JP6032881B2 - Hot mold steel - Google Patents

Hot mold steel Download PDF

Info

Publication number
JP6032881B2
JP6032881B2 JP2011228453A JP2011228453A JP6032881B2 JP 6032881 B2 JP6032881 B2 JP 6032881B2 JP 2011228453 A JP2011228453 A JP 2011228453A JP 2011228453 A JP2011228453 A JP 2011228453A JP 6032881 B2 JP6032881 B2 JP 6032881B2
Authority
JP
Japan
Prior art keywords
steel
present
toughness
less
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011228453A
Other languages
Japanese (ja)
Other versions
JP2013087322A (en
Inventor
幸生 舘
幸生 舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48531550&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6032881(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2011228453A priority Critical patent/JP6032881B2/en
Publication of JP2013087322A publication Critical patent/JP2013087322A/en
Application granted granted Critical
Publication of JP6032881B2 publication Critical patent/JP6032881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

この発明は、熱間鍛造、熱間押出、ダイカストその他の鋳造などに用いる熱間金型用鋼に関する。   The present invention relates to hot die steel used for hot forging, hot extrusion, die casting and other casting.

従来、熱間金型用鋼として、JISのG4404には、合金工具鋼鋼材の一部として、SKD4、SKD5、SKD6、SKD61、SKD62、SKD7、SKD8、SKT3、SKT4、SKT6が規定されている。これらの熱間金型用鋼の用途例として、SKD4、SKD5、SKD6、SKD61はプレス型、ダイカスト型、押出工具、シャーブレードが例示され、SKD62及びSKD7はプレス型、押出工具が例示され、SKD8はプレス型、ダイカスト型、押出工具が例示され、さらにSKT3、SKT4及びSKT6は鍛造型、プレス型及び押出工具が例示されている。   Conventionally, SKD4, SKD5, SKD6, SKD61, SKD62, SKD7, SKD8, SKT3, SKT4, and SKT6 are prescribed as part of alloy tool steel in JIS G4404 as hot mold steel. Examples of applications of these hot mold steels include SKD4, SKD5, SKD6, and SKD61 as press dies, die casting dies, extrusion tools, shear blades, SKD62 and SKD7 as press dies, extrusion tools, and SKD8. Is exemplified by a press die, a die-casting die, and an extrusion tool, and SKT3, SKT4, and SKT6 are exemplified by a forging die, a press die, and an extrusion tool.

ところで、熱間加工工具鋼の鋼材として、重量%で次に示す値からなる合金組成を有することを特徴とする、熱間加工工具鋼の鋼材であって、C:0.3〜0.4、Mn:0.2〜0.8、Cr:4〜6%、Mo:1.8〜3、V:0.4〜0.6、バランス:鉄及び不可避の金属不純物及び不可避の非金属不純物からなり、該非金属不純物は、次に示す最高量で存在できるシリコン、窒素、酸素、リン及び硫黄を含む:Si:max.0.25重量%、N:max.0.010重量%、O:max.10ppm、S:max.0.0008重量%、該鋼材は、1000〜1080℃の温度におけるオーステナイト化および550〜650℃の焼戻しによって45HRCを超える硬度を得ることができる、熱間加工工具用の鋼材が提案されている(例えば、特許文献1参照。)。   By the way, it is a steel material of hot work tool steel characterized by having the alloy composition which consists of the value shown below by weight% as steel material of hot work tool steel, Comprising: C: 0.3-0.4 , Mn: 0.2 to 0.8, Cr: 4 to 6%, Mo: 1.8 to 3, V: 0.4 to 0.6, balance: iron and unavoidable metal impurities and unavoidable nonmetallic impurities And the non-metallic impurities include silicon, nitrogen, oxygen, phosphorus and sulfur that can be present in the highest amounts: Si: max. 0.25 wt%, N: max. 0.010% by weight, O: max. 10 ppm, S: max. 0.0008% by weight of the steel material has been proposed as a steel material for a hot working tool capable of obtaining a hardness exceeding 45 HRC by austenitizing at a temperature of 1000 to 1080 ° C. and tempering at 550 to 650 ° C. ( For example, see Patent Document 1.)

さらに、ダイカスト用金型鋼として、質量%で、0.32〜0.42%のCを含む鋼に、Cr、Si、Mn及びVの必須添加元素、少なくともいずれかを含み得るMo及びWの準必須添加元素、及び、任意に含み得る任意添加元素添加したダイカスト金型鋼であって、前記任意添加元素において、Cuを1.0%以下、Niを0.5%以下、Coを1.0%以下、Bを0.01%以下、Seを0.05%以下、Teを0.05%以下、Pbを0.05%以下、Biを0.01%以下、Caを0.01%以下、Nbを0.1%以下、Taを0.1%以下、Tiを0.1%以下、Zrを0.1%以下、REMを0.1%以下、Mgを0.1%以下で任意に含みうるとともに、前記必須添加元素において、質量%で、Crを4.0〜6.0%の範囲内、Siを0.05〜0.2%の範囲内、Mnを0.3〜1.5%の範囲内、及び、Vを0.2〜0.7%の範囲内で添加し、前記準必須添加元素において、質量%で、Mo及び/又はWを、0.8≦Mo+1/2W≦2.0となるように添加し30W/(m・K)以上の熱伝導率を与えたことを特徴とするダイカスト金型鋼が提案されている(例えば、特許文献2参照。)。   Further, as die metal for die casting, steel containing 0.32 to 0.42% by mass in mass%, and a quasi of Mo and W which may contain at least one of essential elements of Cr, Si, Mn and V A die-cast die steel to which an optional additive element and an optional additive element that can optionally be added are added, and in the optional additive element, Cu is 1.0% or less, Ni is 0.5% or less, and Co is 1.0%. Hereinafter, B is 0.01% or less, Se is 0.05% or less, Te is 0.05% or less, Pb is 0.05% or less, Bi is 0.01% or less, Ca is 0.01% or less, Nb is 0.1% or less, Ta is 0.1% or less, Ti is 0.1% or less, Zr is 0.1% or less, REM is 0.1% or less, and Mg is 0.1% or less. In the essential additive element, Cr is contained in the range of 4.0 to 6.0% by mass%. Si is added in a range of 0.05 to 0.2%, Mn is added in a range of 0.3 to 1.5%, and V is added in a range of 0.2 to 0.7%. As an essential additive element, Mo and / or W was added in mass% so that 0.8 ≦ Mo + 1 / 2W ≦ 2.0, and a thermal conductivity of 30 W / (m · K) or more was given. A characteristic die-cast die steel has been proposed (for example, see Patent Document 2).

特許4516211号公報Japanese Patent No. 4516211 特開2010−168639号公報JP 2010-1668639 A

熱間金型用鋼として高靭性及び高強度を両立させるには、合金元素の添加量に加えて、生成する炭化物の組成の制御が重要であり、また、焼入性を高めて靭性を向上させるために、Cr及びMoの添加は有効であるが、Cr及びMoのバランスを考慮しなければ、析出する炭化物としてMXやM2Cが少なくなり、高温強度が不十分になる問題がある。 In order to achieve both high toughness and high strength as a steel for hot molds, it is important to control the composition of the resulting carbide in addition to the amount of alloying elements added, and to improve toughness by improving hardenability. Therefore, the addition of Cr and Mo is effective, but unless the balance between Cr and Mo is taken into account, there is a problem that MX and M 2 C are reduced as precipitated carbides and the high-temperature strength is insufficient.

本発明が解決しようとする課題は、上記の問題を解消して、高靭性かつ高強度な熱間金型用鋼を提供することである。   The problem to be solved by the present invention is to solve the above-mentioned problems and provide a steel for hot molds having high toughness and high strength.

上記の課題を解決するための本発明の手段は、第1の手段では、質量%で、C:0.30〜0.50%、Si:0.10〜0.50%、Mn:0.10〜1.00%、Cr:4.11〜5.12%、Mo:1.40〜2.60%、V:0.20〜0.80%、Ti:0.0030%以下、N:0.0116%以下を含有し、残部Feおよび不可避不純物からなる熱間金型用鋼である。この熱間金型用鋼における[%Mo]と[%Cr]のバランスは、質量%で、0.33×[%Cr]−0.37<[%Mo]<4.45−0.44×[%Cr]の関係式を満足する。さらに、靱性がシャルピー衝撃試験値で50.3〜86.6J/cm 2 であり、かつ、焼入焼戻しによる調質前の初期硬さのHRCと焼入焼戻しによる調質後のHRCとの差であるΔHRCが7.3〜11.1である。このように本発明の第1の手段は、高靭性及び高強度な熱間金型用鋼である。 The means of the present invention for solving the above-mentioned problems is, in the first means, in mass%, C: 0.30 to 0.50%, Si: 0.10 to 0.50%, Mn: 0.00. 10 to 1.00%, Cr: 4.11 to 5.12%, Mo: 1.40 to 2.60%, V: 0.20 to 0.80%, Ti: 0.0030% or less, N: It is a steel for hot molds containing 0.0116% or less and the balance being Fe and inevitable impurities. The balance between [% Mo] and [% Cr] in this hot mold steel is 0.33 × [% Cr] −0.37 <[% Mo] <4.45−0.44 in mass%. X [% Cr] is satisfied. Furthermore, the toughness is 50.3 to 86.6 J / cm 2 in Charpy impact test value, and the difference between the HRC of the initial hardness before tempering by quenching and tempering and the HRC after tempering by quenching and tempering ΔHRC is 7.3 to 11.1. Thus, the first means of the present invention is a steel for hot molds having high toughness and high strength.

