JP2021017623A - Tool steel for hot work, excellent in thermal conductivity - Google Patents

Tool steel for hot work, excellent in thermal conductivity Download PDF

Info

Publication number
JP2021017623A
JP2021017623A JP2019133602A JP2019133602A JP2021017623A JP 2021017623 A JP2021017623 A JP 2021017623A JP 2019133602 A JP2019133602 A JP 2019133602A JP 2019133602 A JP2019133602 A JP 2019133602A JP 2021017623 A JP2021017623 A JP 2021017623A
Authority
JP
Japan
Prior art keywords
carbide
less
tool steel
thermal conductivity
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019133602A
Other languages
Japanese (ja)
Inventor
康政 武藤
Yasumasa Muto
康政 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2019133602A priority Critical patent/JP2021017623A/en
Publication of JP2021017623A publication Critical patent/JP2021017623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

To provide a tool steel for hot work, as a metal mold steel having high thermal conductivity, high hardness, high softening resistance, and high toughness, and applicable for die cast and hot stamping.SOLUTION: A tool steel for hot work has a composition comprising, by mass%, over 0.35 to 0.70% C, 0.01-1.20% Si, 0.01-1.50% Mn, 0.30-4.00% Cr, 0.05-3.50% Cu, one kind or two kinds selected from Mo and W comprising 3.00% or less Mo and 6.00% or less W, and 0.50%-3.00% Mo+1/2 W, over 0.10 to 0.55% V, and 0.0001-0.0100% B, and has the remainder comprising Fe and inevitable impurities.SELECTED DRAWING: None

Description

本発明は、熱伝導率に優れる熱間工具鋼に関する。特に熱間工具鋼のうち、ダイカストやホットスタンピングなどの、高温環境下で使用される金型用鋼に関する。 The present invention relates to a hot tool steel having excellent thermal conductivity. In particular, among hot tool steels, it relates to mold steels used in high temperature environments such as die casting and hot stamping.

近年、ダイカスト分野において、自動車の軽量化を目的としたアルミ部品の高強度化や生産性向上を目的とした部品成形の加工ピッチの短縮化から、ダイカスト金型への機械的及び熱的負荷が増大している。その結果、金型には、摩耗、大割れ、ヒートチェックといった問題が生じやすくなっている。これらの問題に対応するため、金型材料には、硬度・靭性に優れる材料が求められている。また、ホットスタンピングでは、被加工材である鋼板の表面に発生したスケールによる金型の摩耗が問題となっており、金型材料には、高い硬度及び軟化抵抗性が求められている。 In recent years, in the die-casting field, the mechanical and thermal load on the die-casting die has increased due to the increase in the strength of aluminum parts for the purpose of reducing the weight of automobiles and the shortening of the processing pitch of parts molding for the purpose of improving productivity. It is increasing. As a result, the mold is prone to problems such as wear, large cracks, and heat check. In order to deal with these problems, the mold material is required to have excellent hardness and toughness. Further, in hot stamping, wear of the mold due to the scale generated on the surface of the steel plate as the work material has become a problem, and the mold material is required to have high hardness and softening resistance.

さらに、ダイカストやホットスタンピング用の金型は、内部に冷却回路が作製されており、ここを流れる冷却水による冷却効率が生産サイクルスピードに大きく影響する。冷却効率を高める方法としては、金型の高熱伝導率化がある。そのため、前述した生産性向上を目的とした、生産サイクルスピードの向上に対する要求に応えるためには、材料の特性として、高い熱伝導率が必要である。 Further, the mold for die casting and hot stamping has a cooling circuit formed inside, and the cooling efficiency by the cooling water flowing through the circuit greatly affects the production cycle speed. As a method of increasing the cooling efficiency, there is a method of increasing the thermal conductivity of the mold. Therefore, in order to meet the above-mentioned demand for improvement of production cycle speed for the purpose of improving productivity, high thermal conductivity is required as a characteristic of the material.

特許文献1〜特許文献9には、上記要請の改善を試みる従来技術が提案されている。
まず、CuやBを考慮していないダイカスト金型用鋼が提案されている(例えば特許文献1参照。)。もっとも、言及のないCuやBは不可避不純物の範囲に留まっているので、不完全焼入れ相であるベイナイトが形成しやすく、靱性が不足する問題がある。
Patent Documents 1 to 9 propose conventional techniques for attempting to improve the above requirements.
First, a die-casting die steel that does not consider Cu and B has been proposed (see, for example, Patent Document 1). However, since Cu and B, which are not mentioned, remain in the range of unavoidable impurities, there is a problem that bainite, which is an incompletely hardened phase, is easily formed and the toughness is insufficient.

また、熱間鍛造時に表面割れ現象が発生して鍛造性を減少させるので、Cuを0.02%以下とする熱間金型鋼が提案されている(例えば、特許文献2参照。)。もっとも、Cuが少ないので不完全焼入れ相であるベイナイトが形成されて、靭性が不足する問題がある。 Further, since a surface cracking phenomenon occurs during hot forging and the forgeability is reduced, a hot shaped steel having Cu of 0.02% or less has been proposed (see, for example, Patent Document 2). However, since the amount of Cu is small, there is a problem that bainite, which is an incompletely hardened phase, is formed and the toughness is insufficient.

また、焼入れ性確保のためにMnが1.50%より多く含有されている金型用鋼が提案されている(例えば、特許文献3参照。)。しかし、このようにMnが過剰添加されると熱伝導率が低下する問題がある。 Further, in order to ensure hardenability, a mold steel containing Mn in an amount of more than 1.50% has been proposed (see, for example, Patent Document 3). However, there is a problem that the thermal conductivity is lowered when Mn is excessively added in this way.

また、被削性確保のためにVが0.1%以下で含有されている金型用鋼が提案されている(例えば、特許文献4参照。)。しかし、このようにVが少ないと、焼入焼戻し硬さが不足する問題がある。 Further, in order to ensure machinability, a mold steel containing V of 0.1% or less has been proposed (see, for example, Patent Document 4). However, when V is small in this way, there is a problem that the quenching and tempering hardness is insufficient.

また、焼入れ時のγ結晶粒粗大化抑制のため、Vが0.55%より多く含有されている金型用鋼を用いた成形具が提案されている(例えば、特許文献5参照。)。しかし、このようにVが過剰に添加されると、熱伝導率が低下する問題がある。 Further, in order to suppress the coarsening of γ crystal grains at the time of quenching, a molding tool using a mold steel containing more than 0.55% of V has been proposed (see, for example, Patent Document 5). However, when V is excessively added in this way, there is a problem that the thermal conductivity is lowered.

また、耐食性確保のためにCrが4.00%以上と多く含有されている金型用鋼が提案されている(例えば、特許文献6参照。)。しかし、Crの過剰添加によって、熱伝導率が低下する問題がある。 Further, in order to ensure corrosion resistance, a mold steel containing a large amount of Cr of 4.00% or more has been proposed (see, for example, Patent Document 6). However, there is a problem that the thermal conductivity is lowered due to the excessive addition of Cr.

溶接割れ抑制のためCが0.35%以下と少なく含有されているダイカスト金型用プリハードン鋼が提案されている(例えば、特許文献7参照。)しかし、このようにC量が少ないと、焼入焼戻し硬さが不足する問題がある。 A pre-hardened steel for die casting dies containing a small amount of C of 0.35% or less has been proposed in order to suppress welding cracks (see, for example, Patent Document 7). However, if the amount of C is small in this way, quenching There is a problem that the quenching and tempering hardness is insufficient.

また、Mo+1/2・Wが3.0%より大きい熱間工具鋼が提案されている(例えば、特許文献8参照。)。しかし、MoまたはWの過剰添加によって、熱伝導率が低下する問題がある。 Further, a hot tool steel having Mo + 1/2 · W greater than 3.0% has been proposed (see, for example, Patent Document 8). However, there is a problem that the thermal conductivity is lowered due to the excessive addition of Mo or W.

また、Niが3%以上含有されている熱間工具鋼が提案されている(例えば、特許文献9参照。)。この文献の請求項や実施例に記載の鋼は、Niを3%より多く含有している。しかし、3%以上では、Niの過剰添加によって熱伝導率が低下する問題がある。 Further, a hot tool steel containing 3% or more of Ni has been proposed (see, for example, Patent Document 9). The steels described in the claims and examples of this document contain more than 3% Ni. However, if it is 3% or more, there is a problem that the thermal conductivity is lowered due to the excessive addition of Ni.

特開2018−119177号公報JP-A-2018-119177 特開2018−083980号公報Japanese Unexamined Patent Publication No. 2018-083980 特開2011−094168号公報Japanese Unexamined Patent Publication No. 2011-094168 特開2010−013716号公報Japanese Unexamined Patent Publication No. 2010-013716 特開2017−053023号公報JP-A-2017-053023 特開2015−224363号公報Japanese Unexamined Patent Publication No. 2015-224363 特開2005−307242号公報Japanese Unexamined Patent Publication No. 2005-307242 特表2014−508218号公報Special Table 2014-508218 特開2017−095802号公報Japanese Unexamined Patent Publication No. 2017-095802

本発明が解決しようとする課題は、高い熱伝導率、高い硬度、優れた軟化抵抗性、高い靭性を兼ね備えた、ダイカストやホットスタンピングなどに適用可能な金型用鋼である熱間工具鋼を提供することである。熱間工具鋼とは、熱間温度域の被加工物を加工する工具として用いられる工具鋼のことである。 The problem to be solved by the present invention is to obtain hot tool steel, which is a mold steel suitable for die casting, hot stamping, etc., which has high thermal conductivity, high hardness, excellent softening resistance, and high toughness. Is to provide. Hot tool steel is tool steel used as a tool for machining workpieces in the hot temperature range.

発明者は鋭意開発を進めた結果、合金成分を特定の範囲に規定し、さらには鋼の組織、炭化物状態を特定することで、高い熱伝導率、高い硬度、軟化抵抗性に優れ、および高い靭性を兼備した熱間工具鋼が得られることを見出した。 As a result of diligent development, the inventor has defined the alloy composition in a specific range, and further specified the structure and carbide state of the steel, resulting in high thermal conductivity, high hardness, excellent softening resistance, and high We have found that hot tool steel with toughness can be obtained.

課題を解決するための第1の手段は、質量%で、
C:0.35超〜0.70%、
Si:0.01〜1.20%、
Mn:0.01〜1.50%、
Cr:0.30〜4.00%、
Cu:0.05〜3.50%、
MoとWのうちの1種類または2種類であって、Mo:3.00%以下、W:6.00%以下で、かつ、Mo+1/2・W:0.50%〜3.00%であり、
V:0.10超〜0.55%、
B:0.0001〜0.0100%
を有し、残部はFeおよび不可避的不純物からなることを特徴とする熱間工具鋼である。
The first means to solve the problem is by mass%
C: Over 0.35 to 0.70%,
Si: 0.01 to 1.20%,
Mn: 0.01 to 1.50%,
Cr: 0.30 to 4.00%,
Cu: 0.05 to 3.50%,
One or two types of Mo and W, Mo: 3.00% or less, W: 6.00% or less, and Mo + 1/2 · W: 0.50% to 3.00%. Yes,
V: Over 0.10 to 0.55%,
B: 0.0001 to 0.0100%
The balance is a hot tool steel characterized by consisting of Fe and unavoidable impurities.

その第2の手段は、第1の手段に記載の化学成分に加えて、質量%でNi:0.01〜2.99%を有し、残部:Feおよび不可避的不純物からなることを特徴とする熱間工具鋼である。 The second means is characterized in that, in addition to the chemical components described in the first means, it has Ni: 0.01 to 2.99% by mass, and the balance: Fe and unavoidable impurities. Hot tool steel.

その第3の手段は、第1または第2のいずれか1の手段に記載の化学成分に加えて、質量%でN:0.0001〜0.0400%を有し、残部:Feおよび不可避的不純物からなることを特徴とする熱間工具鋼である。 The third means has N: 0.0001 to 0.0400% by mass in addition to the chemical composition described in either the first or second means, the balance: Fe and inevitable. It is a hot tool steel characterized by being composed of impurities.

その第4の手段は、第1から第3のいずれか1の手段に記載の化学成分に加えて、質量%でTi:0.001〜0.0150%を有し、残部:Feおよび不可避的不純物からなることを特徴とする熱間工具鋼である。 The fourth means has Ti: 0.001 to 0.0150% by mass in addition to the chemical composition according to any one of the first to third means, with the balance: Fe and inevitable. It is a hot tool steel characterized by being composed of impurities.

その第5の手段は、第1から第4のいずれか1の手段に記載の化学成分に加えて、質量%で、Al:0.001〜1.000%を有し、残部はFeおよび不可避的不純物からなることを特徴とする熱間工具鋼である。 The fifth means has Al: 0.001 to 1.000% in mass% in addition to the chemical components according to any one of the first to fourth means, and the balance is Fe and unavoidable. It is a hot tool steel characterized by being composed of target impurities.

その第6の手段は、第1から第5のいずれか1の手段に記載の化学成分を有し、残部はFeおよび可避的不純物から熱間工具鋼は、マルテンサイト単相組織、あるいはマルテンサイトとベイナイトの混合組織であって該混合組織のマルテンサイトの割合は80%以上であること、を特徴とする熱間工具鋼である。 The sixth means has the chemical composition according to any one of the first to fifth means, the balance is from Fe and unavoidable impurities, and the hot tool steel is martensite single-phase structure or martensite. It is a hot tool steel having a mixed structure of sight and bainite, wherein the ratio of martensite in the mixed structure is 80% or more.

その第7の手段は、第1から第5のいずれか1の手段に記載の化学成分を有し、残部は不可避的不純物からなる熱間工具鋼であって、鋼中のM236炭化物、M6C炭化物、M73炭化物、M3C炭化物、M2C炭化物およびMC炭化物の全炭化物中に占める、M236炭化物及びM6C炭化物の割合が90%以下であることを特徴とする熱間工具鋼である。 The seventh means is a hot tool steel having the chemical composition according to any one of the first to fifth means, the balance of which is unavoidable impurities, and M 23 C 6 carbides in the steel. , M 6 C Carbide, M 7 C 3 Carbide, M 3 C Carbide, M 2 C Carbide and MC Carbide in the total carbide, the ratio of M 23 C 6 Carbide and M 6 C Carbide is 90% or less. It is a hot tool steel characterized by.

その第8の手段は、第6の手段に記載の熱間工具鋼であって、さらに、鋼中のM236炭化物、M6C炭化物、M73炭化物、M3C炭化物、M2C炭化物およびMC炭化物の全炭化物中に占める、M236炭化物及びM6C炭化物の割合が90%以下であることを特徴とする熱間工具鋼である。 The eighth means is the hot tool steel according to the sixth means, and further, M 23 C 6 carbide, M 6 C carbide, M 7 C 3 carbide, M 3 C carbide, M in the steel. It is a hot tool steel characterized in that the ratio of M 23 C 6 carbide and M 6 C carbide to the total carbide of 2 C carbide and MC carbide is 90% or less.

さて、上記の本発明の各手段の熱間工具鋼は、これを焼入焼戻しされた状態で、室温での熱伝導率が25.0W/m・K以上の高熱伝導率となり、室温での硬さが48.0HRC以上の高硬度となり、焼入焼戻し後に600℃で100時間保持した後の室温での硬さが32.0HRC以上の高軟化抵抗性を示し、室温でのシャルピー衝撃値が20J/cm2以上の高靭性となる。そこで、本発明の各手段の熱間工具鋼を用いると、金型用鋼として好適な、高熱伝導率、高硬度、高軟化抵抗性、高靱性を兼備するものとできる。 By the way, the hot tool steel of each means of the present invention described above has a high thermal conductivity of 25.0 W / m · K or more at room temperature in a state of being quenched and tempered, and at room temperature. The hardness is as high as 48.0 HRC or more, the hardness at room temperature after quenching and tempering at 600 ° C for 100 hours shows high softening resistance of 32.0 HRC or more, and the Charpy impact value at room temperature is High toughness of 20 J / cm 2 or more. Therefore, when the hot tool steel of each means of the present invention is used, it is possible to have high thermal conductivity, high hardness, high softening resistance, and high toughness suitable for mold steel.

なお、本発明において、
高熱伝導率とは:焼入焼戻し後の室温での熱伝導率が25.0W/m・K以上、
高硬度とは:焼入焼戻し後の室温での硬さが48.0HRC以上、
高靱性とは:焼入焼戻し後の室温でのシャルピー衝撃値が20J/cm2以上、
高軟化抵抗性とは:焼入焼戻し後に600℃で100h保持後の室温での硬さが32.0HRC以上のことをいう。
In addition, in this invention
What is high thermal conductivity: Thermal conductivity at room temperature after quenching and tempering is 25.0 W / m · K or more,
What is high hardness: Hardness at room temperature after quenching and tempering is 48.0 HRC or more,
What is high toughness: Charpy impact value at room temperature after quenching and tempering is 20 J / cm 2 or more,
High softening resistance: Hardness at room temperature of 32.0 HRC or more after holding at 600 ° C. for 100 hours after quenching and tempering.

まず、本発明の課題を解決するための手段の熱間工具鋼における化学成分の規定理由と、この熱間工具鋼の組織および炭化物の状態について規定する理由を以下に説明する。 First, the reason for defining the chemical composition in the hot tool steel of the means for solving the problem of the present invention and the reason for defining the structure and the state of carbides of the hot tool steel will be described below.

C:0.35超〜0.70%
Cは、固溶することでマトリックスを強化し、また、炭化物を形成すること析出強化を促す元素である。ところで、Cが0.35%以下と少ない場合には、十分な焼入焼戻し硬さが得られない。一方、Cが0.70%を超えて過多となると、偏析を助長し、靭性を低下させる。そこでCは0.35%超から0.70%以下とし、望ましくは、Cは0.55%超から0.70%以下とする。
C: Over 0.35 to 0.70%
C is an element that strengthens the matrix by solid solution and promotes precipitation strengthening by forming carbides. By the way, when C is as small as 0.35% or less, sufficient quenching and tempering hardness cannot be obtained. On the other hand, when C exceeds 0.70% and becomes excessive, segregation is promoted and toughness is lowered. Therefore, C is set to more than 0.35% to 0.70% or less, and preferably C is set to more than 0.55% to 0.70% or less.

Si:0.01〜1.20%
Siは、製鋼時の脱酸剤として必要な元素である。ところで、Siが0.01%より少ないと、製鋼時に十分に脱酸されない。一方、Siは1.20%より多過ぎると、炭化物を形成することなくマトリックスに固溶して熱伝導率を低下させる。そこで、Siは0.01%以上1.20%以下とする。しかし、Siは0.05%以上であるときは、マトリックスに固溶することで硬さを向上させる効果があるので、望ましくは、Siは0.05%以上1.00%以下とする。
Si: 0.01 to 1.20%
Si is an element required as a deoxidizer during steelmaking. By the way, if Si is less than 0.01%, it is not sufficiently deoxidized during steelmaking. On the other hand, if the amount of Si is more than 1.20%, it dissolves in the matrix without forming carbides and lowers the thermal conductivity. Therefore, Si is set to 0.01% or more and 1.20% or less. However, when Si is 0.05% or more, it has an effect of improving the hardness by being dissolved in the matrix, so it is desirable that Si is 0.05% or more and 1.00% or less.

Mn:0.01〜1.50%
Mnは、製鋼時の脱酸剤として必要な元素である。ところで、Mnが0.01%より少ないと、十分に脱酸されない。一方、Mnが1.50%より多すぎると、マトリックスに固溶して熱伝導率を低下させる。そこで、Mnは0.01%以上1.50%以下とし、望ましくはMnは0.05%以上0.92%未満とし、より望ましくはMnは0.10%以上0.50%未満とする。
Mn: 0.01 to 1.50%
Mn is an element required as a deoxidizer during steelmaking. By the way, if Mn is less than 0.01%, it is not sufficiently deoxidized. On the other hand, if Mn is more than 1.50%, it dissolves in the matrix and lowers the thermal conductivity. Therefore, Mn is 0.01% or more and 1.50% or less, preferably Mn is 0.05% or more and less than 0.92%, and more preferably Mn is 0.10% or more and less than 0.50%.

Cr:0.30%〜4.00%
Crは、焼入れ性を向上させ、ベイナイト形成による靱性の低下を抑制するのに必要な元素である。ところで、Crが0.30%より少ないと、十分な靭性が得られない。一方、Crが4.00%より過多であると、マトリックスに固溶して熱伝導率を低下させる。また、Crが多すぎると、焼戻し時に高温で粗大化しやすいM236炭化物が析出し、軟化抵抗性が低下する。そこで、Crは0.30%以上4.00%以下とし、望ましくは、Crは0.40%以上2.60%未満とし、より望ましくは、Crは0.50%以上2.10%未満とする。
Cr: 0.30% to 4.00%
Cr is an element necessary for improving hardenability and suppressing a decrease in toughness due to bainite formation. By the way, if Cr is less than 0.30%, sufficient toughness cannot be obtained. On the other hand, if Cr is more than 4.00%, it dissolves in the matrix and lowers the thermal conductivity. Further, if the amount of Cr is too large, M 23 C 6 carbides that tend to be coarsened at a high temperature are precipitated during tempering, and the softening resistance is lowered. Therefore, Cr is 0.30% or more and 4.00% or less, preferably Cr is 0.40% or more and less than 2.60%, and more preferably Cr is 0.50% or more and less than 2.10%. To do.

Cu:0.05%〜3.50%
Cuは、焼入れ性を向上させ、ベイナイト形成による靱性の低下を抑制するために必要な元素である。ところで、Cuは0.05%より少ないと、十分な靭性が得られない。一方、Cuは3.50%より多過ぎると、マトリックスに固溶して熱伝導率を低下させる。そこで、Cuは0.05%以上3.50%以下とし、望ましくは、Cuは0.10%以上3.00%以下とする。
Cu: 0.05% to 3.50%
Cu is an element necessary for improving hardenability and suppressing a decrease in toughness due to bainite formation. By the way, if Cu is less than 0.05%, sufficient toughness cannot be obtained. On the other hand, if Cu is more than 3.50%, it dissolves in the matrix and lowers the thermal conductivity. Therefore, Cu is 0.05% or more and 3.50% or less, and preferably Cu is 0.10% or more and 3.00% or less.

MoまたはWのいずれか1種または2種を含有し、
Mo:3.00%以下、
W:6.00%以下、
Mo+1/2・W:0.50〜3.00%であること

MoとWは、焼戻し時の二次硬化を促進し、焼入焼戻し硬さを高めるために必用な元素である。MoやWは、多すぎると、マトリックスに残存するMoやWが増加し、熱伝導率を低下させる。そこで、Mo+1/2・Wが3.00%以下であって、Mo:3.00%以下、W:6.00%以下とする。
他方、MoやWが少なすぎると、十分な焼入焼戻し硬さがえられない。Mo+1/2・Wが0.50%未満で少なすぎると、十分な焼入焼戻し硬さが得られない。そこで、Mo、Wは1種又は2種を含有するものとし、Moは3.00%以下、Wは6.00%以下、Mo+1/2・Wは0.50%以上3.00%以下とし、望ましくはMo+1/2・Wは1.50%以上3.00%以下とする。
Contains one or two of either Mo or W,
Mo: 3.00% or less,
W: 6.00% or less,
Mo + 1/2 · W: 0.50 to 3.00%

Mo and W are elements necessary for promoting secondary curing during tempering and increasing quenching and tempering hardness. If the amount of Mo or W is too large, the amount of Mo or W remaining in the matrix will increase and the thermal conductivity will decrease. Therefore, Mo + 1/2 · W is 3.00% or less, Mo: 3.00% or less, and W: 6.00% or less.
On the other hand, if Mo and W are too small, sufficient quenching and tempering hardness cannot be obtained. If Mo + 1/2 · W is less than 0.50% and too small, sufficient quenching and tempering hardness cannot be obtained. Therefore, Mo and W are assumed to contain one or two types, Mo is 3.00% or less, W is 6.00% or less, and Mo + 1/2 · W is 0.50% or more and 3.00% or less. Desirably, Mo + 1/2 · W is 1.50% or more and 3.00% or less.

V:0.10超〜0.55%
Vは、焼戻し時の二次硬化を促進し、焼入焼戻し硬さを高める元素である。ところが、Vが0.10%以下であると、十分な焼入焼戻し硬さが得られない。一方、Vが0.55%より多すぎると、マトリックスに残存するVが増加し、熱伝導率を低下させる。そこで、Vは0.10%超から0.55%以下とし、望ましくは、Vは0.25%以上045%未満とする。
V: Over 0.10 to 0.55%
V is an element that promotes secondary curing during tempering and enhances quenching and tempering hardness. However, when V is 0.10% or less, sufficient quenching and tempering hardness cannot be obtained. On the other hand, if V is more than 0.55%, the V remaining in the matrix increases and the thermal conductivity decreases. Therefore, V is set to more than 0.10% to 0.55% or less, and preferably V is set to 0.25% or more and less than 045%.

B:0.0001〜0.0100%
Bは、微量添加により、焼入性を向上させ、ベイナイト形成による靱性の低下を抑制するのに必要な元素である。ところで、Bが0.0001%より少ないと、十分な靭性が得られない。一方、Bが0.0100%より多すぎると焼戻し時に粗大な炭化物を形成し、靭性が低下する。そこで、Bは0.0001%以上0.0100%以下とし、望ましくは、Bは0.0005%以上0.0075%以下とする。
B: 0.0001 to 0.0100%
B is an element necessary for improving hardenability by adding a small amount and suppressing a decrease in toughness due to bainite formation. By the way, if B is less than 0.0001%, sufficient toughness cannot be obtained. On the other hand, if B is more than 0.0100%, coarse carbides are formed during tempering and the toughness is lowered. Therefore, B is 0.0001% or more and 0.0100% or less, and preferably B is 0.0005% or more and 0.0075% or less.

Ni:0.01〜2.99%
Niは、必ずしも添加する必要はない元素であるが、Crと同様に、焼入れ性を向上させ、ベイナイト形成による靱性の低下を抑制する元素である。ところで、Niは2.99%より多く含有されると、マトリックスに固溶して熱伝導率を低下させる。そこで、Niは0.01%以上2.99%以下とし、望ましくは、Niは0.01%以上2.00%以下とする。
Ni: 0.01 to 2.99%
Ni is an element that does not necessarily need to be added, but like Cr, it is an element that improves hardenability and suppresses a decrease in toughness due to bainite formation. By the way, when Ni is contained in an amount of more than 2.99%, it dissolves in the matrix and lowers the thermal conductivity. Therefore, Ni is 0.01% or more and 2.99% or less, and preferably Ni is 0.01% or more and 2.00% or less.

N:0.0001〜0.0400%
Nは、必ずしも添加する必要はないが、Cと同様に焼入焼戻硬さを大きくするのに有効な元素である。ところで、Nが0.0400%より過剰に添加されると、製錬の際に時間を要するので、製錬時のコストの上昇を招く。そこで、Nは0.0001%以上0.0400%以下とし、望ましくは、Nは0.0001%以上0.0300%以下とする。
N: 0.0001 to 0.0400%
N is not necessarily added, but is an element effective for increasing the quenching and quenching hardness like C. By the way, if N is added in excess of 0.0400%, it takes time for smelting, which causes an increase in cost during smelting. Therefore, N is 0.0001% or more and 0.0400% or less, and preferably N is 0.0001% or more and 0.0300% or less.

Ti:0.150%以下
Tiは、必ずしも添加する必要はないが、Bによる焼入性向上を促進する効果を有する元素である。焼入れの際にNがTiと化合物化することによって、固溶B量が増加し、焼入性が向上する。ところが、Tiが0.150%より多く添加されると、粗大なTiNを形成し、靭性が低下する。そこで、Tiは0.150%以下とし、望ましくは、Tiは0.100%以下とする。
Ti: 0.150% or less Ti is an element that does not necessarily have to be added, but has an effect of promoting the improvement of hardenability by B. When N is compounded with Ti during quenching, the amount of solid solution B increases and the quenchability is improved. However, when more than 0.150% of Ti is added, coarse TiN is formed and the toughness is lowered. Therefore, Ti is set to 0.150% or less, and preferably Ti is set to 0.100% or less.

Al:0.001〜1.000%
Alは、必ずしも添加する必要はないが、マトリクスに固溶して硬さを向上する元素である。ところで、Alが0.001%未満であると、マトリックスに固溶して硬さが向上されない。一方、Alが1.000%より多いと、マトリックスに固溶して熱伝導率を低下させる。そこで、Alは0.001%以上1.000%以下とし、望ましくは、Alは0.005%以上0.700%以下とする。
Al: 0.001 to 1.000%
Al is an element that does not necessarily need to be added, but dissolves in a matrix to improve hardness. By the way, if Al is less than 0.001%, it dissolves in the matrix and the hardness is not improved. On the other hand, if Al is more than 1.000%, it dissolves in the matrix and lowers the thermal conductivity. Therefore, Al is 0.001% or more and 1.000% or less, and preferably Al is 0.005% or more and 0.700% or less.

次に熱間工具鋼の組織について説明する。
焼入焼戻し状態での組織:マルテンサイト単相(マルテンサイトの割合(M率):100%)、もしくはマルテンサイトとベイナイトの混合組織であって混合組織中のマルテンサイトの割合:80%以上
焼入焼戻し状態の組織中に不完全焼入れ相であるベイナイトが多く存在すると、靭性が大幅に低下し、ホットスタンピング・ダイカスト金型として使う際に、十分な金型寿命が得られないこととなる。そこで、焼入焼戻し状態の組織は、マルテンサイト単相のみの組織(すなわち、マルテンサイトの割合のM率は100%である。)か、あるいは、焼入焼戻し状態での組織がマルテンサイトとベイナイトの混合組織の場合には、該混合組織中におけるマルテンサイトの割合のM率は80%以上である。
Next, the structure of the hot tool steel will be described.
Structure in the tempered state: Martensite single phase (ratio of martensite (M ratio): 100%), or a mixed structure of martensite and bainite, and the ratio of martensite in the mixed structure: 80% or more If a large amount of baynite, which is an incompletely hardened phase, is present in the tempered structure, the toughness is significantly reduced, and a sufficient mold life cannot be obtained when used as a hot stamping die casting mold. Therefore, the structure in the quenching and tempering state is a structure having only a single phase of martensite (that is, the M ratio of the ratio of martensite is 100%), or the structure in the quenching and tempering state is martensite and baynite. In the case of the mixed structure of, the M rate of the ratio of martensite in the mixed structure is 80% or more.

焼入焼戻しされた状態の熱間工具鋼の特定の炭化物の割合について
鋼材中の全炭化物に占めるM236炭化物及びM6C炭化物の割合:90%以下
焼入焼戻し状態で、鋼材中の全炭化物(すなわち、M236炭化物、M6C炭化物、M73炭化物、M3C炭化物、M2C炭化物、MC炭化物)に占めるM236炭化物及びM6Cの炭化物の割合を90%以下とする。なぜなら、高温で粗大化しやすい炭化物であるM236炭化物とM6C炭化物が焼入焼戻し状態で鋼材中に90%より多く存在すると、鋼材の軟化抵抗性が低下するからである。
About the ratio of specific carbides in hot tool steel in the hardened and tempered state Ratio of M 23 C 6 carbides and M 6 C carbides in the total carbides in the steel material: 90% or less In the hardened and tempered state, in the steel material Percentage of M 23 C 6 carbides and M 6 C carbides in total carbides (ie, M 23 C 6 carbides, M 6 C carbides, M 7 C 3 carbides, M 3 C carbides, M 2 C carbides, MC carbides) Is 90% or less. This is because if more than 90% of M 23 C 6 carbide and M 6 C carbide, which are carbides that tend to be coarsened at high temperature, are present in the steel material in the state of quenching and tempering, the softening resistance of the steel material is lowered.

次いで、本発明の実施の形態について、適宜、表を参照しながら順次説明する。 Next, embodiments of the present invention will be sequentially described with reference to the table as appropriate.

本発明の実施例として、以下の表1および表2に、発明鋼No.1〜No.78の化学成分を示す。また、表3にNo.79〜97の比較鋼の化学成分を示す。なお、残部はFeおよび不可避的不純物である。
これらの化学成分のNo.1〜83の発明鋼ならびに比較鋼は、それぞれ、真空誘導溶解炉にて溶製して、得られた各No.の100kgの鋼塊を、それぞれ幅65mmで高さ30mmのブロックに熱間鍛伸により鍛伸材とした。次いで、これらの各No.の鍛伸材を870℃で焼なましを行った後、それらの表面と中心との中間位置から、直径20mmで長さ160mmの丸棒をそれぞれ採取した。
さらに、これらの各丸棒を1030℃に保持して均熱化した後、空冷によって焼入れを行ない、次いで570〜670℃で2回の焼戻しを行った。その後、焼入焼戻しされた状態の各鋼材の組織、析出炭化物を観察し、また表4〜表6に示す各種の特性についての調査を実施した。
As an example of the present invention, the following Tables 1 and 2 show the invention steel No. 1-No. 78 chemical components are shown. In addition, Table 3 shows No. The chemical composition of the comparative steels of 79 to 97 is shown. The balance is Fe and unavoidable impurities.
No. of these chemical components The invention steels 1 to 83 and the comparative steels were each obtained by melting in a vacuum induction melting furnace, and each No. 100 kg of steel ingots were formed into blocks having a width of 65 mm and a height of 30 mm by hot forging. Then, each of these Nos. After annealing the forged materials of No. 1 at 870 ° C., round bars having a diameter of 20 mm and a length of 160 mm were collected from intermediate positions between their surfaces and the center.
Further, each of these round bars was kept at 1030 ° C. to equalize the heat, then quenched by air cooling, and then tempered twice at 570 to 670 ° C. After that, the structure and precipitated carbides of each steel material in the state of quenching and tempering were observed, and various characteristics shown in Tables 4 to 6 were investigated.

上記の各種の特性とは、熱伝導率(W/m・K)、焼入焼戻し硬さ(HRC)、靭性を示すシャルピー衝撃値(J/cm2)および高温保持後の硬さ(HRC)すなわち軟化抵抗性である。 The above-mentioned various characteristics include thermal conductivity (W / m · K), quenching and tempering hardness (HRC), Charpy impact value (J / cm 2 ) indicating toughness, and hardness after high temperature holding (HRC). That is, it is softening resistant.

Figure 2021017623
Figure 2021017623

Figure 2021017623
Figure 2021017623

Figure 2021017623
Figure 2021017623

1)組織観察は、焼入焼戻しされた状態の各試料について、その鍛伸方向に平行な面を、鏡面になるまで研磨して、ナイタールで腐食した後、走査型電子顕微鏡(SEM)を用いて行った。総面積50000μm2の領域において、ベイナイトの有無を確認し、ベイナイトが確認された場合には、画像解析を用いて、面積率の算出を百分率で行った。 1) For microstructure observation, for each sample in the quenched and tempered state, the surface parallel to the forging direction is polished to a mirror surface, corroded with nital, and then a scanning electron microscope (SEM) is used. I went. The presence or absence of bainite was confirmed in a region having a total area of 50,000 μm 2 , and if bainite was confirmed, the area ratio was calculated as a percentage using image analysis.

2)炭化物観察用の試験片は、焼入焼戻しした状態の各試料の鍛伸方向に平行な面を研磨し、抽出レプリカ法により作成した。この試験片を、透過型電子顕微鏡の明視野像を用いて、総面積500μm2の領域において観察した。炭化物種は、電子線回折の結果と炭化物の形状から判断した。撮影した写真を画像解析し、全炭化物中に占めるM236炭化物、M6C炭化物の合計面積率を百分率で算出した。 2) The test piece for observing carbides was prepared by the extraction replica method by polishing the surface parallel to the forging direction of each sample in the quenched and tempered state. This test piece was observed in a region having a total area of 500 μm 2 using a bright field image of a transmission electron microscope. The carbide species was determined from the result of electron diffraction and the shape of the carbide. The photograph taken was image-analyzed, and the total area ratio of M 23 C 6 carbide and M 6 C carbide in the total carbide was calculated as a percentage.

3)熱伝導率の測定には、レーザフラッシュ法を用いた。焼入焼戻しされた状態の各試料を直径10mm×1mmの円柱形状に仕上げ加工して、試験に供した。熱伝導率は、室温で測定した。 3) The laser flash method was used for the measurement of thermal conductivity. Each sample in the state of quenching and tempering was finished into a cylindrical shape having a diameter of 10 mm × 1 mm and subjected to a test. Thermal conductivity was measured at room temperature.

4)焼入焼戻し硬さは、ロックウェル硬さ試験機により室温で測定した。焼入焼戻しされた状態の各試料について、その鍛伸方向に垂直な面の硬さを測定した。 4) Quenching and tempering hardness was measured at room temperature by a Rockwell hardness tester. For each sample in the quenched and tempered state, the hardness of the surface perpendicular to the forging direction was measured.

5)靭性は、室温でのシャルピー衝撃試験により評価を実施した。試験片は、焼入焼戻し後の鋼材の試料から作製した。試験片形状は2mmUノッチシャルピー試験片であり、ノッチ方向は鍛伸方向に対して垂直な方向とした。 5) The toughness was evaluated by a Charpy impact test at room temperature. The test piece was prepared from a sample of steel material after quenching and tempering. The shape of the test piece was a 2 mm U notch Charpy test piece, and the notch direction was perpendicular to the forging direction.

6)軟化抵抗性は、焼入焼戻し後の鋼材の試料を600℃で100時間保持して空冷した後、室温での硬さをロックウェル硬さ試験機で測定することで評価した。 6) The softening resistance was evaluated by holding the sample of the steel material after quenching and tempering at 600 ° C. for 100 hours, air-cooling it, and then measuring the hardness at room temperature with a Rockwell hardness tester.

上記の1)の組織および2)の炭化物の状態については、表1〜3に示した。表中の組織のM率とは、組織中におけるマルテンサイトの面積比を百分率で示した値である。また、全炭化物中のM6C炭化物及びM236炭化物の合計面積率を百分率で示している。 The structure of 1) and the state of carbides of 2) are shown in Tables 1 to 3. The M ratio of the tissue in the table is a value indicating the area ratio of martensite in the tissue as a percentage. In addition, the total area ratio of M 6 C carbide and M 23 C 6 carbide in total carbide is shown as a percentage.

上記の3)で測定した熱伝導率、4)で測定した焼入焼戻し硬さ、5)で測定したシャルピー衝撃値(靭性)、および6)で測定した高温保持後の硬さ(軟化抵抗性)、について、以下の表4および表5で発明鋼について示し、さらに以下の表6で比較鋼について示した。 Thermal conductivity measured in 3) above, quenching and tempering hardness measured in 4), Charpy impact value (toughness) measured in 5), and hardness (softening resistance) after high temperature holding measured in 6). ), The invention steel is shown in Tables 4 and 5 below, and the comparative steel is shown in Table 6 below.

Figure 2021017623
Figure 2021017623

Figure 2021017623
Figure 2021017623

Figure 2021017623
Figure 2021017623

本願の発明鋼は、表1および表2の各No.1〜78の化学成分を有し、80%以上のマルテンサイトの面積率であって、全炭化物中のM6C炭化物及びM236炭化物の合計面積率を90%以下としている。それらの発明鋼は、表4および表5の各No.1〜78において示すように、熱伝導率が25.0W/m・K以上、焼入焼戻し硬さが48.0HRC以上、シャルピー衝撃値が20J/cm2以上、高温保持後の硬さが32.0HRC以上であった。このように、本願の熱間工具鋼は、成分組成、組織、炭化物に着目することで、焼入焼戻した状態のときに、高熱伝導率、高硬度、高軟化抵抗性および高靭性を兼備する熱間工具鋼として、金型用鋼等に好適に適用しうるものとなる。 The steels of the present invention are the Nos. Nos. 1 and 2 in Table 1. It has 1 to 78 chemical components and has an area ratio of martensite of 80% or more, and the total area ratio of M 6 C carbide and M 23 C 6 carbide in total carbide is 90% or less. The steels of those inventions are No. 1 in Tables 4 and 5. As shown in 1 to 78, the thermal conductivity is 25.0 W / m · K or more, the quenching tempering hardness is 48.0 HRC or more, the Charpy impact value is 20 J / cm 2 or more, and the hardness after high temperature holding is 32. It was 0.0 HRC or higher. As described above, the hot tool steel of the present application has high thermal conductivity, high hardness, high softening resistance and high toughness in the state of quenching and tempering by paying attention to the composition, structure and carbides. As hot tool steel, it can be suitably applied to mold steel and the like.

これに対して、比較鋼では、表3の各No.79〜97における化学成分には、本願の規定する成分範囲から一部が外れている。また、組織がマルテンサイトとベイナイトの混合組織であってマルテンサイトの面積率が低いもの、M6C炭化物及びM236炭化物の合計面積率の割合が高すぎるものが含まれている。
そして、これら比較鋼の特性については、表6の各No.79〜97に示すとおり、熱伝導率、硬度、軟化抵抗性、靭性のいずれかの特性が本願の熱間工具鋼よりも劣るものとなった。
On the other hand, in the comparative steel, each No. in Table 3 Some of the chemical components in 79 to 97 are out of the component range specified in the present application. In addition, the structure is a mixed structure of martensite and bainite, and the area ratio of martensite is low, and the ratio of the total area ratio of M 6 C carbide and M 23 C 6 carbide is too high.
The characteristics of these comparative steels are described in Table 6 No. As shown in 79 to 97, any of the properties of thermal conductivity, hardness, softening resistance, and toughness is inferior to that of the hot tool steel of the present application.

比較例について、さらに以下に詳述する。
No.79では、表3に示すように、Cが0.33%で規定より少なく、表6に示すように、焼入れ焼戻し硬さが46.4HRCで規定より低い。
No.80では、表3に示すように、Cが0.73%で規定より多く、表6に示すように、シャルピー衝撃値が14.2J/cm2で規定より低い。
No.81では、表3に示すように、Siが1.27%で規定より多く、表6に示すように、熱伝導率が23.5W/m・Kで規定より低い。
No.82では、表3に示すように、Moが1.54%で規定より多く、表6に示すように、熱伝導率が23.8W/m・Kで規定より低い。
No.83では、表3に示すように、Crが0.23%で規定より少なく、さらにマルテンサイトの割合であるM率が74%と低く、表6に示すように、シャルピー衝撃値が15.5J/cm2で規定より低い。
No.84では、表3に示すように、Crが4.12%で規定より多く、さらに全金属炭化物中のM6C炭化物及びM236炭化物の合計面積率が91%でやや高く、表6に示すように、熱伝導率が22.9W/m・Kで規定より低く、さらに高温保持後の硬さが31.6HRCで規定より低い。
No.85では、表3に示すように、Niが3.12%で規定より多く、表6に示すように、熱伝導率が23.1W/m・Kで規定より低い。
No.86では、表3に示すように、Cuが0.03%で規定より少なく、さらにマルテンサイトの割合であるM率が78%とやや低く、表6に示すように、シャルピー衝撃値が15.4J/cm2で規定より低い。
No.87では、Cuが3.62%で規定よりやや多く、表6に示すように、No.75では、熱伝導率が22.7W/m・Kで規定より低い。
No.88では、表3に示すように、Moが3.12%で規定より少なく、さらにMo+1/2・Wが3.12%で規定より多く、表6に示すように、熱伝導率が22.8W/m・Kで規定より低い。
No.89では、表3に示すように、Wが6.47%で規定より多く、さらにMo+1/2・Wが3.24%で規定より多く、表6に示すように、熱伝導率が24.2W/m・Kで規定より低い。
No.90では、表3に示すように、Mo+1/2・Wが3.46%で規定より多く、表6に示すように、熱伝導率が24.2W/m・Kで規定より低い。
No.91では、表3に示すように、Mo+1/2・Wが0.41%で規定より少なく、表6に示すように、焼入れ焼戻し硬さが46.6HRCで規定より低い。
No.92では、表3に示すように、Vが0.08%で規定より少なく、表6に示すように、焼入れ焼戻し硬さが42.3HRCで規定より低い。
No.93では、表3に示すように、Vが0.61%で規定より多く、表6に示すように、熱伝導率が24.2W/m・Kで規定より低い。
No.94では、表3に示すように、Vが0.61%で規定より多く、表6に示すように、熱伝導率が24.2W/m・Kで規定より低い。
No.95では、表3に示すように、Bが0.012%で規定より多く、表6に示すように、シャルピー衝撃値が17.2J/cm2で規定より低い。
No.96では、表3に示すように、Tiが0.162%で規定より多く、表6に示すように、シャルピー衝撃値が16.0J/cm2で規定より低い。
No.97では、表3に示すように、Alが1.210%で規定より多く、表6に示すように、熱伝導率が22.5W/m・Kで規定より低い。
A comparative example will be described in more detail below.
No. In 79, as shown in Table 3, C was 0.33%, which was less than the specified value, and as shown in Table 6, the quenching and tempering hardness was 46.4 HRC, which was lower than the specified value.
No. In 80, as shown in Table 3, C was 0.73%, which was higher than the specified value, and as shown in Table 6, the Charpy impact value was 14.2 J / cm 2, which was lower than the specified value.
No. In 81, as shown in Table 3, Si was 1.27%, which was higher than the specified value, and as shown in Table 6, the thermal conductivity was 23.5 W / m · K, which was lower than the specified value.
No. In 82, as shown in Table 3, Mo was 1.54%, which was higher than the specified value, and as shown in Table 6, the thermal conductivity was 23.8 W / m · K, which was lower than the specified value.
No. In 83, as shown in Table 3, Cr was 0.23%, which was less than the specified value, and the M ratio, which is the proportion of martensite, was as low as 74%. As shown in Table 6, the Charpy impact value was 15.5J. / Cm 2 is lower than specified.
No. In 84, as shown in Table 3, Cr was 4.12%, which was higher than the specified value, and the total area ratio of M 6 C carbides and M 23 C 6 carbides in the total metal carbides was 91%, which was slightly higher. As shown in the above, the thermal conductivity is 22.9 W / m · K, which is lower than the specified value, and the hardness after holding at a high temperature is 31.6 HRC, which is lower than the specified value.
No. In 85, as shown in Table 3, Ni was 3.12%, which was higher than the specified value, and as shown in Table 6, the thermal conductivity was 23.1 W / m · K, which was lower than the specified value.
No. In 86, as shown in Table 3, Cu was 0.03%, which was less than the specified value, and M ratio, which is the ratio of martensite, was slightly low, 78%. As shown in Table 6, the Charpy impact value was 15. 4 J / cm 2 is lower than specified.
No. In 87, Cu was 3.62%, which was slightly higher than the specified value, and as shown in Table 6, No. At 75, the thermal conductivity is 22.7 W / m · K, which is lower than the specified value.
No. In 88, as shown in Table 3, Mo was 3.12%, which was less than the specified value, and Mo + 1/2 · W was 3.12%, which was higher than the specified value, and as shown in Table 6, the thermal conductivity was 22. It is lower than the regulation at 8 W / m · K.
No. In 89, as shown in Table 3, W was 6.47%, which was more than specified, and Mo + 1/2 · W was 3.24%, which was more than specified, and as shown in Table 6, the thermal conductivity was 24. It is lower than the regulation at 2 W / m · K.
No. In 90, as shown in Table 3, Mo + 1/2 · W was 3.46%, which was higher than the specified value, and as shown in Table 6, the thermal conductivity was 24.2 W / m · K, which was lower than the specified value.
No. In 91, as shown in Table 3, Mo + 1/2 · W was 0.41%, which was less than the specified value, and as shown in Table 6, the quenching and tempering hardness was 46.6 HRC, which was lower than the specified value.
No. In 92, as shown in Table 3, V was 0.08%, which was less than the specified value, and as shown in Table 6, the quenching and tempering hardness was 42.3 HRC, which was lower than the specified value.
No. In 93, as shown in Table 3, V was 0.61%, which was higher than the specified value, and as shown in Table 6, the thermal conductivity was 24.2 W / m · K, which was lower than the specified value.
No. In 94, as shown in Table 3, V is 0.61%, which is higher than the specified value, and as shown in Table 6, the thermal conductivity is 24.2 W / m · K, which is lower than the specified value.
No. In 95, as shown in Table 3, B was 0.012%, which was higher than the specified value, and as shown in Table 6, the Charpy impact value was 17.2 J / cm 2, which was lower than the specified value.
No. In 96, as shown in Table 3, Ti was 0.162%, which was higher than the specified value, and as shown in Table 6, the Charpy impact value was 16.0 J / cm 2, which was lower than the specified value.
No. In 97, as shown in Table 3, Al was 1.210%, which was higher than the specified value, and as shown in Table 6, the thermal conductivity was 22.5 W / m · K, which was lower than the specified value.

Claims (8)

質量%で、
C:0.35超〜0.70%、
Si:0.01〜1.20%、
Mn:0.01〜1.50%、
Cr:0.30〜4.00%、
Cu:0.05〜3.50%、
MoとWのうちの1種類または2種類であって、Mo:3.00%以下、W:6.00%以下で、かつ、Mo+1/2・W:0.50%〜3.00%であり、
V:0.10超〜0.55%、
B:0.0001〜0.0100%、
を有し、残部はFeおよび不可避的不純物からなることを特徴とする熱間工具鋼。
By mass%
C: Over 0.35 to 0.70%,
Si: 0.01 to 1.20%,
Mn: 0.01 to 1.50%,
Cr: 0.30 to 4.00%,
Cu: 0.05 to 3.50%,
One or two types of Mo and W, Mo: 3.00% or less, W: 6.00% or less, and Mo + 1/2 · W: 0.50% to 3.00%. Yes,
V: Over 0.10 to 0.55%,
B: 0.0001 to 0.0100%,
Hot tool steel characterized in that the balance consists of Fe and unavoidable impurities.
請求項1に記載の化学成分に加えて、質量%でNi:0.01〜2.99%を有し、残部:Feおよび不可避的不純物からなることを特徴とする熱間工具鋼。 A hot tool steel characterized by having Ni: 0.01 to 2.99% by mass in addition to the chemical composition according to claim 1, and the balance: Fe and unavoidable impurities. 請求項1または請求項2のいずれか1項に記載の化学成分に加えて、質量%でN:0.0001〜0.0400%を有し、残部:Feおよび不可避的不純物からなることを特徴とする熱間工具鋼。 In addition to the chemical component according to any one of claims 1 or 2, it has N: 0.0001 to 0.0400% by mass, and the balance: Fe and unavoidable impurities. Hot tool steel. 請求項1から請求項3のいずれか1項に記載の化学成分に加えて、質量%でTi:0.001〜0.0150%を有し、残部:Feおよび不可避的不純物からなることを特徴とする熱間工具鋼。 In addition to the chemical component according to any one of claims 1 to 3, it has Ti: 0.001 to 0.0150% by mass, and the balance: Fe and unavoidable impurities. Hot tool steel. 請求項1から請求項4のいずれか1項に記載の化学成分に加えて、質量%で、Al:0.001〜1.000%を有し、残部はFeおよび不可避的不純物からなることを特徴とする熱間工具鋼。 In addition to the chemical component according to any one of claims 1 to 4, it has Al: 0.001 to 1.000% in mass%, and the balance is composed of Fe and unavoidable impurities. Characterized hot tool steel. 請求項1から請求項5のいずれか1項に記載の化学成分を有し、残部はFeおよび可避的不純物から熱間工具鋼は、マルテンサイト単相組織、あるいはマルテンサイトとベイナイトの混合組織であって該混合組織のマルテンサイトの割合は80%以上であること、を特徴とする熱間工具鋼。 It has the chemical composition according to any one of claims 1 to 5, and the balance is from Fe and unavoidable impurities. The hot tool steel has a martensite single-phase structure or a mixed structure of martensite and bainite. The hot tool steel is characterized in that the proportion of martensite in the mixed structure is 80% or more. 請求項1から請求項5のいずれか1項に記載の化学成分を有し、残部は不可避的不純物からなる熱間工具鋼であって、鋼中のM236炭化物、M6C炭化物、M73炭化物、M3C炭化物、M2C炭化物およびMC炭化物の全炭化物中に占める、M236炭化物及びM6C炭化物の割合が90%以下であることを特徴とする熱間工具鋼。 A hot tool steel having the chemical component according to any one of claims 1 to 5 and having the balance composed of unavoidable impurities, M 23 C 6 carbide, M 6 C carbide, and M 6 C carbide in the steel. Hot heat characterized in that the ratio of M 23 C 6 carbide and M 6 C carbide in the total carbide of M 7 C 3 carbide, M 3 C carbide, M 2 C carbide and MC carbide is 90% or less. Tool steel. 請求項6に記載の熱間工具鋼であって、さらに、鋼中のM236炭化物、M6C炭化物、M73炭化物、M3C炭化物、M2C炭化物およびMC炭化物の全炭化物中に占める、M236炭化物及びM6C炭化物の割合が90%以下であることを特徴とする熱間工具鋼。 The hot tool steel according to claim 6, further, all of M 23 C 6 carbide, M 6 C carbide, M 7 C 3 carbide, M 3 C carbide, M 2 C carbide and MC carbide in the steel. A hot tool steel characterized in that the ratio of M 23 C 6 carbide and M 6 C carbide in the carbide is 90% or less.
JP2019133602A 2019-07-19 2019-07-19 Tool steel for hot work, excellent in thermal conductivity Pending JP2021017623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019133602A JP2021017623A (en) 2019-07-19 2019-07-19 Tool steel for hot work, excellent in thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019133602A JP2021017623A (en) 2019-07-19 2019-07-19 Tool steel for hot work, excellent in thermal conductivity

Publications (1)

Publication Number Publication Date
JP2021017623A true JP2021017623A (en) 2021-02-15

Family

ID=74563049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019133602A Pending JP2021017623A (en) 2019-07-19 2019-07-19 Tool steel for hot work, excellent in thermal conductivity

Country Status (1)

Country Link
JP (1) JP2021017623A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116377330A (en) * 2023-04-08 2023-07-04 浙江通特重型锻造有限公司 Hot work die steel and preparation method thereof
CN116516130A (en) * 2023-07-05 2023-08-01 成都先进金属材料产业技术研究院股份有限公司 Cr-Mo-V hot work die steel with high hardness and high impact toughness and preparation method thereof
WO2023167226A1 (en) * 2022-03-02 2023-09-07 山陽特殊製鋼株式会社 Alloy tool steel for hot working

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1410586A (en) * 2002-10-18 2003-04-16 东风汽车公司 High performance hot working die steel for medium and small cross profile machine forging mould
JP2008169411A (en) * 2007-01-10 2008-07-24 Daido Steel Co Ltd Steel for die materials
JP2009013465A (en) * 2007-07-04 2009-01-22 Daido Steel Co Ltd Tool steel, member for forming using the same, and method for verifying quality of tool steel
KR20160041869A (en) * 2016-03-28 2016-04-18 두산중공업 주식회사 Mold steel for die casting and hot stamping having the high thermal conductivity and method thereof
JP2020132891A (en) * 2019-02-12 2020-08-31 山陽特殊製鋼株式会社 Mold steel having excellent thermal conductivity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1410586A (en) * 2002-10-18 2003-04-16 东风汽车公司 High performance hot working die steel for medium and small cross profile machine forging mould
JP2008169411A (en) * 2007-01-10 2008-07-24 Daido Steel Co Ltd Steel for die materials
JP2009013465A (en) * 2007-07-04 2009-01-22 Daido Steel Co Ltd Tool steel, member for forming using the same, and method for verifying quality of tool steel
KR20160041869A (en) * 2016-03-28 2016-04-18 두산중공업 주식회사 Mold steel for die casting and hot stamping having the high thermal conductivity and method thereof
JP2020132891A (en) * 2019-02-12 2020-08-31 山陽特殊製鋼株式会社 Mold steel having excellent thermal conductivity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167226A1 (en) * 2022-03-02 2023-09-07 山陽特殊製鋼株式会社 Alloy tool steel for hot working
CN116377330A (en) * 2023-04-08 2023-07-04 浙江通特重型锻造有限公司 Hot work die steel and preparation method thereof
CN116377330B (en) * 2023-04-08 2024-02-09 浙江通特重型锻造有限公司 Hot work die steel and preparation method thereof
CN116516130A (en) * 2023-07-05 2023-08-01 成都先进金属材料产业技术研究院股份有限公司 Cr-Mo-V hot work die steel with high hardness and high impact toughness and preparation method thereof
CN116516130B (en) * 2023-07-05 2023-10-13 成都先进金属材料产业技术研究院股份有限公司 Cr-Mo-V hot work die steel with high hardness and high impact toughness and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6721077B2 (en) Abrasion resistant steel plate and method for producing abrasion resistant steel plate
WO2009154235A1 (en) Steel for heat treatment
JP6925781B2 (en) Hot tool steel with excellent high temperature strength and toughness
JP7083242B2 (en) Hot tool steel with excellent thermal conductivity
JP6714334B2 (en) Hot work tool steel with excellent thermal conductivity and toughness
JP2020070457A (en) Hot work tool steel having excellent thermal conductivity
JP2021017623A (en) Tool steel for hot work, excellent in thermal conductivity
JP5881276B2 (en) Hot tool steel with excellent toughness, short-time and long-term softening resistance
JP6737208B2 (en) Wear-resistant steel plate
JP6798557B2 (en) steel
JP6800532B2 (en) Hot tool steel with excellent thermal conductivity
JP2017066460A (en) Age hardening steel
JP2000226635A (en) Hot tool steel excellent in high temperature strength and toughness
JP2020111835A (en) Method for producing abrasion-resistant steel sheet
JP6788520B2 (en) Hot tool steel with excellent toughness and softening resistance
JP2020132891A (en) Mold steel having excellent thermal conductivity
JP2021011618A (en) Hot work tool steel having excellent thermal conductivity
JP7149250B2 (en) Hot work tool steel with excellent high temperature strength and toughness
JP6459704B2 (en) Steel for cold forging parts
JP7214313B2 (en) High toughness cold work tool steel with high wear resistance
JP7333327B2 (en) new duplex stainless steel
JP2022143564A (en) Hot work tool steel having excellent softening resistance and quenchability
JP4302480B2 (en) High hardness steel with excellent cold workability
JP2021127486A (en) Hot tool steel excellent in manufacturability and thermal conductivity
JPH11269603A (en) Hot tool steel excellent in machinability and tool life

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231025