 so that the solid content of polyvinyl alcohol is 7% by mass to obtain a suspended slurry. The slurry is dried and then heat treated at 600 ° C. for 1 hour. The electrode active material of Comparative Example 2 was obtained.

「リチウムイオン電池の作製」
実施例1〜9及び比較例1、2各々の正電極を作製した。
ここでは、実施例1〜9及び比較例1、2各々にて得られた各電極活物質、導電助剤としてアセチレンブラック(AB)、バインダーとしてポリフッ化ビニリデン(PVdF)、溶媒としてN−メチル−2−ピロリジノン(NMP)を用い、これらを混合し、実施例1〜9及び比較例1、2各々のペーストを作製した。なお、ペースト中の質量比、LiMnPOまたはLiCoPO:AB:PVdFは85:10:5であった。
次いで、これらのペーストを厚み30μmのアルミニウム(Al)箔上に塗布し、乾燥した。その後、40MPaの圧力にて圧密し、正電極とした。
“Production of lithium-ion batteries”
The positive electrodes of Examples 1 to 9 and Comparative Examples 1 and 2 were prepared.
Here, each electrode active material obtained in each of Examples 1 to 9 and Comparative Examples 1 and 2, acetylene black (AB) as a conductive assistant, polyvinylidene fluoride (PVdF) as a binder, and N-methyl- as a solvent Using 2-pyrrolidinone (NMP), these were mixed to prepare pastes of Examples 1 to 9 and Comparative Examples 1 and 2, respectively. The mass ratio in the paste, LiMnPO 4 or LiCoPO 4 : AB: PVdF, was 85: 10: 5.
Next, these pastes were applied onto an aluminum (Al) foil having a thickness of 30 μm and dried. Then, it compacted with the pressure of 40 Mpa, and set it as the positive electrode.

次いで、この正電極を成形機を用いて面積が2cmの円板状に打ち抜き、真空乾燥後、乾燥Ar雰囲気下にてステンレススチール(SUS)製の2016コイン型セルを用いて、実施例1〜9及び比較例1、2各々のリチウムイオン電池を作製した。なお、負極には金属Liを、セパレーターには多孔質ボリプロピレン膜を、電解質溶液には1MのLiPF溶液を、それぞれ用いた。このLiPF溶液の溶媒としては、炭酸エチレンと炭酸ジエチルとの比が1:1のものを用いた。 Next, this positive electrode was punched into a disk shape having an area of 2 cm 2 using a molding machine, vacuum dried, and then subjected to a stainless steel (SUS) 2016 coin cell in a dry Ar atmosphere. To 9 and Comparative Examples 1 and 2 were prepared. Metal Li was used for the negative electrode, a porous polypropylene film was used for the separator, and a 1M LiPF 6 solution was used for the electrolyte solution. As a solvent for this LiPF 6 solution, a solvent having a ratio of ethylene carbonate to diethyl carbonate of 1: 1 was used.

「電池特性試験」
実施例1〜9及び比較例1、2各々のリチウムイオン電池の電池特性試験を、環境温度60℃、充電電流0.1CAで、試験極の電位がLiの平衡電位に対して所定の充電電圧になるまで充電し、1分間休止の後、0.1CA及び1CAの放電電流で2.0Vになるまで放電させて行った。
充電電圧は、実施例1〜3、8、9及び比較例1のMn系のリチウムイオン電池については4.5V、実施例4〜7及び比較例2のCo系のリチウムイオン電池については4.9Vとした。
実施例1〜9及び比較例1、2各々の環境温度60℃における放電容量(1C)を表1に示す。また、図5〜7に実施例1〜3の0.1CAの充放電曲線を示す。
"Battery characteristics test"
The battery characteristics test of each of the lithium ion batteries of Examples 1 to 9 and Comparative Examples 1 and 2 was performed at an environmental temperature of 60 ° C., a charging current of 0.1 CA, and a predetermined charging voltage with respect to the equilibrium potential of the test electrode being Li The battery was charged until the battery was discharged, and after a pause of 1 minute, the battery was discharged at a discharge current of 0.1 CA and 1 CA to 2.0 V.
The charging voltage is 4.5 V for the Mn-based lithium ion batteries of Examples 1 to 3, 8, and 9 and Comparative Example 1, and 4 for the Co-based lithium ion batteries of Examples 4 to 7 and Comparative Example 2. It was set to 9V.
Table 1 shows the discharge capacities (1C) of Examples 1 to 9 and Comparative Examples 1 and 2 at an environmental temperature of 60 ° C. Moreover, the charging / discharging curve of 0.1CA of Examples 1-3 is shown in FIGS.

