JP6005450B2 - Method for producing polyester film for simultaneous molding transfer - Google Patents

Method for producing polyester film for simultaneous molding transfer Download PDF

Info

Publication number
JP6005450B2
JP6005450B2 JP2012200132A JP2012200132A JP6005450B2 JP 6005450 B2 JP6005450 B2 JP 6005450B2 JP 2012200132 A JP2012200132 A JP 2012200132A JP 2012200132 A JP2012200132 A JP 2012200132A JP 6005450 B2 JP6005450 B2 JP 6005450B2
Authority
JP
Japan
Prior art keywords
film
mol
polyester
range
units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012200132A
Other languages
Japanese (ja)
Other versions
JP2013240973A (en
Inventor
悠子 奥野
悠子 奥野
隆志 日比谷
隆志 日比谷
岩崎 裕司
裕司 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2012200132A priority Critical patent/JP6005450B2/en
Publication of JP2013240973A publication Critical patent/JP2013240973A/en
Application granted granted Critical
Publication of JP6005450B2 publication Critical patent/JP6005450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、成型性かつ平面性に優れた成型同時転写用ポリエステルフィルムに関する。
さらに詳しくは、本発明は、軟質フィルムでありながら、フィルム幅方向の厚さ均一性に優れ、加工時の印刷ムラやタルミ不具合を解消することに適した成型同時転写用ポリエステルフィルムに関するものである。
The present invention relates to a polyester film for simultaneous molding and molding having excellent moldability and flatness.
More specifically, the present invention relates to a polyester film for simultaneous molding and transfer that is excellent in thickness uniformity in the film width direction and is suitable for eliminating printing unevenness and talmi defects during processing, although it is a soft film. .

近年、成型品への印刷手法として、成型と同時に転写印刷も行う、いわゆる成型同時転写法が普及している。この方法に使用するフィルムとして、強度、耐熱性等の特性の点から二軸延伸ポリエステルフィルムが用いられている。   In recent years, a so-called simultaneous molding transfer method in which transfer printing is performed simultaneously with molding has become widespread as a printing method for molded products. As a film used in this method, a biaxially stretched polyester film is used from the viewpoint of properties such as strength and heat resistance.

最近では、成型時のしぼり率がいっそう高くなるとともに、高品質な成型転写が要求されるようになり、特に成型品として、曲面形状を有する家電製品や自動車用途のように、しぼり率の高いものが求められるようになり、使用されるフィルムにもより軟質化が強く要望されるようになった。   In recent years, the squeezing rate at the time of molding has become higher, and high-quality molding transfer has been required. Especially, the molded product has a high squeezing rate, such as household appliances with a curved shape and automotive applications. Accordingly, there has been a strong demand for softening of the film used.

一方、フィルムの軟質化は、二軸延伸後の幅方向の厚さ均一性に不利であり、またロール状にフィルムを巻き取った際の外観として列状のタルミを発現しやすくなる。この外観不良は、印刷加工時の適性に影響を与え、印刷加工時の印刷ムラや、顕著なタルミ部がコーター部で折れるなどの問題になる。   On the other hand, the softening of the film is disadvantageous for the thickness uniformity in the width direction after biaxial stretching, and it is easy to develop a row of tarmi as an appearance when the film is wound into a roll. This poor appearance affects the suitability at the time of printing processing, and causes problems such as uneven printing at the time of printing processing, and a remarkable talmi portion breaks at the coater portion.

かかる観点からフィルム幅方向の厚さ均一性に優れる成型同時転写用ポリエステルフィルム、すなわち、軟質易成型化したフィルムが望まれている。   From this point of view, a polyester film for simultaneous molding and transfer, which is excellent in thickness uniformity in the film width direction, that is, a soft and easily molded film is desired.

特開昭64−40400号公報JP-A 64-40400 特開平7−196821号公報Japanese Patent Laid-Open No. 7-196821 特開平8−3227号公報JP-A-8-3227 特開2008−162221号公報JP 2008-162221 A

本発明は、上記課題に鑑みなされたものであり、その解決課題は、十分な成型性および幅方向の厚さ均一性を合わせ持つ成型同時転写用ポリエステルフィルムを提供することにある。   This invention is made | formed in view of the said subject, The solution subject is to provide the polyester film for shaping | molding simultaneous transfer which has sufficient moldability and thickness uniformity of the width direction.

本発明者らは、上記の課題に関して鋭意検討した結果、特定の構成からなるフィルムによれば、上記課題を容易に解決できることを見いだし、本発明を完成するに至った。   As a result of intensive studies on the above problems, the present inventors have found that the above problems can be easily solved by a film having a specific configuration, and have completed the present invention.

すなわち、本発明の要旨は、テレフタル酸単位94〜88モル%およびイソフタル酸単位6〜12モル%をカルボン酸単位構成成分とし、エチレングリコール90〜80モル%および1,4−シクロヘキサンジメタノール単位10〜20モル%をグリコール単位構成成分とするポリエステルからなる層(B層)の両面に、テレフタル酸単位90〜80モル%およびイソフタル酸単位10〜20モル%をカルボン酸単位構成成分とし、エチレングリコール単位98〜100モル%をグリコール単位構成成分とするポリエステルからなる層(A層)を積層した構造のフィルムであって、当該フィルムの幅方向1000mm当たりの厚さふれが4.0μm以下であり、フィルムの面配向係数ΔPが0.136〜0.141の範囲にあり、150℃で5分間処理後の加熱収縮率がフィルムの縦方向および横方向ともに0.0〜8.0%の範囲である成型同時転写用ポリエステルフィルムについて、横延伸を横延伸温度が84〜89℃、横延伸倍率が3.8〜4.6倍の範囲内で行ったあとに、熱処理弛緩を実施温度が160〜190℃、弛緩率が10〜25%の範囲内で行うことを特徴とする成型同時転写用ポリエステルフィルムの製造方法に存する。
That is, the gist of the present invention is that terephthalic acid units 94 to 88 mol% and isophthalic acid units 6 to 12 mol% are carboxylic acid unit constituents, ethylene glycol 90 to 80 mol% and 1,4-cyclohexanedimethanol units 10 On both sides of a polyester layer (layer B) having a glycol unit constituent of ˜20 mol%, a terephthalic acid unit of 90 to 80 mol% and an isophthalic acid unit of 10 to 20 mol% are used as a carboxylic acid unit constituent, and ethylene glycol A film having a structure in which a layer (A layer) made of polyester having 98 to 100 mol% of a unit as a glycol unit constituent component is laminated, and the thickness fluctuation per 1000 mm in the width direction of the film is 4.0 μm or less, The plane orientation coefficient ΔP of the film is in the range of 0.136 to 0.141, and 5 at 150 ° C. For a polyester film for molding simultaneous transfer in which the heat shrinkage rate after a minute treatment is in the range of 0.0 to 8.0% in both the longitudinal and transverse directions of the film, the transverse stretching is performed at a transverse stretching temperature of 84 to 89 ° C. Simultaneous molding transfer characterized by performing heat treatment relaxation within the range of 160 to 190 ° C. and relaxation rate of 10 to 25% after performing magnification within the range of 3.8 to 4.6 times It exists in the manufacturing method of the polyester film.

本発明によれば、十分な成型加工性を有しながら精彩な印刷が可能である、転写箔の基材樹脂として好適な成型転写用二軸延伸フィルムを提供することができ、本発明の工業的価値は高い。   According to the present invention, it is possible to provide a biaxially stretched film for molding transfer that is suitable as a base resin for a transfer foil, which can be printed finely while having sufficient molding processability. Target value is high.

まず、本発明における主たる構成成分とは、ジカルボン酸とジオールの脱水結合により得られる、いわゆる繰り返し単位と呼ばれる、ヒドロキシカルボン酸のことを指す。
本発明のフィルムを構成するポリエステルは、ジカルボン酸としては、テレフタル酸が好ましく、これらの他に、シュウ酸、マロン酸、コハク酸、アジピン酸、アゼライン酸、セパシン酸、フタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、シクロヘキサンジカルボン酸などの公知のジカルボン酸の一種以上を、共重合成分として含んでいてもよい。また、ジオール成分としては、エチレングリコールが好ましく、これらの他に、プロピレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、1,4−シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール、ネオペンチルグリコールなどの公知のジオールの一種以上を、共重合成分として含んでいてもよい。
First, the main component in the present invention refers to a hydroxycarboxylic acid called a repeating unit, which is obtained by dehydrating a dicarboxylic acid and a diol.
The polyester constituting the film of the present invention is preferably terephthalic acid as the dicarboxylic acid. Besides these, oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, sepacic acid, phthalic acid, isophthalic acid, naphthalene One or more known dicarboxylic acids such as dicarboxylic acid, diphenyl ether dicarboxylic acid, and cyclohexane dicarboxylic acid may be included as a copolymerization component. The diol component is preferably ethylene glycol. Besides these, propylene glycol, trimethylene glycol, tetramethylene glycol, hexamethylene glycol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, One or more known diols such as neopentyl glycol may be included as a copolymerization component.

本発明において、ポリエステル構成成分としては、上記のジカルボン酸成分およびジオール成分のほか、種々の酸成分およびアルコール成分を含むことができる。例えば、p−オキシ安息香酸のようなオキシカルボン酸、安息香酸、ベンゾイル安息香酸、メトキシポリアルキレングリコールなどの一官能性化合物は修飾成分として、トリメシン酸、トリメリト酸、グリセリン、ペンタエリスリトール等の多官能性化合物は共重合成分として、生成物ポリエステルが実質的に線状の高分子を保持し得る範囲内で、使用することができる。   In the present invention, the polyester component can include various acid components and alcohol components in addition to the dicarboxylic acid component and the diol component. For example, monofunctional compounds such as oxycarboxylic acid such as p-oxybenzoic acid, benzoic acid, benzoylbenzoic acid, and methoxypolyalkylene glycol are used as modifying components, such as trimesic acid, trimellitic acid, glycerin, and pentaerythritol. The functional compound can be used as a copolymerization component as long as the product polyester can retain a substantially linear polymer.

