JP6035966B2 - Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module - Google Patents

Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module Download PDF

Info

Publication number
JP6035966B2
JP6035966B2 JP2012172671A JP2012172671A JP6035966B2 JP 6035966 B2 JP6035966 B2 JP 6035966B2 JP 2012172671 A JP2012172671 A JP 2012172671A JP 2012172671 A JP2012172671 A JP 2012172671A JP 6035966 B2 JP6035966 B2 JP 6035966B2
Authority
JP
Japan
Prior art keywords
dye
sensitized solar
composite
solar cell
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012172671A
Other languages
Japanese (ja)
Other versions
JP2014032847A (en
Inventor
真也 森部
真也 森部
鈴木 涼
涼 鈴木
孝 生野
孝 生野
加藤 直彦
直彦 加藤
樋口 和夫
和夫 樋口
上山 浩司
浩司 上山
克芳 水元
克芳 水元
豊田 竜生
竜生 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2012172671A priority Critical patent/JP6035966B2/en
Publication of JP2014032847A publication Critical patent/JP2014032847A/en
Application granted granted Critical
Publication of JP6035966B2 publication Critical patent/JP6035966B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、複合体、光電極、色素増感型太陽電池及び色素増感型太陽電池モジュールに関する。   The present invention relates to a composite, a photoelectrode, a dye-sensitized solar cell, and a dye-sensitized solar cell module.

従来、色素増感型太陽電池としては、TiO2上に吸着した有機色素の光吸収特性にしたがって、太陽光を吸収し、光電流が得られるものが提案されている。このような色素増感型太陽電池では、変換効率をより向上させる必要があり、特に光電流を向上させることが重要である。従来、色素増感型太陽電池で用いられている有機色素は、太陽光に対して特に長波長側の分光感度特性が不十分であることから、長波長側の光吸収特性をより拡張した有機色素を用いることによって、光電流をより向上させることが検討されている(例えば、非特許文献1,2参照)。 Conventionally, as a dye-sensitized solar cell, one that absorbs sunlight and obtains a photocurrent according to the light absorption characteristics of an organic dye adsorbed on TiO 2 has been proposed. In such a dye-sensitized solar cell, it is necessary to further improve the conversion efficiency, and it is particularly important to improve the photocurrent. Conventionally, organic dyes used in dye-sensitized solar cells have an extended optical absorption characteristic on the long wavelength side because the spectral sensitivity characteristic on the long wavelength side is particularly insufficient with respect to sunlight. It has been studied to improve the photocurrent by using a dye (for example, see Non-Patent Documents 1 and 2).

また、色素増感型太陽電池としては、電子受容部位を有する有機色素とCuを含むCu系材料とを含有した複合体を備えたものが提案されている(例えば、特許文献1参照)。この太陽電池では、有機色素とCuイオンとの相互作用により光吸収特性を向上することができる。   In addition, as a dye-sensitized solar cell, a solar cell including a composite containing an organic dye having an electron accepting site and a Cu-based material containing Cu has been proposed (for example, see Patent Document 1). In this solar cell, the light absorption characteristics can be improved by the interaction between the organic dye and Cu ions.

特開2011−204789号公報JP 2011-204789 A

Chem.Mater.,2008,20,3993−4003Chem. Mater. , 2008, 20, 3993-4003 J.Am.Chem.Soc.,2004,26,12218−12219J. et al. Am. Chem. Soc. , 2004, 26, 12218-12219

しかしながら、上述の非特許文献1,2では、新規な有機色素を検討しなければならなかった。例えば、新規に有機色素分子を合成するには高度な技術を必要とする上、このような有機色素を合成するには、一般に多段階反応で合成する必要があり、時間がかかることがあった。また、分子シミュレーションなどで予め所望の光吸収特性になるように有機色素分子を設計しても、合成した有機色素が目的通りの光吸収特性を有するものとなるかはわからないことがあった。また、特許文献1では、有機色素とCuイオンとの相互作用を用いているが、更なる光吸収特性の向上が望まれていた。このように、有機合成による有機色素分子の構造最適化や、イオンの作用によって光吸収特性の向上が図られているものの、まだ十分でなく、有機色素の光吸収特性を向上することが求められていた。   However, in the above-mentioned Non-Patent Documents 1 and 2, a novel organic dye has to be studied. For example, in order to newly synthesize organic dye molecules, advanced techniques are required, and in order to synthesize such organic dyes, it is generally necessary to synthesize in a multi-step reaction, which may take time. . Further, even when an organic dye molecule is designed in advance so as to have a desired light absorption characteristic by molecular simulation or the like, it may not be known whether the synthesized organic dye has a desired light absorption characteristic. Moreover, in patent document 1, although the interaction of an organic pigment | dye and Cu ion is used, the improvement of the further light absorption characteristic was desired. As described above, the structure of organic dye molecules by organic synthesis is optimized, and the light absorption characteristics are improved by the action of ions, but this is not sufficient, and it is required to improve the light absorption characteristics of organic dyes. It was.

本発明は、このような課題に鑑みなされたものであり、有機色素の光吸収特性をより向上することができる複合体、光電極、色素増感型太陽電池及び色素増感型太陽電池モジュールを提供することを主目的とする。   This invention is made | formed in view of such a subject, The composite body which can improve the light absorption characteristic of an organic pigment | dye more, a photoelectrode, a dye-sensitized solar cell, and a dye-sensitized solar cell module The main purpose is to provide.

上述した目的を達成するために鋭意研究したところ、本発明者らは、有機色素分子と、第1族元素及び第2族元素のうち1以上を含むアルカリ系材料と、1以上の遷移金属を含む遷移金属材料とを含むものとすると、有機色素の光吸収特性をより向上することができることを見いだし、本発明を完成するに至った。   As a result of diligent research to achieve the above-mentioned object, the present inventors have found an organic dye molecule, an alkaline material containing one or more of Group 1 elements and Group 2 elements, and one or more transition metals. It has been found that the light absorption characteristics of the organic dye can be further improved by including the transition metal material, and the present invention has been completed.

即ち、本発明の複合体は、
S及びNのうち少なくとも一方を含む電子受容部位を有する有機色素分子と、
第1族元素及び第2族元素のうち1以上を含むアルカリ系材料と、
1以上の遷移金属を含む遷移金属材料と、
を含有したものである。
That is, the complex of the present invention is
An organic dye molecule having an electron accepting site containing at least one of S and N;
An alkaline material containing one or more of Group 1 elements and Group 2 elements;
A transition metal material comprising one or more transition metals;
Is contained.

あるいは、本発明の複合体は、
S及びNのうち少なくとも一方を含む電子受容部位を有する有機色素分子と、
Feを少なくとも含む遷移金属材料と、
を含有したものである。
Alternatively, the complex of the present invention is
An organic dye molecule having an electron accepting site containing at least one of S and N;
A transition metal material containing at least Fe;
Is contained.

あるいは、本発明の複合体は、
S及びNのうち少なくとも一方を含む電子受容部位を有する有機色素分子と、
第1族元素及び第2族元素のうち1以上を含むアルカリ系材料と、
を含有したものである。
Alternatively, the complex of the present invention is
An organic dye molecule having an electron accepting site containing at least one of S and N;
An alkaline material containing one or more of Group 1 elements and Group 2 elements;
Is contained.

あるいは、本発明の複合体は、
S及びNのうち少なくとも一方を含む電子受容部位を有する有機色素分子と、
Cuを含む半導体及びCuを含む導電体のうち少なくとも一方を含むCu系材料とCu以外の遷移金属を含む非Cu系材料とを含む遷移金属材料と、
を含有したものである。
Alternatively, the complex of the present invention is
An organic dye molecule having an electron accepting site containing at least one of S and N;
A transition metal material including a Cu-based material including at least one of a semiconductor including Cu and a conductor including Cu and a non-Cu-based material including a transition metal other than Cu;
Is contained.

本発明の光電極は、色素増感型太陽電池に用いられる光電極であって、透明導電膜と透明基板とを有する導電性基板と、前記導電性基板に隣接して設けられているn型半導体層と、前記n型半導体層に形成されている上述したいずれかの複合体と、を備えたものである。   The photoelectrode of the present invention is a photoelectrode used for a dye-sensitized solar cell, and is a conductive substrate having a transparent conductive film and a transparent substrate, and an n-type provided adjacent to the conductive substrate. A semiconductor layer and any one of the above-described composites formed in the n-type semiconductor layer are provided.

本発明の色素増感型太陽電池は、上述した光電極と、前記光電極に対向して設けられた対極と、を備えたものである。   The dye-sensitized solar cell of the present invention includes the above-described photoelectrode and a counter electrode provided to face the photoelectrode.

本発明の色素増感型太陽電池モジュールは、上述した色素増感型太陽電池を複数備えているものである。   The dye-sensitized solar cell module of the present invention includes a plurality of the dye-sensitized solar cells described above.

本発明は、有機色素の光吸収特性をより向上することができる。このような効果が得られる理由は明らかではないが、以下のように推測される。例えば、有機色素分子内において、電荷移動の相互作用が、色素と金属イオンとの相互作用又は結合などにより変化することによって、光吸収特性が長波長側に拡大するためであると推察される。このような、有機色素分子と金属イオンとの相互作用又は結合が、有機色素分子とアルカリ系金属イオンとの間、及び有機色素分子と遷移金属イオンとの間で重畳的に起きることによって、有機色素の光吸収特性をより向上することができるものと推察される。   The present invention can further improve the light absorption characteristics of organic dyes. The reason why such an effect is obtained is not clear, but is presumed as follows. For example, it is presumed that the charge absorption interaction is expanded in the long wavelength side by changing the interaction of charge transfer in the organic dye molecule due to the interaction or bond between the dye and the metal ion. Such interaction or bonding between the organic dye molecule and the metal ion occurs in an overlapping manner between the organic dye molecule and the alkali metal ion and between the organic dye molecule and the transition metal ion. It is presumed that the light absorption characteristics of the dye can be further improved.

色素増感型太陽電池モジュール10の構成の概略の一例を示す断面図。FIG. 3 is a cross-sectional view showing an example of a schematic configuration of the dye-sensitized solar cell module 10. ロダニン構造を有する有機色素分子の一例である色素1〜4の説明図。Explanatory drawing of the pigment | dyes 1-4 which is an example of the organic pigment | dye molecule | numerator which has a rhodanine structure. CN基を有する有機色素分子の一例である色素5〜10の説明図。Explanatory drawing of the pigment | dyes 5-10 which is an example of the organic pigment | dye molecule | numerator which has CN group. 色素増感型太陽電池40の構成の概略の一例を示す断面図。FIG. 3 is a cross-sectional view illustrating an example of a schematic configuration of a dye-sensitized solar cell 40. 実験例1,2の複合体の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the composite_body | complex of Experimental example 1,2. 実験例3〜6の複合体の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the composite of Experimental example 3-6. 実験例7〜10の複合体の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the composite of Experimental Examples 7-10. 実験例11〜14の複合体の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the composite_body | complex of Experimental Examples 11-14. 実験例15,16の複合体の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the composite body of Experimental example 15 and 16. 実験例17〜20の複合体の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the composite body of Experimental example 17-20. 実験例21〜24の複合体の吸収スペクトルの測定結果。The measurement result of the absorption spectrum of the composite of Experimental Examples 21-24. 有機色素に金属含有材料を作用させたときの光吸収特性の測定結果。Measurement results of light absorption characteristics when a metal-containing material is allowed to act on an organic dye. 実験例25〜27のセルの波長に対するIPCEの測定結果。The measurement result of IPCE with respect to the wavelength of the cell of Experimental Examples 25-27. 実験例28のセルの波長に対するIPCEの測定結果。The measurement result of IPCE with respect to the wavelength of the cell of Experimental Example 28. 実験例29のセルの波長に対するIPCEの測定結果。The measurement result of IPCE with respect to the wavelength of the cell of Experimental Example 29. 実験例30のセルの波長に対するIPCEの測定結果。The measurement result of IPCE with respect to the wavelength of the cell of Experimental Example 30.