Figure 0006057402
Figure 0006057402

なお、実施例1〜9では、電極材料自体の挙動をデータに反映させるために、負極に金属リチウムを用いたが、金属リチウムの代わりに天然黒鉛、人造黒鉛、コークス等の炭素材料、リチウム合金、LiTi12等の負極材料を用いてもよい。
また、実施例1〜9では、導電助剤としてアセチレンブラックを用いているが、カーボンブラック、グラファイト、ケッチェンブラック、天然黒鉛、人造黒鉛等の炭素材料を用いてもよい。
In Examples 1 to 9, in order to reflect the behavior of the electrode material itself in the data, metallic lithium was used for the negative electrode, but instead of metallic lithium, carbon materials such as natural graphite, artificial graphite and coke, lithium alloys A negative electrode material such as Li 4 Ti 5 O 12 may be used.
Moreover, in Examples 1-9, although acetylene black is used as a conductive support agent, you may use carbon materials, such as carbon black, graphite, ketjen black, natural graphite, and artificial graphite.

また、電解質溶液にLiPF溶液を、このLiPF溶液の溶媒として炭酸エチレンと炭酸ジエチルとの比が1:1のものを、それぞれ用いたが、LiPFの代わりにLiBFやLiClO溶液を用いてもよく、炭酸エチレンの代わりにプロピレンカーボネートやジエチルカーボネートを用いてもよい。
また、電解液とセパレーターの代わりに固体電解質を用いてもよい。
Further, a LiPF 6 solution was used as the electrolyte solution, and a 1: 1 ratio of ethylene carbonate and diethyl carbonate was used as a solvent for this LiPF 6 solution. However, instead of LiPF 6 , LiBF 4 or LiClO 4 solution was used. Propylene carbonate or diethyl carbonate may be used instead of ethylene carbonate.
Moreover, you may use a solid electrolyte instead of electrolyte solution and a separator.

1 電極活物質
2 LiDO粒子
3 被覆層
11 電極活物質
12 (第2の)被覆層
21 電極活物質
22 被覆層
31 電極活物質
32 被覆層
1 the electrode active material 2 Li w A x DO 4 particles 3 covering layer 11 electrode active material 12 (second) coating layer 21 electrode active material 22 coating layer 31 electrode active material 32 coating layer

Claims (3)

オリビン構造を有し、LiDO(但し、AはMn、Coの群から選択される1種または2種、DはP、Si、Sの群から選択される1種または2種以上、0<w≦4、0<x≦1.5)からなる粒子の表面を被覆層により被覆してなり、
前記被覆層が1nm以上かつ5nm以下であり、
前記被覆層は、前記LiDO粒子を表面処理する前記Fe及びNiのいずれか1種または2種を含む化合物と、
前記LiDO粒子の表面処理された部分に存在する前記Fe及びNiのいずれか1種または2種を含む化合物と接触する有機系炭素質の電子伝導性物質と、を有する電極活物質。
Li w A x DO 4 (where A is one or two selected from the group of Mn and Co, D is one or two selected from the group of P, Si and S) The surface of particles consisting of 0 <w ≦ 4, 0 <x ≦ 1.5) is coated with a coating layer,
The coating layer is 1 nm or more and 5 nm or less,
The coating layer includes a compound containing any one or two of Fe and Ni that surface-treats the Li w A x DO 4 particles;
An organic carbonaceous electron conductive material in contact with a compound containing either one or two of Fe and Ni present in the surface-treated portion of the Li w A x DO 4 particles. material.
請求項1に記載の電極活物質の製造方法であって、
を主成分とする溶媒中にFe、Niの群から選択される1種または2種を含む化合物を溶解した溶液中に、前記Li DO 粒子を投入し、撹拌して懸濁液とし、この懸濁液を乾燥後、熱処理して、表面処理LiDO粒子とし、この表面処理LiDO粒子を、炭素源となる有機物を含む溶液中に投入し、撹拌してスラリーとし、このスラリーを乾燥して粉体とし、この粉体を非酸化性雰囲気下にて熱処理することを特徴とする電極活物質の製造方法。
It is a manufacturing method of the electrode active material according to claim 1,
The Li w A x DO 4 particles are put into a solution in which a compound containing one or two selected from the group of Fe and Ni is dissolved in a solvent containing water as a main component, and suspended by stirring. After the suspension is dried and heat-treated to obtain surface-treated Li w A x DO 4 particles, the surface-treated Li w A x DO 4 particles are put into a solution containing an organic substance serving as a carbon source. A method for producing an electrode active material, comprising stirring to form a slurry, drying the slurry to form a powder, and heat-treating the powder in a non-oxidizing atmosphere.
請求項1に記載の電極活物質を用いた電極を備えてなることを特徴とするリチウムイオン電池。   A lithium ion battery comprising an electrode using the electrode active material according to claim 1.
JP2010045235A 2010-03-02 2010-03-02 Electrode active material, method for producing the same, and lithium ion battery Active JP6057402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010045235A JP6057402B2 (en) 2010-03-02 2010-03-02 Electrode active material, method for producing the same, and lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010045235A JP6057402B2 (en) 2010-03-02 2010-03-02 Electrode active material, method for producing the same, and lithium ion battery