次に、本発明におけるA層を構成するポリエステル樹脂としては、耐熱性、寸法安定性の観点から、カルボン酸単位構成成分として、テレフタル酸単位90〜80モル%およびイソフタル酸単位10〜20モル%からなり、グリコール単位構成成分として、エチレングリコール単位98〜100モル%からなることが必要である。   Next, as the polyester resin constituting the A layer in the present invention, from the viewpoint of heat resistance and dimensional stability, 90 to 80 mol% of terephthalic acid units and 10 to 20 mol% of isophthalic acid units are used as carboxylic acid unit constituent components. It is necessary to consist of 98-100 mol% of ethylene glycol units as a glycol unit constituent.

カルボン酸単位構成成分としてイソフタル酸単位が10モル%に満たない場合、成型性が不足する。一方、イソフタル酸単位が20モル%を超える場合、耐熱性が不足する。   When the isophthalic acid unit is less than 10 mol% as a carboxylic acid unit constituent, moldability is insufficient. On the other hand, when the isophthalic acid unit exceeds 20 mol%, the heat resistance is insufficient.

一方、B層を構成するポリエステル樹脂は、カルボン酸単位構成成分として、テレフタル酸単位94〜88モル%およびイソフタル酸単位6〜12モル%からなり、グリコール単位構成成分として、エチレングリコール90〜80モル%および1,4−シクロヘキサンジメタノール単位10〜20モル%からなることが必要である。イソフタル酸単位および1,4−シクロヘキサンジメタノール単位が上記含有比に満たない場合、十分な耐熱性は得られるが成型性を失ってしまうため、好ましくない。また、上記含有比を超える場合、十分な成型性は得られるが、耐熱性を失ってしまうため好ましくない。   On the other hand, the polyester resin constituting the B layer is composed of 94 to 88 mol% of terephthalic acid units and 6 to 12 mol% of isophthalic acid units as carboxylic acid unit components, and 90 to 80 mol of ethylene glycol as glycol unit components. % And 1,4-cyclohexanedimethanol units from 10 to 20 mol%. When the isophthalic acid unit and the 1,4-cyclohexanedimethanol unit are less than the above content ratio, sufficient heat resistance is obtained, but moldability is lost, which is not preferable. Moreover, when it exceeds the said content ratio, sufficient moldability is obtained, but since heat resistance is lost, it is not preferable.

さらに、本発明のフィルムは、フィルムの幅方向1000mm当たりの厚さふれが4.0μm以下であることが必要である。厚さふれが4.0μmを超える場合、印刷加工時に印刷ムラ、およびコーター部での折れ不具合が発生する。好ましいフィルム幅方向1000mm当たりの厚さふれは3.0μm以下である。   Furthermore, the film of the present invention needs to have a thickness fluctuation of not more than 4.0 μm per 1000 mm in the width direction of the film. When the thickness fluctuation exceeds 4.0 μm, printing unevenness during printing and breakage at the coater occur. The preferred thickness deflection per 1000 mm in the film width direction is 3.0 μm or less.

本発明においては、フィルム幅方向の厚さふれを低減させるために、一定範囲内の横延伸温度および横延伸倍率の下でフィルムを横延伸し、さらにフィルムの成型性を維持するために、横延伸後直ちに幅方向の熱弛緩処理を実施することが好ましい。テンター延伸法では延伸後の熱処理ゾーンでこの熱処理弛緩処理を行う方法が好ましい。   In the present invention, in order to reduce the thickness fluctuation in the film width direction, the film is transversely stretched under a transverse stretching temperature and a transverse stretching ratio within a certain range, and further, in order to maintain the moldability of the film, It is preferable to carry out a thermal relaxation treatment in the width direction immediately after stretching. In the tenter stretching method, a method of performing this heat treatment relaxation treatment in a heat treatment zone after stretching is preferred.

好ましい横延伸温度は82〜95℃の範囲内であり、さらに好ましくは84〜89℃の範囲内である。横延伸温度が95℃を超える場合は、幅方向の厚さふれが所望範囲より大きくなる傾向がある。一方横延伸温度が82℃未満の場合は、フィルムの予熱が不十分となり、フィルム破断が頻発する傾向がある。   The preferred transverse stretching temperature is in the range of 82 to 95 ° C, more preferably in the range of 84 to 89 ° C. When the transverse stretching temperature exceeds 95 ° C., the thickness variation in the width direction tends to be larger than the desired range. On the other hand, when the transverse stretching temperature is less than 82 ° C., the preheating of the film becomes insufficient and the film breaks frequently.

また、好ましい横延伸倍率は3.8〜4.6倍の範囲内であり、さらに好ましくは4.0〜4.4倍の範囲内である。横延伸倍率が3.8倍未満であると、幅方向の厚さふれが所望範囲より大きくなる傾向がある。一方横延伸倍率が4.6倍を超える場合、フィルムの成型性が損なわれる傾向がある。   Moreover, a preferable lateral stretch ratio is in the range of 3.8 to 4.6 times, and more preferably in the range of 4.0 to 4.4 times. When the transverse draw ratio is less than 3.8 times, the thickness fluctuation in the width direction tends to be larger than the desired range. On the other hand, when the transverse draw ratio exceeds 4.6 times, the moldability of the film tends to be impaired.

また併用される熱処理弛緩法の実施温度は160〜190℃の範囲内行うことが好ましい。かつ熱処理弛緩法の弛緩率は10〜25%の範囲内が好ましく、より好ましくは12〜22%の範囲内である。弛緩率が10%未満であると所望のフィルム成形性が満たされない傾向がある。一方、弛緩率が25%を超えるとフィルム製膜工程で延伸後の弛緩時にフィルムが垂れ下がり延伸装置底部に接触するなどフィルム破断が発生しやすい傾向がある。   Moreover, it is preferable to perform the temperature of the heat-treatment relaxation method used together within the range of 160-190 degreeC. And the relaxation rate of the heat treatment relaxation method is preferably in the range of 10 to 25%, more preferably in the range of 12 to 22%. If the relaxation rate is less than 10%, the desired film formability tends not to be satisfied. On the other hand, when the relaxation rate exceeds 25%, there is a tendency that the film breaks easily, for example, the film hangs down at the time of relaxation after stretching in the film forming process and contacts the bottom of the stretching apparatus.

本発明において、フィルムの面配向係数ΔPは、0.136〜0.141の範囲であることが必要である。面配向係数ΔPが0.141を超える場合は、成型性に劣り、0.136未満である場合は、耐熱性に劣る。   In the present invention, the plane orientation coefficient ΔP of the film needs to be in the range of 0.136 to 0.141. When the plane orientation coefficient ΔP exceeds 0.141, the moldability is inferior, and when it is less than 0.136, the heat resistance is inferior.

本発明のフィルムの収縮特性に関し、150℃×5分間処理後の加熱収縮率が、フィルムの縦方向および横方向ともに0.0〜8.0%の範囲内である。フィルムの縦方向または横方向の加熱収縮率が8.0%を超えるフィルムは、印刷加工工程においてフィルムの寸法変化が大きくなり、印刷の見当ズレが発生する。   Regarding the shrinkage characteristics of the film of the present invention, the heat shrinkage after treatment at 150 ° C. for 5 minutes is in the range of 0.0 to 8.0% in both the longitudinal and transverse directions of the film. A film having a heat shrinkage ratio of 8.0% or more in the vertical direction or the horizontal direction of the film causes a large change in the dimensionality of the film in the printing process and causes misregistration of printing.

本発明において、フィルムの易滑性向上のために、粒子を添加することが好ましい。また必要に応じて、安定剤、着色剤、酸化防止剤、消泡剤、帯電防止剤等の添加剤を配合してもよい。添加粒子の例としては、カオリン、クレー、各種炭酸カルシウム、酸化ケイ素、テレフタル酸カルシウム、α−、γ−、σ−、θ−等の酸化アルミニウム、酸化チタン、リン酸カルシウム、フッ化リチウム、カーボンブラック等の公知の不活性外部粒子が挙げられる。これらの粒子は、フィルム中の表面を構成する層に対する含有量が通常0.002〜2.0重量%の範囲内であり、平均粒径が、0.1〜5.0μmの範囲にあるのが好ましい。   In the present invention, it is preferable to add particles in order to improve the slipperiness of the film. Moreover, you may mix | blend additives, such as a stabilizer, a coloring agent, antioxidant, an antifoamer, and an antistatic agent, as needed. Examples of additive particles include kaolin, clay, various calcium carbonates, silicon oxide, calcium terephthalate, aluminum oxide such as α-, γ-, σ-, θ-, titanium oxide, calcium phosphate, lithium fluoride, carbon black, etc. And known inert external particles. The content of these particles is usually in the range of 0.002 to 2.0% by weight with respect to the layer constituting the surface in the film, and the average particle size is in the range of 0.1 to 5.0 μm. Is preferred.

次に、本発明のフィルムの製造法を具体的に説明するが、本発明の構成要件を満足する限り、以下の例示のみに限定されるものではない。   Next, although the manufacturing method of the film of this invention is demonstrated concretely, as long as the structural requirements of this invention are satisfied, it is not limited only to the following illustrations.

すなわち、所定条件で乾燥したポリエステルチップ混合組成物を、押出機に投入し200〜230℃で混練し、均一に分散させる。押出に際しては、ポリエステルの溶融押出機を2台または3台以上用いて、いわゆる共押出法により2層または3層以上の積層フィルムとうることができる。層構成としては、a原料とb原料とを用いたa/b構成、またはa/b/a構成、さらにc原料を用いてa/b/c構成またはそれ以外の構成のフィルムとすることができる。例えばa原料として特定の粒子を用いてA層の表面形状を設計し、b原料としては粒子を含まない原料を用い、a/bまたはa/b/a構成のフィルムとすることができる。この場合、B層の原料を自由に選択することができるのでコスト的な利点などが大きい。また該当フィルムの再生原料をB層に配合しても表層であるA層により表面粗度の設計ができるので、さらにコスト的な利点が大きくなる。次いで、溶融したポリマーをダイから押出し、回転冷却ドラムの上でガラス転移温度以下の温度になるように急冷固化し、実質的に非晶状態の未配向シートを得る。この場合、シートの平面性を向上させるため、シートと回転冷却ドラムとの密着性を高めることが好ましく、本発明においては静電印加密着法が好ましく採用される。   That is, the polyester chip mixed composition dried under predetermined conditions is put into an extruder, kneaded at 200 to 230 ° C., and uniformly dispersed. When extruding, two or three or more polyester melt extruders can be used to obtain a laminated film of two layers or three or more layers by a so-called coextrusion method. As the layer structure, an a / b structure using an a raw material and a b raw material, or an a / b / a structure, and a film having an a / b / c structure or other structure using a c raw material. it can. For example, the surface shape of the A layer can be designed by using specific particles as the a raw material, and a film having an a / b or a / b / a structure can be obtained by using a raw material not containing particles as the b raw material. In this case, since the raw material of B layer can be selected freely, a cost advantage etc. are large. Further, even if the regenerated raw material of the film is blended with the B layer, the surface roughness can be designed by the A layer which is the surface layer, so that the cost advantage is further increased. Next, the molten polymer is extruded from a die, and rapidly cooled and solidified on a rotating cooling drum so as to have a temperature equal to or lower than the glass transition temperature to obtain a substantially amorphous unoriented sheet. In this case, in order to improve the flatness of the sheet, it is preferable to improve the adhesion between the sheet and the rotary cooling drum. In the present invention, the electrostatic application adhesion method is preferably employed.

得られた未配向シートを縦方向に3.0〜5.0倍、好ましくは3.5〜4.5倍に延伸する。横方向の延伸は、3.8〜4.6倍に延伸して、二軸配向フィルムを得る。また、150〜190℃の範囲内の温度で熱処理弛緩を行う方法が好ましく用いられる。
熱処理弛緩の方法としては、熱処理の最高温度ゾーンおよび、その前後の熱処理ゾーンにおいて、横方向に合計で10〜30%の弛緩を行う方法が好ましく用いられる。
The obtained unoriented sheet is stretched 3.0 to 5.0 times, preferably 3.5 to 4.5 times in the longitudinal direction. Stretching in the transverse direction is stretched 3.8 to 4.6 times to obtain a biaxially oriented film. Moreover, the method of performing heat processing relaxation at the temperature within the range of 150-190 degreeC is used preferably.
As a method of heat treatment relaxation, a method of performing relaxation in a total of 10 to 30% in the transverse direction in the maximum temperature zone of heat treatment and the heat treatment zones before and after the heat treatment zone is preferably used.

前記延伸工程においてまたはその後に、フィルム接着性、帯電防止性、滑り性、離形性等を付与するために、フィルムの片面または両面に塗布層を形成したり、コロナ処理等の放電処理を施したりすることなどもできる。   In or after the stretching step, a coating layer is formed on one or both sides of the film, or a discharge treatment such as a corona treatment is performed to impart film adhesion, antistatic properties, slipperiness, releasability, and the like. You can also.

本発明のフィルム厚さは、通常25〜200μmであり、好ましくは38〜150μm、さらに好ましくは50〜125μmである。   The film thickness of this invention is 25-200 micrometers normally, Preferably it is 38-150 micrometers, More preferably, it is 50-125 micrometers.

以下、実施例によって本発明をさらに具体的に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。なお、フィルムの諸物性の測定及び評価方法を以下に示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example, unless the summary is exceeded. In addition, the measurement and evaluation method of various physical properties of a film are shown below.

(1)極限粘度(dl/g)
測定試料をフェノール/テトラクロロエタン=50/50(重量部)の溶媒に溶解させて濃度c=0.01g/cmの溶液を調製し、30℃にて溶媒との相対粘度ηを測定し、極限粘度(dl/g)を求めた。
(1) Intrinsic viscosity (dl / g)
A measurement sample was dissolved in a solvent of phenol / tetrachloroethane = 50/50 (parts by weight) to prepare a solution having a concentration c = 0.01 g / cm 3 , and a relative viscosity η r with the solvent was measured at 30 ° C. The intrinsic viscosity (dl / g) was determined.

(2)添加粒子の平均粒子系(μm)
島津製作所遠心沈降式粒度分布測定装置SA‐CP3型を用いて、ストークスの抵抗則に基づく沈降法によって粒子の大きさを測定した。測定により得られた粒子の等価球形分布における積算(体積基準)50%の値を用いて平均粒径とした。
(2) Average particle system of added particles (μm)
Using a Shimadzu centrifugal sedimentation type particle size distribution analyzer SA-CP3, the particle size was measured by a sedimentation method based on Stokes' resistance law. The average particle diameter was determined by using a value of 50% of integration (volume basis) in the equivalent spherical distribution of particles obtained by measurement.

(3)厚さ振れの測定(幅方向)
安立電気社製連続厚み測定機にて、幅方向1000mm相当のサンプリングを行い、最大厚さと最小厚さの差の3点平均値をRvとした。
(4)面配向度(ΔP)
アタゴ製アッベ屈折率計を使用した。ヨウ化メチレンをマウントして、試料フィルムを測定面が下になるようにプリズムに密着させ、単色光ナトリウムD線(589nm)を光源として、主配向方向の屈折率nγ、それに対して面内垂直方向の屈折率nβ、および厚み方向の屈折率nαを測定した。得られた値から下記式により面配向係数ΔPを求め、各層による複数の結果が出た場合は大きい方の値を記録した。
ΔP=(nγ+nβ)/2−nα
(3) Measurement of thickness runout (width direction)
Sampling corresponding to 1000 mm in the width direction was performed with a continuous thickness measuring machine manufactured by Anritsu Electric Co., Ltd., and the three-point average value of the difference between the maximum thickness and the minimum thickness was defined as Rv.
(4) Plane orientation degree (ΔP)
An Atago Abbe refractometer was used. Methylene iodide is mounted, the sample film is brought into close contact with the prism so that the measurement surface faces down, and the refractive index nγ in the main orientation direction is in-plane perpendicular to the monochromatic light sodium D line (589 nm) as the light source. The refractive index nβ in the direction and the refractive index nα in the thickness direction were measured. The plane orientation coefficient ΔP was obtained from the obtained value by the following formula, and when a plurality of results were obtained for each layer, the larger value was recorded.
ΔP = (nγ + nβ) / 2−nα

(5)加熱収縮率
150℃の温度のオーブン中において、縦10cm、横10cmのフィルムを無負荷の状態で5分間処理し、縦および横方向についての加熱収縮率を次式により算出した。
加熱収縮率(%)=100×(L−L)/L
ただし、Lはフィルムの原長(cm)であり、Lは収縮後の長さ(cm)である。
(5) Heat Shrinkage In a 150 ° C. oven, a 10 cm long and 10 cm wide film was treated for 5 minutes in an unloaded state, and the heat shrinkage in the vertical and horizontal directions was calculated by the following equation.
Heat shrinkage rate (%) = 100 × (L 0 −L) / L 0
However, L 0 is the original length (cm) of the film, and L is the length (cm) after shrinkage.

(6)フィルム耐熱性の評価
ポリエステルフィルムを縦35cm、横25cmに切り取り、最大深さ3cmの金型を用い、IRヒーターで予備加熱後、金型内部に真空成型法により予備成型を実施した。予備加熱によるフィルムの融解状況より、下記基準で耐熱性評価を行った。
○:加工温度に耐久でき、予備成型に対応できる
△:予備成型に対応できるが、稀にフィルム軟化による膨張が発生する
×:フィルム融解による穴開きあるいは、フィルム軟化による膨張が頻繁に発生
(6) Evaluation of film heat resistance A polyester film was cut into a length of 35 cm and a width of 25 cm, preliminarily molded by a vacuum molding method inside the mold after preheating with an IR heater using a mold having a maximum depth of 3 cm. The heat resistance was evaluated according to the following criteria from the melting state of the film by preheating.
○: Can withstand processing temperatures and can be used for preforming △: Can be used for preforming, but rarely expands due to film softening ×: Frequent expansion due to film melting or softening of film occurs

(7)フィルム成型性の評価
ポリエステルフィルムを縦35cm、横25cmに切り取り、最大深さ3cmの金型を用い、IRヒーターで予備加熱後、金型内部に真空成型法により予備成型を実施した。成型によるフィルム破断の頻度により下記基準で成型性評価を行った。
○:フィルム破断、クラック発生なく、均一な厚さで成型される
△:フィルム破断はしないが、局所的にフィルムが極めて薄い部分が存在する
×:フィルムが頻繁に破断する
(7) Evaluation of film moldability A polyester film was cut into a length of 35 cm and a width of 25 cm, preliminarily molded by a vacuum molding method inside the mold after preheating with an IR heater using a mold having a maximum depth of 3 cm. The moldability was evaluated according to the following criteria according to the frequency of film breakage due to molding.
○: Molded to a uniform thickness without film breakage and cracks. Δ: Film breakage is not observed, but the film is locally very thin. X: Film breaks frequently.

(8)印刷見当ズレの評価
ポリエステルフィルムに黒ベタ印刷加工を行い、外観の目視検査により、フィルムの寸法変化による印刷の見当ズレの評価を行った。
○:印刷の見当ズレが認められないもの
△:僅かに印刷の見当ズレがあるが、実用可能範囲と判断されるもの
×:印刷の見当ズレが著しく実用不可能なもの
(8) Evaluation of printing registration deviation Black solid printing processing was performed on the polyester film, and printing registration deviation due to dimensional change of the film was evaluated by visual inspection of the appearance.
○: Printing misregistration is not allowed. △: Printing misregistration is slightly, but it is judged to be a practical range. ×: Printing misregistration is extremely impractical.

(9)印刷加工適性
ポリエステルフィルムに黒ベタ印刷加工を行い、外観の目視検査により、判定を行った。
○:印刷抜けが認められないもの
△:僅かに印刷抜けがあるが、実用可能範囲と判断されるもの
×:印刷抜けが著しく実用不可能なもの
実施例1:
<ポリエステル原料A>
カルボン酸単位としてTPA:85.7モル%+IPA:14.3モル%、グリコール単位としてEG:100モル%からなり、平均粒径2.3μmの無定形シリカ粒子を0.1重量%含有する極限粘度0.68のポリエステル原料Aを作製した。
<ポリエステル原料B>
カルボン酸単位としてTPA:91.2モル%+IPA:8.8モル%、グリコール単位としてEG:84モル%+CHDM:16モル%からなる極限粘度0.70のポリエステル原料Bを作製した。
(9) Printing process suitability Black solid printing process was performed on the polyester film, and the determination was made by visual inspection of the appearance.
○: No printing omission is observed Δ: Slight printing omission is observed, but is judged to be within the practical range ×: Printing omission is extremely impractical Example 1:
<Polyester raw material A>
An ultimate limit of 0.1% by weight of amorphous silica particles having an average particle size of 2.3 μm, comprising carboxylic acid units of TPA: 85.7 mol% + IPA: 14.3 mol% and glycol units of EG: 100 mol%. A polyester raw material A having a viscosity of 0.68 was produced.
<Polyester raw material B>
A polyester raw material B having an intrinsic viscosity of 0.70 comprising TPA: 91.2 mol% + IPA: 8.8 mol% as carboxylic acid units and EG: 84 mol% + CHDM: 16 mol% as glycol units was prepared.

上記原料を十分に攪拌・混合した後、A/B/Aの層構成となるように280℃Tダイを有する押出機で溶融押し出しし、静電密着法を併用しながら冷却ドラム上にキャストして、無定形フィルムを得た。このフィルムを縦方向に78℃で3.9倍延伸し、さらに横方向に85℃で4.2倍延伸した後、160〜180℃雰囲気下で合計17%の熱処理弛緩を行った。得られたポリエステルフィルムの厚さは75μmであった。   After sufficiently stirring and mixing the above raw materials, it is melt-extruded with an extruder having a 280 ° C. T die so as to have a layer structure of A / B / A, and cast on a cooling drum while using an electrostatic contact method. Thus, an amorphous film was obtained. This film was stretched 3.9 times at 78 ° C. in the longitudinal direction and further stretched 4.2 times at 85 ° C. in the transverse direction, and then subjected to heat treatment relaxation for a total of 17% in an atmosphere of 160 to 180 ° C. The obtained polyester film had a thickness of 75 μm.

実施例2:
実施例1において、横延伸温度を90℃に変える以外は同様にして、厚さ75μmのフィルムを得た。
Example 2:
A film having a thickness of 75 μm was obtained in the same manner as in Example 1 except that the transverse stretching temperature was changed to 90 ° C.

実施例3:
実施例1において、横延伸温度を83℃に変える以外は同様にして、厚さ75μmのフィルムを得た。
Example 3:
A film having a thickness of 75 μm was obtained in the same manner as in Example 1 except that the transverse stretching temperature was changed to 83 ° C.

比較例1:
実施例1において、横延伸温度を105℃倍に変える以外は同様にして、厚さ75μmのフィルムを得た。
Comparative Example 1:
A film having a thickness of 75 μm was obtained in the same manner as in Example 1 except that the transverse stretching temperature was changed to 105 ° C. times.

比較例2:
実施例1において、横延伸温度を80℃に変える以外は同様にして、フィルム採取を試みたが、横延伸装置内でフィルム破断が頻発し、目的のフィルムを得られなかった。
Comparative Example 2:
In Example 1, film collection was attempted in the same manner except that the transverse stretching temperature was changed to 80 ° C., but film breakage occurred frequently in the transverse stretching apparatus, and the target film could not be obtained.

比較例3:
実施例1において、幅方向の弛緩率を合計9%に変える以外は同様にして、厚さ75μmのフィルムを得た。
Comparative Example 3:
A film having a thickness of 75 μm was obtained in the same manner as in Example 1, except that the relaxation rate in the width direction was changed to 9% in total.

比較例4:
実施例1において、幅方向の弛緩率を合計26%に変える以外は同様にして、フィルム採取を試みたが、横延伸装置内でフィルムが垂れ下がり、装置底部に接触してフィルムが破断し、目的のフィルムを得られなかった。
Comparative Example 4:
In Example 1, film collection was attempted in the same manner except that the relaxation rate in the width direction was changed to a total of 26%, but the film dropped in the transverse stretching apparatus and contacted with the bottom of the apparatus, and the film was broken. Could not be obtained.

以上、得られた結果をまとめて下記表1に示す。   The obtained results are summarized in Table 1 below.

Figure 0006005450
Figure 0006005450

上記表1中、TPAはテレフタル酸、IPAはイソフタル酸、EGはエチレングリコール、CHDMは1,4−シクロヘキサンジメタノールをそれぞれ意味する。   In Table 1 above, TPA means terephthalic acid, IPA means isophthalic acid, EG means ethylene glycol, and CHDM means 1,4-cyclohexanedimethanol.

本発明のポリエステルフィルムは、幅方向の厚さふれが改善され、例えば、成型同時転写用の印刷加工を行った際に、印刷ヌケを起こさないため、その工業的価値は高い。   The polyester film of the present invention has an improved industrial thickness because the thickness fluctuation in the width direction is improved. For example, when printing processing for simultaneous molding transfer is performed, printing is not lost.

Claims (1)

テレフタル酸単位94〜88モル%およびイソフタル酸単位6〜12モル%をカルボン酸単位構成成分とし、エチレングリコール90〜80モル%および1,4−シクロヘキサンジメタノール単位10〜20モル%をグリコール単位構成成分とするポリエステルからなる層(B層)の両面に、テレフタル酸単位90〜80モル%およびイソフタル酸単位10〜20モル%をカルボン酸単位構成成分とし、エチレングリコール単位98〜100モル%をグリコール単位構成成分とするポリエステルからなる層(A層)を積層した構造のフィルムであって、当該フィルムの幅方向1000mm当たりの厚さふれが4.0μm以下であり、フィルムの面配向係数ΔPが0.136〜0.141の範囲にあり、150℃で5分間処理後の加熱収縮率がフィルムの縦方向および横方向ともに0.0〜8.0%の範囲である成型同時転写用ポリエステルフィルムについて、
横延伸を横延伸温度が84〜89℃、横延伸倍率が3.8〜4.6倍の範囲内で行ったあとに、熱処理弛緩を実施温度が160〜190℃、弛緩率が10〜25%の範囲内で行うことを特徴とする成型同時転写用ポリエステルフィルムの製造方法
94-88 mol% of terephthalic acid units and 6-12 mol% of isophthalic acid units are constituent components of carboxylic acid units, and 90-80 mol% of ethylene glycol and 10-20 mol% of 1,4-cyclohexanedimethanol units are composed of glycol units. On both sides of the polyester layer (B layer), terephthalic acid units 90-80 mol% and isophthalic acid units 10-20 mol% are used as carboxylic acid unit constituents, and ethylene glycol units 98-100 mol% are glycols. A film having a structure in which a layer (A layer) made of polyester as a unit constituent component is laminated, and the thickness deviation per 1000 mm in the width direction of the film is 4.0 μm or less, and the plane orientation coefficient ΔP of the film is 0 In the range of 136 to 0.141, the heat shrinkage after treatment at 150 ° C. for 5 minutes is About the polyester film for molding simultaneous transfer that is in the range of 0.0 to 8.0% in both the vertical and horizontal directions of the film,
After the transverse stretching is performed within the range of a transverse stretching temperature of 84 to 89 ° C. and a transverse stretching ratio of 3.8 to 4.6 times, the heat treatment relaxation is performed at a temperature of 160 to 190 ° C., and the relaxation rate is 10 to 25. % Within a range of%, a method for producing a polyester film for simultaneous transfer of molding.
JP2012200132A 2012-04-26 2012-09-12 Method for producing polyester film for simultaneous molding transfer Active JP6005450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012200132A JP6005450B2 (en) 2012-04-26 2012-09-12 Method for producing polyester film for simultaneous molding transfer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012100749 2012-04-26
JP2012100749 2012-04-26
JP2012200132A JP6005450B2 (en) 2012-04-26 2012-09-12 Method for producing polyester film for simultaneous molding transfer

Publications (2)

Publication Number Publication Date
JP2013240973A JP2013240973A (en) 2013-12-05
JP6005450B2 true JP6005450B2 (en) 2016-10-12

Family

ID=49842367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012200132A Active JP6005450B2 (en) 2012-04-26 2012-09-12 Method for producing polyester film for simultaneous molding transfer

Country Status (1)

Country Link
JP (1) JP6005450B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6609940B2 (en) * 2014-03-14 2019-11-27 東レ株式会社 Polyester film for optical film production

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196821A (en) * 1993-12-28 1995-08-01 Diafoil Co Ltd Polyester film for deep drawing and similtaneous transfer printing
JP2001504047A (en) * 1997-08-21 2001-03-27 ミツビシ ポリエステル フィルム ジーエムビーエイチ Biaxially stretched PET film for SMD film capacitor with improved mechanical and shrinkage properties and method for producing the same
JP2006264136A (en) * 2005-03-24 2006-10-05 Toray Ind Inc Polyester film for molding decoration material
JP4600442B2 (en) * 2006-06-30 2010-12-15 東洋紡績株式会社 Laminated polyester film for molding
JP5234690B2 (en) * 2006-12-31 2013-07-10 三菱樹脂株式会社 Polyester film for simultaneous transfer of molding

Also Published As

Publication number Publication date
JP2013240973A (en) 2013-12-05

Similar Documents

Publication Publication Date Title
JP5234690B2 (en) Polyester film for simultaneous transfer of molding
JP2009042653A (en) Polyester film for protecting polarizing film
JP5234689B2 (en) Polyester film for simultaneous transfer of molding
JP5651960B2 (en) Biaxially stretched polyethylene terephthalate film for mold release
JP2010138261A (en) Polyester film for laminated glass, and its layered product
JP5236315B2 (en) Polyester film for simultaneous transfer of molding
JP2013054207A (en) Polyester film for protecting polarizing plate and method for manufacturing the same
JP6005450B2 (en) Method for producing polyester film for simultaneous molding transfer
JP2018059083A (en) Polyester film
JP2010138024A (en) Polyester film for laminated glass, and laminated glass
JP2010138262A (en) Polyester film for laminated glass, and its layered product
JP6154626B2 (en) Softening polyester film
JP2009166442A (en) Method for producing uniaxially oriented polyester film
JPH0832499B2 (en) Heat resistant polyester film for transfer film
JP6210244B2 (en) Biaxially stretched polyethylene terephthalate film
JPH07237283A (en) Laminated polyester film to be transferred simultaneously with molding
JP2008163275A (en) Polyester film for simultaneous forming and transfer printing
JP2013226723A (en) Polyester film for in-mold transfer
JP2012066586A (en) Polyester film for molding simultaneous transfer
JP2005349726A (en) Biaxially oriented film
JP2013108012A (en) Biaxially oriented polyester film
JP2692284B2 (en) Biaxially oriented polyester film for molding
JPH0832498B2 (en) Polyester film for transfer film
JPH07196821A (en) Polyester film for deep drawing and similtaneous transfer printing
TWI839401B (en) Biaxially oriented polyester film, method for producing the same, and film roll

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160907

R150 Certificate of patent or registration of utility model

Ref document number: 6005450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350