本発明の色素増感型太陽電池モジュールの一実施形態を図面を用いて説明する。図1は、色素増感型太陽電池モジュール10の構成の概略の一例を示す断面図である。図1に示すように、本実施形態に係る色素増感型太陽電池モジュール10は、透明導電性基板14上に複数の色素増感型太陽電池40(以下セルとも称する)が順次配列した構成となっている。これらのセルは直列に接続されている。この色素増感型太陽電池モジュール10では、各セルの間を埋めるように、シール材32が形成されており、透明導電性基板14とは反対側のシール材32の面に平板状の保護部材34が形成されている。この色素増感型太陽電池40は、透明導電膜12と透明基板11とを有する透明導電性基板14とn型半導体を含み下地層22を介して透明導電性基板14に隣接して設けられている多孔質半導体層24と多孔質半導体層24に形成されている複合体28とを備えた光電極20と、光電極20に対向して設けられた対極30と、を備えている。また、色素増感型太陽電池40は、p型半導体を含み光電極20と対極30との間に介在する正孔輸送層26を備えている。本実施形態に係る色素増感型太陽電池40は、光が透過する透明基板11の表面に透明導電膜12が形成されている透明導電性基板14と、下地層22を介して透明導電膜12に形成されている多孔質半導体層24と、多孔質半導体層24に対して正孔輸送層26及びセパレータ29を介して設けられた対極30と、を備えている。光電極20は、透明導電性基板14と、透明基板11の受光面13の反対側の面に分離形成された透明導電膜12に配設された下地層22と、下地層22に配設され受光に伴い電子を放出する多孔質半導体層24とを備えている。この多孔質半導体層24には、詳しくは後述する有機色素分子及び金属含有材料を含む複合体28が形成されている。この色素増感型太陽電池40では、光電極20と対極30とが固体p型半導体層である正孔輸送層26を介して接続されている、いわゆる全固体型の色素増感型太陽電池として構成されている。   An embodiment of the dye-sensitized solar cell module of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view illustrating an example of a schematic configuration of a dye-sensitized solar cell module 10. As shown in FIG. 1, the dye-sensitized solar cell module 10 according to this embodiment has a configuration in which a plurality of dye-sensitized solar cells 40 (hereinafter also referred to as cells) are sequentially arranged on a transparent conductive substrate 14. It has become. These cells are connected in series. In this dye-sensitized solar cell module 10, a sealing material 32 is formed so as to fill between the cells, and a flat protective member is provided on the surface of the sealing material 32 on the side opposite to the transparent conductive substrate 14. 34 is formed. The dye-sensitized solar cell 40 includes a transparent conductive substrate 14 having a transparent conductive film 12 and a transparent substrate 11 and an n-type semiconductor, and is provided adjacent to the transparent conductive substrate 14 via a base layer 22. A photoelectrode 20 having a porous semiconductor layer 24 and a composite 28 formed on the porous semiconductor layer 24, and a counter electrode 30 provided to face the photoelectrode 20. The dye-sensitized solar cell 40 includes a hole transport layer 26 that includes a p-type semiconductor and is interposed between the photoelectrode 20 and the counter electrode 30. The dye-sensitized solar cell 40 according to this embodiment includes a transparent conductive substrate 12 having a transparent conductive film 12 formed on the surface of a transparent substrate 11 through which light is transmitted, and the transparent conductive film 12 via a base layer 22. And a counter electrode 30 provided to the porous semiconductor layer 24 via a hole transport layer 26 and a separator 29. The photoelectrode 20 is disposed on the transparent conductive substrate 14, the underlying layer 22 disposed on the transparent conductive film 12 formed separately on the surface opposite to the light receiving surface 13 of the transparent substrate 11, and the underlying layer 22. And a porous semiconductor layer 24 that emits electrons upon receiving light. In this porous semiconductor layer 24, a composite 28 containing organic dye molecules and a metal-containing material, which will be described in detail later, is formed. The dye-sensitized solar cell 40 is a so-called all-solid dye-sensitized solar cell in which the photoelectrode 20 and the counter electrode 30 are connected via a hole transport layer 26 that is a solid p-type semiconductor layer. It is configured.

透明導電性基板14は、透明基板11と透明導電膜12とにより構成され、光透過性及び導電性を有するものである。具体的には、フッ素ドープSnO2コートガラス、ITOコートガラス、ZnO:Alコートガラス、アンチモンドープ酸化スズ(SnO2−Sb)コートガラス等が挙げられる。また、酸化スズや酸化インジウムに原子価の異なる陽イオン若しくは陰イオンをドープした透明電極、メッシュ状、ストライプ状など光が透過できる構造にした金属電極をガラス基板等の基板上に設けたものも使用できる。この透明導電性基板14の透明導電膜12側の両端には、集電電極16,17が設けられており、この集電電極16,17を介して色素増感型太陽電池40で発電した電力を利用することができる。 The transparent conductive substrate 14 is composed of the transparent substrate 11 and the transparent conductive film 12, and has light transmittance and conductivity. Specific examples include fluorine-doped SnO 2 coated glass, ITO coated glass, ZnO: Al coated glass, and antimony-doped tin oxide (SnO 2 —Sb) coated glass. Also, a transparent electrode obtained by doping tin oxide or indium oxide with cations or anions having different valences, or a metal electrode having a structure capable of transmitting light, such as a mesh shape or a stripe shape, provided on a substrate such as a glass substrate. Can be used. Current collecting electrodes 16 and 17 are provided at both ends of the transparent conductive substrate 14 on the transparent conductive film 12 side. Electric power generated by the dye-sensitized solar cell 40 via the current collecting electrodes 16 and 17 is provided. Can be used.

透明基板11としては、例えば、透明ガラス、透明プラスチック板、透明プラスチック膜、無機物透明結晶体などが挙げられ、このうち、透明ガラスが好ましい。この透明基板11は、透明なガラス基板、ガラス基板表面を適当に荒らすなどして光の反射を防止したもの、すりガラス状の半透明のガラス基板など光を透過するものなどとしてもよい。透明導電膜12は、例えば、透明基板11上に酸化スズを付着させることにより形成することができる。特に、フッ素をドープした酸化スズ(FTO)等の金属酸化物を用いれば、好適な透明導電膜12を形成することができる。透明導電膜12は、所定の間隔に溝18が形成されており、この溝18の幅に相当する間隔を隔てて複数の透明導電膜12の領域が分離形成されている。   Examples of the transparent substrate 11 include transparent glass, a transparent plastic plate, a transparent plastic film, and an inorganic transparent crystal, and among these, transparent glass is preferable. The transparent substrate 11 may be a transparent glass substrate, a glass substrate whose surface is appropriately roughened to prevent reflection of light, or a transparent glass substrate such as a ground glass-like translucent glass substrate. The transparent conductive film 12 can be formed, for example, by depositing tin oxide on the transparent substrate 11. In particular, if a metal oxide such as tin oxide (FTO) doped with fluorine is used, a suitable transparent conductive film 12 can be formed. In the transparent conductive film 12, grooves 18 are formed at predetermined intervals, and a plurality of regions of the transparent conductive film 12 are separately formed at intervals corresponding to the width of the grooves 18.

下地層22は、透明導電性基板14から正孔輸送層26へのリーク電流(逆電子移動)を抑制もしくは防止する層であり、例えば、透光性及び導電性のある材料が好ましく、例えば、酸化チタンや酸化亜鉛、酸化スズなどのn型半導体などが挙げられ、このうち酸化チタンがより好ましい。酸化チタンは、リーク電流を抑制・防止し、且つ多孔質半導体層24から透明導電性基板14へ電子を流しやすいからである。下地層22では、多孔質半導体層24に比してより緻密な材料とすることが好ましい。なお、この下地層22を形成しないものとしても色素増感型太陽電池40として十分機能することから、この下地層22を省略しても構わない。   The underlayer 22 is a layer that suppresses or prevents leakage current (reverse electron transfer) from the transparent conductive substrate 14 to the hole transport layer 26. For example, a material having translucency and conductivity is preferable. Examples include n-type semiconductors such as titanium oxide, zinc oxide, and tin oxide. Among these, titanium oxide is more preferable. This is because titanium oxide suppresses and prevents leakage current and easily allows electrons to flow from the porous semiconductor layer 24 to the transparent conductive substrate 14. The underlayer 22 is preferably made of a denser material than the porous semiconductor layer 24. Even if the base layer 22 is not formed, the base layer 22 may be omitted because it functions sufficiently as the dye-sensitized solar cell 40.

多孔質半導体層24は、S及びNのうち少なくとも一方を含む電子受容部位を有する有機色素分子と、半導体及び導電体のうち少なくとも一方である金属含有材料と、を含む複合体28と、この複合体28の有機色素分子が吸着しているn型半導体層とにより形成されている。即ち、この多孔質半導体層24は、複合体28とn型半導体層とが複合化されている層となっている。有機色素分子は、詳しくは後述するが、受光に伴い電子を放出する色素である。また、金属含有材料は、第1族元素及び第2族元素のうち1以上を含むアルカリ系材料と、1以上の遷移金属を含む遷移金属材料とを含むものである。アルカリ系材料は、例えば、Li,Na,K,Mg及びCaのうち1以上を含むものとしてもよい。また、遷移金属材料は、Cu,Ni,Co,Fe及びCrのうち1以上の遷移金属を含むものとしてもよい。また、遷移金属材料は、少なくともCuを含み、更にCu以外の遷移金属を1以上含むことがより好ましい。こうすれば、光吸収特性を更に向上することができる。この遷移金属材料は、Cuを含む半導体及びCuを含む導電体のうち少なくとも一方を含むCu系材料を含むものとしてもよい。このCu系材料は、CuI,CuSCN,CuO,Cu2O及びCuのうちいずれか1以上を含むものとしてもよく、このうちCuI及びCuSCNが好ましい。この複合体28は、アルカリ系材料と、Cu系材料と、Cu以外の遷移金属を含む非Cu系材料と、の3種を含むものとすることがより好ましい。こうすれば、アルカリ系の金属イオンと有機色素との相互作用、Cuイオンと有機色素との相互作用及び他の遷移金属イオンと有機色素との相互作用が重畳的に起き、光吸収特性をより高く向上することができる。その組み合わせとしては、例えば、LiとCuとFeとの組み合わせ、LiとCuとCoとの組み合わせ、Li,Cu及びNiの組み合わせなどが好ましい。また、複合体28に含まれるアニオンとしては、例えば、ビス(トリフルオロメタンスルホニル)イミド((CF3SO22-,以下TFSIとも称する)や、SCN-、I-などが挙げられる。 The porous semiconductor layer 24 includes a composite 28 including an organic dye molecule having an electron accepting site including at least one of S and N, and a metal-containing material that is at least one of a semiconductor and a conductor, and the composite The n-type semiconductor layer to which the organic dye molecules of the body 28 are adsorbed is formed. That is, the porous semiconductor layer 24 is a layer in which the composite 28 and the n-type semiconductor layer are combined. The organic dye molecules are dyes that emit electrons upon receiving light, as will be described in detail later. The metal-containing material includes an alkaline material containing one or more of Group 1 elements and Group 2 elements and a transition metal material containing one or more transition metals. The alkaline material may include, for example, one or more of Li, Na, K, Mg, and Ca. The transition metal material may include one or more transition metals among Cu, Ni, Co, Fe, and Cr. Moreover, it is more preferable that the transition metal material contains at least Cu and further contains one or more transition metals other than Cu. In this way, the light absorption characteristics can be further improved. The transition metal material may include a Cu-based material including at least one of a semiconductor including Cu and a conductor including Cu. The Cu-based material may include one or more of CuI, CuSCN, CuO, Cu 2 O and Cu, and among these, CuI and CuSCN are preferable. More preferably, the composite 28 includes three types of an alkaline material, a Cu-based material, and a non-Cu-based material containing a transition metal other than Cu. In this way, the interaction between alkali metal ions and organic dyes, the interaction between Cu ions and organic dyes, and the interaction between other transition metal ions and organic dyes occur in a superimposed manner, resulting in more light absorption characteristics. It can be improved greatly. As the combination, for example, a combination of Li, Cu, and Fe, a combination of Li, Cu, and Co, and a combination of Li, Cu, and Ni are preferable. Examples of the anion contained in the complex 28 include bis (trifluoromethanesulfonyl) imide ((CF 3 SO 2 ) 2 N , hereinafter also referred to as TFSI), SCN , I − and the like.

あるいは、複合体28は、第1族元素及び第2族元素のうち1以上を含むアルカリ系材料と1以上の遷移金属を含む遷移金属材料とのうち少なくとも一方を含むものとしてもよい。例えば、複合体28は、S及びNのうち少なくとも一方を含む電子受容部位を有する有機色素分子と、アルカリ系材料とを含むものとすれば、それに応じて光吸収特性を向上することができる。また、複合体28は、S及びNのうち少なくとも一方を含む電子受容部位を有する有機色素分子と、Feを少なくとも含む遷移金属材料とを含むものとすれば、それに応じて光吸収特性を向上することができる。また、複合体28は、S及びNのうち少なくとも一方を含む電子受容部位を有する有機色素分子と、Cuを含むCu系材料とCu以外の遷移金属を含む非Cu系材料とを含む遷移金属材料と、を含むものとすれば、それに応じて光吸収特性を向上することができる。   Alternatively, the composite 28 may include at least one of an alkaline material including one or more of Group 1 elements and Group 2 elements and a transition metal material including one or more transition metals. For example, if the composite 28 includes an organic dye molecule having an electron accepting site including at least one of S and N, and an alkaline material, the light absorption characteristics can be improved accordingly. Further, if the composite 28 includes an organic dye molecule having an electron accepting site including at least one of S and N and a transition metal material including at least Fe, the light absorption characteristics are improved accordingly. be able to. The composite 28 is a transition metal material including an organic dye molecule having an electron accepting site including at least one of S and N, a Cu-based material including Cu, and a non-Cu-based material including a transition metal other than Cu. Thus, the light absorption characteristics can be improved accordingly.