Publications (2)

Publication Number Publication Date
JP2011181375A JP2011181375A (en) 2011-09-15
JP6057402B2 true JP6057402B2 (en) 2017-01-11

Family

ID=44692680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010045235A Active JP6057402B2 (en) 2010-03-02 2010-03-02 Electrode active material, method for producing the same, and lithium ion battery

Country Status (1)

Country Link
JP (1) JP6057402B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140512B (en) * 2010-06-02 2019-01-22 株式会社半导体能源研究所 Power storage devices
JP2012048865A (en) * 2010-08-24 2012-03-08 Asahi Glass Co Ltd Method of manufacturing positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2012185979A (en) * 2011-03-04 2012-09-27 Sumitomo Osaka Cement Co Ltd Method for manufacturing electrode active material
WO2013047510A1 (en) * 2011-09-29 2013-04-04 昭和電工株式会社 Positive electrode active material used in lithium secondary batteries and production method therefor
JP5967101B2 (en) * 2011-12-02 2016-08-10 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery
KR20130066326A (en) * 2011-12-12 2013-06-20 어플라이드 머티어리얼스, 인코포레이티드 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2013146207A1 (en) * 2012-03-30 2013-10-03 住友大阪セメント株式会社 Electrode active material, lithium-ion battery, electrode active material discharge state detection method, and electrode active material manufacturing method
JP2013211110A (en) * 2012-03-30 2013-10-10 Sumitomo Osaka Cement Co Ltd Electrode active material and lithium ion battery, and method for producing electrode active material
TW201342697A (en) * 2012-03-30 2013-10-16 Sumitomo Osaka Cement Co Ltd Electrode material
JP6143216B2 (en) * 2012-08-29 2017-06-07 株式会社デンソー Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
CN104781965B (en) 2012-11-12 2018-01-16 三井造船株式会社 The production method of electrode material and electrode material
WO2014077274A1 (en) * 2012-11-14 2014-05-22 古河電気工業株式会社 Positive electrode active material, production method for same, positive electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
EP2784855B1 (en) 2013-03-26 2019-01-30 Kabushiki Kaisha Toshiba Positive electrode active material, nonaqueous electrolyte battery, and battery pack
US10637054B2 (en) 2013-06-06 2020-04-28 Nec Corporation Positive electrode material for lithium ion secondary batteries, and method for producing same
TW201507250A (en) 2013-07-05 2015-02-16 Furukawa Electric Co Ltd Positive electrode active substance, positive electrode for nonaqueous electrolyte secondary cell, nonaqueous electrolyte secondary cell, and method for producing positive electrode active substance
JP6528982B2 (en) * 2013-12-05 2019-06-12 株式会社Gsユアサ Lithium ion secondary battery
JP6457570B2 (en) * 2017-03-01 2019-01-23 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery and method for producing the same
JP6296188B1 (en) * 2017-03-23 2018-03-20 住友大阪セメント株式会社 Electrode active material for lithium ion secondary battery, electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery
JP7443340B2 (en) * 2018-08-30 2024-03-05 ハイドロ-ケベック Coated lithium ion rechargeable battery active material
CN116918098A (en) * 2022-07-15 2023-10-20 宁德时代新能源科技股份有限公司 Positive electrode active material, method for producing positive electrode active material, positive electrode sheet, secondary battery, battery module, battery pack, and electricity device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3632686B2 (en) * 2002-08-27 2005-03-23 ソニー株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery
JP4207510B2 (en) * 2002-09-13 2009-01-14 ソニー株式会社 Positive electrode material, positive electrode, and battery
JP2007234565A (en) * 2005-03-18 2007-09-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP5235282B2 (en) * 2006-06-16 2013-07-10 国立大学法人九州大学 Cathode active material and battery for non-aqueous electrolyte secondary battery
JP5223281B2 (en) * 2007-09-28 2013-06-26 Tdk株式会社 Lithium ion secondary battery or composite particle for positive electrode of lithium secondary battery, and lithium ion secondary battery or lithium secondary battery
JP5107751B2 (en) * 2008-03-07 2012-12-26 日立ビークルエナジー株式会社 Organic electrolyte secondary battery
JP5376894B2 (en) * 2008-10-20 2013-12-25 古河電池株式会社 Multi-component phosphoric acid lithium compound particles having an olivine structure, a method for producing the same, and a lithium secondary battery using the same as a positive electrode material
CA2678540A1 (en) * 2009-09-15 2011-03-15 Hydro-Quebec Material made of composite oxide particles, the process for its preparation, and its use as an active electrode material
JP2011165461A (en) * 2010-02-09 2011-08-25 Nippon Electric Glass Co Ltd Lithium ion secondary battery positive electrode material