第2の手段では、質量%で、C:0.30〜0.50%、Si:0.10〜0.50%、Mn:0.10〜1.00%、Cr:4.11〜5.12%、Mo:1.40〜2.60%、V:0.20〜0.80%、Ti:0.0030以下、N:0.0116%以下を含有し、さらにNi:0.2〜1.5%及びCo:1.2%以下のいずれか1種又は2種を含有し、残部Feおよび不可避不純物からなる熱間金型用鋼である。この熱間金型用鋼における[%Mo]と[%Cr]のバランスは、質量%で、0.33×[%Cr]−0.37<[%Mo]<4.45−0.44×[%Cr]の関係式を満足する。さらに、靱性がシャルピー衝撃試験値で50.3〜86.6J/cm 2 であり、かつ、焼入焼戻しによる調質前の初期硬さのHRCと焼入焼戻しによる調質後のHRCとの差であるΔHRCが7.3〜11.1である。このように本発明の第2の手段は、高靭性及び高強度な熱間金型用鋼である。 In the second means, in mass%, C: 0.30 to 0.50%, Si: 0.10 to 0.50%, Mn: 0.10 to 1.00%, Cr: 4.11 to 5 .12%, Mo: 1.40 to 2.60%, V: 0.20 to 0.80%, Ti: 0.0030 or less, N: 0.0116% or less, and Ni: 0.2 It is steel for hot molds which contains any 1 type or 2 types of -1.5% and Co: 1.2% or less, and consists of remainder Fe and an unavoidable impurity. The balance between [% Mo] and [% Cr] in this hot mold steel is 0.33 × [% Cr] −0.37 <[% Mo] <4.45−0.44 in mass%. X [% Cr] is satisfied. Furthermore, the toughness is 50.3 to 86.6 J / cm 2 in Charpy impact test value, and the difference between the HRC of the initial hardness before tempering by quenching and tempering and the HRC after tempering by quenching and tempering ΔHRC is 7.3 to 11.1. Thus, the second means of the present invention is a steel for hot molds having high toughness and high strength.

第3の手段では、質量%で、C:0.30〜0.50%、Si:0.10〜0.50%、Mn:0.10〜1.00%、Cr:4.11〜5.12%、Mo:1.40〜2.60%、V:0.20〜0.80%、Ti:0.0030%以下、N:0.0116%以下を含有し、さらにNb:0.30%以下を含有し、なお、さらにNi:0.2〜1.5%及びCo:1.2%以下のいずれか1種又は2種を含有し、残部Feおよび不可避不純物からなる熱間金型用鋼である。この熱間金型用鋼における[%Mo]と[%Cr]のバランスは、質量%で、0.33×[%Cr]−0.37<[%Mo]<4.45−0.44×[%Cr]の関係式を満足する。さらに、靱性がシャルピー衝撃試験値で50.3〜86.6J/cm 2 であり、かつ、焼入焼戻しによる調質前の初期硬さのHRCと焼入焼戻しによる調質後のHRCとの差であるΔHRCが7.3〜11.1である。このように本発明の第3の手段は、高靭性及び高強度な熱間金型用鋼である。 In the third means, by mass%, C: 0.30 to 0.50%, Si: 0.10 to 0.50%, Mn: 0.10 to 1.00%, Cr: 4.11 to 5 .12%, Mo: 1.40 to 2.60%, V: 0.20 to 0.80%, Ti: 0.0030% or less, N: 0.0116% or less, and Nb: 0.0. Hot gold containing 30% or less, and further containing any one or two of Ni: 0.2 to 1.5% and Co: 1.2% or less, the balance being Fe and inevitable impurities Mold steel. The balance between [% Mo] and [% Cr] in this hot mold steel is 0.33 × [% Cr] −0.37 <[% Mo] <4.45−0.44 in mass%. X [% Cr] is satisfied. Furthermore, the toughness is 50.3 to 86.6 J / cm 2 in Charpy impact test value, and the difference between the HRC of the initial hardness before tempering by quenching and tempering and the HRC after tempering by quenching and tempering ΔHRC is 7.3 to 11.1. Thus, the third means of the present invention is hot mold steel for high toughness and strength.

ここで、本願の上記の手段に係る発明と特許文献1の発明及び特許文献2の発明との関係について以下に説明する。   Here, the relationship between the invention according to the above means of the present application and the invention of Patent Document 1 and the invention of Patent Document 2 will be described below.

特許文献1に係る発明における合金成分の添加量の範囲は本願の上記の手段の発明と重複している。しかしながら、特許文献1の発明は、本願発明の重要な技術である、焼入焼戻し状態の炭化物組成に関する見解が論じられておらず知見されていない。かつ、当該特許文献1の段落0008に示される合金組成では、Moの添加量は1.8〜3%、好ましくは1.8〜2.5%、好適には2.2〜2.4%であり、標準では2.3%である。この特許文献1のMoの含有量はいずれも本願発明が規定する0.33×[%Cr]−0.37<[%Mo]<4.45−0.44×[%Cr]の範囲外であることから、特許文献1の発明は、本願の上記の手段の発明とは異なる、別の発明である。   The range of the addition amount of the alloy component in the invention according to Patent Document 1 overlaps with the above-described means of the present invention. However, the invention of Patent Document 1 does not discuss or know the view regarding the carbide composition in the quenched and tempered state, which is an important technique of the present invention. And in the alloy composition shown by the paragraph 0008 of the said patent document 1, the addition amount of Mo is 1.8 to 3%, Preferably it is 1.8 to 2.5%, Suitably 2.2 to 2.4% The standard is 2.3%. The content of Mo in Patent Document 1 is outside the range of 0.33 × [% Cr] −0.37 <[% Mo] <4.45−0.44 × [% Cr] defined by the present invention. Therefore, the invention of Patent Document 1 is another invention different from the invention of the above means of the present application.

特許文献2に係る発明における合金成分の添加量の範囲は本願の上記の手段の発明と重複しているが、特許文献2の発明は、本願発明の重要な技術の一つである、Nの規定がされておらず、靭性が不十分になる可能性を払拭できないものである。さらに、特許文献2の発明は、本願手段の発明の別の重要な技術である、焼入焼戻し状態の炭化物組成に関する見解が論じられていない。また、特許文献2の発明に示される実施例の中には、本願手段の発明が規定する1.40<[%Mo]<2.60かつ0.33×[%Cr]−0.37<[%Mo]<4.45−0.44×[%Cr]の範囲外であり、さらにNが規定されていないものであることから、特許文献2の発明も、本願の上記の手段の発明とは異なる、別の発明である。   Although the range of the addition amount of the alloy component in the invention according to Patent Document 2 overlaps with the invention of the above means of the present application, the invention of Patent Document 2 is one of the important techniques of the present invention, N It is not stipulated and cannot eliminate the possibility of insufficient toughness. Further, the invention of Patent Document 2 does not discuss the view regarding the carbide composition in the quenched and tempered state, which is another important technique of the present invention. In addition, in the embodiments shown in the invention of Patent Document 2, 1.40 <[% Mo] <2.60 and 0.33 × [% Cr] −0.37 < Since it is outside the range of [% Mo] <4.45−0.44 × [% Cr] and N is not defined, the invention of Patent Document 2 is also the invention of the above means of the present application. This is a different invention.

本願の熱間金型用鋼は上記の手段からなる発明であり、鋼成分として含有されるCr及びMoの量のバランス適切であり、かつ、含有される炭化物の組成の制御が適切とされたことで、析出する炭化物としてのMXやM2Cが適量であり、熱間鍛造、熱間押出、鋳造あるいはダイカストなどに適応した際に、靱性が50.3〜86.6J/cm 2 であり、かつ、焼入焼戻しによる調質前の初期硬さのHRCと焼入焼戻しによる調質後のHRCとの差であるΔHRCが7.3〜11.1であり、高強度及び高靭性で従来の熱間金型用鋼に見られない優れた効果を奏する鋼材である。 The hot die steel of the present application is an invention comprising the above means, and the balance of the amount of Cr and Mo contained as steel components is appropriate, and the composition of the contained carbide is appropriately controlled. It was that, MX or M 2 C as carbides precipitated is an appropriate amount, hot forging, hot extrusion, upon adapted such as casting or die casting, toughness at 50.3~86.6J / cm 2 And ΔHRC, which is the difference between the HRC of the initial hardness before tempering by quenching and tempering and the HRC after tempering by quenching and tempering, is 7.3 to 11.1, with high strength and high toughness. It is a steel material that exhibits an excellent effect not seen in conventional hot metal mold steels.

本願の発明を実施するための形態を説明するに先立って、先ず、本願発明の熱間金型用鋼の鋼組成である化学成分の限定理由を以下に説明する。なお、%は質量%である。   Prior to describing the mode for carrying out the invention of the present application, first, the reasons for limiting the chemical components that are the steel composition of the steel for hot molds of the present invention will be described below. In addition,% is the mass%.

C:0.30〜0.50%
Cは、十分な焼入性を確保し、炭化物を形成させることで、耐摩耗性や高温強度を得るための元素である。Cが0.30%未満では、十分な高温強度及び耐摩耗性が得られず、Cが0.50%を超えると凝固偏析を助長し、靭性を阻害する。そこで、Cは0.30〜0.50%とする。
C: 0.30 to 0.50%
C is an element for obtaining wear resistance and high-temperature strength by ensuring sufficient hardenability and forming carbides. If C is less than 0.30%, sufficient high-temperature strength and wear resistance cannot be obtained. If C exceeds 0.50%, solidification segregation is promoted and toughness is inhibited. Therefore, C is set to 0.30 to 0.50%.

Si:0.10〜0.50%
Siは、製鋼における脱酸の効果及び被削性並びに焼入性の確保に必要な元素である。Siが0.10%未満であると脱酸の効果及び焼入性の確保は発揮できず、また、被削性を悪化させる。Siが0.50%より多すぎると靭性を低下させ、また、熱間工具鋼として重要な物性値である熱伝導率を低下させる。そこで、Siは0.10〜0.50%とする。
Si: 0.10 to 0.50%
Si is an element necessary for ensuring the effect of deoxidation and machinability and hardenability in steelmaking. If Si is less than 0.10%, the effect of deoxidation and securing of hardenability cannot be exhibited, and the machinability is deteriorated. When Si is more than 0.50%, the toughness is lowered, and the thermal conductivity, which is an important physical property value for hot work tool steel, is lowered. Therefore, Si is set to 0.10 to 0.50%.

Mn:0.10〜1.00%
Mnは、焼入性を確保する元素である。Mnが0.10%未満では焼入性の確保は不十分である。一方、Mnが1.00%を超えると加工性を低下させる。そこで、Mnは0.10〜1.00%とする。
Mn: 0.10 to 1.00%
Mn is an element that ensures hardenability. If Mn is less than 0.10%, ensuring of hardenability is insufficient. On the other hand, when Mn exceeds 1.00%, workability is reduced. Therefore, Mn is set to 0.10 to 1.00%.

Cr:4.11〜5.12%
Crは焼入性を改善する元素である。Crが4.00%未満では焼入性が不十分である。一方、Crが6.00%を超えると、焼入焼戻し時にCr系の炭化物が過多に形成されて、高温強度及び軟化抵抗性を低下させる。そこで、Crは以上の範囲内において、実施例である補正後の表1の記載に基づき、Crは4.11〜5.12%とする。
Cr: 4.11 to 5.12%
Cr is an element that improves hardenability. If Cr is less than 4.00%, the hardenability is insufficient. On the other hand, if Cr exceeds 6.00%, excessive Cr-based carbides are formed during quenching and tempering, and the high temperature strength and softening resistance are lowered. Therefore, Cr is set to 4.11 to 5.12% in the above range based on the description in Table 1 after correction as an example .

Mo:1.40〜2.60%
Moは、焼入性と二次硬化、耐摩耗性、高温強度に寄与する析出炭化物を得るために必要な元素であり、また、焼入れ時に未固溶となった微細なMo炭化物が結晶粒の粗大化を抑制する元素であるが、Moが1.40%より少ないとそれらの効果が得られない。一方、Moは、2.60%より過剰に添加しても効果が飽和するばかりか、Mo炭化物が粗大となって凝集することにより靭性を低下させ、また、Moの2.60%より過剰の添加はコスト高となる。そこで、Moは1.40〜2.60%とする。
Mo: 1.40 to 2.60%
Mo is an element necessary for obtaining precipitated carbides that contribute to hardenability, secondary hardening, wear resistance, and high-temperature strength. In addition, fine Mo carbides that have become insoluble during quenching are composed of crystal grains. Although it is an element which suppresses coarsening, those effects cannot be obtained if Mo is less than 1.40%. On the other hand, even if Mo is added in excess of 2.60%, the effect is not only saturated, but Mo carbide is coarsened and aggregated to reduce toughness, and more than 2.60% of Mo. Addition is costly. Therefore, Mo is set to 1.40 to 2.60%.

V:0.20〜0.80%
Vは、焼戻時に微細で硬質なVの炭化物や炭窒化物を析出し、高温強度や耐摩耗性に寄与する元素である。また、焼入れ時にはVの微細な炭化物や炭窒化物が結晶粒の粗大化を抑制し、靭性の低下を抑制する効果を有するが、Vが0.20%より少ないとそれらの効果が得られない。一方、Vが0.80%より多すぎると、凝固時に粗大なMX型の炭窒化物を晶出し、靭性を阻害する。また、Vの0.80%より過剰の添加はコスト高となる。そこで、Vは0.20〜0.80%とする。
V: 0.20 to 0.80%
V is an element that precipitates fine and hard V carbides and carbonitrides during tempering and contributes to high-temperature strength and wear resistance. In addition, fine carbides and carbonitrides of V have an effect of suppressing coarsening of crystal grains and suppressing a decrease in toughness at the time of quenching, but if V is less than 0.20%, those effects cannot be obtained. . On the other hand, if V is more than 0.80%, coarse MX-type carbonitrides are crystallized during solidification, thereby inhibiting toughness. Moreover, addition exceeding 0.80% of V will become expensive. Therefore, V is set to 0.20 to 0.80%.

Ti:0.0030%以下
Tiは、Nとともに凝固時に晶出するMX型炭窒化物に混入し、固溶温度を上昇させる。その結果、均質化熱処理での固溶が不足し、靭性を阻害する。また、十分に固溶させるためには、均質化熱処理の高温化や長時間化が必要となり、コストおよび環境負荷を増大させる。そこでTiは0.0030%以下、望ましくは0.0020%以下とする。
Ti: 0.0030 % or less Ti is mixed with MX type carbonitride which is crystallized during solidification together with N, and raises the solid solution temperature. As a result, the solid solution in the homogenization heat treatment is insufficient and the toughness is hindered. Moreover, in order to make it fully dissolve, it is necessary to increase the temperature and time of the homogenization heat treatment, thereby increasing the cost and environmental load. Therefore, Ti is made 0.0030% or less, preferably 0.0020% or less.

N:0.0116%以下
Nは、Tiとともに凝固時に晶出するMX型炭窒化物に混入し、固溶温度を上昇させる。その結果、均質化熱処理での固溶が不足し、靭性を阻害する。また、十分に固溶させるためには、均質化熱処理の高温化や長時間化が必要となり、コストおよび環境負荷を増大させる。そこでNは実施例である補正後の表1本発明鋼に基づいて0.0116%以下とする。
N: 0.0116 % or less N mixes with MX type carbonitride that crystallizes during solidification together with Ti, and raises the solid solution temperature. As a result, the solid solution in the homogenization heat treatment is insufficient and the toughness is hindered. Moreover, in order to make it fully dissolve, it is necessary to increase the temperature and time of the homogenization heat treatment, thereby increasing the cost and environmental load. Therefore, N is set to 0.0116% or less based on Table 1 steel of the present invention after correction as an example .

Nb:0.30%以下
Nbは、焼戻時に微細で硬質なNbの炭化物や炭窒化物を析出し、高温強度や耐摩耗性に寄与する元素である。また、焼入れ時にはNbの微細な炭化物や炭窒化物が結晶粒の粗大化を抑制し、靭性の低下を抑制する効果を有するが、Nbが0.30%より多すぎると、凝固時に粗大なMX型の炭窒化物を晶出し、靭性を阻害する。また、Nbの0.30%より過剰の添加はコスト高となる。そこで、Nbは0.30%以下とする。
Nb: 0.30% or less Nb is an element that precipitates fine and hard Nb carbides and carbonitrides during tempering and contributes to high-temperature strength and wear resistance. In addition, fine carbides and carbonitrides of Nb have the effect of suppressing the coarsening of crystal grains and suppressing the decrease in toughness during quenching, but if Nb is more than 0.30%, coarse MX during solidification Crystallize type carbonitride, impair toughness. Further, if Nb is added in excess of 0.30%, the cost becomes high. Therefore, Nb is set to 0.30% or less .