多孔質半導体層24に含まれるn型半導体としては、金属酸化物半導体や金属硫化物半導体などが適しており、例えば、酸化チタン(TiO2)、酸化スズ(SnO2)、酸化亜鉛(ZnO)、硫化カドミウム(CdS)、硫化亜鉛(ZnS)のうち少なくとも1以上であることが好ましく、このうち多孔質の酸化チタンがより好ましい。これらの半導体材料を微結晶又は多結晶状態にして薄膜化することにより、良好な多孔質のn型半導体層を形成することができる。特に、多孔質の酸化チタン層は、光電極20が有するn型半導体層として好適である。有機色素は、多孔質のn型半導体の表面に吸着させるものとしてもよい。この吸着は、化学吸着や物理吸着等によって行うことができる。具体的には、多孔質半導体層24は、多孔質のn型半導体層を透明導電性基板14上に形成したのち、このn型半導体層へ有機色素を含む溶液を滴下したのち乾燥する方法や、色素溶液にn型半導体層を浸漬したのち乾燥する方法などにより作製することができる。同様に、複合体28は、有機色素が形成されたn型半導体層へ金属含有材料を含む溶液を滴下したのち乾燥する方法や、金属含有材料を含む溶液に有機色素が形成されたn型半導体層を浸漬したのち乾燥する方法などにより作製することができる。ここで、この光電極20では、多孔質半導体層24に含まれる有機色素と金属含有材料に含まれる金属とが相互作用した複合体28となっている。この相互作用によって、有機色素の光吸収特性が長波長側に拡大し、ひいてはより高い光電変換特性を得ることができると考えられる。この複合体28は、有機色素分子と金属含有材料に含まれる金属イオンとが複合していると考えられるが、その形態は、例えば、錯体となっていてもよい。この複合体28について、特に有機色素分子について、以下詳述する。 As the n-type semiconductor contained in the porous semiconductor layer 24, a metal oxide semiconductor or a metal sulfide semiconductor is suitable. For example, titanium oxide (TiO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO) At least one of cadmium sulfide (CdS) and zinc sulfide (ZnS) is preferable, and among these, porous titanium oxide is more preferable. By thinning these semiconductor materials into a microcrystalline or polycrystalline state, a good porous n-type semiconductor layer can be formed. In particular, the porous titanium oxide layer is suitable as an n-type semiconductor layer included in the photoelectrode 20. The organic dye may be adsorbed on the surface of the porous n-type semiconductor. This adsorption can be performed by chemical adsorption or physical adsorption. Specifically, the porous semiconductor layer 24 is a method in which a porous n-type semiconductor layer is formed on the transparent conductive substrate 14, and then a solution containing an organic dye is dropped on the n-type semiconductor layer and then dried. The n-type semiconductor layer can be dipped in a dye solution and dried. Similarly, the composite 28 includes a method in which a solution containing a metal-containing material is dropped on an n-type semiconductor layer in which an organic dye is formed and then drying, or an n-type semiconductor in which an organic dye is formed in a solution containing a metal-containing material. It can be produced by a method of dipping the layer and then drying it. Here, the photoelectrode 20 is a composite 28 in which the organic dye contained in the porous semiconductor layer 24 interacts with the metal contained in the metal-containing material. By this interaction, it is considered that the light absorption characteristic of the organic dye is expanded to the long wavelength side, and as a result, higher photoelectric conversion characteristics can be obtained. Although this complex 28 is considered to be a complex of organic dye molecules and metal ions contained in the metal-containing material, the form may be a complex, for example. The complex 28, particularly the organic dye molecule, will be described in detail below.

多孔質半導体層24に含まれる有機色素分子は、S及びNのうち少なくとも一方を含む電子受容部位を有している。例えば、有機色素分子は、式(1)に示すロダニン構造を有することが好ましい。このとき、有機色素分子は、式(2)に示す基本構造を有するものとしてもよい。あるいは、有機色素分子は、CN基を有するものとしてもよいし、式(3)に示す、CN基を有するエチレン構造が結合したチオフェン構造を有することが好ましい。式(1)〜(3)において、置換基R1〜R8は、それぞれ同じでも異なっていてもよく、例えば、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ホスフィンオキサイド基、隣接置換基との間に形成される縮合環及び硫黄などの中から選ばれるものとしてもよい。これらの置換基のうち、アルキル基とは、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基などの飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換されている場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができ、この点は、他の上記置換基などについても共通する。また、アルキル基など、置換基の炭素数は特に限定されないが、作製の容易性やコストの点から、1以上20以下、より好ましくは1以上12以下の範囲であることが好ましい。 The organic dye molecule contained in the porous semiconductor layer 24 has an electron accepting site containing at least one of S and N. For example, the organic dye molecule preferably has a rhodanine structure represented by the formula (1). At this time, the organic dye molecule may have a basic structure represented by Formula (2). Alternatively, the organic dye molecule may have a CN group, and preferably has a thiophene structure to which an ethylene structure having a CN group is bonded as shown in Formula (3). In the formulas (1) to (3), the substituents R 1 to R 8 may be the same or different, for example, hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, Alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heteroaryl group, halogen, cyano group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, phosphine oxide group, adjacent It may be selected from a condensed ring formed between the substituent and sulfur. Among these substituents, the alkyl group is, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group. This may or may not have a substituent. There are no particular limitations on the additional substituent when it is substituted, and examples include an alkyl group, an aryl group, a heteroaryl group, and the like, and this point is common to the other substituents. In addition, the number of carbon atoms of the substituent such as an alkyl group is not particularly limited, but is preferably in the range of 1 to 20 and more preferably 1 to 12 from the viewpoint of ease of production and cost.

図2は、ロダニン構造を有する有機色素分子の一例である色素1〜4の説明図であり、図3は、CN基とエチレン構造及びチオフェン構造を有する有機色素分子の一例である色素5〜10の説明図である。まず、ロダニン構造を有する有機色素分子について説明する(図2の色素1〜4参照)。この有機色素分子は、式(1)において、ロダニン構造のNに結合した置換基R1が、炭素数1以上20以下であるアルキル基及び炭素数1以上20以下の炭素鎖に結合したカルボキシル基のうちいずれか一方であることが好ましい。置換基R1がアルキル基である場合、炭素数1以上では化学的により安定であり好ましく、炭素数20以下では有機色素分子をより容易に製造可能であり、好ましい。この置換基R1の炭素数は、2以上12以下であることがより好ましい。また、有機色素分子は、ロダニン構造の置換基R2及びR3の少なくとも一方が更に同様のロダニン構造を有していることが好ましい。例えば、置換基R2にロダニン構造を有するものとしては、図2の色素1〜3に示すものなどが挙げられる。また、有機色素分子は、式(1)において、ロダニン構造の置換基R1〜R3のうち少なくとも1つが、NとSとの少なくとも一方を含む芳香環及び、NとSとの少なくとも一方が結合した芳香環、のうち少なくとも一方を含んでいることが好ましい。NとSとの少なくとも一方が結合した芳香環としては、例えば図2の色素1〜3に示すものなどが挙げられる。この色素1〜3に示す有機色素分子は、置換基R3がSであり、置換基R2におけるロダニン構造のNには、酢酸基が結合した構造を有している。また、この有機色素分子は、図2の色素1〜3に示すものなど、ロダニン構造とインドリン構造とを有することが好ましい。これらの構成のうち、いずれかの態様を採用すると、有機色素分子と金属含有材料の金属イオンとの相互作用が惹起され、有機色素の光吸収特性がより向上しやすく、好ましい。 FIG. 2 is an explanatory diagram of dyes 1 to 4 which are examples of organic dye molecules having a rhodanine structure, and FIG. 3 is a dye 5 to 10 which is an example of organic dye molecules having a CN group, an ethylene structure and a thiophene structure. It is explanatory drawing of. First, organic dye molecules having a rhodanine structure will be described (see dyes 1 to 4 in FIG. 2). In the organic dye molecule, the substituent R 1 bonded to N of the rhodanine structure in formula (1) is a carboxyl group bonded to an alkyl group having 1 to 20 carbon atoms and a carbon chain having 1 to 20 carbon atoms. It is preferable that any one of them. In the case where the substituent R 1 is an alkyl group, it is preferable that the number of carbon atoms is 1 or more because it is chemically more stable, and the case where the number of carbon atoms is 20 or less is preferable because an organic dye molecule can be easily produced. The number of carbon atoms of the substituent R 1 is more preferably 2 or more and 12 or less. Further, in the organic dye molecule, it is preferable that at least one of the substituents R 2 and R 3 of the rhodanine structure further has a similar rhodanine structure. For example, examples of the substituent R 2 having a rhodanine structure include those shown in dyes 1 to 3 in FIG. Further, in the organic dye molecule, in the formula (1), at least one of the substituents R 1 to R 3 of the rhodanine structure includes an aromatic ring containing at least one of N and S, and at least one of N and S is It is preferable that at least one of the bonded aromatic rings is included. Examples of the aromatic ring to which at least one of N and S are bonded include those shown in dyes 1 to 3 in FIG. The organic dye molecules shown in these dyes 1 to 3 have a structure in which the substituent R 3 is S and an acetate group is bonded to N of the rhodanine structure in the substituent R 2 . The organic dye molecule preferably has a rhodanine structure and an indoline structure such as those shown in dyes 1 to 3 in FIG. Of these configurations, it is preferable to employ any one of the modes because an interaction between the organic dye molecule and the metal ion of the metal-containing material is induced, and the light absorption property of the organic dye is easily improved.

次に、CN基を有する有機色素分子について説明する(図3の色素5〜10参照)。この有機色素分子は、1以上のチオフェン構造(Sを含む芳香環)がエチレン構造の二重結合を有する炭素に結合した構造を有する(図3の色素5〜10参照)。このとき、式(3)に示す置換基R6が、カルボキシル基であることが好ましい。例えば、酸化チタンのような金属酸化物への固定は、色素のカルボキシル基と金属酸化物の化学吸着によってより強固になり、電子移動の効率も高くなるためである。また、チオフェン構造は、nが1以上5以下であることが好ましい。チオフェン構造の末端となる置換基R8は、例えば、式(4)に示す置換基としてもよいし、式(5)に示す置換基としてもよい。置換基R8は、例えば、水素、炭素数1以上20以下のアルキル基のいずれかとしてもよい。また、NとSとの少なくとも一方を含む芳香環及びNとSとの少なくとも一方が結合した芳香環としては、式(4)〜(6)に示す置換基などが挙げられる(図3の色素5〜9参照)。CN基を有する有機色素分子において、2以上のエチレン構造が連なる構成、共役構造、としてもよい。即ち、式(3)の置換基R5及びR6の少なくとも一方にエチレン構造が含まれていることが好ましい。このとき、式(3)の置換基R7及びR8の少なくとも一方の末端には、式(6)に示す置換基が結合していることが好ましい(図3の色素8,9参照)。これらの構成のうち、いずれか1つの態様を採用すると、金属含有材料に含まれる金属イオンとの相互作用が惹起され、有機色素の光吸収特性がより向上しやすく、好ましい。 Next, an organic dye molecule having a CN group will be described (see dyes 5 to 10 in FIG. 3). This organic dye molecule has a structure in which one or more thiophene structures (aromatic rings containing S) are bonded to carbon having a double bond of an ethylene structure (see dyes 5 to 10 in FIG. 3). At this time, the substituent R 6 shown in Formula (3) is preferably a carboxyl group. For example, the fixation to a metal oxide such as titanium oxide becomes stronger due to the chemical adsorption of the carboxyl group of the dye and the metal oxide, and the efficiency of electron transfer is also increased. In the thiophene structure, n is preferably 1 or more and 5 or less. The substituent R 8 serving as the terminal of the thiophene structure may be, for example, a substituent represented by the formula (4) or a substituent represented by the formula (5). The substituent R 8 may be, for example, any one of hydrogen and an alkyl group having 1 to 20 carbon atoms. Examples of the aromatic ring containing at least one of N and S and the aromatic ring to which at least one of N and S are bonded include substituents represented by formulas (4) to (6) (the dye in FIG. 3). 5-9). The organic dye molecule having a CN group may have a structure in which two or more ethylene structures are linked, or a conjugated structure. That is, it is preferable that at least one of the substituents R 5 and R 6 in the formula (3) contains an ethylene structure. At this time, it is preferable that a substituent represented by formula (6) is bonded to at least one terminal of substituents R 7 and R 8 of formula (3) (see dyes 8 and 9 in FIG. 3). Adopting any one of these configurations is preferable because interaction with metal ions contained in the metal-containing material is induced, and the light absorption characteristics of the organic dye are more easily improved.