Also Published As

Publication number Publication date
JP2011181375A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP6057402B2 (en) Electrode active material, method for producing the same, and lithium ion battery
JP6077206B2 (en) ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, ELECTRODE, LITHIUM ION BATTERY
WO2012121110A1 (en) Electrode active substance and method for producing same
JP6596779B2 (en) COMPOSITE PARTICLE, PROCESS FOR PRODUCING THE SAME, ELECTRODE MATERIAL FOR SECONDARY BATTERY, AND SECONDARY BATTERY
JP2013157260A (en) Electrode material, electrode plate, lithium ion battery, production method of electrode material, and manufacturing method of electrode plate
US20180277887A1 (en) Electrode material for lithium-ion secondary battery and lithium-ion secondary battery
US20170092937A1 (en) Electrode material for lithium-ion rechargeable battery, method for manufacturing electrode material for lithium-ion rechargeable battery, electrode for lithium-ion rechargeable battery, and lithium-ion rechargeable battery
JP2014216240A (en) Electrode active material and electrode material, electrode, lithium ion battery, and method for producing electrode material
US20180062165A1 (en) Electrode material, method for manufacturing electrode material, electrode, and lithium ion battery
JP5928648B1 (en) Electrode material for lithium ion secondary battery
WO2013146207A1 (en) Electrode active material, lithium-ion battery, electrode active material discharge state detection method, and electrode active material manufacturing method
US20180277846A1 (en) Cathode material for lithium-ion secondary battery and manufacturing method thereof, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
US10403892B2 (en) Cathode material for lithium-ion secondary battery and lithium-ion secondary battery
JP2020145108A (en) Electrode material, manufacturing method thereof, electrode, and lithium ion battery
JP2012204150A (en) Method of producing electrode active material and electrode active material, electrode, and battery
JP2015049997A (en) Electrode material for lithium ion batteries, manufacturing method thereof, electrode for lithium ion batteries and lithium ion battery
JP5783295B2 (en) Electrode material, paste, electrode plate and lithium ion battery
JP2013069567A (en) Electrode active material and method for manufacturing the same, and lithium ion battery
JP6070882B1 (en) Lithium ion secondary battery electrode material and method for producing the same, lithium ion secondary battery
JP2014194879A (en) Electrode active material, electrode, and lithium ion battery
JP2015049996A (en) Electrode material for lithium ion batteries, manufacturing method thereof, electrode for lithium ion batteries and lithium ion battery
US9692054B2 (en) Electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013211111A (en) Electrode active material and lithium ion battery, and method for detecting discharge state of electrode active material
JP2019216030A (en) Electrode material and manufacturing method of the same
US10090517B2 (en) Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150417

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20150417

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150427

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20150507

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150515

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20150519

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20160329

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20160412

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20160517

C19 Decision taken to dismiss amendment

Free format text: JAPANESE INTERMEDIATE CODE: C19

Effective date: 20160524

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160715

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20160802

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20160826

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20161101

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20161129

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161202

R150 Certificate of patent or registration of utility model

Ref document number: 6057402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250