Ni:0.2〜1.5
Niは焼入性と靭性を改善する元素である。しかし、Niが0.2%未満であるとその改善する効果が無い。一方、Niを2.0%より過多に添加すると高温強度及び被削性を阻害し、コストも嵩む。ところで、実施例の補正後の表1の本発明鋼に基づいてNiの上限を1.5%とする。そこで、Niは0.2〜1.5%とする。
Ni: 0.2~ 1.5%
Ni is an element that improves hardenability and toughness. However, when Ni is less than 0.2%, there is no effect to improve the Ni. On the other hand, if Ni is added in excess of 2.0%, the high temperature strength and machinability are hindered, and the cost increases. By the way, the upper limit of Ni is set to 1.5% based on the steel of the present invention in Table 1 after correction of the example. Therefore, Ni is set to 0.2 to 1.5 %.

Co:2.0%以下
Coは基地を強化し高温強度を改善する元素である。しかし、Coが2.0%より過多に添加すると靭性を阻害し、コストも嵩む。そこで、Coは2.0%以下とする。
なお、上記のNi及びCoは選択的にいずれか1種を若しくは2種を請求項1に係る発明の化学成分に加えて、補正後の請求項2又は請求項3に係る発明としている。
Co: 2.0% or less Co is an element that strengthens the matrix and improves high-temperature strength. However, if Co is added in excess of 2.0%, the toughness is hindered and the cost increases. Therefore, Co is set to 2.0% or less.
In addition, the above-described Ni or Co is selectively added to the chemical component of the invention according to claim 1 in addition to any one or two of them, and the invention according to claim 2 or claim 3 after correction is made.

熱間金型用鋼の化学成分は、質量%で、Moは1.4〜2.6%、かつ、0.33×[%Cr]−0.37<[%Mo]<4.45−0.44×[%Cr]である理由
熱間金型用鋼においては、Cr、Mo、V、NbおよびTiなどは、CやNと結合して、炭化物および/または炭窒化物を形成する。炭化物および/または炭窒化物は、溶鋼からの凝固時に液相から晶出したり、各種の熱処理を経由して鋼の基地組織から析出したりする。また、炭化物および/または炭窒化物は、M3C、M73、M236、M6C、M2C、MX(M:Fe、Cr、Mo、V、NbおよびTiなど。X:CおよびN。ここで、MXにはV43も含む)などの結晶構造を成すが、合金元素添加量のバランスによって安定となる組成や結晶構造は異なる。
The chemical composition of the steel for hot die is mass%, Mo is 1.4 to 2.6%, and 0.33 × [% Cr] −0.37 <[% Mo] <4.45−. Reason for 0.44 × [% Cr] In hot mold steel, Cr, Mo, V, Nb, Ti and the like combine with C and N to form carbide and / or carbonitride. . Carbides and / or carbonitrides crystallize from the liquid phase during solidification from molten steel, or precipitate from the base structure of the steel via various heat treatments. The carbides and / or carbonitrides include M 3 C, M 7 C 3 , M 23 C 6 , M 6 C, M 2 C, MX (M: Fe, Cr, Mo, V, Nb, Ti, and the like). X: C and N. Here, MX includes V 4 C 3 ), but the composition and crystal structure that are stable differ depending on the balance of the amount of alloying elements added.

本願技術分野である熱間鍛造、熱間押出、ダイカストその他鋳造に用いられる熱間金型用鋼は、焼入焼戻しにより40〜50HRCの硬度に調質されて利用されるのが一般であり、焼入焼戻し組織中では、M236、M6C、M2C、およびMXが熱力学的に安定になり得る。ところで、炭化物および/または炭窒化物は硬質な物質であるが、その構造により硬度が異なり、M2CやMXは他の構造を呈する炭化物よりも高硬度である。ゆえに、熱間金型においては、M2CやMXが多く存在する方が高温環境下における硬度・強度を維持し易く、摩耗および/またはヒートチェックと呼ばれる熱疲労の抑制に有効である。熱間金型中のM2CやMXを増加させるためには、それらを形成する主成分であるMo、VとCおよび/またはNを増量すれば良いが、過剰に添加すると炭化物および/または炭窒化物の総量が多くなり、また偏析を助長して炭化物および/または炭窒化物の凝集粗大化を招くことにより、別の重要な特性である靭性を低下させる。したがって、高い水準の高温強度と靭性を兼備させるためには、M2CやMXが安定になりやすく、かつ、炭化物および/または炭窒化物が過剰にならないようにする必要がある。 Hot die steel used for hot forging, hot extrusion, die casting and other castings that are the technical fields of the present application is generally used after being tempered to a hardness of 40 to 50 HRC by quenching and tempering, In the quenched and tempered structure, M 23 C 6 , M 6 C, M 2 C, and MX can be thermodynamically stable. By the way, carbides and / or carbonitrides are hard substances, but their hardness varies depending on their structures, and M 2 C and MX have higher hardness than carbides exhibiting other structures. Therefore, in a hot metal mold, the presence of a large amount of M 2 C and MX tends to maintain the hardness and strength in a high temperature environment, and is effective in suppressing thermal fatigue called wear and / or heat check. In order to increase M 2 C and MX in the hot mold, Mo, V and C and / or N, which are the main components forming them, may be increased, but if added excessively, carbide and / or The total amount of carbonitride increases, and segregation is promoted to cause agglomeration and coarsening of the carbide and / or carbonitride, thereby reducing toughness, which is another important characteristic. Therefore, in order to combine a high level of high-temperature strength and toughness, it is necessary to make M 2 C and MX easy to be stable and to prevent excessive carbides and / or carbonitrides.

ここで、前述の如く、優れた靭性を発揮させる為に本願発明で規定した、C、VおよびNの範囲において、各種の炭化物および/または炭窒化物の構成元素と成り得るMoについて研究を重ねた結果、MoとCrの含有量バランスによって、安定する炭化物および/または炭窒化物が変化することを見出した。即ち、Moの質量含有量[%Mo]が、0.33×[%Cr]−0.37よりも小さい場合は、焼入焼戻し時にM2CやMXよりも先んじて析出するM236の形成に大部分が消費されるため、高温強度に有効なM2CやMXの量が不十分となる。一方、[%Mo]が、4.45−0.44×[%Cr]より大きい場合は、焼入焼戻し時および/または高温環境下での炭化物反応によりM2CよりもM6Cが安定となり、高温強度への効果が弱まることを発見するに至った。そこで、Moは1.4〜2.6%で、かつ、0.33×[%Cr]−0.37<[%Mo]<4.45−0.44×[%Cr]を満足するものとする。 Here, as described above, in order to exhibit excellent toughness, research was repeated on Mo which can be a constituent element of various carbides and / or carbonitrides in the range of C, V and N defined in the present invention. As a result, it has been found that the stable carbide and / or carbonitride changes depending on the content balance of Mo and Cr. That is, when the mass content [% Mo] of Mo is smaller than 0.33 × [% Cr] −0.37, M 23 C 6 precipitated prior to M 2 C and MX during quenching and tempering. As a result, the amount of M 2 C and MX effective for high-temperature strength becomes insufficient. On the other hand, when [% Mo] is larger than 4.45-0.44 × [% Cr], M 6 C is more stable than M 2 C due to carbide reaction during quenching and tempering and / or in a high temperature environment. It came to discover that the effect on high-temperature strength weakens. Therefore, Mo is 1.4 to 2.6% and satisfies 0.33 × [% Cr] −0.37 <[% Mo] <4.45−0.44 × [% Cr]. And

表1に示す化学成分と、残部がFe及び不可避不純物からなる熱間金型用鋼を、1トン真空溶解炉を用いて溶製して、インゴットを造塊し、当該インゴットを1250℃で16時間保持して均質化熱処理を施した後に、鍛錬成形比が凡そ6Sとなる直径140mmに、熱間鍛造して鋼材を製造した。   Hot mold steel consisting of the chemical components shown in Table 1 and the balance consisting of Fe and inevitable impurities is melted using a 1 ton vacuum melting furnace to ingot an ingot. The steel material was manufactured by hot forging to a diameter of 140 mm at which the forging ratio was about 6S after the time-holding and homogenizing heat treatment.

Figure 0006032881
Figure 0006032881

表1において、※1のQは、0.33×[%Cr]−0.37の値を示し、※2のRは4.45−0.44×[%Cr]の値を示す。
さらに、表1において、本願発明鋼のMoの含有量は、質量%で、1.4%≦[%Mo]≦2.6%であり、かつ、Q<[%Mo]<Rを満たすものである。
In Table 1, Q in * 1 indicates a value of 0.33 × [% Cr] −0.37, and R in * 2 indicates a value of 4.45−0.44 × [% Cr].
Further, in Table 1, the Mo content in the steel of the present invention is, in mass%, 1.4% ≦ [% Mo] ≦ 2.6% and satisfies Q <[% Mo] <R. It is.

Figure 0006032881
Figure 0006032881

表2において、※3の高温強度は、各鋼材の中周部から各辺15mmのブロック状供試材を割出し、焼入焼戻しにより44〜46HRCに調質し(供試材の表面にあるスケール層を除去した後ロックウェル硬度計にて測定し初期硬さとする)、該供試材を650℃にて50時間保持し、これらの鋼材を空冷した後、再び鋼材の表面にあるスケール層を除去した後ロックウェル硬度計にて測定し、初期硬さとの差、すなわち硬度低下度であるΔHRCにより評価した。さらに、※4の靭性は、シャルピー衝撃試験により破壊に要したエネルギーで評価した。これらに用いた試験片は、直径140mm鍛造材の中心部の圧延方向と垂直方向から採取した。さらに、これらの試験片は、焼入焼戻しにより44〜46HRCに調質し、JIS Z 2242に規定する深さ2mmのUノッチを圧延方向に垂直となる面に加工したものである。 In Table 2, the high-temperature strength of * 3 is determined by indexing a block-shaped specimen with a side of 15 mm from the middle part of each steel material and tempering to 44-46 HRC by quenching and tempering (on the surface of the specimen) After removing the scale layer, the initial hardness is measured with a Rockwell hardness meter), the specimen is held at 650 ° C. for 50 hours, and these steels are air-cooled, and then the scale layer on the surface of the steel again. After removal, the film was measured with a Rockwell hardness meter and evaluated by a difference from the initial hardness, that is, ΔHRC, which is a degree of hardness reduction. Furthermore, the toughness of * 4 was evaluated by the energy required for fracture by the Charpy impact test. The test pieces used for these were taken from the direction perpendicular to the rolling direction at the center of the forged material having a diameter of 140 mm. Further, these test pieces were tempered to 44 to 46 HRC by quenching and tempering, and a U-notch having a depth of 2 mm defined in JIS Z 2242 was processed into a surface perpendicular to the rolling direction.

表1及び表2における本発明鋼について説明する。
表1に示す本発明鋼のA〜C、E〜Fの化学成分は本発明の請求項1の手段の鋼のFe及び不可避不純物以外の化学成分のC、Si、Mn、Cr、Mo、V、Ti及びNを示し、本発明鋼のHの化学成分は本発明の請求項2の手段のFe及び不可避不純物以外の化学成分のC、Si、Mn、Cr、Mo、V、Ti、N、Nb及びNiを示し、本発明鋼のIの化学成分は本発明の請求項3の手段のFe及び不可避不純物以外の化学成分のC、Si、Mn、Cr、Mo、V、Ti、N及びCoを示している。これらの化学成分は、いずれも本願発明の各化学成分として規定する範囲内にある。また、Qの値は[%Mo]の値より小さく、かつ[%Mo]の値はRの値より大きい。すなわち、本発明鋼の、質量%で示す、Mo含有量は、1.4%≦[%Mo]≦2.6%であり、かつQ<[%Mo]<Rを満足している。
The steels of the present invention in Tables 1 and 2 will be described.
The chemical components of A to C and E to F of the steel of the present invention shown in Table 1 are C, Si, Mn, Cr, Mo, V of chemical components other than Fe and unavoidable impurities of the steel of the means of claim 1 of the present invention. represents Ti and N, the chemical components of the H of the present invention steel chemical components other than Fe and unavoidable impurities means according to claim 2 of the present invention C, Si, Mn, Cr, Mo, V, Ti, N, Nb and Ni are shown, and the chemical component of I of the steel of the present invention is C, Si, Mn, Cr, Mo, V, Ti, N and Co of chemical components other than Fe and inevitable impurities of the means of claim 3 of the present invention Is shown. These chemical components are all within the range defined as each chemical component of the present invention. Further, the value of Q is smaller than the value of [% Mo], and the value of [% Mo] is larger than the value of R. That is, the Mo content of the steel of the present invention, expressed as mass%, satisfies 1.4% ≦ [% Mo] ≦ 2.6% and satisfies Q <[% Mo] <R.

次いで、表1及び表2における比較鋼について説明する。
比較鋼のf1は、本発明鋼F相当の鋼であるが、C添加量が本発明鋼Fよりも多過ぎるため、凝固偏析が顕著で、かつ、過剰な炭化物析出が生じたことで、表2にみられるように、靭性※4が36.3J/cm 2 であり、本発明鋼のFの77.5J/cm 2 より小さく、かつ、本発明鋼の靱性の最低値の50.3J/cm 2 よりもさらに小さいので、比較鋼のf1は本発明鋼Fやその他の本発明鋼より靱性が劣っている。
Next, the comparative steels in Tables 1 and 2 will be described.
F1 comparison steels is the present invention steels F equivalent steel, for C addition amount is too large than the present invention steels F, solidification segregation is remarkable, and that excessive carbide precipitation occurs, the table As shown in FIG. 2, the toughness * 4 is 36.3 J / cm 2, which is smaller than 77.5 J / cm 2 of F of the steel of the present invention, and 50.3 J / cm, which is the lowest toughness of the steel of the present invention. Since it is smaller than cm 2 , f1 of the comparative steel is inferior in toughness to the steel F of the present invention and other steels of the present invention .

比較鋼のc1は、本発明鋼C相当の鋼であるが、C添加量が本発明鋼Cよりも少なすぎるため、必要な量の炭化物析出が得られず、表2にみられるように、高温強度※3のΔHRCが14.5で本発明鋼のCの高温強度※3のΔHRCの8.1より大きく、かつ、本発明鋼の高温強度※3のΔHRC最高値の11.1よりもさらに大きいので、本発明鋼よりも初期硬さとの硬度低下の差が大きく、比較鋼のc1は本発明鋼Cやその他の本発明鋼より高温強度が劣っている。 C1 of the comparative steel is a steel equivalent to the steel C of the present invention, but since the amount of C added is too small compared to the steel C of the present invention, a necessary amount of carbide precipitation cannot be obtained, and as shown in Table 2, ΔHRC of high-temperature strength * 3 is 14.5, which is larger than 8.1 of ΔHRC of high-temperature strength * 3 of steel of the present invention, and higher than 11.1 of ΔHRC maximum value of high-temperature strength * 3 of steel of the present invention. Since it is larger, the difference in hardness reduction from the initial hardness is larger than that of the steel of the present invention, and the comparative steel c1 is inferior in high temperature strength to the steel C of the present invention and other steels of the present invention .

比較鋼のe1は、本発明鋼E相当の鋼であるが、本発明鋼EよりもSi添加量が多すぎるため、基地組織の延性が低下し、表2にみられるように、靭性※4が42.2J/cm 2 であり、本発明鋼のEの70.3J/cm 2 より小さく、かつ、本発明鋼の靱性の最低値の50.3J/cm 2 よりもさらに小さいので、比較鋼のe1は本発明鋼Eやその他の本発明鋼より靱性が劣っている。 The comparative steel e1 is a steel equivalent to the steel E of the present invention. However, since the amount of Si added is larger than that of the steel E of the present invention, the ductility of the base structure is reduced, and as shown in Table 2, toughness * 4 Is 42.2 J / cm 2, which is smaller than 70.3 J / cm 2 of E of the steel of the present invention and further smaller than 50.3 J / cm 2 of the lowest toughness of the steel of the present invention. The e1 of the present invention is inferior in toughness to the steel E of the present invention and other steels of the present invention .

比較鋼のb1は、本発明鋼B相当の鋼であるが、本発明鋼BよりもMn添加量が少なく、したがって焼入性が不足することで、表2にみられるように、靭性※4が41.9J/cm 2 であり、本発明鋼のBの67.4J/cm 2 より小さく、かつ、本発明鋼の靱性の最低値の50.3J/cm 2 よりもさらに小さいので、比較鋼のb1は本発明鋼Bやその他の本発明鋼よりも靱性が低下している。 B1 of the comparative steel is a steel equivalent to the steel B of the present invention. However, the amount of Mn added is smaller than that of the steel B of the present invention, and therefore the hardenability is insufficient. As shown in Table 2, toughness * 4 since There was 41.9J / cm 2, less than 67.4J / cm 2 of the present invention steels B, and, even smaller than 50.3J / cm 2 of the lowest value of the toughness of the steel of the present invention, comparative steels B1 has lower toughness than the steel B of the present invention and other steels of the present invention .

比較鋼のe2は、本発明鋼E相当の鋼であるが、本発明鋼EよりもCr添加量が少なく、十分な焼入性が得られないため、表2にみられるように、靭性※4が38.1J/cm 2 であり、本発明鋼のEの70.3J/cm 2 より小さく、かつ、本発明鋼の靱性の最低値の50.3J/cm 2 よりもさらに小さいので、比較鋼のe2は本発明鋼Eやその他の本発明鋼より靱性が低下している。 E2 comparison steels is the present invention steels E equivalent steel, for the present invention steel small amount of Cr added than E, no sufficient hardenability can be obtained, as seen in Table 2, toughness ※ 4 is 38.1 J / cm 2, which is smaller than 70.3 J / cm 2 of E of the steel of the present invention and further smaller than 50.3 J / cm 2 of the lowest toughness of the steel of the present invention. The e2 of steel has lower toughness than the steel E of the present invention and other steels of the present invention .

比較鋼のf2は、本発明鋼のF相当の鋼であるが、本発明鋼FよりもCr添加量が多すぎるため、より有効なMXやM2Cの析出が少なくなり、表2にみられるように、高温強度※3のΔHRCが15.2で本発明鋼のFの高温強度※3のΔHRCの7.5より大きく、かつ、本発明鋼の高温強度※3のΔHRC最高値の11.1よりもさらに大きいので、本発明鋼よりも初期硬さとの硬度低下の差が大きく、比較鋼のf2は本発明鋼Fやその他の本発明鋼より高温強度が大きく低下している。 F2 of Comparative Steel is a F corresponds steel of the steel of the present invention, since the amount of Cr added than the present invention steels F is too large, it more effective MX and M 2 C precipitation of less seen in Table 2 As shown in the figure, the ΔHRC of the high temperature strength * 3 is 15.2, which is greater than 7.5 of the ΔHRC of the high temperature strength * 3 of F of the steel of the present invention, and 11 of the maximum ΔHRC of the high temperature strength * 3 of the steel of the present invention. The difference in hardness from the initial hardness is larger than that of the steel of the present invention , and the high-temperature strength of f2 of the comparative steel is significantly lower than that of the steel F of the present invention and other steels of the present invention .

比較鋼のf3は、本発明鋼F相当の鋼であるが、f3のCr添加量は本発明鋼Fと全く同一である。ところで、f3の[%Mo]の値は2.45であるが、表1のf3のR※2の値すなわち4.45−0.44×[%Cr]は2.21であり、これは本願発明の[%Mo]<4.45−0.44×[%Cr]の関係式を満足しないものである。したがって、本発明鋼FよりもMo添加量がやや多く、表2に見られるように、f3は高温強度※3のΔHRCが13.4で本発明鋼のFの高温強度※3のΔHRCの7.5より大きく、かつ、本発明鋼の高温強度※3のΔHRC最高値の11.1よりもさらに大きいので、本発明鋼よりも初期硬さからの硬度低下が大きく十分な高温強度が得られていない。このように比較鋼のf3は本発明の適正範囲内のMo量を添加しても、優れた強度は得られない。 The comparative steel f3 is equivalent to the steel F of the present invention, but the amount of Cr added to the f3 is exactly the same as that of the steel F of the present invention. By the way, the value of [% Mo] of f3 is 2.45, but the value of R3 of f3 in Table 1, that is, 4.45−0.44 × [% Cr] is 2.21, which is This does not satisfy the relational expression [% Mo] <4.45−0.44 × [% Cr] of the present invention. Accordingly, the amount of Mo added is slightly higher than that of the steel F of the present invention, and as shown in Table 2, the ΔHRC of the high temperature strength * 3 is 13.4 and f3 is 7 of the ΔHRC of the high temperature strength * 3 of the steel F of the present invention. .5 and higher than the highest ΔHRC value 11.1 of the high-temperature strength * 3 of the steel of the present invention, the hardness decrease from the initial hardness is larger than that of the steel of the present invention, and sufficient high-temperature strength can be obtained. Not. Thus, even if the amount of Mo within the appropriate range of the present invention is added to f3 of the comparative steel , an excellent strength cannot be obtained.

比較鋼のa2は、本発明鋼A相当の鋼であるが、a2のCr添加量は本発明鋼Aと略同一でやや多い。ところで、a2の[%Mo]の値は2.55であるが、表1のa2のR※2の値すなわち4.45−0.44×[%Cr]は2.47であり、これは本願発明の[%Mo]<4.45−0.44×[%Cr]の関係式を満足しないものである。したがって、本願発明鋼AよりもMo添加量がやや多く、表2に見られるように、a2は高温強度※3のΔHRCが13.0で本発明鋼のAの高温強度※3のΔHRCの7.3より大きく、かつ、本発明鋼の高温強度※3のΔHRCの最高値である11.1よりもさらに大きな値であるので、本発明鋼よりも初期硬さからの硬度低下が大きい。したがって、a2は、高温強度が低く、十分な高温強度が得られていない。このように比較鋼のa2は本発明の適正範囲内のMo量を添加しても、優れた強度は得られない。 A2 of the comparative steel is a steel equivalent to the steel A of the present invention, but the amount of Cr added in a2 is substantially the same as the steel A of the present invention and is slightly higher. By the way, the value of [% Mo] of a2 is 2.55, but the value of R * 2 of a2 in Table 1, that is, 4.45-0.44 × [% Cr] is 2.47, which is This does not satisfy the relational expression [% Mo] <4.45−0.44 × [% Cr] of the present invention. Accordingly, the amount of Mo added is slightly higher than that of the present invention steel A, and as shown in Table 2, a2 has a ΔHRC of the high temperature strength * 3 of 13.0, and the AHR of the present invention steel 7 has a ΔHRC of the high temperature strength * 3 of 7 .3 and a value larger than 11.1 which is the maximum value of ΔHRC of the high-temperature strength * 3 of the steel of the present invention, so that the hardness decrease from the initial hardness is larger than that of the steel of the present invention. Therefore, a2 has a low high temperature strength, and a sufficient high temperature strength is not obtained. Thus, even if the a2 of the comparative steel is added with an Mo amount within the proper range of the present invention, an excellent strength cannot be obtained.

比較鋼のh1は、本発明鋼H相当の鋼であるが、h1のCr添加量は本発明鋼Hと略同一でやや多い。ところで、h1の[%Mo]の値は1.43であるが、h1の表1のQ※1の値すなわち0.33×[%Cr]−0.37は1.47であり、これは本願発明の0.33×[%Cr]−0.37<[%Mo]の関係式を満足しないものである。したがって、本発明鋼HよりもMo添加量がやや少なく、表2にみられるように、h1は高温強度※3のΔHRCが14.1で本発明鋼のHの高温強度※3のΔHRCの11.1より大きく、かつ、本発明鋼のHの高温強度※3のΔHRCは本発明鋼の最高値であることから、本発明鋼よりも初期硬さからの硬度低下が大きく十分な高温強度が得られていない。このように比較鋼のh1は本発明の適正範囲内のMo量を添加しても、優れた強度は得られない。 The comparative steel h1 is a steel equivalent to the steel H of the present invention, but the Cr addition amount of h1 is substantially the same as the steel H of the present invention and is slightly higher. By the way, the value of [% Mo] of h1 is 1.43, but the value of Q * 1 in Table 1 of h1, that is, 0.33 × [% Cr] −0.37 is 1.47. This does not satisfy the relational expression of 0.33 × [% Cr] −0.37 <[% Mo] of the present invention. Accordingly, the amount of Mo added is slightly smaller than that of the steel H of the present invention, and as shown in Table 2, h1 has a ΔHRC of high temperature strength * 3 of 14.1 and 11 of ΔHRC of the high temperature strength * 3 of H of the steel of the present invention. .DELTA.HRC of H of the invention steel is the highest value of the steel of the present invention, and the hardness decrease from the initial hardness is larger than that of the steel of the present invention. Not obtained. Thus, even if the h1 of the comparative steel is added with an Mo amount within the appropriate range of the present invention, an excellent strength cannot be obtained.

比較鋼のc2は、本発明鋼C相当の鋼であるが、c2のCr添加量は本発明鋼Cと略同一である。しかし、c2の[%Mo]の値は2.70であり、これは本発明鋼Cの[%Mo]の値の2.51を超えており、このため、これ等の値は本願発明の[%Mo]<4.45−0.44×[%Cr]の関係式を満足しないものである。したがって、表2に見られるように、c2は靭性※4が40.8J/cm 2 であり、本発明鋼のCの50.3J/cm 2 より小さく、かつ、本発明鋼のCの50.3J/cm 2 は本発明鋼の靱性の最低値であることから、比較鋼のc2は本発明鋼Cやその他の本発明鋼の靱性に比して劣っている。 The comparative steel c2 is a steel equivalent to the steel C of the present invention, but the Cr addition amount of c2 is substantially the same as that of the steel C of the present invention. However, the value of [% Mo] of c2 is 2.70, which exceeds 2.51 of the value of [% Mo] of the steel C of the present invention . Therefore , these values are those of the present invention. The relational expression [% Mo] <4.45-0.44 × [% Cr] is not satisfied. Therefore, as shown in Table 2, c2 has a toughness * 4 of 40.8 J / cm 2, which is smaller than 50.3 J / cm 2 of C of the steel of the present invention, and 50. Since 3 J / cm 2 is the lowest toughness of the steel of the present invention, c2 of the comparative steel is inferior to the toughness of the steel C of the present invention and other steels of the present invention .

比較鋼のe3は、本発明鋼E相当の鋼であるが、本発明鋼EよりもMo添加量が少なく、表2にみられるように、高温強度※3のΔHRCが15.9で本発明鋼のEの高温強度※3のΔHRCの9.6より大きく、かつ、本発明鋼の高温強度※3のΔHRC最高値の11.1よりもさらに大きいので、本発明鋼よりも初期硬さからの硬度低下が大きく、比較鋼のe3は本発明鋼Eやその他の本発明鋼より高温強度が大きく低下し、十分な高温強度が得られない。 The comparative steel e3 is a steel equivalent to the steel E of the present invention. However, the amount of Mo added is smaller than that of the steel E of the present invention, and as shown in Table 2, the ΔHRC of the high temperature strength * 3 is 15.9. Since the high temperature strength of steel E * 3 is greater than the ΔHRC of 9.6, and is higher than the highest ΔHRC value of 11.1 of the high temperature strength * 3 of the steel of the present invention, the initial hardness is higher than that of the steel of the present invention. The comparative steel e3 has a large decrease in hardness, and the high temperature strength of the comparative steel e3 is significantly lower than that of the steel E of the present invention and other steels of the present invention , and sufficient high temperature strength cannot be obtained.

比較鋼のa3は、本発明鋼A相当の鋼であるが、本発明鋼AよりもV添加量が0.16%と少なく、表2にみられるように、高温強度※3のΔHRCが13.8で本発明鋼のAの高温強度※3のΔHRCの7.3より大きく、かつ、本発明鋼の高温強度※3のΔHRC最高値の11.1よりもさらに大きいので、本発明鋼よりも初期硬さからの硬度低下が大きく、比較鋼のa3は本発明鋼Aやその他の本発明鋼より高温強度が大きく低下し、十分な高温強度が得られない。 A3 comparison steels is the present invention steels A substantial steel less V addition amount is 0.16% higher than the present invention steels A, as seen in Table 2, high-temperature strength ※ 3 of ΔHRC 13 .8 is larger than 7.3 of ΔHRC of A high temperature strength * 3 of the steel of the present invention and is further larger than 11.1 of ΔHRC maximum value of high temperature strength * 3 of the steel of the present invention. However, the hardness decrease from the initial hardness is large, and the a3 of the comparative steel has a high temperature strength significantly lower than that of the steel A of the present invention and other steels of the present invention , and a sufficient high temperature strength cannot be obtained.

比較鋼のb2は、本発明鋼B相当の鋼であるが、本発明鋼BよりもV添加量が過剰で、凝固時に粗大な炭窒化物を晶出し、比較鋼のb2は本発明鋼Bやその他の本発明鋼より靱性が阻害されて低下しており、表2に見られるように、靭性※4が31.1J/cm 2 であり、本発明鋼のBの67.4J/cm 2 より小さく、かつ、本発明鋼の靱性の最低値の50.3J/cm 2 よりもさらに小さいB2 of comparative steel is the present invention steels B equivalent steel, V addition amount is in excess of the present invention steels B, crystallized coarse carbonitrides during the solidification, b2 of comparative steel steel of the present invention B and other and toughness than the present invention steels is lowered is inhibited, as seen in Table 2, a toughness ※ 4 is 31.1J / cm 2, of the present invention steels B 67.4J / cm 2 It is smaller and is even smaller than 50.3 J / cm 2, which is the minimum value of the toughness of the steel of the present invention .

比較鋼のc3又は比較鋼のb3は、同順で本発明鋼C相当鋼又は本発明鋼B相当鋼であるが、c3は本発明鋼CよりもTi含有量が多く、又b3は本発明鋼BよりもN含有量が多く、凝固時に晶出した炭窒化物の固溶温度が上昇したため、均質化熱処理での固溶が不十分となり、表2にみられるように、靭性※4がc3では34.8J/cm 2 で本発明鋼Cの50.3J/cm 2 より低下しており、b3では37.7J/cm 2 で本発明鋼Bの67.4J/cm 2 より靱性が低下している。さらに、比較鋼のc3と比較鋼のb3の靱性※4は本発明鋼の靱性の最低値の50.3J/cm2よりもさらに小さい C3 of the comparative steel or b3 of the comparative steel is steel C equivalent steel of the present invention or steel equivalent to steel B of the present invention in the same order, but c3 has a Ti content higher than steel C of the present invention, and b3 is the present invention. As N content is higher than that of steel B and the solid solution temperature of carbonitrides crystallized during solidification has increased, the solid solution in the homogenization heat treatment becomes insufficient, and as shown in Table 2, the toughness * 4 is in c3 in 34.8J / cm 2 and lower than 50.3J / cm 2 of the present invention steels C, decreases toughness than 67.4J / cm 2 of the present invention steels B in b3 in 37.7J / cm 2 doing. Furthermore, the toughness * 4 of the comparative steel c3 and the comparative steel b3 is even smaller than the minimum toughness value 50.3 J / cm 2 of the steel of the present invention .

表2の本発明鋼が有する特性は、補正後の表2の本発明鋼における、高温強度※3のΔHRCが7.3〜11.1であり、かつ、靱性※4が50.3〜86.6J/cmThe characteristics of the steel of the present invention shown in Table 2 are as follows: ΔHRC of the high temperature strength * 3 is 7.3 to 11.1 and toughness * 4 is 50.3 to 86 in the steel of the present invention after correction. .6J / cm 22 である評価である。一方、表2の比較鋼が有する特性では、比較鋼のc1、f2、f3、a2、h1、e3、a3の高温強度※3のΔHRCが本発明鋼の高温強度※3のΔHRCの11.1より大きく、したがって、これらの比較鋼のものに比して本発明鋼は高温強度および靱性において優れており、さらに比較鋼のf1、e1、b1、e2、c2、c3、b3の靱性※4が本発明鋼の靱性の50.3J/cmIs an evaluation. On the other hand, in the properties of the comparative steels in Table 2, ΔHRC of the high temperature strength * 3 of the comparative steels c1, f2, f3, a2, h1, e3, and a3 is 11.1 of ΔHRC of the high temperature strength * 3 of the steel of the present invention. Therefore, the steel of the present invention is superior in high-temperature strength and toughness as compared with those of these comparative steels, and the toughness * 4 of the comparative steels f1, e1, b1, e2, c2, c3, b3 is further increased. 50.3 J / cm of toughness of the steel of the present invention 22 よりも低い。したがって、比較鋼は全てのものにおいて、高温強度、靱性のいずれかの特性が本発明鋼よりも劣っている結果となっている。このことから、本発明鋼は高温強度及び靱性に優れた鋼である。Lower than. Therefore, in all the comparative steels, either high temperature strength or toughness is inferior to the steel of the present invention. For this reason, the steel of the present invention is a steel excellent in high-temperature strength and toughness.

Claims (3)

質量%で、C:0.30〜0.50%、Si:0.10〜0.50%、Mn:0.10〜1.00%、Cr:4.11〜5.12%、Mo:1.40〜2.60%、V:0.20〜0.80%、Ti:0.0030%以下、N:0.0116%以下を含有し、残部Feおよび不可避不純物からなり、さらに、Mo、Crは質量%で、0.33×[%Cr]−0.37<[%Mo]<4.45−0.44×[%Cr]の関係式を満足し、靱性がシャルピー衝撃試験値で50.3〜86.6J/cm 2 であり、かつ、焼入焼戻しによる調質前の初期硬さのHRCと焼入焼戻しによる調質後のHRCとの差であるΔHRCが7.3〜11.1であることを特徴とする高靭性及び高強度な熱間金型用鋼。 In mass%, C: 0.30 to 0.50%, Si: 0.10 to 0.50%, Mn: 0.10 to 1.00%, Cr: 4.11 to 5.12%, Mo: 1.40 to 2.60%, V: 0.20 to 0.80%, Ti: 0.0030% or less, N: 0.0116% or less, the balance being Fe and inevitable impurities, Mo , Cr is mass% and satisfies the relational expression of 0.33 × [% Cr] −0.37 <[% Mo] <4.45−0.44 × [% Cr], and the toughness is a Charpy impact test value. 50.3 to 86.6 J / cm 2 , and ΔHRC which is a difference between HRC of the initial hardness before tempering by quenching and tempering and HRC after tempering by quenching and tempering is 7.3 to 7.3 A high toughness and high strength steel for hot dies characterized by being 11.1 . 質量%で、C:0.30〜0.50%、Si:0.10〜0.50%、Mn:0.10〜1.00%、Cr:4.11〜5.12%、Mo:1.40〜2.60%、V:0.20〜0.80%、Ti:0.0030%以下、N:0.0116%以下を含有し、さらにNi:0.2〜1.5%及びCo:1.2%以下のいずれか1種又は2種を含有し、残部Feおよび不可避不純物からなり、さらに、Mo、Crは質量%で、0.33×[%Cr]−0.37<[%Mo]<4.45−0.44×[%Cr]の関係式を満足し、靱性がシャルピー衝撃試験値で50.3〜86.6J/cm 2 であり、かつ、焼入焼戻しによる調質前の初期硬さのHRCと焼入焼戻しによる調質後のHRCとの差であるΔHRCが7.3〜11.1であることを特徴とする高靭性及び高強度な熱間金型用鋼。 In mass%, C: 0.30 to 0.50%, Si: 0.10 to 0.50%, Mn: 0.10 to 1.00%, Cr: 4.11 to 5.12%, Mo: 1.40 to 2.60%, V: 0.20 to 0.80%, Ti: 0.0030% or less, N: 0.0116% or less, and Ni: 0.2 to 1.5% And Co: Any one or two of 1.2% or less, consisting of the balance Fe and inevitable impurities, and Mo and Cr in mass%, 0.33 × [% Cr] −0.37 <[% Mo] <4.45-0.44 × [% Cr] The relational expression is satisfied , the toughness is 50.3 to 86.6 J / cm 2 in the Charpy impact test value , and quenching and tempering are performed. characterized in that the difference between the HRC after refining by HRC and quenching and tempering temper before the initial hardness by ΔHRC is 7.3 to 11.1 High toughness and high strength hot die steel to. 質量%で、C:0.30〜0.50%、Si:0.10〜0.50%、Mn:0.10〜1.00%、Cr:4.11〜5.12%、Mo:1.40〜2.60%、V:0.20〜0.80%、Ti:0.0030%以下、N:0.0116%以下を含有し、さらにNb:0.30%以下を含有し、さらにNi:0.2〜1.5%及びCo:1.2%以下のいずれか1種又は2種を含有し、残部Feおよび不可避不純物からなり、さらに、Mo、Crは質量%で、0.33×[%Cr]−0.37<[%Mo]<4.45−0.44×[%Cr]の関係式を満足し、靱性がシャルピー衝撃試験値で50.3〜86.6J/cm 2 であり、かつ、焼入焼戻しによる調質前の初期硬さのHRCと焼入焼戻しによる調質後のHRCとの差であるΔHRCが7.3〜11.1であることを特徴とする高靭性及び高強度な熱間金型用鋼。 In mass%, C: 0.30 to 0.50%, Si: 0.10 to 0.50%, Mn: 0.10 to 1.00%, Cr: 4.11 to 5.12%, Mo: 1.40 to 2.60%, V: 0.20 to 0.80%, Ti: 0.0030% or less, N: 0.0116% or less, and Nb: 0.30% or less Further, Ni: 0.2 to 1.5% and Co: 1.2% or less of any one or two kinds, the balance consisting of Fe and unavoidable impurities, Mo, Cr in mass%, 0.33 × [% Cr] −0.37 <[% Mo] <4.45−0.44 × [% Cr] is satisfied, and the toughness is 50.3 to 86. Charpy impact test value. It was 6J / cm 2, and the difference between the HRC after refining by HRC and quenching and tempering the initial hardness before temper by quenching and tempering ΔHR There high toughness and high strength hot work die steel, characterized in that a 7.3 to 11.1.
JP2011228453A 2011-10-18 2011-10-18 Hot mold steel Active JP6032881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011228453A JP6032881B2 (en) 2011-10-18 2011-10-18 Hot mold steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011228453A JP6032881B2 (en) 2011-10-18 2011-10-18 Hot mold steel

Publications (2)

Publication Number Publication Date
JP2013087322A JP2013087322A (en) 2013-05-13
JP6032881B2 true JP6032881B2 (en) 2016-11-30

Family

ID=48531550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011228453A Active JP6032881B2 (en) 2011-10-18 2011-10-18 Hot mold steel

Country Status (1)

Country Link
JP (1) JP6032881B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105579604A (en) 2013-09-27 2016-05-11 日立金属株式会社 High-speed-tool steel and method for producing same
JP6366326B2 (en) * 2014-03-31 2018-08-01 山陽特殊製鋼株式会社 High toughness hot work tool steel and manufacturing method thereof
JP6647771B2 (en) * 2014-05-23 2020-02-14 大同特殊鋼株式会社 Mold steel and mold
JP2015224363A (en) * 2014-05-27 2015-12-14 大同特殊鋼株式会社 Steel for metallic mold and metallic mold
JP5744300B1 (en) 2014-11-11 2015-07-08 日本高周波鋼業株式会社 Hot work tool steel
SE539646C2 (en) * 2015-12-22 2017-10-24 Uddeholms Ab Hot work tool steel
JP6925781B2 (en) * 2016-03-03 2021-08-25 山陽特殊製鋼株式会社 Hot tool steel with excellent high temperature strength and toughness
CN106086688A (en) * 2016-08-29 2016-11-09 营口市特殊钢锻造有限责任公司 A kind of Cr3 series hot die steel and heat treatment method thereof
CN108018499A (en) * 2017-11-29 2018-05-11 无锡透平叶片有限公司 A kind of mold materials and preparation method thereof
JP7144717B2 (en) * 2018-04-02 2022-09-30 大同特殊鋼株式会社 Mold steel and mold
US20210262071A1 (en) * 2018-10-05 2021-08-26 Hitachi Metals, Ltd. Hot work tool steel and hot work tool
CN109468538A (en) * 2018-12-25 2019-03-15 上海合毓模具技术有限公司 A kind of high-performance die-casting die steel DIEMAX and preparation method thereof
KR20220002523A (en) * 2019-06-06 2022-01-06 히다찌긴조꾸가부시끼가이사 Steel for hot stamping mold, hot stamping mold and manufacturing method thereof
CN111621695A (en) * 2020-01-10 2020-09-04 宝鼎科技股份有限公司 HC166 high-alloy die steel forging and manufacturing method thereof
JP6946586B1 (en) 2021-03-10 2021-10-06 日本高周波鋼業株式会社 Hot tool steel
CN114990423B (en) * 2021-11-22 2023-05-26 上海双舜科技发展有限公司 Production method of high-toughness hot working die steel
CN115094307B (en) * 2022-05-30 2023-07-14 江苏联峰能源装备有限公司 Hot die steel continuous casting round billet for electroslag remelting and production process thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672292B2 (en) * 1988-07-12 1994-09-14 山陽特殊製鋼株式会社 Tool steel for high strength hot working
JP2700264B2 (en) * 1988-12-30 1998-01-19 愛知製鋼株式会社 Hot tool steel
JPH09165649A (en) * 1995-12-15 1997-06-24 Sumitomo Metal Ind Ltd Hot tool steel excellent in high temperature strength and fracture toughness
JPH09227990A (en) * 1996-02-27 1997-09-02 Sumitomo Metal Ind Ltd Hot tool steel excellent in high temperature strength and fracture toughness
SE511758C2 (en) * 1998-03-27 1999-11-22 Uddeholm Tooling Ab Steel material for hot work tools
FR2893954B1 (en) * 2005-11-29 2008-02-29 Aubert & Duval Soc Par Actions STEEL FOR HOT TOOLS AND PART PRODUCED IN THIS STEEL AND METHOD FOR MANUFACTURING THE SAME

Also Published As

Publication number Publication date
JP2013087322A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
JP6032881B2 (en) Hot mold steel
JP7045315B2 (en) Hot tool steel
US7494618B2 (en) Alloy tool steel
JP4835424B2 (en) High strength spheroidal graphite cast iron
JP5076683B2 (en) High toughness high speed tool steel
JP5186809B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
CN108220815B (en) Hot work die steel with high heat resistance and high impact toughness for hot forging and preparation method thereof
JP6714334B2 (en) Hot work tool steel with excellent thermal conductivity and toughness
JP6366326B2 (en) High toughness hot work tool steel and manufacturing method thereof
JP2004169177A (en) Alloy tool steel, its manufacturing method, and die using it
WO2018182480A1 (en) Hot work tool steel
JP2016060961A (en) High-speed tool steel having high toughness and softening resistance
WO2012118053A1 (en) Hot work tool steel having excellent toughness, and process of producing same
JP2007308784A (en) Alloy steel
JP2021017623A (en) Tool steel for hot work, excellent in thermal conductivity
JP5217191B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
WO2018056884A1 (en) Hot work tool steel
JP5680461B2 (en) Hot work tool steel
JP5413350B2 (en) Rolled steel for hot forging and method for producing the same
JP6788520B2 (en) Hot tool steel with excellent toughness and softening resistance
JP5050515B2 (en) Non-tempered steel containing V for crankshaft
CZ20032755A3 (en) Tool steel, process for producing parts of such steel and a steel part obtained in such a manner
JP5282546B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP2019019374A (en) Hot tool steel excellent in hardening property and toughness
JP6083014B2 (en) High strength matrix high speed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161025

R150 Certificate of patent or registration of utility model

Ref document number: 6032881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250