正孔輸送層26は、例えば、p型半導体材料が挙げられ、Cuを含む半導体により形成された層としてもよい。このCuを含む半導体としては、上記Cu系材料と同様に、例えば、CuI、CuSCN、CuO及びCu2Oのうちいずれか1以上を用いることが好ましく、CuIを用いるのがより好ましい。あるいは、正孔輸送層26は、Cuを含む導電体により形成された導電体層としてもよい。また、この正孔輸送層26は、複合体28にCu系材料が含まれるときには、このCu系材料と異なる材質で作製されていてもよいが、同じ材質で形成されていることが作製が容易であり、より好ましい。複合体28に少なくともCu系材料が含まれる場合、この正孔輸送層26に含まれるCu系材料が多孔質半導体層24に充填されることにより、複合体28が形成されるものとしてもよい。 The hole transport layer 26 is, for example, a p-type semiconductor material, and may be a layer formed of a semiconductor containing Cu. As the semiconductor containing Cu, for example, one or more of CuI, CuSCN, CuO, and Cu 2 O are preferably used, and CuI is more preferably used, like the Cu-based material. Alternatively, the hole transport layer 26 may be a conductor layer formed of a conductor containing Cu. In addition, when the composite 28 includes a Cu-based material, the hole transport layer 26 may be made of a material different from the Cu-based material. However, the hole transport layer 26 is easily formed by using the same material. It is more preferable. When the composite 28 includes at least a Cu-based material, the composite 28 may be formed by filling the porous semiconductor layer 24 with the Cu-based material included in the hole transport layer 26.

セパレータ29は、下地層22、多孔質半導体層24及び正孔輸送層26が積層された光電極20の1つの側面に隣接するように断面I字状に形成されている。セパレータ29の一端は透明導電性基板14上の溝18と接触している。これにより、光電極20と対極30との直接接触が回避される。セパレータ29は、絶縁性の材料からなり、例えば、ガラスビーズ、二酸化ケイ素(シリカ)及びルチル型の酸化チタンなどで形成されていてもよい。このセパレータ29としては、シリカ粒子を焼結した絶縁体が好ましい。シリカ粒子は、屈折率が低く光散乱が小さく、良好な透明性を有するため、セパレータに好ましい。このセパレータ29は、良好な透明性を確保する観点から、平均粒径が5〜200nmであることが好ましい。   The separator 29 is formed in an I-shaped cross section so as to be adjacent to one side surface of the photoelectrode 20 on which the base layer 22, the porous semiconductor layer 24 and the hole transport layer 26 are laminated. One end of the separator 29 is in contact with the groove 18 on the transparent conductive substrate 14. Thereby, the direct contact with the photoelectrode 20 and the counter electrode 30 is avoided. The separator 29 is made of an insulating material, and may be formed of, for example, glass beads, silicon dioxide (silica), rutile titanium oxide, or the like. The separator 29 is preferably an insulator in which silica particles are sintered. Silica particles are preferable for the separator because they have a low refractive index, low light scattering, and good transparency. The separator 29 preferably has an average particle size of 5 to 200 nm from the viewpoint of ensuring good transparency.

対極30は、セパレータ29の外面と正孔輸送層26の裏面27とに接触するよう、鍔状の縁部分31を有する断面L字状に形成されている。この対極30は、一端が正孔輸送層26の裏面27に接続されていると共に、他端が接続部21を介して隣側の透明導電膜12に接続されている。裏面27と接触する対極30の面は、光電極20に対して所定の間隔を隔てて対向している。対極30としては、導電性及び正孔輸送層26との接合性を有するものであれば特に限定されず、例えば、Pt,Au,カーボンなどが挙げられ、このうちカーボンが好ましい。なお、対極30は、正孔輸送層26と同一材料で形成してもよい。即ち、正孔輸送層26の外表面側の一部を対極30として用いてもよい。   The counter electrode 30 is formed in an L-shaped cross section having a bowl-shaped edge portion 31 so as to contact the outer surface of the separator 29 and the back surface 27 of the hole transport layer 26. One end of the counter electrode 30 is connected to the back surface 27 of the hole transport layer 26, and the other end is connected to the adjacent transparent conductive film 12 via the connection portion 21. The surface of the counter electrode 30 in contact with the back surface 27 is opposed to the photoelectrode 20 with a predetermined interval. The counter electrode 30 is not particularly limited as long as it has conductivity and bondability with the hole transport layer 26, and examples thereof include Pt, Au, and carbon. Among these, carbon is preferable. The counter electrode 30 may be formed of the same material as the hole transport layer 26. That is, a part of the outer surface side of the hole transport layer 26 may be used as the counter electrode 30.

シール材32は、絶縁性の部材であれば特に限定されずに用いることができる。このシール材32としては、例えば、ポリエチレン等の熱可塑性樹脂フィルム、あるいはエポキシ系接着剤を使用することができる。   The sealing material 32 can be used without particular limitation as long as it is an insulating member. As the sealing material 32, for example, a thermoplastic resin film such as polyethylene or an epoxy adhesive can be used.

保護部材34は、色素増感型太陽電池40の保護を図る部材であり、例えば、防湿フィルムや保護ガラスなどとすることができる。   The protection member 34 is a member that protects the dye-sensitized solar cell 40, and can be, for example, a moisture-proof film or protective glass.

この色素増感型太陽電池40に対して、透明基板11の受光面13側から光を照射すると、透明導電膜12の受光面15及び下地層22の受光面23を介して光が多孔質半導体層24へ到達し、有機色素が光を吸収して電子が発生する。電子は光電極20から透明導電膜12、接続部21を経由して隣の対極30へ移動する。色素増感型太陽電池40では、この電子の移動により起電力が発生し、電池の発電作用が得られる。   When this dye-sensitized solar cell 40 is irradiated with light from the light-receiving surface 13 side of the transparent substrate 11, the light is transmitted through the light-receiving surface 15 of the transparent conductive film 12 and the light-receiving surface 23 of the base layer 22 into the porous semiconductor. It reaches the layer 24 and the organic dye absorbs light to generate electrons. Electrons move from the photoelectrode 20 to the adjacent counter electrode 30 via the transparent conductive film 12 and the connection portion 21. In the dye-sensitized solar cell 40, an electromotive force is generated by the movement of the electrons, and the power generation action of the battery is obtained.

次に、色素増感型太陽電池モジュール10の製造方法について説明する。この色素増感型太陽電池モジュール10の製造方法には、基板作製工程、多孔質半導体層形成工程(複合体形成工程)、正孔輸送層形成工程、セパレータ形成工程、対極形成工程及び保護部材形成工程を含むものとしてもよい。なお、以下の製造方法において、上述した色素増感型太陽電池40の各構成を採用することができる。基板作製工程では、複数の透明導電膜12の間に溝18を形成しつつ透明導電膜12を透明基板11上に形成する。   Next, a method for manufacturing the dye-sensitized solar cell module 10 will be described. The method for producing the dye-sensitized solar cell module 10 includes a substrate manufacturing process, a porous semiconductor layer forming process (composite forming process), a hole transport layer forming process, a separator forming process, a counter electrode forming process, and a protective member forming process. A process may be included. In addition, in the following manufacturing methods, each structure of the dye-sensitized solar cell 40 mentioned above is employable. In the substrate manufacturing process, the transparent conductive film 12 is formed on the transparent substrate 11 while forming the grooves 18 between the plurality of transparent conductive films 12.

多孔質半導体層形成工程では、透明導電膜12上に下地層22を介してn型半導体層を形成する。次に、有機色素分子をn型半導体層へ吸着させたのち、金属含有材料を添加して複合体28を形成させ、多孔質半導体層24を形成する。金属含有材料の添加は、例えば、金属含有材料を溶解した溶液をn型半導体層へ供給するものとしてもよいし、金属含有材料を溶解した溶液にn型半導体層を浸漬させるものとしてもよい。有機色素分子としては、上述した、S及びNのうち少なくとも一方を含む電子受容部位を有する有機色素分子、例えばCN基やロダニン構造を有するものとすることができる。また、n型半導体層としては、上述したものを用いることができ、多孔質の酸化チタンが好ましい。また、金属含有材料としては、上述したように、アルカリ系材料と、Cu系材料と、Cu以外の遷移金属を含む非Cu系材料と、のうち少なくとも1種以上の材料を含むものとしてもよく、これら3種を含むことがより好ましい。遷移金属材料は、Cu,Ni,Co,Fe及びCrのうち1以上の遷移金属を含むことが好ましい。Cu系材料として、Cuを含む半導体(例えばCuI、CuSCN、CuO及びCu2Oのうちいずれか1以上)を用いることが好ましい。このように多孔質半導体層24を形成すると、多孔質半導体層24に含まれる有機色素分子と、金属含有材料に含まれる金属イオンとが相互作用し、有機色素の光吸収特性が長波長側に拡大するものと考えられる。この長波長シフトにより、光電変換に利用可能な波長領域が広がることによって、色素増感型太陽電池40の光電変換特性が向上するものと考えられる。 In the porous semiconductor layer forming step, an n-type semiconductor layer is formed on the transparent conductive film 12 via the base layer 22. Next, after the organic dye molecules are adsorbed to the n-type semiconductor layer, a metal-containing material is added to form the composite 28, and the porous semiconductor layer 24 is formed. The metal-containing material may be added, for example, by supplying a solution in which the metal-containing material is dissolved to the n-type semiconductor layer, or by immersing the n-type semiconductor layer in a solution in which the metal-containing material is dissolved. The organic dye molecule may have the above-described organic dye molecule having an electron accepting site containing at least one of S and N, for example, a CN group or a rhodanine structure. Further, as the n-type semiconductor layer, those described above can be used, and porous titanium oxide is preferable. In addition, as described above, the metal-containing material may include at least one material among an alkali-based material, a Cu-based material, and a non-Cu-based material including a transition metal other than Cu. More preferably, these three types are included. The transition metal material preferably contains one or more transition metals among Cu, Ni, Co, Fe and Cr. As the Cu-based material, a semiconductor containing Cu (for example, any one or more of CuI, CuSCN, CuO, and Cu 2 O) is preferably used. When the porous semiconductor layer 24 is formed in this manner, the organic dye molecules contained in the porous semiconductor layer 24 interact with the metal ions contained in the metal-containing material, so that the light absorption characteristics of the organic dye are on the long wavelength side. It is expected to expand. This long wavelength shift is considered to improve the photoelectric conversion characteristics of the dye-sensitized solar cell 40 by expanding the wavelength region that can be used for photoelectric conversion.

次に、正孔輸送層形成工程では、多孔質半導体層24の裏面25へ固体p型半導体を供給し、その後乾燥させて正孔輸送層26を形成してもよい。固体p型半導体として、Cuを含む半導体(例えば、CuI)を用いることが好ましい。このとき、p型半導体を含む溶液を多孔質半導体層24上に供給することにより、正孔輸送層26を形成するものとしてもよい。こうすれば、p型半導体材料が多孔質半導体層24に充填されることにより、正孔輸送層26のp型半導体材料をも含む複合体28を得ることができる。続いて、セパレータ形成工程では、溝18に合わせて光電極20の側面にセパレータ29を形成する。対極形成工程では、セパレータ29と正孔輸送層26とに接するように対極30を形成する。対極30は、例えばカーボンとしてもよい。保護部材形成工程では、各セルを覆うようにシール材32を形成すると共にシール材32に保護部材34を形成する。このようにして、発電特性が向上した色素増感型太陽電池40及び色素増感型太陽電池モジュール10を作製することができる。   Next, in the hole transport layer forming step, the solid p-type semiconductor may be supplied to the back surface 25 of the porous semiconductor layer 24 and then dried to form the hole transport layer 26. It is preferable to use a semiconductor containing Cu (for example, CuI) as the solid p-type semiconductor. At this time, the hole transport layer 26 may be formed by supplying a solution containing a p-type semiconductor onto the porous semiconductor layer 24. In this way, the composite 28 including the p-type semiconductor material of the hole transport layer 26 can be obtained by filling the porous semiconductor layer 24 with the p-type semiconductor material. Subsequently, in the separator forming step, a separator 29 is formed on the side surface of the photoelectrode 20 in alignment with the groove 18. In the counter electrode forming step, the counter electrode 30 is formed so as to contact the separator 29 and the hole transport layer 26. The counter electrode 30 may be carbon, for example. In the protective member forming step, the sealing material 32 is formed so as to cover each cell, and the protective member 34 is formed on the sealing material 32. In this manner, the dye-sensitized solar cell 40 and the dye-sensitized solar cell module 10 with improved power generation characteristics can be produced.

以上詳述した色素増感型太陽電池モジュール10では、複合体28において、有機色素と金属含有材料に含まれる金属イオンとの相互作用が惹起されており、有機色素の光吸収特性がより向上し、より高い光電変換特性を示す。例えば、有機色素分子内において、電荷移動の相互作用が、有機色素分子と金属イオンとの相互作用又は結合などにより変化することによって、光吸収特性が長波長側に拡大するものと考えられる。このような、有機色素分子と金属イオンとの相互作用又は結合が、有機色素分子とアルカリ系イオンとの間、及び有機色素分子と遷移金属イオンとの間で重畳的に起きることによって、有機色素の光吸収特性をより向上することができると考えられる。   In the dye-sensitized solar cell module 10 described in detail above, the interaction between the organic dye and the metal ion contained in the metal-containing material is induced in the composite 28, and the light absorption characteristics of the organic dye are further improved. Higher photoelectric conversion characteristics are shown. For example, in the organic dye molecule, it is considered that the charge transfer interaction changes due to the interaction or bond between the organic dye molecule and the metal ion, thereby expanding the light absorption characteristics to the longer wavelength side. Such an interaction or bond between the organic dye molecule and the metal ion occurs in an overlapping manner between the organic dye molecule and the alkali ion and between the organic dye molecule and the transition metal ion. It is thought that the light absorption characteristics of the can be further improved.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば上述した実施形態では、色素増感型太陽電池モジュール10としたが、特にこれに限定されず、色素増感型太陽電池40としてもよい。図4は、色素増感型太陽電池40の構成の概略の一例を示す断面図である。図4では、図1で説明した構成と同様の構成については同じ符号を付してその説明を省略する。図4に示すように、色素増感型太陽電池40の単体では、対極30を断面をL字状ではなく、鍔状の縁部分を省略して平板状に形成するものとしてもよい。また、図1のセパレータ29を省略してもよい。また、対極30は、例えば透明導電性基板14と同じ構成を有するものを用いるものとしてもよいし、透明導電膜12に白金を付着させたものや、白金などの金属薄膜などとしてもよい。   For example, in the above-described embodiment, the dye-sensitized solar cell module 10 is used. However, the present invention is not particularly limited thereto, and the dye-sensitized solar cell 40 may be used. FIG. 4 is a cross-sectional view showing an example of a schematic configuration of the dye-sensitized solar cell 40. In FIG. 4, the same components as those described in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted. As shown in FIG. 4, in the single body of the dye-sensitized solar cell 40, the counter electrode 30 may be formed in a flat plate shape with the cross-section not being L-shaped and omitting the bowl-shaped edge portion. Further, the separator 29 in FIG. 1 may be omitted. The counter electrode 30 may be, for example, one having the same configuration as that of the transparent conductive substrate 14, or may be one in which platinum is attached to the transparent conductive film 12, or a metal thin film such as platinum.

上述した実施形態では、色素増感型太陽電池40としたが、特にこれに限定されず、透明導電膜12と透明基板11とを有する透明導電性基板14と、透明導電性基板14に隣接して設けられているn型半導体を含む多孔質半導体層24と、上述した複合体28とを備えた光電極20としてもよい。あるいは、S及びNのうち少なくとも一方を含む電子受容部位を有する有機色素分子と、金属含有材料と、を含有した複合体28としてもよい。   In the above-described embodiment, the dye-sensitized solar cell 40 is used. However, the present invention is not particularly limited thereto, and the transparent conductive substrate 14 having the transparent conductive film 12 and the transparent substrate 11 is adjacent to the transparent conductive substrate 14. It is good also as the photoelectrode 20 provided with the porous semiconductor layer 24 containing the n-type semiconductor provided, and the composite 28 mentioned above. Or it is good also as the composite_body | complex 28 containing the organic pigment | dye molecule | numerator which has an electron acceptance part containing at least one among S and N, and a metal containing material.

また、複合体は、金属含有材料として、第1族元素及び第2族元素のうち1以上を含むアルカリ系材料と、Cuを含む半導体及びCuを含む導電体のうち少なくとも一方を含む遷移金属材料としてのCu系材料と、Cu以外の遷移金属を含む遷移金属材料としての非Cu系材料と、のうち少なくとも1以上を含むものとしてもよい。例えば、複合体は、S及びNのうち少なくとも一方を含む電子受容部位を有する有機色素分子と、Feを少なくとも含む遷移金属材料と、を含有したものとしてもよい。こうしても、有機色素分子とFeイオンとが相互作用することにより、有機色素の光吸収特性をより向上することができる。この複合体、及びこの複合体を採用した光電極、色素増感型太陽電池及び色素増感型太陽電池モジュールにおいて、上述した実施形態のいずれかの構成を採用することができる。   The composite includes a transition metal material containing at least one of an alkali-based material containing one or more of Group 1 elements and Group 2 elements as a metal-containing material, a semiconductor containing Cu, and a conductor containing Cu. It is good also as what contains at least 1 or more among Cu-type material as these, and non-Cu-type material as a transition metal material containing transition metals other than Cu. For example, the composite may contain an organic dye molecule having an electron accepting site containing at least one of S and N, and a transition metal material containing at least Fe. Even in this case, the light absorption characteristics of the organic dye can be further improved by the interaction between the organic dye molecules and the Fe ions. In this composite, and a photoelectrode, a dye-sensitized solar cell, and a dye-sensitized solar cell module that employ this composite, any of the configurations of the above-described embodiments can be employed.

あるいは、複合体は、S及びNのうち少なくとも一方を含む電子受容部位を有する有機色素分子と、第1族元素及び第2族元素のうち1以上を含むアルカリ系材料と、を含有したものとしてもよい。こうしても、有機色素分子とアルカリ系材料に含まれる金属イオンとが相互作用することにより、有機色素の光吸収特性をより向上することができる。この複合体、及びこの複合体を採用した光電極、色素増感型太陽電池及び色素増感型太陽電池モジュールにおいて、上述した実施形態のいずれかの構成を採用することができる。   Alternatively, the composite contains an organic dye molecule having an electron accepting site containing at least one of S and N, and an alkaline material containing one or more of Group 1 elements and Group 2 elements. Also good. Even in this case, the light absorption characteristics of the organic dye can be further improved by the interaction between the organic dye molecule and the metal ion contained in the alkaline material. In this composite, and a photoelectrode, a dye-sensitized solar cell, and a dye-sensitized solar cell module that employ this composite, any of the configurations of the above-described embodiments can be employed.

あるいは、複合体は、S及びNのうち少なくとも一方を含む電子受容部位を有する有機色素分子と、Cuを含む半導体及びCuを含む導電体のうち少なくとも一方を含むCu系材料とCu以外の遷移金属を含む非Cu系材料とを含む遷移金属材料と、を含有したものとしてもよい。こうしても、有機色素分子とCuイオンと、遷移金属イオンとが相互作用することにより、有機色素の光吸収特性をより向上することができる。この複合体、及びこの複合体を採用した光電極、色素増感型太陽電池及び色素増感型太陽電池モジュールにおいて、上述した実施形態のいずれかの構成を採用することができる。   Alternatively, the composite includes an organic dye molecule having an electron accepting site containing at least one of S and N, a Cu-based material containing at least one of a semiconductor containing Cu and a conductor containing Cu, and a transition metal other than Cu. And a transition metal material containing a non-Cu-based material containing. Even in this case, the light absorption characteristics of the organic dye can be further improved by the interaction between the organic dye molecule, the Cu ion, and the transition metal ion. In this composite, and a photoelectrode, a dye-sensitized solar cell, and a dye-sensitized solar cell module that employ this composite, any of the configurations of the above-described embodiments can be employed.

上述した実施形態では、p型半導体を含む正孔輸送層26を備えた全固体型太陽電池として説明したが、特にこれに限定されず、例えば、光電極20と対極30との間に電解液を備えた色素増感型太陽電池としてもよい。   In the above-described embodiment, the all-solid-state solar cell including the hole transport layer 26 including the p-type semiconductor has been described. However, the present invention is not particularly limited thereto. For example, the electrolytic solution is provided between the photoelectrode 20 and the counter electrode 30. It is good also as a dye-sensitized solar cell provided with.

以下には、本発明の複合体、光電極及び色素増感型太陽電池を具体的に作製した例を実験例として説明する。   Below, the example which produced the composite_body | complex, photoelectrode, and dye-sensitized solar cell of this invention concretely is demonstrated as an experiment example.

[複合体の光吸収特性評価]
種々の金属含有材料(アルカリ系材料、Cu系材料及び非Cu系材料を含む遷移金属材料)を用い、有機色素分子として図2,3に示す色素1(D149とも称する)及び色素5(MK2とも称する)を用いて、n型半導体層であるTiO2基板上に本発明の複合体を作製し、光吸収スペクトルを検討した。ここでは、TiO2基板のみ、TiO2基板に有機色素を形成したもの、TiO2基板に有機色素及び金属含有材料を含む複合体を形成したものの3種を測定した。また、有機色素を形成したTiO2基板の吸収スペクトル、及び複合体の吸収スペクトルからTiO2基板の吸収スペクトルを差し引き、色素のみで得られる吸収スペクトルと複合体に含まれる色素で得られる吸収スペクトルとの対比を行い、その特性を評価した。吸収スペクトルは、分光光度計(日立製作所社製U−3400)により、290nm〜900nmの波長領域で測定した。なお、この評価では、アルカリ系材料のみを含む複合体、遷移金属材料のみを含む複合体、及び、アルカリ系材料及び遷移金属材料の両方を含む複合体の光吸収特性を検討した。
[Evaluation of light absorption characteristics of composite]
Using various metal-containing materials (transition metal materials including alkali-based materials, Cu-based materials, and non-Cu-based materials), as organic dye molecules, dye 1 (also referred to as D149) and dye 5 (also referred to as MK2) shown in FIGS. The composite of the present invention was fabricated on a TiO 2 substrate which is an n-type semiconductor layer, and the light absorption spectrum was examined. Here, TiO 2 substrate only, that forms the organic dye TiO 2 substrate was measured three but to form a complex containing an organic dye and a metal-containing material to a TiO 2 substrate. In addition, the absorption spectrum of the TiO 2 substrate formed by subtracting the absorption spectrum of the TiO 2 substrate from the absorption spectrum of the TiO 2 substrate on which the organic dye is formed and the absorption spectrum of the composite, and the absorption spectrum obtained with the dye contained in the composite Were compared and their characteristics were evaluated. The absorption spectrum was measured with a spectrophotometer (U-3400 manufactured by Hitachi, Ltd.) in a wavelength region of 290 nm to 900 nm. In this evaluation, the light absorption characteristics of a composite containing only an alkaline material, a composite containing only a transition metal material, and a composite containing both an alkaline material and a transition metal material were examined.

(複合体の作製)
TCOガラス基板上に、n型半導体層としての多孔質TiO2膜をスクリーン印刷法で塗布し、150℃で乾燥したのち電気炉内で450℃で加熱して、多孔質TiO2膜基板を作製した。この多孔質TiO2膜基板を複数作製した。次に、有機色素1(D149)及び有機色素5(MK2)を各々含む色素溶液を調製した。色素溶液は、例えばD149では、アセトニトリルとtert−ブチルアルコールとを混合した混合溶液を溶媒として用い、MK2では、トルエンを溶媒として用いた。続いて、上記作製したいずれかの色素溶液に多孔質TiO2膜基板をそれぞれ浸漬し、25℃の温度条件の下で15時間放置した。このようにして、有機色素1又は有機色素5を吸着させた多孔質TiO2膜基板(TiO2/色素基板とも称する)をそれぞれ作製した。その後、金属含有材料(例えば、LiTFSIやFeI2など)を所定濃度、溶解したアセトニトリル溶液に、上記TiO2/色素基板を30秒浸漬させた。
(Production of complex)
A porous TiO 2 film as an n-type semiconductor layer is applied on a TCO glass substrate by screen printing, dried at 150 ° C., and then heated at 450 ° C. in an electric furnace to produce a porous TiO 2 film substrate. did. A plurality of porous TiO 2 film substrates were produced. Next, a dye solution containing each of organic dye 1 (D149) and organic dye 5 (MK2) was prepared. As the dye solution, for example, in D149, a mixed solution of acetonitrile and tert-butyl alcohol was used as a solvent, and in MK2, toluene was used as a solvent. Subsequently, the porous TiO 2 film substrate was immersed in any of the dye solutions prepared above, and left for 15 hours under a temperature condition of 25 ° C. In this way, porous TiO 2 film substrates (also referred to as TiO 2 / dye substrate) on which the organic dye 1 or the organic dye 5 was adsorbed were produced. Thereafter, the TiO 2 / dye substrate was immersed in an acetonitrile solution in which a metal-containing material (for example, LiTFSI or FeI 2 ) was dissolved at a predetermined concentration for 30 seconds.

[実験例1〜4(複合体)]
有機色素としてD149を用い、金属含有材料としてLiIを用い、金属含有材料を0.1Mの濃度とした溶液にTiO2/色素基板を浸漬させる上記工程を経て得られた複合体を実験例1とした。また、LiSCNを0.1Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例1と同様の工程を経て得られた複合体を実験例2とした。また、LiTFSIを0.1Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例1と同様の工程を経て得られた複合体を実験例3とした。また、LiTFSIを0.01Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例1と同様の工程を経て得られた複合体を実験例4とした。
[Experimental Examples 1 to 4 (complex)]
The composite obtained through the above-described step of immersing the TiO 2 / dye substrate in a solution containing D149 as the organic dye, LiI as the metal-containing material, and a metal-containing material at a concentration of 0.1 M is referred to as Experimental Example 1 did. In addition, a composite obtained through the same process as Experimental Example 1 was used as Experimental Example 2 except that the TiO 2 / dye substrate was immersed in a solution having a LiSCN concentration of 0.1M. Further, a composite obtained through the same process as Experimental Example 1 was used as Experimental Example 3, except that the TiO 2 / dye substrate was immersed in a solution having a LiTFSI concentration of 0.1M. In addition, a composite obtained through the same process as Experimental Example 1 was used as Experimental Example 4 except that the TiO 2 / dye substrate was immersed in a solution having a LiTFSI concentration of 0.01M.

[実験例5,6(複合体)]
アルカリ系材料としてLiTFSIを0.01Mの濃度とし、移金属材料としてFeI2を0.01Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例1と同様の工程を経て得られた複合体を実験例5とした。また、アルカリ系材料としてLiTFSIを0.01Mの濃度とし、遷移金属材料としてCoI2を0.01Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例1と同様の工程を経て得られた複合体を実験例6とした。
[Experimental Examples 5 and 6 (complex)]
Obtained through the same steps as in Experimental Example 1 except that the TiO 2 / dye substrate was immersed in a solution having a LiTFSI concentration of 0.01M as the alkaline material and a FeI 2 concentration of 0.01M as the transfer metal material. The obtained composite was taken as Experimental Example 5. Further, the same steps as in Experimental Example 1 were performed except that the TiO 2 / dye substrate was immersed in a solution having LiTFSI as a concentration of 0.01M as an alkaline material and CoI 2 as a transition metal material at a concentration of 0.01M. The composite obtained as a result was designated as Experimental Example 6.

[実験例7,8(複合体)]
アルカリ系材料としてKIを0.01Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例1と同様の工程を経て得られた複合体を実験例7とした。また、アルカリ系材料としてNaIを0.01Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例1と同様の工程を経て得られた複合体を実験例8とした。
[Experimental Examples 7 and 8 (complex)]
A composite obtained through the same steps as Experimental Example 1 was used as Experimental Example 7, except that the TiO 2 / dye substrate was immersed in a solution having a KI concentration of 0.01 M as an alkaline material. In addition, a composite obtained through the same process as Experimental Example 1 was used as Experimental Example 8, except that the TiO 2 / dye substrate was immersed in a solution having a NaI concentration of 0.01 M as an alkaline material.

[実験例9,10(複合体)]
アルカリ系材料としてMgI2を0.01Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例1と同様の工程を経て得られた複合体を実験例9とした。また、アルカリ系材料としてCaI2を0.01Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例1と同様の工程を経て得られた複合体を実験例10とした。
[Experimental Examples 9 and 10 (Composite)]
A composite obtained through the same steps as Experimental Example 1 was used as Experimental Example 9, except that the TiO 2 / dye substrate was immersed in a solution containing 0.01 M MgI 2 as an alkaline material. In addition, a composite obtained through the same steps as Experimental Example 1 was used as Experimental Example 10 except that the TiO 2 / dye substrate was immersed in a solution having CaI 2 as a concentration of 0.01 M as an alkaline material.

[実験例11〜14(複合体)]
遷移金属材料としてFeI2を0.01Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例1と同様の工程を経て得られた複合体を実験例11とした。また、遷移金属材料としてCoI2を0.01Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例1と同様の工程を経て得られた複合体を実験例12とした。また、遷移金属材料としてNiI2を0.01Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例1と同様の工程を経て得られた複合体を実験例13とした。また、遷移金属材料としてCuIを0.01Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例1と同様の工程を経て得られた複合体を実験例14とした。
[Experimental Examples 11 to 14 (Composite)]
A composite obtained through the same process as Experimental Example 1 was used as Experimental Example 11 except that the TiO 2 / dye substrate was immersed in a solution having a FeI 2 concentration of 0.01 M as a transition metal material. In addition, a composite obtained through the same process as Experimental Example 1 was used as Experimental Example 12 except that the TiO 2 / dye substrate was immersed in a solution having CoI 2 concentration of 0.01M as a transition metal material. In addition, a composite obtained through the same process as Experimental Example 1 was used as Experimental Example 13 except that the TiO 2 / dye substrate was immersed in a solution having a NiI 2 concentration of 0.01 M as a transition metal material. In addition, a composite obtained through the same steps as Experimental Example 1 was used as Experimental Example 14, except that the TiO 2 / dye substrate was immersed in a solution having a CuI concentration of 0.01 M as a transition metal material.

[実験例15,16(複合体)]
有機色素としてMK2を用い、LiTFSIを0.1Mの濃度とした溶液にTiO2/色素基板を浸漬させる上記工程を経て得られた複合体を実験例15とした。また、LiTFSIを0.01Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例15と同様の工程を経て得られた複合体を実験例16とした。
[Experimental Examples 15 and 16 (complex)]
A composite obtained through the above-described step of immersing the TiO 2 / dye substrate in a solution having MTF2 as the organic dye and a concentration of LiTFSI of 0.1 M was defined as Experimental Example 15. In addition, a composite obtained through the same process as Experimental Example 15 was used as Experimental Example 16, except that the TiO 2 / dye substrate was immersed in a solution having a LiTFSI concentration of 0.01M.

[実験例17,18(複合体)]
アルカリ系材料としてKIを0.01Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例15と同様の工程を経て得られた複合体を実験例17とした。また、アルカリ系材料としてNaIを0.01Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例15と同様の工程を経て得られた複合体を実験例18とした。
[Experimental Examples 17 and 18 (complex)]
A composite obtained through the same steps as in Experimental Example 15 was used as Experimental Example 17, except that the TiO 2 / dye substrate was immersed in a solution having a KI concentration of 0.01 M as an alkaline material. In addition, a composite obtained through the same steps as in Experimental Example 15 was used as Experimental Example 18 except that the TiO 2 / dye substrate was immersed in a solution having a NaI concentration of 0.01 M as an alkaline material.

[実験例19,20(複合体)]
アルカリ系材料としてMgI2を0.01Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例15と同様の工程を経て得られた複合体を実験例19とした。また、アルカリ系材料としてCaI2を0.01Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例15と同様の工程を経て得られた複合体を実験例20とした。
[Experimental Examples 19 and 20 (complex)]
A composite obtained through the same process as Experimental Example 15 was used as Experimental Example 19 except that the TiO 2 / dye substrate was immersed in a solution containing 0.01 M MgI 2 as an alkaline material. In addition, a composite obtained through the same process as Experimental Example 15 was used as Experimental Example 20 except that the TiO 2 / dye substrate was immersed in a solution having CaI 2 as a concentration of 0.01 M as an alkaline material.

[実験例21〜24(複合体)]
遷移金属材料としてFeI2を0.01Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例15と同様の工程を経て得られた複合体を実験例21とした。また、遷移金属材料としてCoI2を0.01Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例15と同様の工程を経て得られた複合体を実験例22とした。また、遷移金属材料としてNiI2を0.01Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例15と同様の工程を経て得られた複合体を実験例23とした。また、遷移金属材料としてCuIを0.01Mの濃度とした溶液にTiO2/色素基板を浸漬させた以外、実験例15と同様の工程を経て得られた複合体を実験例24とした。
[Experimental Examples 21 to 24 (complex)]
A composite obtained through the same process as Experimental Example 15 was used as Experimental Example 21, except that the TiO 2 / dye substrate was immersed in a solution having a FeI 2 concentration of 0.01 M as a transition metal material. In addition, a composite obtained through the same process as Experimental Example 15 was used as Experimental Example 22 except that the TiO 2 / dye substrate was immersed in a solution having CoI 2 concentration of 0.01M as a transition metal material. In addition, a composite obtained through the same process as Experimental Example 15 was used as Experimental Example 23, except that the TiO 2 / dye substrate was immersed in a solution having a NiI 2 concentration of 0.01 M as a transition metal material. In addition, a composite obtained through the same steps as Experimental Example 15 was used as Experimental Example 24 except that the TiO 2 / dye substrate was immersed in a solution having a CuI concentration of 0.01 M as a transition metal material.

(複合体の実験結果)
実験例1〜14の複合体の吸収スペクトルの測定結果を、表1及び図5〜8に示し、実験例15〜24の複合体の吸収スペクトルの測定結果を、表2及び図9〜11に示す。なお、図5では、TiO2/色素基板の吸収、及び金属含有材料を有するTiO2/色素基板の吸収から、TiO2の吸収を差し引いた結果を示した。また、図6以降では、TiO2/色素基板の吸収、及び金属含有材料を有するTiO2/色素基板の吸収の測定結果を示した。図5,6に示すように、有機色素がD149であるTiO2/色素基板に、アルカリ系材料であるLiTFSI、LiI及びLiSCNを作用させると、光吸収スペクトルが長波長化することが明らかになった。また、図6に示すように、金属含有材料(LiTFSI)の濃度は、0.01Mでも効果があることがわかった。また、金属イオンとしてLi+は効果があり、更にアニオンとして、TFSI-、I-及びSCN-などが好ましいことがわかった。また、TiO2/色素基板に、アルカリ系材料であるLiTFSIと遷移金属材料であるFeI2とを作用させると、光吸収スペクトルが更に長波長化することが明らかになった。同様に、TiO2/色素基板に、アルカリ系材料であるLiTFSIと遷移金属材料であるCoI2とを作用させると、光吸収スペクトルが更に長波長化することが明らかになった。したがって、アルカリ系材料と遷移金属材料とは有機色素(D149)の別の部位に作用することが示唆された。また、図7に示すように、有機色素がD149であるTiO2/色素基板に、アルカリ系材料であるKI,NaI,MgI2及びCaI2を作用させると、光吸収スペクトルが長波長化することが明らかになった。また、図8に示すように、有機色素がD149であるTiO2/色素基板に、遷移金属材料であるFeI2,CoI2,NiI2及びCuIを作用させると、光吸収スペクトルが長波長化することが明らかになった。特に、FeI2,CoI2,及びNiI2が、CuIに比して吸収スペクトルがより長波長側にシフトすることがわかった。
(Experimental result of complex)
The measurement results of the absorption spectra of the composites of Experimental Examples 1 to 14 are shown in Table 1 and FIGS. 5 to 8, and the measurement results of the absorption spectra of the composites of Experimental Examples 15 to 24 are shown in Table 2 and FIGS. Show. In FIG. 5, the absorption of TiO 2 / dye substrate, and the absorption of TiO 2 / dye substrate having a metal-containing material, shows the results obtained by subtracting the absorption of TiO 2. Further, in FIG. 6 and subsequent absorption of TiO 2 / dye substrate, and showing the measurement results of the absorption of TiO 2 / dye substrate having a metal-containing material. As shown in FIGS. 5 and 6, when the alkaline materials LiTFSI, LiI and LiSCN are allowed to act on the TiO 2 / dye substrate whose organic dye is D149, it becomes clear that the light absorption spectrum becomes longer. It was. Moreover, as shown in FIG. 6, it turned out that the density | concentration of a metal containing material (LiTFSI) is effective even if it is 0.01M. Further, it was found that Li + is effective as a metal ion, and TFSI , I and SCN are preferable as anions. Further, it was revealed that when the alkaline material LiTFSI and the transition metal material FeI 2 are allowed to act on the TiO 2 / dye substrate, the light absorption spectrum becomes longer. Similarly, when LiTFSI as an alkaline material and CoI 2 as a transition metal material are allowed to act on a TiO 2 / dye substrate, it has been clarified that the light absorption spectrum becomes longer. Therefore, it was suggested that the alkaline material and the transition metal material act on another part of the organic dye (D149). In addition, as shown in FIG. 7, when KI, NaI, MgI 2 and CaI 2 as alkaline materials are allowed to act on a TiO 2 / dye substrate whose organic dye is D149, the light absorption spectrum becomes longer. Became clear. As shown in FIG. 8, when the transition metal materials FeI 2 , CoI 2 , NiI 2 and CuI are allowed to act on a TiO 2 / dye substrate whose organic dye is D149, the light absorption spectrum becomes longer. It became clear. In particular, it was found that the absorption spectrum of FeI 2 , CoI 2 , and NiI 2 shifts to the longer wavelength side compared to CuI.

表2及び図9に示すように、有機色素がMK2である場合でも、金属含有材料(LiTFSI)の濃度は、0.01Mや0.1Mでも光吸収スペクトルが長波長化する効果があることがわかった。また、図10に示すように、有機色素がMK2であるTiO2/色素基板に、アルカリ系材料であるKI,NaI,MgI2及びCaI2を作用させると、光吸収スペクトルが長波長化することが明らかになった。また、図11に示すように、有機色素がMK2であるTiO2/色素基板に、遷移金属材料であるFeI2,CoI2,NiI2及びCuIを作用させると、光吸収スペクトルが長波長化することが明らかになった。特に、FeI2,CoI2,及びNiI2が、CuIに比して光吸収スペクトルがより長波長側にシフトすることがわかった。 As shown in Table 2 and FIG. 9, even when the organic dye is MK2, even if the concentration of the metal-containing material (LiTFSI) is 0.01M or 0.1M, the light absorption spectrum may have an effect of increasing the wavelength. all right. In addition, as shown in FIG. 10, when alkali materials KI, NaI, MgI 2 and CaI 2 are allowed to act on a TiO 2 / dye substrate whose organic dye is MK2, the light absorption spectrum becomes longer. Became clear. As shown in FIG. 11, when the transition metal materials FeI 2 , CoI 2 , NiI 2 and CuI are allowed to act on a TiO 2 / dye substrate whose organic dye is MK2, the light absorption spectrum becomes longer. It became clear. In particular, it was found that the light absorption spectrum of FeI 2 , CoI 2 , and NiI 2 shifts to the longer wavelength side compared to CuI.

図12は、有機色素に金属含有材料を作用させたときの光吸収特性の測定結果であり、図12(a)が有機色素をD149とし、ピーク位置のシフト量を示す図であり、図12(b)が有機色素をD149とし、ピーク立ち上がり位置のシフト量を示す図であり、図12(c)が有機色素をMK2とし、ピーク位置のシフト量を示す図であり、図12(d)が有機色素をMK2とし、ピーク立ち上がり位置のシフト量を示す図である。図13に示すように、実験例1〜24では、いずれの有機色素でも光吸収スペクトルが長波長化することが明らかになった。また、金属イオンを1種類とし、濃度が0.01Mであるものを比較すると、LiTFSI、FeI2、CoI2、CaI2、NiI2及びMgI2などが、CuIに比して長波長化する傾向にあることがわかった。 FIG. 12 shows measurement results of light absorption characteristics when a metal-containing material is allowed to act on an organic dye. FIG. 12A shows the shift amount of the peak position with D149 as the organic dye. FIG. 12B is a diagram showing the shift amount of the peak rising position with D149 as the organic dye, and FIG. 12C is a diagram showing the shift amount of the peak position with MK2 as the organic dye. FIG. 4 is a diagram showing the shift amount of the peak rising position when the organic dye is MK2. As shown in FIG. 13, in Experimental Examples 1 to 24, it has been clarified that the light absorption spectrum becomes longer in any organic dye. Further, the metal ions and one, comparing what concentration is 0.01 M, LiTFSI, tend to FeI 2, CoI 2, CaI 2 , NiI 2 and MgI 2 and, to longer wavelength in comparison with CuI I found out.

[色素増感型太陽電池の内部量子効率(IPCE)特性及び太陽電池特性評価]
TCOガラス基板上に、n型半導体層として多孔質TiO2膜をスクリーン印刷法で塗布し、150℃で乾燥したのち、電気炉内で450℃に加熱して、多孔質TiO2膜基板を作製した。次に、有機色素1(D149)及び有機色素5(MK2)を各々含む色素溶液を調製した。色素溶液は、例えばD149では、アセトニトリルとtert−ブチルアルコールとを混合した混合溶液を溶媒として用い、MK2では、トルエンを溶媒として用いた。続いて、上記作製したいずれかの色素溶液に上記多孔質TiO2膜基板をそれぞれ浸漬し、25℃の温度条件の下で15時間放置した。このようにして、有機色素1又は有機色素5を吸着させたTiO2/色素基板をそれぞれ作製した。次に、アセトニトリルにCuIを飽和させ、1−メチル3−エチルイミダゾリウムチオシアネート(EMISCN)を添加してCuI溶液を調製した。40℃〜120℃のホットプレート上に、上記得られたTiO2/色素基板をTiO2膜が上になるように静置した。調製したCuI溶液をTiO2/色素基板上に500μL滴下し、TiO2膜内の有機色素にCuIを更に吸着させた複合体を形成させた。CuI溶液に含まれる溶媒を蒸発させることによりTiO2膜内にCuIを充填させ、更に、TiO2膜上にCuI層(正孔輸送層)を形成した。そして、このCuI層の上に、対極としてのPt薄膜を配置し、色素増感型太陽電池を作製した。作製した色素増感型太陽電池は、内部量子効率(Incident Photon to Current Efficiency:IPCE)値により評価した。
[Internal quantum efficiency (IPCE) characteristics and evaluation of solar cell characteristics of dye-sensitized solar cell]
A porous TiO 2 film is applied as a n-type semiconductor layer on a TCO glass substrate by screen printing, dried at 150 ° C., and then heated to 450 ° C. in an electric furnace to produce a porous TiO 2 film substrate. did. Next, a dye solution containing each of organic dye 1 (D149) and organic dye 5 (MK2) was prepared. As the dye solution, for example, in D149, a mixed solution of acetonitrile and tert-butyl alcohol was used as a solvent, and in MK2, toluene was used as a solvent. Subsequently, the porous TiO 2 film substrate was immersed in any one of the prepared dye solutions, and left for 15 hours under a temperature condition of 25 ° C. In this way, a TiO 2 / dye substrate on which the organic dye 1 or the organic dye 5 was adsorbed was produced. Next, CuI was saturated with acetonitrile, and 1-methyl 3-ethylimidazolium thiocyanate (EMISCN) was added to prepare a CuI solution. The obtained TiO 2 / dye substrate was placed on a hot plate at 40 ° C. to 120 ° C. so that the TiO 2 film was on top. 500 μL of the prepared CuI solution was dropped on a TiO 2 / dye substrate to form a complex in which CuI was further adsorbed on the organic dye in the TiO 2 film. The CuI is filled into the TiO 2 film by evaporating the solvent contained in the CuI solution, further, to form CuI layer (hole transport layer) on the TiO 2 film. And the Pt thin film as a counter electrode was arrange | positioned on this CuI layer, and the dye-sensitized solar cell was produced. The produced dye-sensitized solar cell was evaluated by an internal quantum efficiency (IPC) value.

[実験例25〜27(色素増感型太陽電池)]
有機色素としてD149を用い、金属含有材料としてLiTFSIを用い、金属含有材料を1.0Mの濃度とした溶液を用いて上記工程を経て得られた色素増感型太陽電池を実験例25とした。実験例25は、D149の有機色素と、アルカリ系材料としてLiTFSI及び遷移金属材料としてCuIを含む金属含有材料と、を有する複合体を備えたものである。また、金属含有材料としてLiIを用いた以外は実験例25と同様の工程を経て得られた色素増感型太陽電池を実験例26とした。実験例26は、D149の有機色素と、アルカリ系材料としてLiI及び遷移金属材料としてCuIを含む金属含有材料と、を有する複合体を備えたものである。また、金属含有材料としてLiSCNを用いた以外は実験例25と同様の工程を経て得られた色素増感型太陽電池を実験例27とした。実験例29は、D149の有機色素と、アルカリ系材料としてLiSCN及び遷移金属材料としてCuIを含む金属含有材料と、を有する複合体を備えたものである。
[Experimental Examples 25 to 27 (Dye-sensitized solar cell)]
A dye-sensitized solar cell obtained through the above steps using a solution in which D149 was used as the organic dye, LiTFSI was used as the metal-containing material, and the metal-containing material had a concentration of 1.0 M was defined as Experimental Example 25. Experimental Example 25 includes a composite having an organic dye of D149 and a metal-containing material containing LiTFSI as an alkaline material and CuI as a transition metal material. In addition, Experimental Example 26 was a dye-sensitized solar cell obtained through the same process as Experimental Example 25 except that LiI was used as the metal-containing material. Experimental Example 26 is provided with a composite having an organic dye of D149 and a metal-containing material containing LiI as an alkaline material and CuI as a transition metal material. Further, a dye-sensitized solar cell obtained through the same steps as in Experimental Example 25 was used as Experimental Example 27 except that LiSCN was used as the metal-containing material. Experimental Example 29 is provided with a composite having an organic dye of D149 and a metal-containing material containing LiSCN as an alkaline material and CuI as a transition metal material.

[実験例28〜30(色素増感型太陽電池)]
有機色素としてD149を用い、金属含有材料としてLiTFSIの代わりにCoI2を用いた以外は実験例25と同様の工程を経て得られた色素増感型太陽電池を実験例28とした。実験例28は、D149の有機色素と、遷移金属材料としてCoI2及びCuIを含む金属含有材料と、を有する複合体を備えたものである。また、有機色素としてMK2を用いた以外は実験例25と同様の工程を経て得られた色素増感型太陽電池を実験例29とした。実験例29は、MK2の有機色素と、アルカリ系材料としてLiTFSI及び遷移金属材料としてCuIを含む金属含有材料と、を有する複合体を備えたものである。また、有機色素としてMK2を用い、金属含有材料としてLiTFSIの代わりにCoI2を用いた以外は実験例25と同様の工程を経て得られた色素増感型太陽電池を実験例30とした。実験例30は、MK2の有機色素と、遷移金属材料としてCoI2及びCuIを含む金属含有材料と、を有する複合体を備えたものである。
[Experimental Examples 28 to 30 (Dye-sensitized solar cell)]
A dye-sensitized solar cell obtained through the same process as Experimental Example 25 was used as Experimental Example 28 except that D149 was used as the organic dye and CoI 2 was used as the metal-containing material instead of LiTFSI. Experimental Example 28 is provided with a composite having an organic dye of D149 and a metal-containing material containing CoI 2 and CuI as transition metal materials. Further, a dye-sensitized solar cell obtained through the same steps as in Experimental Example 25 except that MK2 was used as the organic dye was used as Experimental Example 29. Experimental Example 29 includes a composite having an organic dye of MK2 and a metal-containing material containing LiTFSI as an alkaline material and CuI as a transition metal material. A dye-sensitized solar cell obtained through the same process as Experimental Example 25 was used as Experimental Example 30 except that MK2 was used as the organic dye and CoI 2 was used as the metal-containing material instead of LiTFSI. Experimental Example 30 is provided with a composite having an organic dye of MK2 and a metal-containing material containing CoI 2 and CuI as transition metal materials.

[IPCE測定]
IPCE測定は、分光計器製、色素増感・有機薄膜太陽電池評価用分光感度測定装置CEP−2000を用い、モノクロメーターにより単色化した光を、作製した色素増感型太陽電池の光電極に照射し、入射光子数に対して得られた電子数を測定することにより行った。
[IPCE measurement]
For the IPCE measurement, a monochromator is used to irradiate the photoelectrode of the prepared dye-sensitized solar cell using a spectral sensitivity measuring device CEP-2000 for dye-sensitized / organic thin-film solar cell evaluation manufactured by Spectrometer Co., Ltd. Then, the number of electrons obtained with respect to the number of incident photons was measured.

(色素増感型太陽電池の実験結果)
実験例25〜27のセルの波長に対するIPCE測定結果を図13に示し、実験例28〜30のセルの波長に対するIPCE測定結果を図14〜16に示す。図14〜16では、IPCEの最大値を「1」に規格化した相対IPCEについても示した。図13、15に示すように、実験例25〜27,29の複合体を用いたセルでは、アルカリ金属(Li)を加えないものに比して、アルカリ金属を加えたものは、LiTFSI,LiI及びLiSCNのいずれもIPCEが長波長側にシフトした。即ち、色素増感型太陽電池としては有利な方向にシフトした。これらの結果は、複合体での結果を支持するものである。また、図14、16に示すように、遷移金属材料としてCoI2及びCuIを含む、実験例28,30の複合体を用いたセルにおいても、IPCEが、色素増感型太陽電池としては有利な方向である長波長側にシフトした。
(Experimental result of dye-sensitized solar cell)
The IPCE measurement result with respect to the wavelength of the cell of Experimental Example 25-27 is shown in FIG. 13, and the IPCE measurement result with respect to the wavelength of the cell of Experimental Example 28-30 is shown in FIGS. 14 to 16 also show the relative IPCE in which the maximum IPCE value is normalized to “1”. As shown in FIGS. 13 and 15, in the cells using the composites of Experimental Examples 25 to 27 and 29, the cells added with the alkali metal compared to the cells not added with the alkali metal (Li) were LiTFSI, LiI. And LiSCN both IPCE shifted to the longer wavelength side. That is, it shifted to an advantageous direction as a dye-sensitized solar cell. These results support the results with the complex. In addition, as shown in FIGS. 14 and 16, IPCE is advantageous as a dye-sensitized solar cell even in a cell using the composites of Experimental Examples 28 and 30 containing CoI 2 and CuI as transition metal materials. The direction shifted to the long wavelength side.

以上の測定結果より、電子受容部位を有する有機色素分子と、第1族元素及び第2族元素のうち1以上を含むアルカリ系材料とを備えた複合体は、光吸収特性が向上し好ましいことがわかった。同様に、電子受容部位を有する有機色素分子と、1以上の遷移金属を含む遷移金属材料とを備えた複合体は、光吸収特性が向上し好ましいことがわかった。また、有機色素分子と、アルカリ系材料と、1以上の遷移金属材料とを備えた複合体は、更に光吸収特性が向上し好ましいことがわかった。特に、有機色素分子と、アルカリ系材料と、Cuを含むCu系材料と、Cu以外の遷移金属を含む遷移金属材料とを備えた複合体は、最も光吸収特性が向上し好ましいことがわかった。   From the above measurement results, a composite comprising an organic dye molecule having an electron-accepting site and an alkaline material containing one or more of Group 1 elements and Group 2 elements is preferably improved in light absorption characteristics. I understood. Similarly, it has been found that a complex including an organic dye molecule having an electron accepting site and a transition metal material containing one or more transition metals has improved light absorption characteristics. Moreover, it turned out that the composite provided with the organic pigment | dye molecule | numerator, an alkaline material, and one or more transition metal materials improves a light absorption characteristic further, and is preferable. In particular, it has been found that a composite comprising an organic dye molecule, an alkaline material, a Cu-based material containing Cu, and a transition metal material containing a transition metal other than Cu has the most improved light absorption characteristics. .

本発明は、色素増感型太陽電池及び色素増感型太陽電池モジュールに好適に利用可能である。   The present invention can be suitably used for a dye-sensitized solar cell and a dye-sensitized solar cell module.

10 色素増感型太陽電池モジュール、11 透明基板、12 透明導電膜、13 受光面、14 透明導電性基板、15 受光面、16,17 集電電極、18 溝、20 光電極、21 接続部、22 下地層、23 受光面、24 多孔質半導体層、25 裏面、26 正孔輸送層、27 裏面、28 複合体、29 セパレータ、30 対極、32 シール材、34 保護部材、40 色素増感型太陽電池。   10 Dye-sensitized solar cell module, 11 Transparent substrate, 12 Transparent conductive film, 13 Light receiving surface, 14 Transparent conductive substrate, 15 Light receiving surface, 16, 17 Current collecting electrode, 18 Groove, 20 Photo electrode, 21 Connection portion, 22 Underlayer, 23 Light-receiving surface, 24 Porous semiconductor layer, 25 Back surface, 26 Hole transport layer, 27 Back surface, 28 Composite, 29 Separator, 30 Counter electrode, 32 Sealing material, 34 Protection member, 40 Dye-sensitized solar battery.

Claims (14)

S及びNのうち少なくとも一方を含む電子受容部位を有し、式(1)に示すロダニン構造とインドリン構造とを有する有機色素分子と、
第1族元素及び第2族元素のうち1以上を含みアニオンを(CF3SO22-、SCN-及びI-のうち1以上とするアルカリ系材料(ヒドロキサム酸塩を除く)と、
1以上の遷移金属を含みアニオンを(CF3SO22-、SCN-及びI-のうち1以上とする遷移金属材料と、
を含有した、複合体。
Possess an electron acceptor site comprising at least one of S and N, and organic dye molecules which have a a rhodanine structure and indoline structure as shown in formula (1),
An alkaline material (excluding hydroxamic acid salt) containing at least one of group 1 elements and group 2 elements and an anion of at least one of (CF 3 SO 2 ) 2 N , SCN and I ;
A transition metal material including one or more transition metals and an anion of one or more of (CF 3 SO 2 ) 2 N , SCN and I ;
A composite containing
前記有機色素分子は、式(2)に示す基本構造を有する、請求項に記載の複合体。
The complex according to claim 1 , wherein the organic dye molecule has a basic structure represented by Formula (2).
S及びNのうち少なくとも一方を含む電子受容部位を有し、式(3)に示す、CN基を有するエチレン構造が結合したチオフェン構造を有する有機色素分子と、  An organic dye molecule having an electron accepting site containing at least one of S and N and having a thiophene structure to which an ethylene structure having a CN group is bonded, represented by formula (3);
第1族元素及び第2族元素のうち1以上を含みアニオンを(CF  An anion containing one or more of group 1 elements and group 2 elements (CF 3Three SOSO 22 ) 22 N -- 、SCN, SCN -- 及びIAnd I -- のうち1以上とするアルカリ系材料(ヒドロキサム酸塩を除く)と、One or more alkaline materials (excluding hydroxamates),
1以上の遷移金属を含みアニオンを(CF  An anion containing one or more transition metals (CF 3Three SOSO 22 ) 22 N -- 、SCN, SCN -- 及びIAnd I -- のうち1以上とする遷移金属材料と、One or more transition metal materials,
を含有した、複合体。  A composite containing
S及びNのうち少なくとも一方を含む電子受容部位を有し、式(4)に示すカルバゾール構造を有する有機色素分子と、  An organic dye molecule having an electron accepting site containing at least one of S and N and having a carbazole structure represented by formula (4);
第1族元素及び第2族元素のうち1以上を含みアニオンを(CF  An anion containing one or more of group 1 elements and group 2 elements (CF 3Three SOSO 22 ) 22 N -- 、SCN, SCN -- 及びIAnd I -- のうち1以上とするアルカリ系材料(ヒドロキサム酸塩を除く)と、One or more alkaline materials (excluding hydroxamates),
1以上の遷移金属を含みアニオンを(CF  An anion containing one or more transition metals (CF 3Three SOSO 22 ) 22 N -- 、SCN, SCN -- 及びIAnd I -- のうち1以上とする遷移金属材料と、One or more transition metal materials,
を含有した、複合体。  A composite containing
前記遷移金属材料は、Cuを含む半導体及びCuを含む導電体のうち少なくとも一方を含むCu系材料を含んでいる、請求項1〜4のいずれか1項に記載の複合体。 The transition metal material comprises a Cu-based material comprising at least one of the conductors including a semiconductor and Cu including Cu, complex according to any one of claims 1-4. 前記遷移金属材料は、Cuを含む半導体及びCuを含む導電体のうち少なくとも一方を含むCu系材料と、Cu以外の遷移金属を含む非Cu系材料と、を含んでいる、請求項1〜5のいずれか1項に記載の複合体。 The transition metal material contains a Cu-based material comprising at least one of the conductors including a semiconductor and Cu containing Cu, and a non-Cu-based material containing a transition metal other than Cu, the claim 1-5 The complex according to any one of the above. 前記Cu系材料は、CuI,CuSCN,CuO,Cu2O及びCuのうちいずれか1以上を含んでいる、請求項又はに記載の複合体。 The composite according to claim 5 or 6 , wherein the Cu-based material contains one or more of CuI, CuSCN, CuO, Cu 2 O, and Cu. 前記遷移金属材料は、Cu,Ni,Co,Fe及びCrのうち1以上の遷移金属を含んでいる、請求項1〜のいずれか1項に記載の複合体。 The composite according to any one of claims 1 to 7 , wherein the transition metal material includes one or more transition metals of Cu, Ni, Co, Fe, and Cr. 前記アルカリ系材料は、Li,Na,K,Mg及びCaのうち1以上を含んでいる、請求項1〜のいずれか1項に記載の複合体。 The composite according to any one of claims 1 to 8 , wherein the alkaline material includes one or more of Li, Na, K, Mg, and Ca. 色素増感型太陽電池に用いられる光電極であって、
透明導電膜と透明基板とを有する導電性基板と、
前記導電性基板に隣接して設けられているn型半導体層と、
前記n型半導体層に形成されている請求項1〜のいずれか1項に記載の複合体と、
を備えた光電極。
A photoelectrode used in a dye-sensitized solar cell,
A conductive substrate having a transparent conductive film and a transparent substrate;
An n-type semiconductor layer provided adjacent to the conductive substrate;
The composite according to any one of claims 1 to 9 , which is formed in the n-type semiconductor layer,
A photoelectrode.
前記n型半導体層は、酸化チタン、酸化スズ、酸化亜鉛、硫化カドミウム、硫化亜鉛のうち少なくとも1以上を含む、請求項10に記載の光電極。 11. The photoelectrode according to claim 10 , wherein the n-type semiconductor layer includes at least one of titanium oxide, tin oxide, zinc oxide, cadmium sulfide, and zinc sulfide. 請求項10又は11に記載の光電極と、
前記光電極に対向して設けられた対極と、
を備えた色素増感型太陽電池。
The photoelectrode according to claim 10 or 11 ,
A counter electrode provided facing the photoelectrode;
A dye-sensitized solar cell comprising:
請求項12に記載の色素増感型太陽電池であって、
前記光電極と前記対極との間に介在し、Cuを含む半導体及びCuを含む導電体のうち少なくとも一方を含むCu系材料を含む正孔輸送層、を備えた色素増感型太陽電池。
The dye-sensitized solar cell according to claim 12 ,
A dye-sensitized solar cell including a hole transport layer including a Cu-based material including at least one of a semiconductor including Cu and a conductor including Cu interposed between the photoelectrode and the counter electrode.
請求項12又は13に記載の色素増感型太陽電池を複数備えている、色素増感型太陽電池モジュール。 A dye-sensitized solar cell module comprising a plurality of the dye-sensitized solar cells according to claim 12 or 13 .
JP2012172671A 2012-08-03 2012-08-03 Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module Expired - Fee Related JP6035966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012172671A JP6035966B2 (en) 2012-08-03 2012-08-03 Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012172671A JP6035966B2 (en) 2012-08-03 2012-08-03 Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module

Publications (2)

Publication Number Publication Date
JP2014032847A JP2014032847A (en) 2014-02-20
JP6035966B2 true JP6035966B2 (en) 2016-11-30

Family

ID=50282515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012172671A Expired - Fee Related JP6035966B2 (en) 2012-08-03 2012-08-03 Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module

Country Status (1)

Country Link
JP (1) JP6035966B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6181676B2 (en) * 2015-01-19 2017-08-16 株式会社豊田中央研究所 Dye-sensitized solar cell, dye-sensitized solar cell module

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285975A (en) * 1999-03-30 2000-10-13 Aisin Seiki Co Ltd Semiconductor for photoelectric conversion and photoelectric conversion element
JP4514251B2 (en) * 1999-07-21 2010-07-28 住友金属鉱山株式会社 Dye-sensitized solar cell
JP4100491B2 (en) * 2002-01-25 2008-06-11 富士フイルム株式会社 Semiconductor fine particle layer, photoelectric conversion element and photovoltaic cell
JP4754862B2 (en) * 2005-04-15 2011-08-24 シャープ株式会社 Dye-sensitized solar cell and method for producing the same
JP2006310186A (en) * 2005-04-28 2006-11-09 Canon Inc Photovoltaic element and dye-sensitized solar cell comprising it
JP4804050B2 (en) * 2005-07-01 2011-10-26 Jx日鉱日石エネルギー株式会社 Photoelectric conversion element
JP2009289708A (en) * 2008-06-02 2009-12-10 Hiroshima Univ Photo-electrode, its manufacturing method and photoelectric conversion device
JP5458406B2 (en) * 2009-12-11 2014-04-02 独立行政法人産業技術総合研究所 ORGANIC DYE COMPOUND AND SEMICONDUCTOR THIN FILM ELECTRODE, PHOTOELECTRIC CONVERSION ELEMENT, PHOTOELECTROCHEMICAL SOLAR CELL
JP5535718B2 (en) * 2010-03-24 2014-07-02 株式会社豊田中央研究所 Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module
WO2012001628A1 (en) * 2010-06-29 2012-01-05 Basf Se Photoelectric conversion device comprising hydroxamic acid derivative or salt thereof as additive and process for producing same
DE102010030724B4 (en) * 2010-06-30 2019-07-25 Seg Automotive Germany Gmbh Starting device and method for producing a stop for a displaceable pinion of a starting device arranged on a shaft
JP5894372B2 (en) * 2010-11-01 2016-03-30 パナソニック株式会社 OPTOELECTRIC ELEMENT AND METHOD FOR PRODUCING OPTOELECTRIC ELEMENT

Also Published As

Publication number Publication date
JP2014032847A (en) 2014-02-20

Similar Documents

Publication Publication Date Title
Yum et al. Panchromatic engineering for dye-sensitized solar cells
Hagfeldt et al. Dye-sensitized solar cells
Yum et al. Recent developments in solid‐state dye‐sensitized solar cells
Yu et al. High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states
Moon et al. Sb2S3-based mesoscopic solar cell using an organic hole conductor
Nazeeruddin et al. Dye-sensitized solar cells: A brief overview
Fabregat-Santiago et al. Electron transport and recombination in solid-state dye solar cell with spiro-OMeTAD as hole conductor
Sharifi et al. Recent Developments in Dye‐Sensitized Solar Cells
Albero et al. Efficiency Records in Mesoscopic Dye‐Sensitized Solar Cells
JP5629625B2 (en) Method for producing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module
Perera et al. Introducing manganese complexes as redox mediators for dye-sensitized solar cells
Yum et al. Heteroleptic ruthenium complex containing substituted triphenylamine hole-transport unit as sensitizer for stable dye-sensitized solar cell
Sasidharan et al. Bifacial dye-sensitized solar cells with enhanced light scattering and improved power conversion efficiency under full sun and indoor light conditions
Masud et al. Redox shuttle-based electrolytes for dye-sensitized solar cells: comprehensive guidance, recent progress, and future perspective
Hao et al. Efficient dye-sensitized solar cells with voltages exceeding 1 v through exploring tris (4-alkoxyphenyl) amine mediators in combination with the tris (bipyridine) cobalt redox system
Hui et al. Stable electron-transport-layer-free perovskite solar cells with over 22% power conversion efficiency
Tagliaferro et al. Integrated tandem dye solar cells
JP2012204275A (en) Method for manufacturing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module
Singh et al. Efficiency enhancement in dye sensitized solar cells through step wise cosensitization of TiO2 electrode with N719 and metal free dye
JP5535718B2 (en) Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module
Kim et al. Promising efficiency enhancement in cobalt redox couple-based back-illuminated dye-sensitized solar cells with titanium foil substrate
JP6490035B2 (en) Electrolyte, solar cell and solar cell module
Kang et al. A new ionic liquid for a redox electrolyte of dye‐sensitized solar cells
Zhou et al. Synergistic Effect of Size-Tailored Structural Engineering and Postinterface Modification for Highly Efficient and Stable Dye-Sensitized Solar Cells
JP6035966B2 (en) Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160809

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6035966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees