JP6004643B2 - Method and apparatus for producing metal fine particles - Google Patents

Method and apparatus for producing metal fine particles Download PDF

Info

Publication number
JP6004643B2
JP6004643B2 JP2011278015A JP2011278015A JP6004643B2 JP 6004643 B2 JP6004643 B2 JP 6004643B2 JP 2011278015 A JP2011278015 A JP 2011278015A JP 2011278015 A JP2011278015 A JP 2011278015A JP 6004643 B2 JP6004643 B2 JP 6004643B2
Authority
JP
Japan
Prior art keywords
metal
cathode
fine particles
ions
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011278015A
Other languages
Japanese (ja)
Other versions
JP2013129859A (en
Inventor
智紘 石井
智紘 石井
藤原 英道
英道 藤原
英郎 西久保
英郎 西久保
本間 敬之
敬之 本間
美紀子 齋藤
美紀子 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Waseda University
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Waseda University filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2011278015A priority Critical patent/JP6004643B2/en
Publication of JP2013129859A publication Critical patent/JP2013129859A/en
Application granted granted Critical
Publication of JP6004643B2 publication Critical patent/JP6004643B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、銅、ニッケル、コバルト、鉄、亜鉛、スズ等の金属微粒子の製造方法、及びこれらの金属微粒子の製造装置に関する。   The present invention relates to a method for producing fine metal particles such as copper, nickel, cobalt, iron, zinc and tin, and an apparatus for producing these fine metal particles.

金属微粒子は、ナノサイズ(1μm以下)まで粒子径が微細化すると融点が低下することが知られており、このようなナノサイズの金属微粒子の分散したコロイド溶液やナノサイズの金属微粒子を混練したペーストは200〜300℃の焼成温度で良好な導電膜を作ることが知られている。既に、インクジェットプリント技術を用いて、金属微粒子として銀微粒子を用いた微粒子インクによるプリント回路の作製が報告されている。
しかしながら、銀微粒子インクを用いてプリントされた焼成回路は単に原料コストが高いだけでなく、配線等に使用された銀が電気化学反応によりイオン化して溶け出すことによって起こるマイグレーションを発生し易い傾向があるために配線間での結線が起きるという致命的な問題を有している。このマイグレーションの起こり易さはイオン化の電気化学列の順序と異なり、Ag>Pb≧Cuの順であり、このようなマイグレーションに対する耐性の低い銀微粒子から、該耐性の高い銅微粒子、銀成分の少ない合金微粒子等の使用への移行が望まれており、該耐性の高い金属微粒子を低コストで製造できる製造方法が必要になっている。
Metal fine particles are known to have a melting point that decreases when the particle size is reduced to nano-size (1 μm or less), and such colloidal solution in which nano-sized metal fine particles are dispersed or nano-sized metal fine particles are kneaded. It is known that a paste forms a good conductive film at a firing temperature of 200 to 300 ° C. The production of a printed circuit using fine particle ink using silver fine particles as metal fine particles has already been reported using an inkjet printing technique.
However, the firing circuit printed using the silver fine particle ink is not only high in raw material cost, but also tends to generate migration caused by ionization and dissolution of silver used for wiring and the like by an electrochemical reaction. For this reason, there is a fatal problem that wiring between wirings occurs. The ease of this migration is different from the order of the electrochemical column of ionization, and is in the order of Ag> Pb ≧ Cu. From the silver fine particles having low resistance to such migration, the copper fine particles having high resistance, and the silver component being small. There is a demand for a shift to the use of alloy fine particles and the like, and there is a need for a production method capable of producing such highly resistant metal fine particles at a low cost.

上記背景のもとに、電気化学的な手法を用いたナノサイズの金属微粒子の製造方法についての研究開発が積極的に行なわれている。このようなナノサイズの金属微粒子を製造する方法として、主に気相合成法と液相合成法が知られている。該気相合成法は、気相中に導入した金属蒸気から固体の金属微粒子を形成する方法であり、一方、液相合成法は、溶液中に分散させた金属イオンを電解または無電解還元により金属微粒子を析出させる方法である。無電解還元により金属イオンを還元するための還元方法としては、アルコール、ポリオール、アルデヒド、ヒドラジン、水素化ホウ素ナトリウム等を用いる方法、電解還元により電気化学的にカソード上で還元を行う方法とが知られている。特に、電気化学的に還元を行う方法は、その還元速度を電流量で調整することにより、生成する金属微粒子の形状・サイズを制御することが可能であり、複合(合金)微粒子の生成も可能であることから、近年大いに注目されている。   Based on the above background, research and development have been actively conducted on methods for producing nano-sized metal fine particles using electrochemical techniques. As a method for producing such nano-sized metal fine particles, a gas phase synthesis method and a liquid phase synthesis method are mainly known. The gas phase synthesis method is a method of forming solid metal fine particles from metal vapor introduced into the gas phase, while the liquid phase synthesis method is performed by electrolytic or electroless reduction of metal ions dispersed in a solution. This is a method of depositing metal fine particles. As a reduction method for reducing metal ions by electroless reduction, there are known a method using alcohol, polyol, aldehyde, hydrazine, sodium borohydride, etc., and a method of performing electrochemical reduction on the cathode by electrolytic reduction. It has been. In particular, the electrochemical reduction method can control the shape and size of the generated metal fine particles by adjusting the reduction rate by the amount of current, and can also produce composite (alloy) fine particles. Therefore, it has attracted much attention in recent years.

電気化学的にカソード電極上で還元を行う方法として、非特許文献1では、界面活性剤や金属配位子を添加した水溶液中において、目的金属からなる陽極と、炭素または白金からなる陰極間に通電することにより、金属粒子を作製する方法が提案されている。
特許文献1には、絶縁性樹脂でコーティングされた白金の板状基板の表面の樹脂層部に、ナノインプリンティングにより一辺の長さが約1μmの正方形の多数のホールからなるパターン基板を形成して、該パターン基板に電気化学的めっきを施すことによって、ホール部分に形成した白金埋め込みナノドット白金電極を陰極として、電解還元により銅微粒子を析出する方法が提案されている。
また、特許文献2には、最大長さが1μm以下となるように互いに絶縁された複数の白金突起からなる白金針状電極を陰極として電解還元により、均一な金属微粒子を析出する方法が提案されている。
As a method for electrochemical reduction on a cathode electrode, Non-Patent Document 1 discloses that, in an aqueous solution to which a surfactant or a metal ligand is added, between an anode made of a target metal and a cathode made of carbon or platinum. A method for producing metal particles by energization has been proposed.
In Patent Document 1, a pattern substrate composed of a large number of square holes having a side length of about 1 μm is formed by nanoimprinting on the resin layer portion of the surface of a platinum plate substrate coated with an insulating resin. Thus, there has been proposed a method in which copper fine particles are deposited by electrolytic reduction using the platinum-embedded nanodot platinum electrode formed in the hole portion as a cathode by subjecting the pattern substrate to electrochemical plating.
Patent Document 2 proposes a method of depositing uniform metal fine particles by electrolytic reduction using a platinum needle electrode made of a plurality of platinum protrusions insulated from each other so that the maximum length is 1 μm or less. ing.

特開2007−270184号公報JP 2007-270184 A 特開2007−327117号公報JP 2007-327117 A

A.Pietrikova et al., Metallic Materials, Vol.29, (1991), p262-272A. Pietrikova et al., Metallic Materials, Vol. 29, (1991), p262-272

上記従来の気相合成法では、一般に、CVD、レーザーアブレーション、スパッタリングなどにより金属蒸気が反応容器に供給されて、金属微粒子の生成が行われるが、これら反応装置は高価である上、歩留まりが悪く、製造コストが高いという問題点があり、更に得られる金属微粒子は、粒径分布が広いという問題点もあった。また、非特許文献1等に記載された電気化学的にカソード電極上で還元を行う方法では、還元されて得られた金属粒子がデンドライト(樹枝)状に成長するため、金属粒子の形状が不均一であるという問題点があった。
特許文献1、特許文献2に開示の方法では、白金埋め込みナノドット白金電極、白金針状電極をそれぞれ陰極として使用するために、陰極の作製にコスト、時間が費やされるという問題点があった。
本発明は、上記問題点を解決して、金属イオンを電解還元法により金属微粒子を製造する際に粒子径のバラツキが少なく金属微粒子がデンドライト状に析出されるのを防止可能なナノサイズの金属微粒子の製造方法を提供することを目的とする。
In the above conventional gas phase synthesis method, metal vapor is generally supplied to a reaction vessel by CVD, laser ablation, sputtering, etc., and metal fine particles are generated. However, these reactors are expensive and yield is poor. Further, there is a problem that the production cost is high, and the metal fine particles obtained have a problem that the particle size distribution is wide. In addition, in the method of electrochemical reduction on the cathode electrode described in Non-Patent Document 1 or the like, the metal particles obtained by reduction grow in a dendrite shape, so that the shape of the metal particles is indefinite. There was a problem of being uniform.
In the methods disclosed in Patent Document 1 and Patent Document 2, since the platinum-embedded nanodot platinum electrode and the platinum needle electrode are used as the cathodes, respectively, there is a problem in that cost and time are spent for producing the cathodes.
The present invention solves the above-mentioned problems, and when producing metal fine particles by electrolytic reduction of metal ions, a nano-sized metal that can prevent metal fine particles from depositing in a dendrite shape with little variation in particle diameter It aims at providing the manufacturing method of microparticles | fine-particles.

本発明は以上の事情を背景としてなされたものであり、金属イオンを含む還元溶液中で電解還元して該金属の微粒子を析出させる際に、陰極の表面部に該金属の析出電位よりも貴な電位の金属で、平均曲率半径が5〜500nmの半球状ないし球状の複数の凸部と、この複数の凸部間の凹部と、で凹凸形状が連続する表面によって形成すると、ナノサイズの金属微粒子を容易に得られることを見出し、本発明を完成するに至った。
即ち、本発明は、以下の(1)ないし(12)に記載する発明を要旨とする。
(1)金属(A)のイオンを含む還元溶液中で陰極(E)と陽極(F)間に通電して金属(A)のイオンを電解還元して金属(A)の微粒子を析出させる金属微粒子の製造方法において、
少なくとも還元溶液中に浸漬される、陰極(E)の表面部は、還元溶液中で金属(A)の析出電位よりも貴な電位で析出する金属(B)からなり、かつ平均曲率半径5〜500nmの半球状ないし球状の複数の凸部と、この複数の凸部間の凹部と、で凹凸形状が連続する表面によって形成されており、電解還元により陰極(E)表面部の金属(B)からなる凹凸形状の凸部近傍に金属(A)の微粒子を析出させる、ことを特徴とする金属微粒子の製造方法(以下、第1の態様ということがある)。
(2)前記金属(B)が金、銅、銀、ニッケル、コバルト、鉄、亜鉛、スズ、白金、パラジウム、およびイリジウムから選択される1種であり、金属(A)が金属(B)のイオンの析出電位よりも卑な電位で析出するイオンを形成する金属であることを特徴とする、前記(1)に記載の金属微粒子の製造方法。
(3)前記金属(A)が銅であり、前記金属(B)が銀であることを特徴とする、前記(1)または(2)に記載の金属微粒子の製造方法。
(4)前記還元溶液中に有機分散剤が含有されている、ことを特徴とする前記(1)から(3)のいずれかに記載の金属微粒子の製造方法。
The present invention has been made against the background described above, and when the fine particles of the metal are deposited by electrolytic reduction in a reducing solution containing metal ions, the surface of the cathode is nobler than the deposition potential of the metal. such a metal potential, and a plurality of convex portions of the hemispherical or spherical mean curvature radius of 5 to 500 nm, and the recess between the plurality of convex portions, in the uneven shape is formed by a continuous surface, the nano-sized The inventors have found that metal fine particles can be easily obtained, and have completed the present invention.
That is, the gist of the present invention is the invention described in the following (1) to (12).
(1) A metal in which metal (A) ions are electrolytically reduced by depositing metal (A) ions in a reducing solution containing metal (A) ions to cause metal (A) ions to be deposited. In the method for producing fine particles,
At least the surface portion of the cathode (E) immersed in the reducing solution is made of the metal (B) that deposits at a potential higher than the deposition potential of the metal (A) in the reducing solution, and has an average radius of curvature of 5 to 5. a hemispherical or a plurality of protrusions of spherical 500 nm, and the recess between the plurality of convex portions, in irregularities being formed by a continuous surface, the cathode (E) the surface of the metal by the electrolytic reduction (B The metal fine particle (A) fine particles are deposited in the vicinity of the concavo-convex convex portion formed of ()) (hereinafter sometimes referred to as a first embodiment).
(2) The metal (B) is one selected from gold, copper, silver, nickel, cobalt, iron, zinc, tin, platinum, palladium, and iridium, and the metal (A) is the metal (B). The method for producing fine metal particles according to (1) above, wherein the metal forms ions that are deposited at a potential lower than the deposition potential of ions.
(3) The method for producing fine metal particles according to (1) or (2), wherein the metal (A) is copper and the metal (B) is silver.
(4) The method for producing metal fine particles according to any one of (1) to (3), wherein the reducing solution contains an organic dispersant.

(5)前記陰極(E)表面部の金属(B)からなる凹凸形状が、金属(B)イオンの電解還元により形成された形状である、前記(1)から(4)のいずれかに記載の金属微粒子の製造方法。
(6)前記陰極(E)表面部の金属(B)からなる凹凸形状が、金属(B)イオンの無電解還元により形成された形状である、前記(1)から(4)のいずれかに記載の金属微粒子の製造方法。
(7)前記陰極(E)表面部の金属(B)からなる凹凸形状が、金属(B)の分散溶液を陰極(E)の基材に塗布後、加熱・焼結して形成された形状である、前記(1)から(4)のいずれかに記載の金属微粒子の製造方法。
(8)前記電解還元により陰極(E)表面の凸部近傍に析出する金属(A)の微粒子の平均粒子径が1〜500nmである、ことを特徴とする前記(1)から(7)のいずれかに記載の金属微粒子の製造方法。
(9)前記電解還元により、陰極(E)表面の凸部近傍に析出した金属(A)の微粒子を脱離させながら陰極(E)表面の凸部近傍に新たに金属(A)の析出を継続する、ことを特徴とする前記(1)から(8)のいずれかに記載の金属微粒子の製造方法。
(10)前記脱離の手段が掻き取り、吸い取り、および超音波振動から選択された1種または2種以上であることを特徴とする、前記(9)に記載の金属微粒子の製造方法。
(11)金属(A)のイオンを含む還元溶液中で、陰極(E)と陽極(F)間に通電して金属(A)のイオンを電解還元して金属(A)の微粒子を析出させる金属微粒子の製造装置であって、少なくとも還元溶液中に浸漬している、陰極(E)の表面部が還元溶液中で金属(A)の析出電位よりも貴な電位で析出する金属(B)からなり、かつ平均曲率半径5〜500nmの半球状ないし球状の球状の複数の凸部と、この複数の凸部間の凹部と、で凹凸形状が連続する表面形状を有している、ことを特徴とする金属微粒子の製造装置(以下、第2の態様ということがある)。
(12)陰極(E)表面の凸部に析出した金属微粒子を脱離させる脱離手段を備えた、前記(11)に記載の金属微粒子の製造装置。
(5) The uneven shape made of metal (B) on the surface of the cathode (E) is a shape formed by electrolytic reduction of metal (B) ions, according to any one of (1) to (4). A method for producing metal fine particles.
(6) The uneven shape made of the metal (B) on the surface of the cathode (E) is a shape formed by electroless reduction of metal (B) ions, according to any one of (1) to (4) The manufacturing method of the metal microparticle of description.
(7) The shape of the unevenness formed of the metal (B) on the surface of the cathode (E) is formed by applying a dispersion solution of the metal (B) to the substrate of the cathode (E), followed by heating and sintering. The method for producing metal fine particles according to any one of (1) to (4), wherein
(8) The average particle size of the fine particles of the metal (A) deposited in the vicinity of the convex portion on the surface of the cathode (E) by the electrolytic reduction is 1 to 500 nm, wherein (1) to (7) The manufacturing method of the metal microparticle in any one.
(9) The metal (A) is newly deposited in the vicinity of the convex portion on the surface of the cathode (E) while the fine particles of the metal (A) deposited in the vicinity of the convex portion on the surface of the cathode (E) are removed by the electrolytic reduction. The method for producing fine metal particles according to any one of (1) to (8), wherein the method is continued.
(10) The method for producing fine metal particles according to (9), wherein the desorption means is one or more selected from scraping, sucking, and ultrasonic vibration.
(11) In a reducing solution containing metal (A) ions, a current is passed between the cathode (E) and the anode (F) to electrolytically reduce the metal (A) ions to deposit metal (A) fine particles. An apparatus for producing fine metal particles, which is immersed in at least a reducing solution, wherein the surface of the cathode (E) is deposited at a potential nobler than the deposition potential of the metal (A) in the reducing solution (B) made, and has a plurality of protrusions of spherical hemispherical or spherical curvatures 5 to 500 nm, and the recess between the plurality of convex portions, in a surface shape irregularities are continuous, that An apparatus for producing fine metal particles (hereinafter sometimes referred to as a second embodiment).
(12) The apparatus for producing metal fine particles according to (11) above, comprising a detaching means for detaching the metal fine particles deposited on the convex portion on the surface of the cathode (E).

前記(1)に記載の金属微粒子の製造方法において、還元溶液から電解還元によりナノサイズの金属(A)の微粒子を析出させる際に、陰極(E)表面部を還元溶液中で金属(A)の析出電位よりも貴な電位で析出する金属(B)で形成し、かつその表面の平均曲率半径が5〜500nmの半球状ないし球状の複数の凸部と、この複数の凸部間の凹部と、で凹凸形状が連続する表面形状とすることにより、デンドライト化を防止して、析出する粒子の形状が略球状で、比較的均一な粒子を効率よく形成することが可能である。前記(11)に記載の金属微粒子の製造装置において、還元溶液中に浸漬している、陰極(E)の表面部が金属(A)の析出電位よりも貴な電位で析出する金属(B)からなり、かつ均曲率半径5〜500nmの半球状ないし球状の複数の凸部と、この複数の凸部間の凹部と、で凹凸形状が連続する表面を有しているので、金属(A)のイオンを電解還元して金属(A)の微粒子を析出させる際に析出する粒子の形状が略球状で、比較的均一な粒子を効率よく形成することが可能である。
In the method for producing fine metal particles according to (1), when the nanosized metal (A) fine particles are deposited from the reducing solution by electrolytic reduction, the surface of the cathode (E) is removed from the metal (A) in the reducing solution. than the deposition potential is formed of a metal (B) to be deposited in a noble potential, and a plurality of convex portions of the hemispherical or spherical curvatures of the surface of 5 to 500 nm, between the plurality of protrusions By forming a surface shape in which the concave and convex shapes are continuous with the concave portions, dendrites can be prevented, and the shape of the precipitated particles can be approximately spherical and relatively uniform particles can be efficiently formed. In the apparatus for producing fine metal particles described in (11) above, the metal (B) that is immersed in a reducing solution and that deposits at a potential nobler than the deposition potential of the metal (A) at the surface of the cathode (E). consists, and a semi-spherical or a plurality of protrusions of spherical Hitoshikyoku radius 5 to 500 nm, and the recess between the plurality of convex portions, in so has a surface that irregularities are continuous, metal (a ) Ions are electrolytically reduced to deposit metal (A) fine particles, and the shape of the deposited particles is substantially spherical, and relatively uniform particles can be efficiently formed.

以下に本発明の「金属微粒子の製造方法(第1の態様)」、及び「金属微粒子の製造装置(第2の態様)」を説明する。
〔1〕金属微粒子の製造方法(第1の態様)
本発明の第1の態様である「金属微粒子の製造方法」は、金属(A)のイオンを含む還元溶液中で陰極(E)と陽極(F)間に通電して金属(A)のイオンを電解還元して金(A)の微粒子を析出させる金属微粒子の製造方法において、少なくとも還元溶液中に浸漬される、陰極(E)の表面部は、還元溶液中で金属(A)の析出電位よりも貴な電位で析出する金属(B)からなり、かつ平均曲率半径5〜500nmの半球状ないし球状の複数の凸部と、この複数の凸部間の凹部と、で凹凸形状が連続する表面によって形成されており、電解還元により陰極(E)表面部の金属(B)からなる凹凸形状の凸部近傍に金属(A)の微粒子を析出させる、ことを特徴とする。
上記の電解還元により、金属(A)のイオンを還元して陰極表面上に金属(A)の微粒子を析出させることが可能である。
尚、以下、本発明の電解還元において還元反応が行われる水溶液を還元水溶液という。
The “metal fine particle production method (first aspect)” and “metal fine particle production apparatus (second aspect)” of the present invention will be described below.
[1] Method for producing metal fine particles (first aspect)
The “method for producing fine metal particles” according to the first aspect of the present invention is a method in which a metal (A) ion is energized between a cathode (E) and an anode (F) in a reducing solution containing metal (A) ions. In the method for producing metal fine particles in which gold (A) fine particles are deposited by electrolytic reduction of the metal, the surface portion of the cathode (E) immersed in the reducing solution is at least the deposition potential of the metal (A) in the reducing solution. a metal (B) also precipitated in noble potential than, and continuous and semi-spherical or a plurality of protrusions of spherical curvatures 5 to 500 nm, and the recess between the plurality of convex portions, in the uneven shape The metal (A) fine particles are deposited in the vicinity of the convex and concave portions made of the metal (B) on the surface of the cathode (E) by electrolytic reduction.
By the above electrolytic reduction, metal (A) ions can be reduced to deposit metal (A) fine particles on the cathode surface.
Hereinafter, an aqueous solution in which a reduction reaction is performed in the electrolytic reduction of the present invention is referred to as a reducing aqueous solution.

(1)金属(A)と金属(B)
電解還元において、金属元素が溶解したり、析出したりする電位は金属元素によりそれぞれ異なる。還元水溶液中においてある金属板を正極とすると、ある電圧以上で該金属は溶解して(酸化されて)イオンとなる。一方、金属板を負極にすると、溶液中でイオン化していた金属はある電位以上で電子を受け取って(還元されて)金属原子となり該負極に析出する。このイオン化したり、還元したりする電位は金属によって異なり、この電位は標準電極電位といわれる。この順序はイオン化傾向といわれ、イオン化し易い金属を卑な金属、イオン化しにくい金属を貴な金属という。電解還元において、卑な金属は相対的に大きなマイナスの電圧をかけなければ還元されて析出することはない、一方、貴な金属は相対的に小さなマイナス電圧で還元されて析出する。
(1) Metal (A) and Metal (B)
In electrolytic reduction, the potential at which a metal element is dissolved or deposited varies depending on the metal element. When a metal plate in the reducing aqueous solution is used as a positive electrode, the metal is dissolved (oxidized) into ions at a certain voltage or higher. On the other hand, when the metal plate is used as a negative electrode, the metal ionized in the solution receives electrons (reduced) at a certain potential or higher to be converted into metal atoms and deposited on the negative electrode. The potential for ionization or reduction varies depending on the metal, and this potential is referred to as a standard electrode potential. This order is called an ionization tendency. A metal that is easily ionized is called a base metal, and a metal that is difficult to ionize is called a noble metal. In electrolytic reduction, a base metal is not reduced and deposited unless a relatively large negative voltage is applied, while a noble metal is reduced and deposited with a relatively small negative voltage.

本発明において、金属(B)は金属(A)より貴な金属であり、金属(B)の具体例として、金、白金、パラジウム、イリジウム、銀、銅、スズ、鉄、ニッケル、コバルト、および亜鉛から選択される1種を例示することができる。金属(A)は金属(B)よりは卑な金属であり、上記例示中においては最も貴な金属である金を除く金属から選択される1種であり、かつ金属(B)のイオンの析出電位よりも卑な電位で析出するイオンを形成する金属から選択することができる。前記金属(B)の中でも金、銀、または白金が好ましく、銀が特に好ましい。前記金属(A)としては実用上銅が好ましい。   In the present invention, the metal (B) is a noble metal than the metal (A), and specific examples of the metal (B) include gold, platinum, palladium, iridium, silver, copper, tin, iron, nickel, cobalt, and One type selected from zinc can be exemplified. Metal (A) is a base metal than metal (B), and is one type selected from metals other than gold, which is the most noble metal in the above examples, and precipitation of ions of metal (B) It can be selected from metals that form ions that are deposited at a potential lower than the potential. Among the metals (B), gold, silver, or platinum is preferable, and silver is particularly preferable. Practically copper is preferred as the metal (A).

(2)還元水溶液
還元水溶液を形成する金属(A)のイオンと、金属(B)のイオン、および任意の成分である有機分散剤とアルカリ金属イオンについて説明する。
尚、還元水溶液は水溶液、該水溶液にメタノール、エタノール等の親水性化合物を添加した混合溶液、および親水性溶液が使用可能であるが水溶液の使用が好ましい。
(2−1)金属(A)のイオン
還元水溶液中で金属(A)のイオンを形成するイオン性化合物として、酢酸塩、硫酸塩、ピロリン酸塩、硝酸塩、シアン化金属等が挙げられるが、これらの中でも酢酸塩、硫酸塩等の使用が好ましい。金属(A)として銅を使用する場合には、具体例として、酢酸銅、硫酸銅、硝酸銅、ピロリン酸銅、シアン化銅等が挙げられるが、実用上酢酸銅(II)の1水和物((CHCOO)Cu・1HO)または硫酸銅の5水和物(CuSO・5HO)の使用が特に望ましい。
還元水溶液中の好ましい金属(A)のイオン濃度は、0.01〜4.0mol/L(またはmol/dm)である。該イオン濃度が0.01(mol/L)未満では、金属(A)微粒子の生成量が低減し還元水溶液からの収率が低下するという不都合を生じ、4.0(mol/L)を超えると生成される粒子間での粗大な凝集がおこるおそれがある。より好ましい銅イオン濃度は、0.05〜0.5モル(mol/L)である。
(2) Reduced aqueous solution The metal (A) ion, the metal (B) ion, and the optional organic dispersant and alkali metal ion forming the reduced aqueous solution will be described.
The reducing aqueous solution may be an aqueous solution, a mixed solution obtained by adding a hydrophilic compound such as methanol or ethanol to the aqueous solution, or a hydrophilic solution, but the aqueous solution is preferably used.
(2-1) Examples of ionic compounds that form ions of the metal (A) in the ion-reduced aqueous solution of the metal (A) include acetates, sulfates, pyrophosphates, nitrates, and metal cyanides. Of these, the use of acetate, sulfate and the like is preferable. When copper is used as the metal (A), specific examples include copper acetate, copper sulfate, copper nitrate, copper pyrophosphate, copper cyanide, etc., but practically monohydrate copper (II) acetate. The use of the product ((CH 3 COO) 2 Cu · 1H 2 O) or copper sulfate pentahydrate (CuSO 4 · 5H 2 O) is particularly desirable.
A preferable ion concentration of the metal (A) in the reducing aqueous solution is 0.01 to 4.0 mol / L (or mol / dm 3 ). If the ion concentration is less than 0.01 (mol / L), the production amount of the metal (A) fine particles is reduced, and the yield from the reduced aqueous solution is lowered, resulting in a disadvantage that the yield exceeds 4.0 (mol / L). There is a possibility that coarse aggregation occurs between the generated particles. A more preferable copper ion concentration is 0.05 to 0.5 mol (mol / L).

(2−2)有機分散剤
本発明の電解還元により金属微粒子を形成する際に、陰極(E)と陽極(F)間を高電圧に通電すれば、有機分散剤が存在しなくとも金属(A)のイオンを還元して微粒子を析出することは可能であるが、析出する微粒子の粒子径等の均一性を向上するためには還元水溶液中に有機分散剤を添加して、より低電圧で電解還元することが好ましい。有機分散剤は、水に対して溶解性を有していると共に、還元水溶液中で析出した金属微粒子の少なくとも表面の一部を覆うように存在して、金属粒子の微粒子化を促進すると共に分散性を向上、維持する作用を発揮する。
一般に還元溶液中の有機分散剤の濃度が低い場合には、陰極表面に凹凸形状に粒子が析出し、濃度が高くなると、粒子を形成しやすくなる傾向がある。本発明において、有機分散剤の添加量は、還元水溶液から析出する金属微粒子の濃度にもよるが、還元水溶液中の金属原子100質量部に対して、0.1〜500質量部が好ましく、5〜100質量部がより好ましい。有機分散剤の添加量が前記範囲の下限未満では微粒子化を促進する効果が十分に得られない場合があり、一方、前記範囲の上限を超える場合には、還元水溶液中での分散性に不都合がなくとも、金属(A)の微粒子分散溶液を塗布後、乾燥・焼成して導電性の焼結金属を得る際に、過剰の有機分散剤が、金属微粒子の焼結を阻害して、焼結金属の緻密さが低下する場合があると共に、有機分散剤の焼成残渣が、導電膜または導電回路中に残存して、導電性を低下させるおそれがある。本発明の有機分散剤は上記分散作用を奏するものであれば、特に制限されるものではない。
(2-2) Organic Dispersant When forming fine metal particles by electrolytic reduction of the present invention, if a high voltage is passed between the cathode (E) and the anode (F), the metal ( It is possible to reduce the ions of A) to precipitate fine particles. However, in order to improve the uniformity of the particle size and the like of the precipitated fine particles, an organic dispersant is added to the reducing aqueous solution to lower the voltage. It is preferable to carry out electrolytic reduction with. The organic dispersant is soluble in water and exists so as to cover at least a part of the surface of the metal fine particles deposited in the reducing aqueous solution, and promotes the formation of fine metal particles and disperses them. It exhibits the effect of improving and maintaining the properties.
In general, when the concentration of the organic dispersant in the reducing solution is low, particles are deposited in a concavo-convex shape on the cathode surface, and when the concentration is high, particles tend to be easily formed. In the present invention, the amount of the organic dispersant added is preferably 0.1 to 500 parts by mass with respect to 100 parts by mass of metal atoms in the reducing aqueous solution, although it depends on the concentration of fine metal particles precipitated from the reducing aqueous solution. -100 mass parts is more preferable. If the addition amount of the organic dispersant is less than the lower limit of the above range, the effect of promoting the formation of fine particles may not be sufficiently obtained. On the other hand, if it exceeds the upper limit of the above range, the dispersibility in the reducing aqueous solution is inconvenient. Even when the fine particle dispersion solution of the metal (A) is applied, drying and baking are performed to obtain a conductive sintered metal. In some cases, the denseness of the binder metal may be reduced, and the baking residue of the organic dispersant may remain in the conductive film or the conductive circuit, thereby reducing the conductivity. The organic dispersant of the present invention is not particularly limited as long as it exhibits the above dispersing action.

前記有機分散剤としては、その化学構造にもよるが分子量が100〜100,000程度の、水に対して溶解性を有し、かつ還元水溶液で金属イオンから還元反応で析出した金属粒子の微粒子化を促進させることが可能なもので、かつ炭素原子、水素原子、酸素原子、および窒素原子から選択された2種以上の原子からなる化合物(高分子化合物も含む)の有機分散剤が好ましい。
上記有機分散剤として好ましいのは、ポリビニルピロリドン、ポリエチレンイミン等のアミン系の高分子;ポリアクリル酸、カルボキシメチルセルロース等のカルボン酸基を有する炭化水素系高分子;ポリアクリルアミド等のアクリルアミド;ポリビニルアルコール、ポリエチレンオキシド、更にはデンプン、およびゼラチンの中から選択される1種または2種以上である。
上記例示した有機分散剤の具体例として、ポリビニルピロリドン(分子量:1000〜500、000)、ポリエチレンイミン(分子量:100〜100,000)、カルボキシメチルセルロース(アルカリセルロースのヒドロキシル基Na塩のカルボキシメチル基への置換度:0.4以上、分子量:1000〜100,000)、ポリアクリルアミド(分子量:100〜6,000,000)、ポリビニルアルコール(分子量:1000〜100,000)、ポリエチレングリコール(分子量:100〜50,000)、ポリエチレンオキシド(分子量:50,000〜900,000)、ゼラチン(平均分子量:61,000〜67,000)、水溶性のデンプン等が挙げられる。
As the organic dispersant, fine particles of metal particles having a molecular weight of about 100 to 100,000, which are soluble in water, and deposited by reduction reaction from metal ions in a reducing aqueous solution, depending on the chemical structure. The organic dispersant is preferably a compound (including a polymer compound) composed of two or more kinds of atoms selected from carbon atoms, hydrogen atoms, oxygen atoms, and nitrogen atoms.
The organic dispersant is preferably an amine polymer such as polyvinylpyrrolidone or polyethyleneimine; a hydrocarbon polymer having a carboxylic acid group such as polyacrylic acid or carboxymethylcellulose; an acrylamide such as polyacrylamide; a polyvinyl alcohol; One or more selected from polyethylene oxide, further starch, and gelatin.
Specific examples of the organic dispersant exemplified above include polyvinylpyrrolidone (molecular weight: 1000 to 500,000), polyethyleneimine (molecular weight: 100 to 100,000), carboxymethylcellulose (to the carboxymethyl group of the hydroxyl group Na salt of alkali cellulose). Substitution degree: 0.4 or more, molecular weight: 1000 to 100,000, polyacrylamide (molecular weight: 100 to 6,000,000), polyvinyl alcohol (molecular weight: 1000 to 100,000), polyethylene glycol (molecular weight: 100) -50,000), polyethylene oxide (molecular weight: 50,000-900,000), gelatin (average molecular weight: 61,000-67,000), water-soluble starch and the like.

(2−3)アルカリ金属イオン
本発明の電解還元により金属微粒子を形成する際に、還元水溶液中にアルカリ金属イオンを添加することが好ましい。アルカリ金属イオンの存在下に電解還元を行うと得られる金属(A)の微粒子のデンドライト化をより抑制する効果が発揮される。
該アルカリ金属イオンとしてはリチウムイオン、ナトリウムイオン、およびカリウムイオンから選択される1種または2種以上が例示できる。このようなアルカリ金属イオンの供給源としてフッ化物、塩化物、臭化物、沃化物、酢酸塩、炭酸塩、炭酸水素塩、硫酸塩、ピロリン酸塩、およびシアン化物から選択される1種または2種以上が挙げられる。還元水溶液におけるアルカリ金属イオン濃度は0.002〜1.0(mol/L)が好ましい。
(2-3) Alkali Metal Ion When forming fine metal particles by electrolytic reduction of the present invention, it is preferable to add an alkali metal ion to the reducing aqueous solution. When electrolytic reduction is performed in the presence of an alkali metal ion, an effect of further suppressing dendrite formation of the fine particles of the metal (A) obtained is exhibited.
Examples of the alkali metal ion include one or more selected from lithium ions, sodium ions, and potassium ions. One or two kinds selected from fluoride, chloride, bromide, iodide, acetate, carbonate, bicarbonate, sulfate, pyrophosphate, and cyanide as a source of such alkali metal ions The above is mentioned. The alkali metal ion concentration in the reducing aqueous solution is preferably 0.002 to 1.0 (mol / L).

(3)電極
(3−1)陽極(F)
本発明の還元水溶液中で使用する陽極(F)の材料は、特に限定されるものではなく、銅、カーボン、白金、チタン、イリジウム等の棒状・板状・網状の形状電極が例示できる。(3−2)陰極(E)
陰極(E)の表面部は、還元溶液中で金属(A)の析出電位よりも貴な電位で析出する金属(B)からなり、かつ平均曲率半径5〜500nmの半球状ないし球状の複数の凸部と、この複数の凸部間の凹部と、で凹凸形状が連続する表面形状に形成されている。
前記貴な電位で析出する金属(B)としては、前述の通り、金、銅、銀、ニッケル、コバルト、鉄、亜鉛、スズ、白金、パラジウム、およびイリジウムから選択される1種が例示できるが、これらの中で銀が好ましい。金属(A)は、金属(B)のイオンの析出電位よりも卑な電位で析出するイオンを形成する金属であり、金以外の前記金属が例示できるが、これらの中で銅が好ましい。尚、金属(B)としてはより貴の金属の方が、金属(A)の結晶核生成の駆動力が小さくて済むことが期待できる。
還元溶液中に浸漬される、陰極(E)の表面部に凹凸形状があると、その部分は活性化されて、電極表面の電位差が低くても粒子が形成され易くなる傾向があり、このような効果は平均曲率半径5〜500nmの半球状ないし球状の複数の凸部と、この複数の凸部間の凹部と、で凹凸形状が連続する表面によって形成されている場合に発揮される。平均曲率半径が前記範囲の下限未満では凸状の効果が低下して、粒子状物が形成されづらくなり、一方、平均曲率半径が前記範囲の上限を超えると凹凸状の効果が返って低下して、粒子状物が形成されづらくなる。
尚、上記平均曲率半径は、半球状ないし球状の球状の複数の凸部と、この複数の凸部間の凹部と、で凹凸形状が連続する表面によって形成された陰極を切断して得られる断面における任意の20個程度の曲率半径を走査型電子顕微鏡(SEM)で得られた画像に基づいて測定した値の平均値から求めることができる。
(3) Electrode (3-1) Anode (F)
The material of the anode (F) used in the reducing aqueous solution of the present invention is not particularly limited, and examples thereof include rod-like, plate-like, and net-like electrodes such as copper, carbon, platinum, titanium, and iridium. (3-2) Cathode (E)
The surface portion of the cathode (E) is made of a metal (B) that is deposited in a reducing solution at a potential nobler than the deposition potential of the metal (A), and has a plurality of hemispherical or spherical shapes having an average curvature radius of 5 to 500 nm . and the convex portion is formed on the surface shape and concave portions between the plurality of protrusions, which in the uneven shape continuous.
Examples of the metal (B) deposited at the noble potential include one kind selected from gold, copper, silver, nickel, cobalt, iron, zinc, tin, platinum, palladium, and iridium as described above. Of these, silver is preferred. The metal (A) is a metal that forms ions that deposit at a base potential lower than the deposition potential of the ions of the metal (B), and examples of the metal other than gold include copper. Among these metals, copper is preferable. As the metal (B), a noble metal can be expected to have a smaller driving force for crystal nucleation of the metal (A).
If the surface of the cathode (E) that is immersed in the reducing solution has an uneven shape, the portion is activated and particles tend to be formed even if the potential difference on the electrode surface is low. such effect is exhibited when it is formed with a hemispherical shape or a plurality of protrusions of spherical curvatures 5 to 500 nm, the surface and concave portions between the plurality of protrusions, which in the uneven shape continuous. If the average radius of curvature is less than the lower limit of the range, the convex effect is reduced, making it difficult to form particulate matter, whereas if the average radius of curvature exceeds the upper limit of the range, the uneven effect is reduced and reduced. This makes it difficult to form particulate matter.
Incidentally, the average radius of curvature, a plurality of convex portions of the semi-spherical or spherical spherical, obtained with concave portions between the plurality of convex portions, in irregularities by cutting a cathode formed by a continuous surface About 20 arbitrary radii of curvature in the cross section can be obtained from an average value of values measured based on an image obtained by a scanning electron microscope (SEM).

陰極(E)の形成方法は特に限定されるものではないが、下記電解還元、無電解還元、および金属微粒子分散溶液からなるペーストを陰極前駆体表面に塗布後焼結して形成する方法により、それぞれその表面が平均曲率半径5〜500nmの半球状ないし球状の複数の凸部と、この複数の凸部間の凹部と、で凹凸形状が連続する表面を形成することが可能である。
(イ)電解還元法による陰極(E)表面に凹凸形状の形成
電解還元法による陰極(E)表面に凹凸形状を形成する方法としては、例えば本明細書の実施例1、2に記載されているように、還元水溶液中に、金属(B)を形成する硝酸銀と、特定濃度の有機分散剤を添加して電解還元により、陰極(E)の表面に平均曲率半径が150nm程度の半球状ないし球状の複数の凸部と、この複数の凸部間の凹部と、で凹凸形状が連続するように銀を析出させることができる。
The method for forming the cathode (E) is not particularly limited, but by the method of forming the following electrolytic reduction, electroless reduction, and a paste comprising a metal fine particle dispersion solution on the cathode precursor surface and then sintering it, a plurality of convex portions of the hemispherical or spherical surface that is the average radius of curvature 5~500nm respectively, and concave portions between the plurality of convex portions, in uneven shape can be formed a surface continuous.
(A) Formation of irregularities on the surface of the cathode (E) by electrolytic reduction The method for forming irregularities on the surface of the cathode (E) by electrolytic reduction is described, for example, in Examples 1 and 2 of this specification. As described above, silver nitrate that forms the metal (B) and an organic dispersant having a specific concentration are added to the reducing aqueous solution, and electrolytic reduction reduces the surface of the cathode (E) to a hemisphere or an average curvature radius of about 150 nm. a plurality of spherical convex portion, the concave portions between the plurality of convex portions, in irregularities can be precipitated silver so as to be continuous.

(ロ)無電解還元法による陰極(E)表面に凹凸形状の形成無電解還元法による陰極(E)表面に凹凸形状を形成する方法としては、例えば本明細書の実施例3に記載されているように、還元水溶液中に、金属(B)を形成する硝酸銀、還元剤として水素化ホウ素ナトリウム、錯化剤としてエチレンジアミン、特定濃度の有機分散剤、を添加して無電解還元により、陰極(E)の表面に平均曲率半径が250nmの半球状ないし球状の複数の凸部と、この複数の凸部間の凹部と、で凹凸形状が連続するように銀を析出させることができる。
(ハ)金属微粒子分散溶液の焼結による、陰極(E)表面に凹凸形状の形成
金属微粒子分散溶液の焼結による陰極(E)表面に凹凸形状を形成する方法としては、例えば本明細書の実施例4に記載されているように、平均粒子径が約30nmの銀微粒子をエチレングリコール溶液中で10質量%になるように分散させて銀微粒子分散液を調製する。次に前記分散液をスプレー塗工によって大気雰囲気中で陰極用Si基材表面上に塗布する。この基材を窒素ガス雰囲気中で250℃に30分間保持して熱処理することにより、基材表面が銀からなる凹凸形状の陰極(E)を形成することができる。このようにして陰極用Si基材表面上に、表面の平均曲率半径が50nm程度の半球状ないし球状の複数の凸部と、この複数の凸部間の凹部と、で凹凸形状が連続する表面形状の陰極(E)を形成することができる。
尚、上記電解還元法、及び無電解還元法による陰極(E)表面に凹凸形状の形成、並びに金属微粒子分散溶液の焼結による、陰極(E)表面に凹凸形状が形成される場合において、連続する凹凸形状が形成されている該形状間には隣接する凹凸形状の曲率半径とは異なる、より大きい又は小さい曲率半径の半球状ないし球状の凸部及び/又は凹部が含まれていてもよい。
(B) Formation of concavo-convex shape on the surface of the cathode (E) by the electroless reduction method As a method for forming the concavo-convex shape on the surface of the cathode (E) by the electroless reduction method, for example, it is described in Example 3 of this specification. As shown, the silver nitrate that forms the metal (B), sodium borohydride as the reducing agent, ethylenediamine as the complexing agent, and an organic dispersant having a specific concentration are added to the reducing aqueous solution, and the cathode ( a plurality of protrusions average radius of curvature on the surface of 250nm hemispherical or spherical in E), the concave portions between the plurality of convex portions, in irregularities can be precipitated silver so as to be continuous.
(C) Forming irregularities on the cathode (E) surface by sintering the metal fine particle dispersion solution As a method for forming irregularities on the cathode (E) surface by sintering the metal fine particle dispersion solution, for example, As described in Example 4, a silver fine particle dispersion is prepared by dispersing silver fine particles having an average particle diameter of about 30 nm in an ethylene glycol solution so as to be 10% by mass. Next, the dispersion is applied onto the surface of the Si substrate for cathode in the air atmosphere by spray coating. By subjecting this base material to a heat treatment by holding it at 250 ° C. for 30 minutes in a nitrogen gas atmosphere, an uneven cathode (E) having a base material surface made of silver can be formed. In this way the cathode Si substrate surface, and a plurality of protrusions average radius of curvature of about 50nm hemispherical or spherical surface, and concave portions between the plurality of convex portions, in the uneven shape continuous A surface- shaped cathode (E) can be formed.
In addition, in the case where the uneven shape is formed on the surface of the cathode (E) by the electrolytic reduction method and the electroless reduction method, and the uneven shape is formed on the surface of the cathode (E) by sintering the metal fine particle dispersion solution, Between the shapes in which the concavo-convex shape is formed, hemispherical or spherical convex portions and / or concave portions having a larger or smaller curvature radius different from the curvature radius of the adjacent concavo-convex shape may be included.

(4)電解還元条件
本発明の電解還元は、還元水溶液中の陽極(F)と陰極(E)間に、金属(A)のイオンが還元されて金属(A)の微粒子が形成される電位となるように印加する。この場合、陰極電極電位が−1V以下が好ましい。該陰極電極電位が−1Vを超える場合には電解還元で金属(A)が陰極表面にめっき状態で析出するおそれがある。
また、還元水溶液中の陽極と陰極間に、20mA/cm以上の電流密度で通電することが好ましく、25〜200mA/cmがより好ましい。電流密度が20mA/cm未満では金属(A)の微粒子金属の析出速度が遅くなり歩留まりが低下する問題があると共に析出形態が膜状となるおそれがあり、ナノサイズの金属微粒子の生成量は減少する。
電解還元温度は、10〜70℃が好ましく、10〜40℃がより好ましい。電解還元温度は高温になるほど電解還元速度は速くなり、低温になるほど析出する粒子の粒子径は小さくなる傾向がある。電解還元開始後数秒から数分でナノサイズの微粒子が生成し、生成した粒子はその後還元水溶液中に沈殿する。
(4) Electrolytic reduction conditions The electrolytic reduction according to the present invention is a potential at which metal (A) ions are reduced to form fine particles of metal (A) between the anode (F) and the cathode (E) in the reducing aqueous solution. Apply so that In this case, the cathode electrode potential is preferably −1 V or less. When the cathode electrode potential exceeds −1 V, the metal (A) may be deposited in a plated state on the cathode surface by electrolytic reduction.
Moreover, it is preferable to supply with an electric current density of 20 mA / cm < 2 > or more between the anode and cathode in reducing aqueous solution, and 25-200 mA / cm < 2 > is more preferable. If the current density is less than 20 mA / cm 2 , the deposition rate of the metal (A) particulate metal is slow and the yield is lowered, and the deposition form may be in the form of a film. Decrease.
The electrolytic reduction temperature is preferably 10 to 70 ° C, more preferably 10 to 40 ° C. The higher the electrolytic reduction temperature, the faster the electrolytic reduction rate, and the lower the temperature, the smaller the particle size of the precipitated particles. Nano-sized fine particles are produced within a few seconds to several minutes after the start of electrolytic reduction, and the produced particles are then precipitated in a reducing aqueous solution.

(5)析出金属微粒子
上記電解還元で得られる金属微粒子の一次粒子の平均粒子径の制御は、使用する金属(A)のイオン、金属(B)のイオン、これらの濃度、有機分散剤、アルカリ金属イオンの種類、かく拌速度、温度、時間、pH等の調整により行うことが可能である。上記した電解還元により得られる金属微粒子は、一次粒子の平均粒子径が好ましくは1〜500nm以下、より好ましくは1〜150nm程度の範囲にあり、その形状は凝集性の少ない、球状で粒子径のばらつきが比較的すくない微粒子である。
ここで、一次粒子の平均粒子径とは、二次粒子を構成する個々の金属微粒子の一次粒子の直径の意味である。該一次粒子径は、電子顕微鏡を用いて得られる画像から測定することができる。また、平均粒子径とは、一次粒子の数平均粒子径を意味する。
(5) Precipitated metal fine particles The control of the average particle diameter of the primary particles of the metal fine particles obtained by the above electrolytic reduction is carried out by using the ions of the metal (A), the ions of the metal (B), their concentrations, organic dispersants, alkalis. It can be performed by adjusting the kind of metal ion, the stirring speed, temperature, time, pH and the like. The metal fine particles obtained by electrolytic reduction described above have a primary particle average particle size of preferably 1 to 500 nm or less, more preferably in the range of about 1 to 150 nm, and the shape thereof is spherical and has a small particle size. Fine particles with relatively little variation.
Here, the average particle diameter of the primary particles means the diameter of the primary particles of the individual metal fine particles constituting the secondary particles. The primary particle diameter can be measured from an image obtained using an electron microscope. The average particle size means the number average particle size of primary particles.

(6)金属微粒子の回収
前記電解還元により、陰極(E)表面の凸部近傍に析出した金属(A)の微粒子を脱離させながら陰極(E)表面の凸部近傍に新たに金属(A)の析出を継続することが好ましい。
該脱離の手段としては、特に制限されるものではないが掻き取り、吸い取り、超音波振動等が例示でき、これらの1種または2種以上を組み合わせて回収することも可能である。
前記脱離の手段の中でも実用性の点から掻き取りによる回収が好ましく、より具体的には掻き取り用ブレードを用いて脱離後回収することがより好ましい。この場合、金属微粒子の金属イオンの電解還元反応により一次粒子の粒子径が1〜500nmの範囲に制御するためには陰極(E)表面と掻き取り用ブレードとの距離が20mm以下で掻き取ることが特に好ましい。その理由は、金属微粒子の脱離を効率的に行うために、ある程度金属微粒子が凝集する厚さにするとともに、金属微粒子層の最表面と陰極(E)表面との間に大きな移動速度差を生じさないためである。かかる観点から、陰極(E)表面と掻き取り用ブレードの距離が0.1〜5mmがより好ましい。なお、カソード表面と掻き取り用ブレードの距離が0.1mm未満の場合は、電極の有効面積が減少する傾向があるが、実用上差し支えない場合は、例えば掻き取り用ブレードを電極に接触させて、掻き取ることも可能である。
前記掻き取り用ブレードの材質としては、ゴムまたはポリテトラフルオロエチレン等のプラスチック材料を好適に使用することができる。その理由は、該ブレードが金属微粒子に接触しても電極として作用しない絶縁性が必要だからである。
また、陰極表面付近に析出した微粒子を脱離、回収するために陰極に超音波振動等の揺動を与えることが可能な構造とすることもできる。
(6) Collection of metal fine particles By the electrolytic reduction, metal (A) newly deposited near the convex portion on the surface of the cathode (E) while detaching the fine particles of metal (A) deposited near the convex portion on the surface of the cathode (E). ) Is preferably continued.
The means for desorption is not particularly limited, and examples thereof include scraping, sucking, ultrasonic vibration, and the like, and it is also possible to collect one or a combination of two or more of these.
Among the means for desorption, recovery by scraping is preferable from the viewpoint of practicality, and more specifically, recovery after desorption using a scraping blade is more preferable. In this case, in order to control the particle diameter of the primary particles within the range of 1 to 500 nm by the electrolytic reduction reaction of the metal ions of the metal fine particles, the distance between the surface of the cathode (E) and the scraping blade is scraped at 20 mm or less. Is particularly preferred. The reason is that, in order to efficiently remove the metal fine particles, the metal fine particles have a thickness to a certain extent, and a large moving speed difference is generated between the outermost surface of the metal fine particle layer and the cathode (E) surface. This is because it does not occur. From this viewpoint, the distance between the surface of the cathode (E) and the scraping blade is more preferably 0.1 to 5 mm. In addition, when the distance between the cathode surface and the scraping blade is less than 0.1 mm, the effective area of the electrode tends to decrease. However, when practically usable, the scraping blade is brought into contact with the electrode, for example. It is also possible to scrape off.
As a material of the scraping blade, a plastic material such as rubber or polytetrafluoroethylene can be preferably used. The reason is that an insulating property that does not act as an electrode even when the blade contacts the metal fine particles is necessary.
Further, in order to desorb and collect the fine particles deposited in the vicinity of the cathode surface, it is possible to adopt a structure capable of giving a swing such as ultrasonic vibration to the cathode.

(7)生成金属微粒子の洗浄と回収
回収された金属微粒子は、還元水溶液中に長い時間保持されると、該水溶液中に溶解している酸素により徐々に酸化を受けて、金属酸化物を形成するおそれがある。一方、エタノール等のアルコール溶媒中では、金属微粒子は比較的酸化を受けづらく、安定して存在するので電解還元槽から回収された金属微粒子スラリーはろ過操作により、金属微粒子を回収して、炭素原子数1〜4の低級アルコールを洗浄液として、還元反応水溶液から同伴されてきた不純物を除去するために、洗浄されることが望ましい。
洗浄操作の具体例としては、回収した金属微粒子にエタノール等のアルコールを添加して撹拌洗浄後、遠心分離機で金属微粒子を回収する洗浄操作を1度または2度以上行い、その後、得られた金属微粒子を回収する方法が挙げられる。
(7) Cleaning and recovery of generated metal fine particles When the collected metal fine particles are kept in a reducing aqueous solution for a long time, they are gradually oxidized by oxygen dissolved in the aqueous solution to form metal oxides. There is a risk. On the other hand, in an alcohol solvent such as ethanol, the metal fine particles are relatively less susceptible to oxidation and exist stably. Therefore, the metal fine particle slurry recovered from the electrolytic reduction tank collects the metal fine particles by filtration operation to obtain carbon atoms. Washing is preferably performed in order to remove impurities entrained from the reduction reaction aqueous solution by using a lower alcohol of formulas 1 to 4 as a washing liquid.
As a specific example of the washing operation, an alcohol such as ethanol was added to the collected metal fine particles, and after washing with stirring, the washing operation for collecting the metal fine particles with a centrifuge was performed once or twice, and then obtained. A method for recovering metal fine particles can be mentioned.

また、上記電解還元終了後に、還元水溶液中に下記の凝集促進剤を添加して有機分散剤の分散作用を減じ、粗金属微粒子を該水溶液中で沈殿(スラリー状の濃縮も含む)させると共に必要により水、またはアルコール溶液等で洗浄して回収、または粗金属微粒子を該水溶液中で沈殿させて回収後に必要により水、またはアルコール溶液等で洗浄して、その表面が有機分散剤で覆われた金属微粒子を得ることが出来る。以下に、前記した凝集促進剤について説明する。
このような凝集促進剤としては、酸化性物質、またはハロゲン化合物を例示することができる。前記酸化性物質としては、酸素ガス、過酸化水素、硝酸等が例示できる。
前記ハロゲン化合物としては、塩化メチル、塩化メチレン、クロロホルム、四塩化炭素、塩化エチル、1,1−ジクロルエタン、1,2−ジクロルエタン、1,1−ジクロルエチレン、1,2−ジクロルエチレン、トリクロルエチレン、四塩化アセチレン、エチレンクロロヒドリン、1,2−ジクロルプロパン、塩化アリル、クロロプレン、クロルベンゼン、塩化ベンジル、o−ジクロルベンゼン、m−ジクロルベンゼン、p−ジクロルベンゼン、α−クロルナフタリン、β−クロルナフタリン、ブロモホルム、およびブロムベンゼンの中から選択される1種または2種以上が例示できる。さらに、アセトンやメチルエチルケトンといったケトン類と混合して使用することもできる。
In addition, after the electrolytic reduction is completed, the following aggregation promoter is added to the reducing aqueous solution to reduce the dispersing action of the organic dispersant, and the coarse metal fine particles are precipitated (including slurry concentration) in the aqueous solution. After washing with water or an alcohol solution, or collecting the coarse metal fine particles in the aqueous solution, the surface was washed with water or an alcohol solution, if necessary, and the surface was covered with an organic dispersant. Metal fine particles can be obtained. Hereinafter, the above-described aggregation accelerator will be described.
Examples of such aggregation promoters include oxidizable substances or halogen compounds. Examples of the oxidizing substance include oxygen gas, hydrogen peroxide, and nitric acid.
Examples of the halogen compound include methyl chloride, methylene chloride, chloroform, carbon tetrachloride, ethyl chloride, 1,1-dichloroethane, 1,2-dichloroethane, 1,1-dichloroethylene, 1,2-dichloroethylene, and trichloro. Ethylene, acetylene tetrachloride, ethylene chlorohydrin, 1,2-dichloropropane, allyl chloride, chloroprene, chlorobenzene, benzyl chloride, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, α- Examples thereof include one or more selected from chloronaphthalene, β-chloronaphthalene, bromoform, and bromobenzene. Furthermore, it can also be used by mixing with ketones such as acetone and methyl ethyl ketone.

(8)その他
回収した金属微粒子は、分散溶媒に分散させて金属微粒子分散溶液として、電子材料用の導電性ペーストのような配線形成材料、プリント配線、半導体の内部配線、プリント配線板と電子部品との接続等に利用することができる。
(8) Other recovered metal fine particles are dispersed in a dispersion solvent and used as a metal fine particle dispersion solution to form a wiring forming material such as a conductive paste for electronic materials, printed wiring, semiconductor internal wiring, printed wiring boards and electronic components. Can be used to connect

〔2〕金属微粒子の製造装置(第2の態様)
本発明の第2の態様である「金属微粒子の製造装置」は、金属(A)のイオンを含む還元溶液中で、陰極(E)と陽極(F)間に通電して金属(A)のイオンを電解還元して金属(A)の微粒子を析出させる金属微粒子の製造装置であって、少なくとも還元溶液中に浸漬している、陰極(E)の表面部が還元溶液中で金属(A)の析出電位よりも貴な電位で析出する金属(B)からなり、かつ平均曲率半径5〜500nmの半球状ないし球状の複数の凸部と、この複数の凸部間の凹部と、で凹凸形状が連続する表面形状を有していることを特徴とする。本発明の金属微粒子の製造装置において、還元溶液中に浸漬している、陰極(E)の表面部が金属(A)の析出電位よりも貴な電位で析出する金属(B)からなり、かつ平均曲率半径5〜500nmの半球状ないし球状の複数の凸部と、この複数の凸部間の凹部と、で凹凸形状が連続する表面形状を有しているので、金属(A)のイオンを電解還元して金属(A)の微粒子を析出させる際に析出する粒子の形状が略球状で、比較的均一な粒子を効率よく形成することが可能となる。
[2] Metal fine particle production apparatus (second embodiment)
The “metal fine-particle production apparatus” according to the second aspect of the present invention is a reducing solution containing ions of metal (A), and a current is passed between the cathode (E) and the anode (F). An apparatus for producing fine metal particles in which fine particles of metal (A) are deposited by electrolytic reduction of ions, and at least the surface of the cathode (E) immersed in the reducing solution is metal (A) in the reducing solution. a metal than a deposition potential precipitated with noble potential (B), and a plurality of convex portions of the hemispherical or spherical curvatures 5 to 500 nm, and the recess between the plurality of convex portions, in irregularities It has a surface shape in which the shape is continuous . In the apparatus for producing fine metal particles of the present invention, the surface portion of the cathode (E) immersed in the reducing solution is composed of the metal (B) deposited at a potential nobler than the deposition potential of the metal (A), and a plurality of convex portions of the hemispherical or spherical curvatures 5 to 500 nm, and the recess between the plurality of convex portions, in so has a surface shape irregularities are continuous, ions of the metal (a) When the metal (A) fine particles are precipitated by electrolytic reduction of the particles, the shape of the deposited particles is substantially spherical, and relatively uniform particles can be efficiently formed.

(1)電極
(1−1)陽極(F)
陽極(F)については、前記第1の態様の「金属微粒子の製造方法」の項で記載した通りである。
(1−2)陰極(E)
少なくとも還元溶液中に浸漬している、陰極(E)の表面部は、還元溶液中で金属(A)の析出電位よりも貴な電位で析出する金属(B)からなり、かつ平均曲率半径5〜500nmの半球状ないし球状の複数の凸部と、この複数の凸部間の凹部と、で凹凸形状が連続する表面形状を有している。
このような陰極(E)は前記第1の態様の「金属微粒子の製造方法」の項で記載した通り、(イ)電解還元法、(ロ)無電解還元法、及び(ハ)金属微粒子分散溶液の焼結、から選択された1種又は2種以上を組み合わせて、陰極(E)表面に凹凸形状を形成することが可能である。陰極(E)表面の凹凸形状の特徴については、前記第1の態様の「金属微粒子の製造方法」の項で記載した通りである。
(2)金属(A)、及び金属(B)
金属(A)、及び金属(B)については、前記第1の態様の「金属微粒子の製造方法」の項で記載したとおりである。
(1) Electrode (1-1) Anode (F)
The anode (F) is as described in the section “Method for producing metal fine particles” in the first aspect.
(1-2) Cathode (E)
At least the surface portion of the cathode (E) immersed in the reducing solution is made of the metal (B) deposited at a potential higher than the deposition potential of the metal (A) in the reducing solution, and has an average radius of curvature of 5 a plurality of convex portions of the hemispherical or spherical to 500 nm, has a recess between the plurality of convex portions, in a surface shape irregularities are continuous.
Such a cathode (E), as described in the section “Production method of metal fine particles” of the first aspect, (a) Electrolytic reduction method, (b) Electroless reduction method, and (c) Metal fine particle dispersion It is possible to form a concavo-convex shape on the surface of the cathode (E) by combining one kind or two or more kinds selected from sintering of a solution. The feature of the uneven shape on the surface of the cathode (E) is as described in the section “Method for producing metal fine particles” in the first aspect.
(2) Metal (A) and Metal (B)
The metal (A) and the metal (B) are as described in the section “Production method of metal fine particles” in the first aspect.

(3)陰極(E)表面に析出した金属微粒子の脱離手段
本発明の第2の態様である「金属微粒子の製造装置」においては、金属(A)のイオンを含む還元溶液中で金属(A)の電解還元により、陰極(E)表面の凸部に析出した金属微粒子を脱離させる脱離手段を備えることが望ましい。金属微粒子の製造装置に、陰極(E)表面の凸部に析出した金属微粒子の脱離手段を設けることにより、析出した金属微粒子の回収が容易になるばかりでなく、電解還元反応の連続化を図ることも可能になる。
該脱離の手段としては、特に制限されるものではないが、本発明の第1の手段の項に記載した通り、掻き取り、吸い取り、超音波振動等が例示でき、これらの1種または2種以上を組み合わせて回収することも可能である。前記脱離の手段の中でも実用性の点から掻き取りによる回収が好ましく、より具体的には掻き取り用ブレードを用いて脱離後回収することがより好ましい。この場合、金属微粒子の金属イオンの電解還元反応により一次粒子の粒子径が1〜500nmの範囲に制御するためには陰極(E)表面と掻き取り用ブレードとの距離が20mm以下で掻き取ることが特に好ましい。その理由は、金属微粒子の脱離を効率的に行うために、ある程度金属微粒子が凝集する厚さにするとともに、金属微粒子層の最表面と陰極(E)表面との間に大きな移動速度差を生じさないためである。かかる観点から、陰極(E)表面と掻き取り用ブレードの距離が0.1〜5mmがより好ましい。なお、カソード表面と掻き取り用ブレードの距離が0.1mm未満の場合は、電極の有効面積が減少する傾向があるが、実用上差し支えない場合は、例えば掻き取り用ブレードを電極に接触させて、掻き取ることも可能である。前記掻き取り用ブレードの材質としては、絶縁性であるゴムまたはポリテトラフルオロエチレン等のプラスチック材料を好適に使用することができる。
(3) Desorption means for metal fine particles deposited on the surface of the cathode (E) In the “metal fine particle production apparatus” according to the second aspect of the present invention, the metal (A) is reduced in a reducing solution containing ions of the metal (A). It is desirable to provide a detaching means for detaching the metal fine particles deposited on the convex portion on the surface of the cathode (E) by electrolytic reduction of A). By providing a means for detaching the metal fine particles deposited on the convex portion of the cathode (E) surface in the metal fine particle production apparatus, not only the collected metal fine particles can be easily recovered but also the electrolytic reduction reaction can be continued. It is also possible to plan.
The means for desorption is not particularly limited, but as described in the first means section of the present invention, scraping, sucking, ultrasonic vibration and the like can be exemplified, and one or two of these can be used. It is also possible to recover by combining more than one species. Among the means for desorption, recovery by scraping is preferable from the viewpoint of practicality, and more specifically, recovery after desorption using a scraping blade is more preferable. In this case, in order to control the particle diameter of the primary particles within the range of 1 to 500 nm by the electrolytic reduction reaction of the metal ions of the metal fine particles, the distance between the surface of the cathode (E) and the scraping blade is scraped at 20 mm or less Is particularly preferred. The reason is that, in order to efficiently remove the metal fine particles, the metal fine particles have a thickness to a certain extent, and a large moving speed difference is generated between the outermost surface of the metal fine particle layer and the cathode (E) surface. This is because it does not occur. From this viewpoint, the distance between the surface of the cathode (E) and the scraping blade is more preferably 0.1 to 5 mm. In addition, when the distance between the cathode surface and the scraping blade is less than 0.1 mm, the effective area of the electrode tends to decrease. However, when practically usable, the scraping blade is brought into contact with the electrode, for example. It is also possible to scrape off. As a material of the scraping blade, an insulating plastic material such as rubber or polytetrafluoroethylene can be preferably used.

以下に、参考例、実施例等により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
金属微粒子を形成する金属イオンとして酢酸銅を使用し、銅より貴な金属として銀を電解還元により陰極表面上に形成させた電極を使用して、定電位での電解還元を行い、陰極表面の凹凸形状の凸部上に、還元水溶液から銅微粒子を析出させ、得られた銅微粒子の評価を行った。
(1)陰極表面への凹凸形状の銀の形成
還元水溶液中に、硝酸銀0.005(mol/L)、有機分散剤としてポリビニルピロリドン(平均分子量:3500)0.5(g/L)を添加して電解還元により、銀を析出させた。電極として、陰極に銀膜付きSi基板、陽極にTi/Ptメッシュ基板を使用した。銀/塩化銀の参照電極に対し陰極電極電位を−1.2(V)とし、電解還元の時間は1分間とした。陰極表面に銀により形成された凹凸形状部の平均曲率半径は150nmであった。
尚、前記平均曲率半径は、表面が連続した凹凸形状に形成された陰極を切断して得られる断面における任意の20個の曲率半径を走査型電子顕微鏡(SEM)を用いて測定した測定値の平均値から求めた(以下、実施例2〜5、比較例1、2において同じ)。
The present invention will be specifically described below with reference examples and examples, but the present invention is not limited to these examples.
[Example 1]
Using copper acetate as the metal ion that forms the metal fine particles, and using an electrode formed by electroreduction of silver as a noble metal than copper on the cathode surface, electrolytic reduction at a constant potential is carried out. Copper fine particles were precipitated from the reducing aqueous solution on the convex and concave portions, and the obtained copper fine particles were evaluated.
(1) Formation of concavo-convex silver on the cathode surface Addition of 0.005 (mol / L) silver nitrate and 0.5 (g / L) polyvinylpyrrolidone (average molecular weight: 3500) as an organic dispersant in the reducing aqueous solution Then, silver was deposited by electrolytic reduction. As electrodes, a Si substrate with a silver film was used as the cathode, and a Ti / Pt mesh substrate was used as the anode. The cathode electrode potential was −1.2 (V) with respect to the silver / silver chloride reference electrode, and the electrolytic reduction time was 1 minute. The average curvature radius of the concavo-convex shape portion formed of silver on the cathode surface was 150 nm.
The average radius of curvature is a measured value obtained by measuring an arbitrary 20 radii of curvature in a cross section obtained by cutting a cathode having a continuous concavo-convex shape using a scanning electron microscope (SEM). It calculated | required from the average value (hereinafter, the same in Examples 2-5 and Comparative Examples 1 and 2).

(2)銅微粒子の調整
還元水溶液中に、酢酸銅((CHCOO)Cu・HO)0.1(mol/L)、有機分散剤としてポリビニルピロリドン(平均分子量:3500)5(g/L)、アルカリ金属イオンとして酢酸ナトリウム(CHCOONa)0.01(mol/L)を添加して、陰極表面上に凹凸形状の銀を形成させた電極を使用して、電解還元により、該凹凸形状の凸部近傍に銅微粒子を析出させた。銀/塩化銀の参照電極に対し陰極電極電位は−1.5(V)とし、電解還元の時間は10分間とした。
(3)結果
陰極表面上の凹凸形状の銀上に微細な銅微粒子が形成されていた。電解還元時間が開始から10分を経過すると形成された銅微粒子が還元水溶液中に沈殿していくことが確認され、銅微粒子を容易に回収することができた。回収された銅微粒子は略球状で、前記電子顕微鏡で得られた画像から、粒子の90%以上の一次粒子径は20〜100nmの範囲であり、デンドライト状の粒子は観察されなかった。得られた銅微粒子中には少量の銀微粒子が含まれていた。
(2) Preparation of copper fine particles In a reduced aqueous solution, copper acetate ((CH 3 COO) 2 Cu · H 2 O) 0.1 (mol / L), polyvinyl pyrrolidone (average molecular weight: 3500) 5 as an organic dispersant ( g / L), sodium acetate (CH 3 COONa) 0.01 (mol / L) was added as an alkali metal ion, and an electrode in which uneven silver was formed on the cathode surface was used for electrolytic reduction. Then, copper fine particles were deposited in the vicinity of the concavo-convex convex portion. The cathode electrode potential was −1.5 (V) with respect to the silver / silver chloride reference electrode, and the electrolytic reduction time was 10 minutes.
(3) Results Fine copper fine particles were formed on the uneven silver on the cathode surface. When the electrolytic reduction time passed 10 minutes from the start, it was confirmed that the formed copper fine particles were precipitated in the reducing aqueous solution, and the copper fine particles could be easily recovered. The recovered copper fine particles were substantially spherical, and from the image obtained by the electron microscope, the primary particle diameter of 90% or more of the particles was in the range of 20 to 100 nm, and no dendritic particles were observed. The obtained copper fine particles contained a small amount of silver fine particles.

[実施例2]
金属微粒子を形成する金属イオンとして硫酸銅を使用し、銅より貴な金属として銀を電解還元により陰極表面上に形成させた電極を使用して、定電位での電解還元を行い、陰極表面上の凹凸形状の銀上に銅の微粒子を還元水溶液から析出させた。
(1)陰極表面への凹凸形状の銀の形成
還元水溶液中に、硝酸銀0.005(mol/L)、有機分散剤としてポリビニルピロリドン(平均分子量:3500)0.5(g/L)を添加して電解還元により、銀を析出させた。電極として、陰極に銀膜付きSi基板、陽極にTi/Ptメッシュ基板を使用した。銀/塩化銀の参照電極に対し陰極電極電位を−1.2(V)とし、電解還元の時間は1分間とした。得られた凹凸形状の銀の平均曲率半径は150nmであった。
[Example 2]
Using copper sulfate as the metal ion that forms the metal fine particles, and using an electrode in which silver is formed on the cathode surface by electrolytic reduction as a noble metal than copper, electrolytic reduction at a constant potential is performed on the cathode surface. Copper fine particles were precipitated from a reducing aqueous solution on the uneven silver.
(1) Formation of concavo-convex silver on the cathode surface Addition of 0.005 (mol / L) silver nitrate and 0.5 (g / L) polyvinylpyrrolidone (average molecular weight: 3500) as an organic dispersant in the reducing aqueous solution Then, silver was deposited by electrolytic reduction. As electrodes, a Si substrate with a silver film was used as the cathode, and a Ti / Pt mesh substrate was used as the anode. The cathode electrode potential was −1.2 (V) with respect to the silver / silver chloride reference electrode, and the electrolytic reduction time was 1 minute. The obtained concave and convex silver had an average radius of curvature of 150 nm.

(2)銅微粒子の調整
還元水溶液中に、硫酸銅(CuSO・5HO)0.1(mol/L)、有機分散剤としてポリビニルピロリドン(平均分子量:3500)5(g/L)、アルカリ金属イオンとして硫酸ナトリウム(NaSO)0.01(mol/L)を添加して、陰極表面上に凹凸形状の銀を形成させた電極を使用して、電解還元により、該凹凸形状の凸部近傍に銅微粒子を析出させた。銀/塩化銀の参照電極に対し陰極電極電位を−1.5(V)とし、電解還元の時間は10分間とした。
(3)結果
陰極表面上の凹凸形状の銀上に微細な銅微粒子が形成されていた。電解還元時間が開始から10分を経過すると形成された銅微粒子が還元水溶液中に沈殿していくことが確認され、銅微粒子を容易に回収することができた。回収された銅微粒子は略球状で、前記電子顕微鏡で得られた画像から、粒子の90%以上の一次粒子径は50〜200nmの範囲であり、デンドライト状粒子は観察されなかった。得られた銅微粒子中には少量の銀微粒子が含まれていた。
(2) Adjustment of copper fine particles In a reduced aqueous solution, copper sulfate (CuSO 4 .5H 2 O) 0.1 (mol / L), polyvinylpyrrolidone (average molecular weight: 3500) 5 (g / L) as an organic dispersant, Sodium sulfate (Na 2 SO 4 ) 0.01 (mol / L) is added as an alkali metal ion, and the concavo-convex shape is obtained by electrolytic reduction using an electrode in which concavo-convex silver is formed on the cathode surface. Copper fine particles were deposited in the vicinity of the protrusions. The cathode electrode potential was −1.5 (V) with respect to the silver / silver chloride reference electrode, and the electrolytic reduction time was 10 minutes.
(3) Results Fine copper fine particles were formed on the uneven silver on the cathode surface. When the electrolytic reduction time passed 10 minutes from the start, it was confirmed that the formed copper fine particles were precipitated in the reducing aqueous solution, and the copper fine particles could be easily recovered. The recovered copper fine particles were substantially spherical, and from the image obtained by the electron microscope, the primary particle diameter of 90% or more of the particles was in the range of 50 to 200 nm, and dendritic particles were not observed. The obtained copper fine particles contained a small amount of silver fine particles.

[比較例1]
陰極表面上に凹凸形状の銀を形成させた電極を使用しなかった以外は、実施例2に記載したのと同様の条件で、電解還元を行い、還元水溶液から銅を析出させた。電解還元の結果、銅が陰極下地材の全面に膜状に析出して、還元された銅が微粒子として殆ど析出しなかった。
[Comparative Example 1]
Electrolytic reduction was performed under the same conditions as described in Example 2 except that an electrode having uneven silver formed on the cathode surface was used, and copper was deposited from the reducing aqueous solution. As a result of electrolytic reduction, copper was deposited in the form of a film on the entire surface of the cathode base material, and the reduced copper was hardly deposited as fine particles.

[実施例3]
金属微粒子を形成する金属イオンとして酢酸銅を使用し、銅より貴な金属として銀を無電解還元により陰極表面上に形成させた電極を使用して、定電位での電解還元を行い、陰極表面上の凹凸形状の銀上に銅の微粒子を還元水溶液から析出させた。
(1)陰極表面への凹凸形状の銀の形成
還元反応溶液中に、硝酸銀0.005(mol/L)、還元剤として水素化ホウ素ナトリウム0.1(mol/L)、錯化剤としてエチレンジアミン0.05(mol/L)、有機分散剤としてポリビニルピロリドン(平均分子量:3500)0.5(g/L)を添加して無電解還元により、基板上に銀を析出させた。基板として、銀膜付きSi基板を使用し、無電解還元の時間は20分間とした。得られた凹凸形状の銀の平均曲率半径は250nmであった。
[Example 3]
Using copper acetate as the metal ion forming the metal fine particles and using an electrode formed on the cathode surface by electroless reduction as a noble metal than copper, electrolytic reduction at a constant potential is performed, and the cathode surface Copper fine particles were precipitated from the reducing aqueous solution on the above irregular silver.
(1) Formation of irregular silver on the cathode surface In a reduction reaction solution, silver nitrate 0.005 (mol / L), sodium borohydride 0.1 (mol / L) as a reducing agent, ethylenediamine as a complexing agent 0.05 (mol / L), polyvinylpyrrolidone (average molecular weight: 3500) 0.5 (g / L) was added as an organic dispersant, and silver was deposited on the substrate by electroless reduction. As the substrate, a Si substrate with a silver film was used, and the electroless reduction time was 20 minutes. The obtained concave-convex silver had an average radius of curvature of 250 nm.

(2)銅微粒子の調整
還元水溶液中に、硫酸銅(CuSO・5HO)0.1(mol/L)、有機分散剤としてポリビニルピロリドン(平均分子量:3500)5(g/L)、アルカリ金属イオンとして硫酸ナトリウム(NaSO)0.01(mol/L)を添加して、陰極表面上に凹凸形状の銀を形成させた電極を使用して、電解還元により、該凹凸形状の凸部近傍に銅微粒子を析出させた。銀/塩化銀の参照電極に対し陰極電極電位を−1.5(V)とし、電解還元の時間は10分間とした。
(3)結果
陰極表面上の凹凸形状の銀上に微細な銅微粒子が形成されていた。電解還元時間が開始から10分を経過すると形成された銅微粒子が還元水溶液中に沈殿していくことが確認され、銅微粒子を容易に回収することができた。回収された銅微粒子は略球状で、前記電子顕微鏡で得られた画像から、粒子の90%以上の一次粒子径は80〜400nmの範囲であり、デンドライト状の粒子は観察されなかった。得られた銅微粒子中には少量の銀微粒子が含まれていた。
(2) Adjustment of copper fine particles In a reduced aqueous solution, copper sulfate (CuSO 4 .5H 2 O) 0.1 (mol / L), polyvinylpyrrolidone (average molecular weight: 3500) 5 (g / L) as an organic dispersant, Sodium sulfate (Na 2 SO 4 ) 0.01 (mol / L) is added as an alkali metal ion, and the concavo-convex shape is obtained by electrolytic reduction using an electrode in which concavo-convex silver is formed on the cathode surface. Copper fine particles were deposited in the vicinity of the protrusions. The cathode electrode potential was −1.5 (V) with respect to the silver / silver chloride reference electrode, and the electrolytic reduction time was 10 minutes.
(3) Results Fine copper fine particles were formed on the uneven silver on the cathode surface. When the electrolytic reduction time passed 10 minutes from the start, it was confirmed that the formed copper fine particles were precipitated in the reducing aqueous solution, and the copper fine particles could be easily recovered. The recovered copper fine particles were substantially spherical, and from the image obtained by the electron microscope, the primary particle diameter of 90% or more of the particles was in the range of 80 to 400 nm, and dendritic particles were not observed. The obtained copper fine particles contained a small amount of silver fine particles.

[比較例2]
陰極表面上に凹凸形状の銀を形成させる無電解還元の時間を50分間として、得られた凹凸形状の銀の平均曲率半径を600nmとした以外は、実施例3に記載したのと同様の条件で、電解還元を行い、還元水溶液から銅粒子を析出させた。電解還元の結果、析出した銅粒子の平均一次粒子径が800nm以上と大きくなり、またナノサイズの微粒子の生成量も実施例3と比較して1/10程度に減少した。
[Comparative Example 2]
The same conditions as described in Example 3 except that the electroless reduction time for forming uneven silver on the cathode surface was 50 minutes, and the average curvature radius of the obtained uneven silver was 600 nm. Then, electrolytic reduction was performed to precipitate copper particles from the reducing aqueous solution. As a result of the electrolytic reduction, the average primary particle diameter of the deposited copper particles was increased to 800 nm or more, and the amount of nano-sized fine particles produced was reduced to about 1/10 compared with Example 3.

[実施例4]
金属微粒子を形成する金属イオンとして酢酸銅を使用し、銅より貴な金属として銀を基板に塗布した銀微粒子分散液を加熱・焼結することにより陰極表面上に形成させた電極を使用して、定電位での電解還元を行い、陰極表面上の凹凸形状の銀上に銅の微粒子を還元水溶液から析出させた。
(1)陰極表面への凹凸形状の銀の形成
平均粒子径が約30nmの銀微粒子10質量%を、エチレングリコール溶液90質量%に分散させて銀微粒子分散液を調製した。次に前記分散液をスプレー塗工によって大気雰囲気中でSi基板表面に塗布した。この基板を窒素ガス雰囲気中で250℃に30分間保持して熱処理することにより、基板表面に凹凸形状の銀電極を形成した。得られた凹凸形状の銀の平均曲率半径は50nmであった。
[Example 4]
Using copper acetate as the metal ion forming the metal fine particles, and using the electrode formed on the cathode surface by heating and sintering the silver fine particle dispersion with silver coated on the substrate as a noble metal than copper Then, electrolytic reduction at a constant potential was performed, and copper fine particles were precipitated from the reducing aqueous solution on the uneven silver on the cathode surface.
(1) Formation of uneven silver on the cathode surface 10% by mass of silver fine particles having an average particle diameter of about 30 nm were dispersed in 90% by mass of an ethylene glycol solution to prepare a silver fine particle dispersion. Next, the dispersion was applied to the surface of the Si substrate by spray coating in an air atmosphere. The substrate was heat-treated while being held at 250 ° C. for 30 minutes in a nitrogen gas atmosphere to form an uneven silver electrode on the substrate surface. The average curvature radius of the obtained uneven silver was 50 nm.

(2)銅微粒子の調整
還元水溶液中に、酢酸銅((CHCOO)Cu・HO)0.1(mol/L)、有機分散剤としてポリビニルピロリドン(平均分子量:3500)5(g/L)、アルカリ金属イオンとして酢酸ナトリウム(CHCOONa)0.01(mol/L)を添加して、陰極表面上に凹凸形状の銀を形成させた電極を使用して、電解還元により、該凹凸形状の凸部近傍に銅微粒子を析出させた。銀/塩化銀の参照電極に対し陰極電極電位を−1.5(V)とし、電解還元の時間は10分間とした。
(3)結果
陰極表面上の凹凸形状の銀上に微細な銅微粒子が形成されていた。電解還元時間が開始から10分を経過すると形成された銅微粒子が還元水溶液中に沈殿していくことが確認され、銅微粒子を容易に回収することができた。回収された銅微粒子は略球状で、前記電子顕微鏡で得られた画像から、粒子の90%以上の一次粒子径は20〜50nmの範囲であり、デンドライト状の粒子は観察されなかった。得られた銅微粒子中には少量の銀微粒子が含まれていた。
(2) Preparation of copper fine particles In a reduced aqueous solution, copper acetate ((CH 3 COO) 2 Cu · H 2 O) 0.1 (mol / L), polyvinyl pyrrolidone (average molecular weight: 3500) 5 as an organic dispersant ( g / L), sodium acetate (CH 3 COONa) 0.01 (mol / L) was added as an alkali metal ion, and an electrode in which uneven silver was formed on the cathode surface was used for electrolytic reduction. Then, copper fine particles were deposited in the vicinity of the concavo-convex convex portion. The cathode electrode potential was −1.5 (V) with respect to the silver / silver chloride reference electrode, and the electrolytic reduction time was 10 minutes.
(3) Results Fine copper fine particles were formed on the uneven silver on the cathode surface. When the electrolytic reduction time passed 10 minutes from the start, it was confirmed that the formed copper fine particles were precipitated in the reducing aqueous solution, and the copper fine particles could be easily recovered. The recovered copper fine particles were substantially spherical, and from the image obtained by the electron microscope, the primary particle diameter of 90% or more of the particles was in the range of 20 to 50 nm, and dendritic particles were not observed. The obtained copper fine particles contained a small amount of silver fine particles.

[実施例5]
金属微粒子を形成する金属イオンとして酢酸銅を使用し、銅より貴な金属として銀を電解還元により陰極表面上に形成させた電極を使用して、定電位での電解還元を行い、陰極表面上の凹凸形状の銀上に析出させた銅の微粒子を掻き取り用ブレードにより掻き取って脱離させながら、銅の微粒子を還元水溶液から析出させた。
(1)陰極表面への凹凸形状の銀の形成
還元水溶液中に、硝酸銀0.005(mol/L)、有機分散剤としてポリビニルピロリドン(平均分子量:3500)0.5(g/L)を添加して電解還元により、銀を析出させた。電極として、陰極に銀膜付きSi基板、陽極にTi/Ptメッシュ基板を使用した。銀/塩化銀の参照電極に対し陰極電極電位を−1.2(V)とし、電解還元の時間は1分間とした。得られた凹凸形状の銀の平均曲率半径は150nmであった。
[Example 5]
Using copper acetate as the metal ion forming the metal fine particles, and using an electrode formed by electrolytic reduction of silver as the noble metal from copper on the cathode surface, electrolytic reduction at a constant potential is performed on the cathode surface. The copper fine particles deposited on the concavo-convex silver were separated from the reducing aqueous solution while being removed by scraping with a scraping blade.
(1) Formation of concavo-convex silver on the cathode surface Addition of 0.005 (mol / L) silver nitrate and 0.5 (g / L) polyvinylpyrrolidone (average molecular weight: 3500) as an organic dispersant in the reducing aqueous solution Then, silver was deposited by electrolytic reduction. As electrodes, a Si substrate with a silver film was used as the cathode, and a Ti / Pt mesh substrate was used as the anode. The cathode electrode potential was −1.2 (V) with respect to the silver / silver chloride reference electrode, and the electrolytic reduction time was 1 minute. The obtained concave and convex silver had an average radius of curvature of 150 nm.

(2)銅微粒子の調整
還元水溶液中に、酢酸銅((CHCOO)Cu・HO)0.1(mol/L)、有機分散剤としてポリビニルピロリドン(平均分子量:3500)5(g/L)、アルカリ金属イオンとして酢酸ナトリウム(CHCOONa)0.01(mol/L)を添加して、陰極表面上に凹凸形状の銀を形成させた電極を使用して、電解還元により該凹凸形状の凸部近傍に析出させた銅微粒子をポリテトラフルオロエチレン製の掻き取り用ブレードにより掻き取って脱離させながら、銅微粒子を継続的に析出させた。銀/塩化銀の参照電極に対し陰極電極電位を−1.5(V)、電解還元の時間は10分間とし、掻き取りは1分ごとに行った。
(3)結果
陰極表面上の凹凸形状の銀上に形成された微細な銅微粒子が、掻き取りにより脱離されて、還元水溶液中に沈殿していくことが確認され、銅微粒子を容易に回収することができた。回収された銅微粒子は略球状で、前記電子顕微鏡で得られた画像から、銅微粒子の90%以上の一次粒子径は5〜50nmの範囲であり、デンドライト状の粒子は観察されなかった。得られた銅微粒子中には少量の銀微粒子が含まれていた。
(2) Preparation of copper fine particles In a reduced aqueous solution, copper acetate ((CH 3 COO) 2 Cu · H 2 O) 0.1 (mol / L), polyvinyl pyrrolidone (average molecular weight: 3500) 5 as an organic dispersant ( g / L), sodium acetate (CH 3 COONa) 0.01 (mol / L) was added as an alkali metal ion, and an electrode in which uneven silver was formed on the cathode surface was used for electrolytic reduction. The copper fine particles deposited in the vicinity of the convex portions of the concavo-convex shape were continuously deposited while being scraped and removed by a scraping blade made of polytetrafluoroethylene. The cathode electrode potential was −1.5 (V) with respect to the silver / silver chloride reference electrode, the electrolytic reduction time was 10 minutes, and scraping was performed every minute.
(3) Result It was confirmed that the fine copper particles formed on the uneven silver on the cathode surface were removed by scraping and precipitated in the reducing aqueous solution, and the copper particles were easily recovered. We were able to. The recovered copper fine particles were substantially spherical, and from the image obtained by the electron microscope, the primary particle diameter of 90% or more of the copper fine particles was in the range of 5 to 50 nm, and dendritic particles were not observed. The obtained copper fine particles contained a small amount of silver fine particles.

Claims (12)

金属(A)のイオンを含む還元溶液中で陰極(E)と陽極(F)間に通電して金属(A)のイオンを電解還元して金属(A)の微粒子を析出させる金属微粒子の製造方法において、
少なくとも還元溶液中に浸漬され陰極(E)の表面部は
還元溶液中で金属(A)の析出電位よりも貴な電位で析出する金属(B)であって平均曲率半径5〜500nmの半球状ないし球状の複数の凸部と、前記複数の凸部の間の凹部と、で凹凸形状が連続する表面によって形成されており
電解還元により陰極(E)表面部の金属(B)からなる凹凸形状の凸部近傍に金属(A)の微粒子を析出させる、ことを特徴とする金属微粒子の製造方法。
Production of metal fine particles in which metal (A) ions are electrolytically reduced by depositing metal (A) ions in a reducing solution containing metal (A) ions to cause metal (A) ions to be electrolytically reduced. In the method
Surface portion of the at least reducing solution cathode that will be immersed in (E) is
A plurality of hemispherical or spherical convex portions having a mean curvature radius of 5 to 500 nm, which is a metal (B) that is deposited at a potential higher than the deposition potential of the metal (A) in the reducing solution ; It is formed by the surface where the concave and convex shapes are continuous with the concave portions between ,
A method for producing metal fine particles, characterized in that metal (A) fine particles are deposited in the vicinity of the convex and concave portions made of metal (B) on the surface of the cathode (E) by electrolytic reduction.
前記金属(B)が金、銅、銀、ニッケル、コバルト、鉄、亜鉛、スズ、白金、パラジウム、およびイリジウムから選択される1種であり、金属(A)が金属(B)のイオンの析出電位よりも卑な電位で析出するイオンを形成する金属である、ことを特徴とする請求項1に記載の金属微粒子の製造方法。   The metal (B) is one selected from gold, copper, silver, nickel, cobalt, iron, zinc, tin, platinum, palladium, and iridium, and the metal (A) is a deposit of ions of the metal (B). The method for producing fine metal particles according to claim 1, wherein the metal forms ions that are deposited at a potential lower than the potential. 前記金属(A)が銅であり、前記金属(B)が銀である、ことを特徴とする請求項1または2に記載の金属微粒子の製造方法。   The method for producing fine metal particles according to claim 1 or 2, wherein the metal (A) is copper and the metal (B) is silver. 前記還元溶液中に有機分散剤が含有されている、ことを特徴とする請求項1から3のいずれかに記載の金属微粒子の製造方法。   The method for producing fine metal particles according to any one of claims 1 to 3, wherein an organic dispersant is contained in the reducing solution. 前記陰極(E)表面部の凹凸形状が、金属(B)イオンの電解還元により形成された形状である、ことを特徴とする請求項1から4のいずれかに記載の金属微粒子の製造方法。   The method for producing fine metal particles according to any one of claims 1 to 4, wherein the uneven shape of the surface portion of the cathode (E) is a shape formed by electrolytic reduction of metal (B) ions. 前記陰極(E)表面部の凹凸形状が、金属(B)イオンの無電解還元により形成された形状である、ことを特徴とする請求項1から4のいずれかに記載の金属微粒子の製造方法。   The method for producing fine metal particles according to any one of claims 1 to 4, wherein the irregular shape of the surface of the cathode (E) is a shape formed by electroless reduction of metal (B) ions. . 前記陰極(E)表面部の凹凸形状が、金属(B)の分散溶液を陰極(E)の基材に塗布後、加熱・焼結して形成された形状である、ことを特徴とする請求項1から4のいずれかに記載の金属微粒子の製造方法。   The uneven shape on the surface of the cathode (E) is a shape formed by applying a dispersion solution of metal (B) to a base material of the cathode (E), followed by heating and sintering. Item 5. The method for producing metal fine particles according to any one of Items 1 to 4. 前記電解還元により陰極(E)表面の凸部近傍に析出する金属(A)の微粒子の一次粒子径が1〜500nmである、ことを特徴とする請求項1から7のいずれかに記載の金属微粒子の製造方法。 8. The metal according to claim 1, wherein a primary particle size of the fine particles of the metal (A) deposited in the vicinity of the convex portion on the surface of the cathode (E) by the electrolytic reduction is 1 to 500 nm. A method for producing fine particles. 前記電解還元により、陰極(E)表面の凸部近傍に析出した金属(A)の微粒子を脱離させながら陰極(E)表面の凸部近傍に新たに金属(A)の析出を継続する、ことを特徴とする請求項1から8のいずれかに記載の金属微粒子の製造方法。 By the electrolytic reduction, the metal (A) continues to be newly deposited in the vicinity of the convex portion on the surface of the cathode (E) while detaching the fine particles of the metal (A) deposited in the vicinity of the convex portion on the surface of the cathode (E). The method for producing fine metal particles according to claim 1, wherein: 前記脱離の手段が掻き取り、吸い取り、および超音波振動から選択された1種または2種以上である、ことを特徴とする請求項9に記載の金属微粒子の製造方法。   10. The method for producing metal fine particles according to claim 9, wherein the desorption means is one or more selected from scraping, sucking, and ultrasonic vibration. 金属(A)のイオンを含む還元溶液中で、陰極(E)と陽極(F)間に通電して金属(A)のイオンを電解還元して金属(A)の微粒子を析出させる金属微粒子の製造装置であって、
少なくとも還元溶液中に浸漬してい陰極(E)の表面部が
還元溶液中で金属(A)の析出電位よりも貴な電位で析出する金属(B)であって平均曲率半径5〜500nmの半球状ないし球状の複数の凸部と、前記複数の凸部の間の凹部と、で凹凸形状が連続する表面を有している、ことを特徴とする金属微粒子の製造装置。
In a reducing solution containing metal (A) ions, a metal fine particle is deposited to cause metal (A) ions to be electrolytically reduced by depositing metal (A) ions between the cathode (E) and the anode (F). Manufacturing equipment,
Surface portion of the cathode (E) that are immersed in at least reducing solution is,
A plurality of hemispherical or spherical convex portions having a mean curvature radius of 5 to 500 nm, which is a metal (B) that is deposited at a potential higher than the deposition potential of the metal (A) in the reducing solution ; An apparatus for producing fine metal particles, characterized by having a surface in which concave and convex shapes are continuous with the concave portions therebetween.
前記陰極(E)表面の凸部近傍に析出した金属微粒子を脱離させる脱離手段を備えた、請求項11に記載の金属微粒子の製造装置。
The apparatus for producing metal fine particles according to claim 11, further comprising a desorption means for desorbing metal fine particles deposited in the vicinity of the convex portion on the surface of the cathode (E).
JP2011278015A 2011-12-20 2011-12-20 Method and apparatus for producing metal fine particles Expired - Fee Related JP6004643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011278015A JP6004643B2 (en) 2011-12-20 2011-12-20 Method and apparatus for producing metal fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011278015A JP6004643B2 (en) 2011-12-20 2011-12-20 Method and apparatus for producing metal fine particles

Publications (2)

Publication Number Publication Date
JP2013129859A JP2013129859A (en) 2013-07-04
JP6004643B2 true JP6004643B2 (en) 2016-10-12

Family

ID=48907654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011278015A Expired - Fee Related JP6004643B2 (en) 2011-12-20 2011-12-20 Method and apparatus for producing metal fine particles

Country Status (1)

Country Link
JP (1) JP6004643B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101931663B1 (en) * 2017-09-07 2019-03-15 미프테크 씨오., 엘티디. Method for Manufacturing Filter Membrane for Inhibiting Microorganisms

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4878196B2 (en) * 2006-03-30 2012-02-15 古河電気工業株式会社 Method for producing metal fine particles using conductive nanodot electrode
JP5064724B2 (en) * 2006-06-09 2012-10-31 学校法人早稲田大学 Electrode, metal fine particle production apparatus, and metal fine particle production method
JP5202858B2 (en) * 2007-03-23 2013-06-05 古河電気工業株式会社 Method for producing copper fine particles
JP5065072B2 (en) * 2008-02-07 2012-10-31 古河電気工業株式会社 Method for producing copper fine particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101931663B1 (en) * 2017-09-07 2019-03-15 미프테크 씨오., 엘티디. Method for Manufacturing Filter Membrane for Inhibiting Microorganisms

Also Published As

Publication number Publication date
JP2013129859A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
US5645930A (en) Durable electrode coatings
TWI284684B (en) Coatings for the inhibition of undesirable oxidation in an electrochemical cell
JP5768848B2 (en) Core-shell catalyst and method for producing core-shell catalyst
CN104011264B (en) Oxygen generation anode and manufacture method thereof
TW200304503A (en) Electrode for generation of hydrogen
JP2008231564A (en) Method of manufacturing copper fine particle
CN85108093A (en) The electrode that is used for electrochemical process, the method and the application of electrode in electrolyzer of making this electrode
JP6116000B2 (en) Method for producing platinum core-shell catalyst and fuel cell using the same
US9017530B2 (en) Method and electrochemical cell for synthesis and treatment of metal monolayer electrocatalysts metal, carbon, and oxide nanoparticles ion batch, or in continuous fashion
EP0099051B1 (en) Cathode having high durability and low hydrogen overvoltage and process for the production thereof
JP2007119900A (en) Composite material of metal and porous substrate, and production method therefor
JP5064724B2 (en) Electrode, metal fine particle production apparatus, and metal fine particle production method
Jović et al. Hydrogen evolution in acid solution at Pd electrodeposited onto Ti2AlC
JP2018031034A (en) Electrode carrying metal-containing nanoparticles and carbon dioxide reduction apparatus
JP4395506B2 (en) Method for producing silver nanopowder using electrolysis
JP6004643B2 (en) Method and apparatus for producing metal fine particles
JP6172734B2 (en) Catalyst for polymer electrolyte fuel cell cathode and method for producing such catalyst
JPH0820882A (en) Preparation of titanium electrode having iridium/palladium oxide plating
JP2016141860A (en) Fine particle, fine particle dispersion and manufacturing method of fine particle
JP5566794B2 (en) Method for producing metal fine particles
JPWO2014069208A1 (en) Platinum core-shell catalyst, method for producing the same, and fuel cell using the same
JP2002317289A (en) Hydrogen generating electrode
NL8004057A (en) PROCESS FOR MANUFACTURING CATHODES WITH LOW HYDROGEN SPAN.
JP5735265B2 (en) Method for producing porous metal body having high corrosion resistance
CN113242915A (en) Electrode for electrolysis

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20130417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130417

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130829

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20131011

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20131001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160906

R150 Certificate of patent or registration of utility model

Ref document number: 6004643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees