JP6003565B2 - Non-contact power feeding device - Google Patents

Non-contact power feeding device Download PDF

Info

Publication number
JP6003565B2
JP6003565B2 JP2012253056A JP2012253056A JP6003565B2 JP 6003565 B2 JP6003565 B2 JP 6003565B2 JP 2012253056 A JP2012253056 A JP 2012253056A JP 2012253056 A JP2012253056 A JP 2012253056A JP 6003565 B2 JP6003565 B2 JP 6003565B2
Authority
JP
Japan
Prior art keywords
coil
shield member
primary
core
main shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012253056A
Other languages
Japanese (ja)
Other versions
JP2014103735A (en
Inventor
英介 高橋
英介 高橋
大林 和良
和良 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012253056A priority Critical patent/JP6003565B2/en
Publication of JP2014103735A publication Critical patent/JP2014103735A/en
Application granted granted Critical
Publication of JP6003565B2 publication Critical patent/JP6003565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、送電用の1次側コイル及び受電用の2次側コイルを備える非接触給電装置に関する。   The present invention relates to a non-contact power feeding device including a primary coil for power transmission and a secondary coil for power reception.

この種の装置としては、下記特許文献1に見られるように、1次側コイルのうち2次側コイルに対向する側と反対側、及び2次側コイルのうち1次側コイルに対向する側と反対側のそれぞれに、アルミニウムからなる導電板が密着して配置されているものも提案されている。これにより、1次側コイル及び2次側コイル間における非接触給電時においてこれらコイルから外部へと漏洩する電磁界を低減させることができる。   As this type of device, as seen in Patent Document 1 below, the side of the primary coil opposite to the side facing the secondary coil, and the side of the secondary coil facing the primary side coil Also proposed is a conductive plate made of aluminum in close contact with each of the opposite sides. Thereby, the electromagnetic field which leaks outside from these coils at the time of non-contact electric power feeding between a primary side coil and a secondary side coil can be reduced.

特開2010−172084号公報JP 2010-172084 A

ここで、上記特許文献1に記載された装置によれば、導電板の表面のうちコイル側とは反対側付近の漏洩電磁界を低減させることはできるものの、導電板の表面のうちコイル側とは反対側付近以外の場所における漏洩電磁界の低減効果を得ることができない懸念がある。また、非接触給電時において導電板の端部に流れる渦電流により、導電板の外周部付近において漏洩電磁界の低減効果が小さくなったり、漏洩電磁界がかえって大きくなったりする懸念もある。   Here, according to the apparatus described in Patent Document 1, although the leakage electromagnetic field near the side opposite to the coil side of the surface of the conductive plate can be reduced, the coil side of the surface of the conductive plate can be reduced. There is a concern that the effect of reducing the leakage electromagnetic field in places other than the vicinity of the opposite side cannot be obtained. In addition, there is a concern that the effect of reducing the leakage electromagnetic field may be reduced near the outer peripheral portion of the conductive plate or the leakage electromagnetic field may be increased by eddy current flowing at the end of the conductive plate during non-contact power feeding.

本発明は、上記課題を解決するためになされたものであり、その目的は、1次側コイル及び2次側コイルから外部へと漏洩する電磁界を低減させることのできる新たな非接触給電装置を提供することにある。   The present invention has been made to solve the above-described problems, and a purpose thereof is a new non-contact power feeding apparatus that can reduce electromagnetic fields leaking from the primary side coil and the secondary side coil to the outside. Is to provide.

上記課題を解決すべく、発明は、送電用の1次側コイル(22)と、受電用の2次側コイル(42)と、非接触給電が行われる場合に前記1次側コイルに対して印加される電圧の周波数における比透磁率が1よりも高い強磁性体からなる主シールド部材(23,43,23a,43a,72a,74a,23c,43e〜43j)と、を備え、前記主シールド部材は、前記1次側コイル及び前記2次側コイルのうち少なくとも一方に対応する対となる磁極部について一方から他方へと磁束を導くようにかつ、前記1次側コイル及び前記2次側コイルのそれぞれと離間して配置され、前記主シールド部材は、更に、扁平形状をなしてかつ、前記1次側コイル及び前記2次側コイルが対向する方向において該1次側コイル及び該2次側コイルのそれぞれと近接して配置されていることを特徴とする。 In order to solve the above problems, the present invention relates to a primary coil for power transmission (22), a secondary coil for power reception (42), and the primary coil when non-contact power feeding is performed. Main shield members (23, 43, 23a, 43a, 72a, 74a, 23c, 43e to 43j) made of a ferromagnetic material having a relative permeability higher than 1 at the frequency of the applied voltage. The shield member guides a magnetic flux from one to the other of the magnetic pole portions corresponding to at least one of the primary side coil and the secondary side coil, and the primary side coil and the secondary side The main shield member is further arranged in a flat shape, and the primary coil and the secondary coil are arranged in a direction in which the primary coil and the secondary coil face each other. Side coil Characterized in that it is disposed in close proximity to the respectively.

強磁性体の比透磁率は、例えば周辺の大気や路面(アスファルト)の比透磁率と比較して十分に高い。このため、上記発明では、1次側コイル及び2次側コイルから外部へと漏洩する電磁界を好適に低減させることができる。   The relative permeability of the ferromagnetic material is sufficiently higher than the relative permeability of the surrounding atmosphere and road surface (asphalt), for example. For this reason, in the said invention, the electromagnetic field which leaks outside from a primary side coil and a secondary side coil can be reduced suitably.

ここで、シールド部材が1次側コイルや2次側コイルと接触して配置される場合には、漏洩電磁界の低減効果は大きくなるものの、磁束の短絡によって1次側コイル及び2次側コイル間における漏れインダクタンスが増大し、これらコイル同士の結合係数が低下することとなる。これにより、1次側コイルから2次側コイルへの電力伝送効率が低下する。これに対し、上記発明では、主シールド部材が1次側コイル及び2次側コイルのそれぞれと離間して配置されている。このため、1次側コイル及び2次側コイル間における漏れインダクタンスの増大を抑制しつつも、これらコイル同士の結合係数の低下を抑制することもできる。これにより、1次側コイル側から2次側コイル側への電力伝送効率の低下を好適に抑制することができる。さらに、主シールド部材を扁平形状としつつ、主シールド部材を、1次側コイル及び2次側コイルが対向する方向においてこれらコイルのそれぞれと近接して配置することにより、主シールド部材の配置による上記対向する方向における非接触給電装置の体格の増大を抑制することもできる。   Here, when the shield member is arranged in contact with the primary side coil or the secondary side coil, although the effect of reducing the leakage electromagnetic field is increased, the primary side coil and the secondary side coil are caused by a short circuit of the magnetic flux. The leakage inductance between the coils increases, and the coupling coefficient between these coils decreases. Thereby, the power transmission efficiency from a primary side coil to a secondary side coil falls. On the other hand, in the said invention, the main shield member is spaced apart and each arrange | positioned from the primary side coil and the secondary side coil. For this reason, it is possible to suppress a decrease in the coupling coefficient between the coils while suppressing an increase in leakage inductance between the primary side coil and the secondary side coil. Thereby, the fall of the power transmission efficiency from the primary side coil side to the secondary side coil side can be suppressed suitably. Furthermore, the main shield member is flattened, and the main shield member is disposed close to each of these coils in the direction in which the primary side coil and the secondary side coil face each other, whereby the main shield member is arranged as described above. An increase in the size of the non-contact power feeding device in the facing direction can also be suppressed.

第1の実施形態にかかる非接触給電システムの構成図。The lineblock diagram of the non-contact electric supply system concerning a 1st embodiment. 同実施形態にかかる送電パッド及び受電パッドの斜視図。The perspective view of the power transmission pad and power receiving pad concerning the embodiment. 同実施形態にかかる非接触給電装置の平面図。The top view of the non-contact electric power feeder concerning the embodiment. 同実施形態にかかる非接触給電装置の断面図。Sectional drawing of the non-contact electric power feeder concerning the embodiment. 同実施形態にかかる駐車スペースへの非接触給電装置の配置図。The layout of the non-contact electric power feeder to the parking space concerning the embodiment. 同実施形態にかかる駐車スペースへの非接触給電装置の配置図。The layout of the non-contact electric power feeder to the parking space concerning the embodiment. 同実施形態にかかる主シールド部材の効果を示す図。The figure which shows the effect of the main shield member concerning the embodiment. 第2の実施形態にかかる非接触給電装置の平面図。The top view of the non-contact electric power supply concerning 2nd Embodiment. 同実施形態にかかる非接触給電装置の断面図。Sectional drawing of the non-contact electric power feeder concerning the embodiment. 同実施形態にかかる駐車スペースへの非接触給電装置の配置図。The layout of the non-contact electric power feeder to the parking space concerning the embodiment. 同実施形態にかかる駐車スペースへの非接触給電装置の配置図。The layout of the non-contact electric power feeder to the parking space concerning the embodiment. 同実施形態にかかる主シールド部材の効果を示す図。The figure which shows the effect of the main shield member concerning the embodiment. 比較技術にかかる非接触給電装置の断面図。Sectional drawing of the non-contact electric power feeder concerning a comparison technique. 第3の実施形態にかかる非接触給電装置の断面図。Sectional drawing of the non-contact electric power feeder concerning 3rd Embodiment. 第4の実施形態にかかる非接触給電装置の平面図。The top view of the non-contact electric power supply concerning 4th Embodiment. 同実施形態にかかる非接触給電装置の断面図。Sectional drawing of the non-contact electric power feeder concerning the embodiment. 同実施形態にかかる非接触給電装置の断面図。Sectional drawing of the non-contact electric power feeder concerning the embodiment. 第5の実施形態にかかる非接触給電装置の平面図。The top view of the non-contact electric power supply concerning 5th Embodiment. 同実施形態にかかる非接触給電装置の断面図。Sectional drawing of the non-contact electric power feeder concerning the embodiment. 第6の実施形態にかかる駐車スペースへの非接触給電装置の配置図。The layout of the non-contact electric supply device to the parking space concerning a 6th embodiment. 同実施形態にかかる駐車スペースへの非接触給電装置の配置図。The layout of the non-contact electric power feeder to the parking space concerning the embodiment. 第7の実施形態にかかる駐車スペースへの非接触給電装置の配置図。The layout of the non-contact electric supply device to the parking space concerning a 7th embodiment. 同実施形態にかかる駐車スペースへの非接触給電装置の配置図。The layout of the non-contact electric power feeder to the parking space concerning the embodiment. 第8の実施形態にかかる駐車スペースへの非接触給電装置の配置図。The layout of the non-contact electric supply device to the parking space concerning an 8th embodiment. 同実施形態にかかる車両の床面外側への非接触給電装置の配置図。The layout of the non-contact electric power feeder to the floor surface outer side of the vehicle concerning the embodiment. その他の実施形態にかかる非接触給電装置の平面図。The top view of the non-contact electric power supply concerning other embodiment. その他の実施形態にかかる非接触給電装置の平面図。The top view of the non-contact electric power supply concerning other embodiment. その他の実施形態にかかる非接触給電装置の断面図。Sectional drawing of the non-contact electric power feeder concerning other embodiment. その他の実施形態にかかる非接触給電装置の断面図。Sectional drawing of the non-contact electric power feeder concerning other embodiment. その他の実施形態にかかる駐車スペースへの非接触給電装置の配置図。The layout of the non-contact electric power feeder to the parking space concerning other embodiments. その他の実施形態にかかるコアの断面図。Sectional drawing of the core concerning other embodiment. その他の実施形態にかかるコアの断面図。Sectional drawing of the core concerning other embodiment.

(第1の実施形態)
以下、本発明にかかる非接触給電装置を車載主機として回転機を備える車両(ハイブリッド車や電気自動車)の非接触給電システムに適用した第1の実施形態について、図面を参照しつつ説明する。
(First embodiment)
Hereinafter, a first embodiment in which a contactless power supply device according to the present invention is applied to a contactless power supply system of a vehicle (hybrid vehicle or electric vehicle) including a rotating machine as an in-vehicle main unit will be described with reference to the drawings.

図1に示すように、非接触給電システムは、車両10の外部に設けられた送電システムと、車両10に設けられた受電システムとを備えている。   As shown in FIG. 1, the non-contact power feeding system includes a power transmission system provided outside the vehicle 10 and a power receiving system provided in the vehicle 10.

送電システムは、送電部材としての送電パッド20と、送電回路30とを備えている。詳しくは、送電回路30は、車両10の外部に設けられた交流電源32(系統電源)の周波数を所定の高周波数(数kHz〜十数MHz)に変換する電力変換回路(例えばフルブリッジ回路)と、電力変換回路から出力された電力を送電パッド20に供給する共振回路とを備えている。   The power transmission system includes a power transmission pad 20 as a power transmission member and a power transmission circuit 30. Specifically, the power transmission circuit 30 converts a frequency of an AC power supply 32 (system power supply) provided outside the vehicle 10 into a predetermined high frequency (several kHz to several tens of MHz) (for example, a full bridge circuit). And a resonance circuit that supplies the power output from the power conversion circuit to the power transmission pad 20.

送電パッド20は、1次側コア及びこれに巻回された1次側コイルからなり、電磁誘導によって受電システムの備える受電パッド40に電力を送るための部材である。なお、送電パッド20の構成については、後に詳述する。   The power transmission pad 20 includes a primary side core and a primary side coil wound around the primary side core, and is a member for sending electric power to the power reception pad 40 included in the power reception system by electromagnetic induction. The configuration of the power transmission pad 20 will be described in detail later.

一方、受電システムは、受電部材としての受電パッド40、受電回路50、DCDCコンバータ52、蓄電手段としてのメインバッテリ54、及び制御装置56を備えている。詳しくは、受電パッド40は、2次側コア及びこれに巻回された2次側コイルからなり、送電パッド20から送られる電力を受けとるための部材である。受電パッド40は、車両10の下部(床面の外側)に配置されている。なお、受電パッド40の構成については、後に詳述する。   On the other hand, the power receiving system includes a power receiving pad 40 as a power receiving member, a power receiving circuit 50, a DCDC converter 52, a main battery 54 as a power storage means, and a control device 56. Specifically, the power receiving pad 40 includes a secondary side core and a secondary side coil wound around the secondary side core, and is a member for receiving power transmitted from the power transmitting pad 20. The power receiving pad 40 is disposed in the lower part of the vehicle 10 (outside the floor surface). The configuration of the power receiving pad 40 will be described in detail later.

受電パッド40によって受けとられた電力は、受電回路50に供給される。受電回路50は、受電パッド40によって受けとられた電力が入力される共振回路と、共振回路から出力される高周波の交流電流を直流電流に変換する整流回路と、整流回路の出力電圧を所定に変換してメインバッテリ54に印加する電力変換回路とを備えている。受電回路50やメインバッテリ54の出力電圧は、DCDCコンバータ52によって降圧されて車載補機58や補機バッテリ60に印加される。   The power received by the power receiving pad 40 is supplied to the power receiving circuit 50. The power receiving circuit 50 includes a resonant circuit to which the power received by the power receiving pad 40 is input, a rectifier circuit that converts a high-frequency alternating current output from the resonant circuit into a direct current, and an output voltage of the rectifier circuit that is predetermined. A power conversion circuit for converting and applying to the main battery 54. The output voltage of the power receiving circuit 50 and the main battery 54 is stepped down by the DCDC converter 52 and applied to the in-vehicle auxiliary machine 58 and the auxiliary battery 60.

なお、メインバッテリ54は、その端子電圧が例えば百V以上となるものであり、具体的には例えば、ニッケル水素2次電池やリチウムイオン2次電池である。また、補機バッテリ60は、その端子電圧がメインバッテリ54の端子電圧よりも十分に低いものであり、具体的には例えば、鉛蓄電池である。さらに、車両10には、受電システムの他に、メインバッテリ54の直流電力を交流電力に変換して出力するインバータ62及びインバータ62から出力された交流電力によって回転駆動される車載主機としてのモータジェネレータ64が備えられている。   The main battery 54 has a terminal voltage of, for example, 100 V or more, and is specifically a nickel metal hydride secondary battery or a lithium ion secondary battery. The auxiliary battery 60 has a terminal voltage sufficiently lower than the terminal voltage of the main battery 54, and is specifically a lead storage battery, for example. In addition to the power receiving system, the vehicle 10 includes an inverter 62 that converts the DC power of the main battery 54 into AC power and outputs it, and a motor generator as an in-vehicle main unit that is rotationally driven by the AC power output from the inverter 62. 64 is provided.

制御装置56は、モータジェネレータ64の駆動制御を行うべくインバータ62を操作したり、車載補機58や補機バッテリ60に電力を供給すべくDCDCコンバータ52を操作したりする。また、制御装置56は、車両を給電対象とした充電処理の実行を受電回路50に指示する。これにより、受電回路50は、受電回路50及び送電回路30のそれぞれに備えられる無線通信用のインターフェースによってこれら回路同士で情報のやりとりを行いながら車両10を充電すべく動作する。   The control device 56 operates the inverter 62 to perform drive control of the motor generator 64, and operates the DCDC converter 52 to supply power to the in-vehicle auxiliary machine 58 and the auxiliary battery 60. In addition, the control device 56 instructs the power receiving circuit 50 to execute a charging process with the vehicle as a power supply target. As a result, the power receiving circuit 50 operates to charge the vehicle 10 while exchanging information between the circuits using the wireless communication interfaces provided in each of the power receiving circuit 50 and the power transmitting circuit 30.

続いて、図2〜図4を用いて、本実施形態にかかる送電パッド20及び受電パッド40を備える非接触給電装置について詳述する。   Next, a non-contact power feeding device including the power transmission pad 20 and the power receiving pad 40 according to the present embodiment will be described in detail with reference to FIGS.

図2に、非接触給電装置のうち送電パッド20及び受電パッド40の斜視図を示す。   In FIG. 2, the perspective view of the power transmission pad 20 and the power receiving pad 40 among non-contact electric power feeders is shown.

図示されるように、送電パッド20は、1次側コア21と、1次側コア21に巻回された1次側コイル22とからなる。詳しくは、1次側コア21は、矩形板状であってかつ互いに離間した一対の1次側巻線部21aと、これら1次側巻線部21a同士を連結する長方形板状の1次側連結部21bとが一体形成されてなる部材である。一対の1次側巻線部21aのそれぞれは、板面(平面)と、周縁部21cとを有している。これら1次側巻線部21aのそれぞれの有する一対の板面のうち受電パッド40側とは反対側に1次側連結部21bが連結されている。また、これら1次側巻線部21aのそれぞれの周縁部21cには、1次側コイル22が複数周巻回されている。なお、本実施形態において、1次側コア21は、軟磁性体からなり、具体的には、フェライトからなる。   As illustrated, the power transmission pad 20 includes a primary side core 21 and a primary side coil 22 wound around the primary side core 21. Specifically, the primary side core 21 has a rectangular plate shape and a pair of primary side winding portions 21a that are separated from each other, and a rectangular plate-like primary side that connects the primary side winding portions 21a to each other. This is a member formed integrally with the connecting portion 21b. Each of the pair of primary winding parts 21a has a plate surface (plane) and a peripheral edge part 21c. The primary side connecting portion 21b is connected to the opposite side of the pair of plate surfaces of each of the primary side winding portions 21a to the power receiving pad 40 side. Further, a plurality of primary side coils 22 are wound around each peripheral edge portion 21c of the primary side winding portion 21a. In the present embodiment, the primary core 21 is made of a soft magnetic material, specifically, ferrite.

一方、受電パッド40は、2次側コア41と、2次側コア41に巻回された2次側コイル42とからなる。詳しくは、2次側コア41は、矩形板状であってかつ互いに離間した一対の2次側巻線部41aと、これら2次側巻線部41a同士を連結する長方形板状の2次側連結部41bとが一体形成されてなる部材である。一対の2次側巻線部41aのそれぞれは、板面(平面)と、周縁部41cとを有している。これら2次側巻線部41aのそれぞれの有する一対の板面のうち送電パッド20側とは反対側に2次側連結部41bが連結されている。また、これら2次側巻線部41aのそれぞれの周縁部41cには、2次側コイル42が複数周巻回されている。なお、本実施形態において、2次側コア41は、1次側コア21と同様にフェライトからなる。   On the other hand, the power receiving pad 40 includes a secondary side core 41 and a secondary side coil 42 wound around the secondary side core 41. Specifically, the secondary side core 41 has a rectangular plate shape and a pair of secondary winding portions 41a that are spaced apart from each other, and a rectangular plate-like secondary side that connects the secondary winding portions 41a to each other. This is a member formed integrally with the connecting portion 41b. Each of the pair of secondary winding parts 41a has a plate surface (plane) and a peripheral edge part 41c. The secondary side connecting portion 41b is connected to the opposite side of the pair of plate surfaces of the secondary side winding portion 41a from the power transmission pad 20 side. In addition, a plurality of secondary side coils 42 are wound around each peripheral edge portion 41c of the secondary side winding portion 41a. In the present embodiment, the secondary side core 41 is made of ferrite in the same manner as the primary side core 21.

1次側コア21及び2次側コア41は、非接触給電が行われる場合において、1次側巻線部21aの板面及び2次側巻線部41aの板面同士が対向してかつ平行となるように配置されている。   When the non-contact power feeding is performed, the primary side core 21 and the secondary side core 41 are parallel so that the plate surface of the primary side winding portion 21a and the plate surface of the secondary side winding portion 41a face each other. It is arranged to become.

ちなみに、本実施形態において、一対の1次側巻線部21aが1次側コイル22に対応する対となる磁極部に相当し、一対の2次側巻線部41aが2次側コイル42に対応する対となる磁極部に相当する。また、図2には、1次側コイル22に流れる電流I1の流通方向及び2次側コイル42に流れる電流I2の流通方向を矢印にて示している。   Incidentally, in the present embodiment, the pair of primary windings 21 a corresponds to the pair of magnetic poles corresponding to the primary coil 22, and the pair of secondary windings 41 a serves as the secondary coil 42. This corresponds to the corresponding magnetic pole part. Further, in FIG. 2, the flow direction of the current I1 flowing through the primary coil 22 and the flow direction of the current I2 flowing through the secondary coil 42 are indicated by arrows.

次に、本実施形態にかかる非接触給電装置の特徴的構成について説明する。   Next, a characteristic configuration of the contactless power supply device according to the present embodiment will be described.

まず、図3を用いて、受電パッド40側の特徴的構成について説明する。なお、図3は、受電パッド40を2次側巻線部41aの板面の正面から見た図である。また、図3では、2次側コイル42のうち2次側コア41側から外部へと延びる部分の図示を省略している。さらに、図3では、断面形状ではないが、2次側コア41の構成部材及び2次側コイル42等にハッチングを付している。   First, a characteristic configuration on the power receiving pad 40 side will be described with reference to FIG. FIG. 3 is a view of the power receiving pad 40 as viewed from the front side of the plate surface of the secondary winding portion 41a. In FIG. 3, the portion of the secondary coil 42 that extends from the secondary core 41 side to the outside is not shown. Further, in FIG. 3, although not a cross-sectional shape, the constituent members of the secondary side core 41 and the secondary side coil 42 are hatched.

図示されるように、本実施形態では、2次側巻線部41aの板面の正面視において、2次側コア41及び2次側コイル42を囲むように2次側主シールド部材43が配置されている。詳しくは、2次側主シールド部材43は、2次側巻線部41aの板面の正面視において矩形枠形状(長方形枠形状)をなし、2次側コア41及び2次側コイル42と近接離間して車両10の床面の外側に配置されている。本実施形態において、2次側主シールド部材43は、軟磁性体からなり、具体的には例えば、フェライトや、圧粉磁心、ダストコア、所定の厚さ(例えば0.3mm)以下の鉄系の軟磁性体からなる。ここで、鉄系の軟磁性体としては、例えば、電磁鋼板(珪素鋼板)や、パーマロイ、アモルファス金属材料、ナノ結晶軟磁性材料が挙げられる。こうした材料により2次側主シールド部材43を形成することで、非接触給電の使用周波数帯(1次側コイル22に対して印加される電圧の周波数であり、例えば数kHz〜十数MHz)において比透磁率を十分高くすることができる。   As illustrated, in the present embodiment, the secondary main shield member 43 is disposed so as to surround the secondary core 41 and the secondary coil 42 in a front view of the plate surface of the secondary winding portion 41a. Has been. Specifically, the secondary main shield member 43 has a rectangular frame shape (rectangular frame shape) in a front view of the plate surface of the secondary winding portion 41a and is close to the secondary core 41 and the secondary coil 42. It is spaced apart and arranged outside the floor of the vehicle 10. In the present embodiment, the secondary main shield member 43 is made of a soft magnetic material, and specifically, for example, ferrite, a dust core, a dust core, or an iron-based material having a predetermined thickness (eg, 0.3 mm) or less. Made of soft magnetic material. Here, examples of the iron-based soft magnetic material include an electromagnetic steel plate (silicon steel plate), permalloy, an amorphous metal material, and a nanocrystalline soft magnetic material. By forming the secondary side main shield member 43 with such a material, in the use frequency band of the non-contact power feeding (the frequency of the voltage applied to the primary side coil 22, for example, several kHz to several tens MHz). The relative permeability can be made sufficiently high.

2次側主シールド部材43は、図4に示すように、扁平形状をなし、また、2次側連結部41bの表面のうち送電パッド20側とは反対側の平面を通ってかつこの平面に平行な面上に配置される。なお、図4は、図3のA−A断面図である。ここで、図4では、車両10の床面外側の図示を省略している。   As shown in FIG. 4, the secondary side main shield member 43 has a flat shape, and passes through the plane on the opposite side of the surface of the secondary side connecting portion 41 b from the power transmission pad 20 side and on this plane. Arranged on parallel surfaces. 4 is a cross-sectional view taken along the line AA in FIG. Here, in FIG. 4, illustration of the outside of the floor surface of the vehicle 10 is omitted.

一方、送電パッド20側にも、受電パッド40側と同様に、1次側主シールド部材23が備えられる。詳しくは、図5に示すように、2次側コア41及び2次側コイル42を備える受電パッド40と、2次側主シールド部材43とは、車両10の床面外側に配置される一方、1次側コア21及び1次側コイル22を備える送電パッド20と、1次側主シールド部材23とは、駐車スペースに備えられる給電設備側に配置されている。1次側主シールド部材23は、2次側主シールド部材43と同様の構成である。また、1次側主シールド部材23及び送電パッド20の位置関係は、先の図3及び図4に示した2次側主シールド部材43及び受電パッド40の位置関係と同様である。   On the other hand, the primary side main shield member 23 is also provided on the power transmission pad 20 side, similarly to the power reception pad 40 side. Specifically, as shown in FIG. 5, the power receiving pad 40 including the secondary side core 41 and the secondary side coil 42 and the secondary side main shield member 43 are disposed outside the floor surface of the vehicle 10, The power transmission pad 20 including the primary side core 21 and the primary side coil 22 and the primary side main shield member 23 are arranged on the power supply facility side provided in the parking space. The primary side main shield member 23 has the same configuration as the secondary side main shield member 43. The positional relationship between the primary side main shield member 23 and the power transmission pad 20 is the same as the positional relationship between the secondary side main shield member 43 and the power receiving pad 40 shown in FIGS. 3 and 4.

送電パッド20は、駐車スペースの路面上に固定され、1次側主シールド部材23は、駐車スペースに埋設されている。ここで、給電設備としては、例えば、建物の駐車スペースや、コインパーキング等の有料駐車スペース、スーパーマーケット等の店舗の駐車スペースに備えられるものが挙げられる。   The power transmission pad 20 is fixed on the road surface of the parking space, and the primary side main shield member 23 is embedded in the parking space. Here, examples of the power supply equipment include those provided in a parking space of a building, a paid parking space such as a coin parking, and a parking space of a store such as a supermarket.

なお、図5では、車両10の車輪を「70」にて示し、車両10の輪止めを「72」にて示し、2次側主シールド部材43の図示を省略している。また、図6に、図5の駐車スペースを車両10の上方から見た図を示す。図6では、車両10及び車輪70の輪郭を破線にて示し、駐車スペースを区画するラインを「74」にて示している。   In FIG. 5, the wheel of the vehicle 10 is indicated by “70”, the wheel stopper of the vehicle 10 is indicated by “72”, and the illustration of the secondary main shield member 43 is omitted. FIG. 6 shows a view of the parking space of FIG. In FIG. 6, the outlines of the vehicle 10 and the wheels 70 are indicated by broken lines, and a line that partitions the parking space is indicated by “74”.

続いて、図7を用いて、1次側主シールド部材23及び2次側主シールド部材43を配置することによる効果について説明する。ここで、図7は、送電パッド20及び受電パッド40についての断面図であり、先の図4に対応する図である。   Then, the effect by arrange | positioning the primary side main shield member 23 and the secondary side main shield member 43 is demonstrated using FIG. Here, FIG. 7 is a cross-sectional view of the power transmitting pad 20 and the power receiving pad 40, and corresponds to FIG.

1次側コイル22に高周波電流が流れると、1次側コイル22の内部に磁界が生じることで、図中破線の矢印にて示すように、一対の1次側巻線部21aのうち一方の板面側からこれに対向する2次側巻線部41aの板面側に磁束が流入し、2次側コイル42に誘導電流が流れる。このため、2次側コイル42の内部に磁界が生じ、一対の2次側巻線部41aのうち他方の板面側からこれに対向する1次側巻線部21aの板面側に磁束が流入する。これにより、1次側コア21及び2次側コア41間を循環する主磁束が形成されることとなる。   When a high frequency current flows through the primary side coil 22, a magnetic field is generated inside the primary side coil 22, so that one of the pair of primary side winding portions 21a is shown as indicated by the broken arrow in the figure. Magnetic flux flows from the plate surface side to the plate surface side of the secondary side winding portion 41a facing this, and an induced current flows through the secondary coil 42. For this reason, a magnetic field is generated inside the secondary coil 42, and a magnetic flux is generated from the other plate surface side of the pair of secondary winding portions 41a to the plate surface side of the primary winding portion 21a opposed to the other. Inflow. Thereby, the main magnetic flux which circulates between the primary side core 21 and the secondary side core 41 will be formed.

ここで、1次側巻線部21aの一方の板面から外部へと向かおうとする磁束は、1次側主シールド部材23を介して1次側巻線部21aの他方の板面に導かれ、また、2次側巻線部41aの一方の板面から外部へと向かおうとする磁束は、2次側主シールド部材43を介して2次側巻線部41aの他方に板面に導かれる。すなわち、外部への漏洩電磁界を低減させることができる。   Here, the magnetic flux going from one plate surface of the primary side winding portion 21a to the outside is guided to the other plate surface of the primary side winding portion 21a via the primary side main shield member 23. In addition, the magnetic flux going from one plate surface of the secondary side winding portion 41a to the outside passes through the secondary side main shield member 43 to the other side of the secondary side winding portion 41a on the plate surface. Led. That is, the leakage electromagnetic field to the outside can be reduced.

以上詳述した本実施形態によれば、以下の効果が得られるようになる。   According to the embodiment described in detail above, the following effects can be obtained.

(1)非接触給電装置に1次側主シールド部材23及び2次側主シールド部材43を備えた。このため、漏洩電磁界を低減させることができ、周辺の電子機器(例えば通信機器)の動作不良や誤動作を回避することができる。特に、本実施形態では、1次側主シールド部材23,2次側主シールド部材43を1次側コア21,2次側コア41及び1次側コイル22,2次側コイル42から離間させた。このため、1次側コイル22及び2次側コイル42間における漏れインダクタンスの増大を抑制しつつも、これらコイル22,42同士の結合係数の低下を抑制することもできる。これにより、送電パッド20側から受電パッド40側へと所定の電力を供給するために要求される1次側コイル22への通電量の増大を抑制することができ、ひいては電力伝送効率の低下を好適に抑制することができる。   (1) The primary-side main shield member 23 and the secondary-side main shield member 43 are provided in the non-contact power feeding device. For this reason, leakage electromagnetic fields can be reduced, and malfunctions and malfunctions of peripheral electronic devices (for example, communication devices) can be avoided. In particular, in this embodiment, the primary side main shield member 23 and the secondary side main shield member 43 are separated from the primary side core 21, the secondary side core 41, the primary side coil 22, and the secondary side coil 42. . For this reason, it is possible to suppress a decrease in the coupling coefficient between the coils 22 and 42 while suppressing an increase in leakage inductance between the primary coil 22 and the secondary coil 42. Thereby, the increase in the energization amount to the primary side coil 22 required in order to supply predetermined electric power from the power transmission pad 20 side to the power receiving pad 40 side can be suppressed, and the reduction in power transmission efficiency can be suppressed. It can suppress suitably.

加えて、本実施形態では、1次側巻線部21a,2次側巻線部41aの板面の正面視において、1次側コア21及び1次側コイル22,2次側コア41及び2次側コイル42を囲む扁平枠形状をなすように1次側主シールド部材23,2次側主シールド部材43を配置した。このため、漏洩電磁界の低減効果をいっそう大きくすることができる。さらに、1次側主シールド部材23,2次側主シールド部材43を、1次側コイル22及び2次側コイル42が対向する方向(1次側巻線部21a,2次側巻線部41aの板面と直交する方向)において1次側コイル22,2次側コイル42と近接して配置した。このため、1次側主シールド部材23,2次側主シールド部材43の配置による非接触給電装置の高さ方向(上記対向する方向)の体格の増大を抑制できる。これにより、受電パッド40及び2次側主シールド部材43を車両10の床面外側に搭載したり、送電パッド20及び1次側主シールド部材23を地上側に設置したりする際の制約を緩和することもできる。   In addition, in this embodiment, the primary side core 21 and the primary side coil 22, and the secondary side cores 41 and 2 in the front view of the plate surface of the primary side winding part 21a and the secondary side winding part 41a. The primary side main shield member 23 and the secondary side main shield member 43 are arranged so as to form a flat frame shape surrounding the secondary coil 42. For this reason, the effect of reducing the leakage electromagnetic field can be further increased. Further, the primary side main shield member 23 and the secondary side main shield member 43 are arranged in the direction in which the primary side coil 22 and the secondary side coil 42 face each other (the primary side winding portion 21a and the secondary side winding portion 41a. In the direction orthogonal to the plate surface of the primary coil 22 and the secondary coil 42. For this reason, it is possible to suppress an increase in the physique in the height direction of the non-contact power feeding device (the opposing direction) due to the arrangement of the primary main shield member 23 and the secondary main shield member 43. Thereby, the restrictions when mounting the power receiving pad 40 and the secondary side main shield member 43 outside the floor surface of the vehicle 10 or installing the power transmission pad 20 and the primary side main shield member 23 on the ground side are alleviated. You can also

(2)1次側主シールド部材23を送電パッド20とは別体にて構成した。このため、例えば、1次側主シールド部材23及び送電パッド20が一体にて構成される場合と比較して、1次側主シールド部材23や送電パッド20のメンテナンス性を高めることができる。これにより、1次側主シールド部材23や送電パッド20を構成する部品等を交換する場合におけるコストや工数を低減させることができる。   (2) The primary side main shield member 23 is configured separately from the power transmission pad 20. For this reason, for example, the maintainability of the primary side main shield member 23 and the power transmission pad 20 can be improved as compared with the case where the primary side main shield member 23 and the power transmission pad 20 are configured integrally. Thereby, the cost and man-hour in the case of exchanging parts etc. which constitute primary side main shield member 23 and power transmission pad 20 can be reduced.

(第2の実施形態)
以下、第2の実施形態について、先の第1の実施形態との相違点を中心に図面を参照しつつ説明する。
(Second Embodiment)
Hereinafter, the second embodiment will be described with reference to the drawings with a focus on differences from the first embodiment.

本実施形態では、漏洩電磁界の低減効果をさらに大きくすべく、副シールド部材を非接触給電装置に備える。   In the present embodiment, the sub-shield member is provided in the non-contact power supply device in order to further increase the leakage electromagnetic field reduction effect.

図8に、本実施形態にかかる受電パッド40の平面図を示す。なお、図8は、先の図3に対応している。また、本実施形態において、上記第1の実施形態で説明した部材と同一の部材については、図中、同一の符号を付している。   FIG. 8 is a plan view of the power receiving pad 40 according to the present embodiment. FIG. 8 corresponds to FIG. Moreover, in this embodiment, the same code | symbol is attached | subjected in the figure about the member same as the member demonstrated in the said 1st Embodiment.

図示されるように、本実施形態では、2次側巻線部41aの板面の正面視において、2次側主シールド部材43の内縁に接した状態で矩形板状の2次側副シールド部材44が配置されている。ここで、本実施形態において、2次側副シールド部材44は、非接触給電の使用周波数帯における比透磁率が1よりも低い材料からなり、具体的には、アルミニウム、銅などの導電性を有する非磁性体や、所定以上の厚さ(例えば0,5mm以上の厚さ)を有する鉄などの強磁性体からなる。   As shown in the drawing, in the present embodiment, the secondary side secondary shield member having a rectangular plate shape in contact with the inner edge of the secondary side main shield member 43 in a front view of the plate surface of the secondary side winding portion 41a. 44 is arranged. Here, in the present embodiment, the secondary side auxiliary shield member 44 is made of a material having a relative magnetic permeability lower than 1 in the use frequency band of non-contact power feeding, and specifically, has conductivity such as aluminum and copper. It is made of a nonmagnetic material having a ferromagnetic material such as iron having a predetermined thickness or more (for example, a thickness of 0.5 mm or more).

また、図9に示すように、2次側副シールド部材44は、2次側連結部41bと密着して配置されている。なお、図9は、先の図8のA−A断面図であり、先の図4に対応している。   Further, as shown in FIG. 9, the secondary side secondary shield member 44 is disposed in close contact with the secondary side connecting portion 41b. 9 is a cross-sectional view taken along the line AA in FIG. 8, and corresponds to FIG.

一方、送電パッド20側にも、受電パッド40側と同様に、1次側副シールド部材24が備えられる。詳しくは、図10に示すように、1次側副シールド部材24は、駐車スペースに埋設されている。1次側副シールド部材24は、2次側副シールド部材44と同様の構成である。また、1次側副シールド部材24、1次側主シールド部材23及び送電パッド20の位置関係は、先の図8及び図9に示した2次側副シールド部材44、2次側主シールド部材43及び受電パッド40の位置関係と同様である。なお、図11に、図10の駐車スペースを車両10の上方から見た図を示す。   On the other hand, the primary side auxiliary shield member 24 is also provided on the power transmission pad 20 side, similarly to the power reception pad 40 side. Specifically, as shown in FIG. 10, the primary side secondary shield member 24 is embedded in the parking space. The primary side secondary shield member 24 has the same configuration as the secondary side secondary shield member 44. The primary side secondary shield member 24, the primary side primary shield member 23, and the power transmission pad 20 are in a positional relationship between the secondary side secondary shield member 44 and the secondary side primary shield member shown in FIGS. 43 and the positional relationship of the power receiving pad 40 are the same. FIG. 11 shows a view of the parking space of FIG. 10 as viewed from above the vehicle 10.

続いて、図12を用いて、1次側副シールド部材24及び2次側副シールド部材44の配置による効果について説明する。なお、図12は、先の図7に対応している。   Then, the effect by arrangement | positioning of the primary side secondary shield member 24 and the secondary side secondary shield member 44 is demonstrated using FIG. FIG. 12 corresponds to FIG.

図示されるように、1次側副シールド部材24の配置により、1次側連結部21bの表面のうち受電パッド40側とは反対側付近の漏洩電磁界を低減させることができる。また、2次側副シールド部材44の配置により、2次側連結部41bの表面のうち送電パッド20側とは反対側付近の漏洩電磁界を低減させることができる。   As shown in the drawing, the arrangement of the primary side secondary shield member 24 can reduce the leakage electromagnetic field near the opposite side of the surface of the primary side coupling portion 21b from the power receiving pad 40 side. Moreover, the arrangement | positioning of the secondary side subshield member 44 can reduce the leakage electromagnetic field of the surface side of the secondary side connection part 41b near the opposite side to the power transmission pad 20 side.

これに対し、図13に示す比較技術では、1次側連結部21bの表面のうち受電パッド40側とは反対側付近や、2次側連結部41bの表面のうち送電パッド20側とは反対側付近の漏洩電磁界を低減させることができない。ここで、比較技術とは、本実施形態にかかる1次側主シールド部材23及び2次側主シールド部材43を除去した構成である。なお、図13において、「α1」〜「α4」は、非接触給電時に生じる渦電流を示す。   On the other hand, in the comparative technique shown in FIG. 13, the surface of the primary side connecting portion 21b is near the side opposite to the power receiving pad 40 side, and the surface of the secondary side connecting portion 41b is opposite to the power transmitting pad 20 side. The leakage electromagnetic field near the side cannot be reduced. Here, the comparative technique is a configuration in which the primary main shield member 23 and the secondary main shield member 43 according to the present embodiment are removed. In FIG. 13, “α1” to “α4” indicate eddy currents generated during non-contact power feeding.

比較技術によって漏洩電磁界を低減させることができない理由は、図示されるように、非接触給電時において1次側副シールド部材24や2次側副シールド部材44の端部に流れる渦電流により、「α1」や「α3」付近において漏洩電磁界が大きくなるためである。   The reason why the leakage electromagnetic field cannot be reduced by the comparison technique is that the eddy current flowing at the end of the primary side secondary shield member 24 or the secondary side secondary shield member 44 at the time of non-contact power feeding, as shown in the figure, This is because the leakage electromagnetic field increases in the vicinity of “α1” and “α3”.

以上説明した本実施形態によれば、上記第1の実施形態で説明した(1),(2)の効果に加えて、以下の効果が得られるようになる。   According to the present embodiment described above, in addition to the effects (1) and (2) described in the first embodiment, the following effects can be obtained.

(3)1次側副シールド部材24及び2次側副シールド部材44を備えた。このため、漏洩電磁界の低減効果をさらに大きくすることができる。特に、本実施形態では、1次側主シールド部材23及び1次側副シールド部材24の間、及び2次側主シールド部材43及び2次側副シールド部材44の間に隙間がない状態でこれら主シールド部材及び副シールド部材が配置されているため、漏洩電磁界の低減効果が大きい。このため、周辺の電子機器の動作不良等をより好適に回避することができる。なお、本発明者らにより、本実施形態における漏洩電磁界は、比較技術における漏洩電磁界の「1/3」になることが調べられている。   (3) The primary side secondary shield member 24 and the secondary side secondary shield member 44 are provided. For this reason, the effect of reducing the leakage electromagnetic field can be further increased. In particular, in the present embodiment, there is no gap between the primary side main shield member 23 and the primary side sub shield member 24 and between the secondary side main shield member 43 and the secondary side sub shield member 44. Since the main shield member and the sub shield member are arranged, the effect of reducing the leakage electromagnetic field is great. For this reason, the malfunction etc. of a surrounding electronic device can be avoided more suitably. In addition, it has been investigated by the present inventors that the leakage electromagnetic field in the present embodiment is “1/3” of the leakage electromagnetic field in the comparative technique.

(第3の実施形態)
以下、第3の実施形態について、先の第2の実施形態との相違点を中心に図面を参照しつつ説明する。
(Third embodiment)
Hereinafter, the third embodiment will be described with reference to the drawings with a focus on differences from the second embodiment.

本実施形態では、漏洩電磁界の低減効果を大きくすべく、非接触給電装置の構成を変更する。   In the present embodiment, the configuration of the non-contact power feeding device is changed to increase the leakage electromagnetic field reduction effect.

図14に、本実施形態にかかる非接触給電装置の断面図を示す。なお、図14は、先の図12に対応している。   In FIG. 14, sectional drawing of the non-contact electric power feeder concerning this embodiment is shown. FIG. 14 corresponds to FIG.

図示されるように、本実施形態では、1次側巻線部21aの板面の外縁(図中、Aにて表記)及び1次側主シールド部材23の内縁(図中、Bにて表記)間の距離(最短距離)l1が、1次側巻線部21aの板面及び2次側巻線部41aの板面間の距離l2よりも長くなるように、送電パッド20、1次側主シールド部材23及び1次側主シールド部材23が構成されている。また、受電パッド40側についても、2次側巻線部41aの板面の外縁及び2次側主シールド部材43の内縁間の距離(最短距離)が、1次側巻線部21aの板面及び2次側巻線部41aの板面間の距離よりも長くなるように、受電パッド40、2次側主シールド部材43及び2次側副シールド部材44が構成されている。   As shown in the figure, in this embodiment, the outer edge of the plate surface of the primary winding portion 21a (indicated by A in the figure) and the inner edge of the primary side main shield member 23 (indicated by B in the figure). ) Between the power transmission pad 20 and the primary side so that the distance (shortest distance) l1 is longer than the distance l2 between the plate surface of the primary side winding portion 21a and the plate surface of the secondary side winding portion 41a. A main shield member 23 and a primary side main shield member 23 are configured. Also, on the power receiving pad 40 side, the distance (shortest distance) between the outer edge of the plate surface of the secondary side winding portion 41a and the inner edge of the secondary side main shield member 43 is the plate surface of the primary side winding portion 21a. The power receiving pad 40, the secondary side main shield member 43, and the secondary side sub shield member 44 are configured to be longer than the distance between the plate surfaces of the secondary side winding portion 41a.

こうした配置によれば、1次側コイル22及び2次側コイル42間における漏れインダクタンスの増大をいっそう抑制することができ、ひいてはコイル同士の結合係数の低下をいっそう抑制することができる。   According to such an arrangement, an increase in leakage inductance between the primary side coil 22 and the secondary side coil 42 can be further suppressed, and as a result, a decrease in the coupling coefficient between the coils can be further suppressed.

(第4の実施形態)
以下、第4の実施形態について、先の第2の実施形態との相違点を中心に図面を参照しつつ説明する。
(Fourth embodiment)
Hereinafter, the fourth embodiment will be described with reference to the drawings with a focus on differences from the second embodiment.

本実施形態では、副シールド部材の配置態様を変更する。   In this embodiment, the arrangement | positioning aspect of a subshield member is changed.

図15に、本実施形態にかかる受電パッド40側の平面図を示し、図16に、図15のA−A断面図を示す。なお、図15及び図16は、先の図8及び図9に対応している。また、本実施形態において、上記第2の実施形態で説明した部材と同一の部材については、図中、同一の符号を付している。   FIG. 15 is a plan view of the power receiving pad 40 according to the present embodiment, and FIG. 16 is a cross-sectional view taken along line AA of FIG. 15 and 16 correspond to FIGS. 8 and 9 described above. Moreover, in this embodiment, the same code | symbol is attached | subjected in the figure about the member same as the member demonstrated in the said 2nd Embodiment.

本実施形態では、2次側主シールド部材43aを、図15及び図16に示すように、2次側副シールド部材44よりも面積の大きい矩形板状の部材とする。そして、2次側主シールド部材43aを、図16に示すように、2次側副シールド部材44の表面のうち2次側連結部41b側とは反対側に密着して配置する。なお、送電パッド20側についても同様である。   In this embodiment, the secondary side main shield member 43a is a rectangular plate-like member having a larger area than the secondary side sub shield member 44, as shown in FIGS. And the secondary side main shield member 43a is closely_contact | adhered and arrange | positioned on the opposite side to the secondary side connection part 41b side among the surfaces of the secondary side subshield member 44, as shown in FIG. The same applies to the power transmission pad 20 side.

また、本実施形態では、漏洩電磁界の低減効果を大きくすべく、上記第3の実施形態で説明した手法を採用する。ここで、図17に、本実施形態にかかる非接触給電装置の断面図を示す。なお、図17は、先の図14に対応している。   In the present embodiment, the method described in the third embodiment is employed to increase the leakage electromagnetic field reduction effect. Here, FIG. 17 shows a cross-sectional view of the non-contact power feeding apparatus according to the present embodiment. FIG. 17 corresponds to FIG.

図示されるように、本実施形態では、1次側巻線部21aの板面の外縁(図中、Aにて表記)と、1次側副シールド部材24の外縁のうち1次側主シールド部材23aと接触する側(図中、Bにて表記)との距離(最短距離)l3が、1次側巻線部21aの板面及び2次側巻線部41aの板面間の距離l4よりも長くなるように、送電パッド20、1次側主シールド部材23a及び1次側副シールド部材24が構成されている。なお、受電パッド40側についても同様である。   As shown in the drawing, in the present embodiment, the primary side main shield out of the outer edge of the plate surface of the primary side winding portion 21 a (indicated by A in the drawing) and the outer side edge of the primary side auxiliary shield member 24. The distance (shortest distance) l3 to the side in contact with the member 23a (indicated by B in the figure) is the distance l4 between the plate surface of the primary side winding portion 21a and the plate surface of the secondary side winding portion 41a. The power transmission pad 20, the primary side main shield member 23a, and the primary side sub shield member 24 are configured so as to be longer. The same applies to the power receiving pad 40 side.

以上説明した本実施形態によっても、上記第3,第4の実施形態で得られる効果と同様の効果を得ることができる。   According to the present embodiment described above, the same effects as those obtained in the third and fourth embodiments can be obtained.

(第5の実施形態)
以下、第5の実施形態について、先の第2の実施形態との相違点を中心に図面を参照しつつ説明する。
(Fifth embodiment)
Hereinafter, the fifth embodiment will be described with reference to the drawings with a focus on differences from the second embodiment.

本実施形態では、主シールド部材の構成を変更する。   In the present embodiment, the configuration of the main shield member is changed.

図18に、本実施形態にかかる受電パッド40側の平面図を示し、図19に、図18のA−A断面図を示す。なお、図18及び図19は、先の図8及び図9に対応している。また、本実施形態において、上記第2の実施形態で説明した部材と同一の部材については、図中、同一の符号を付している。   FIG. 18 is a plan view of the power receiving pad 40 according to the present embodiment, and FIG. 19 is a cross-sectional view taken along line AA of FIG. 18 and 19 correspond to FIGS. 8 and 9 described above. Moreover, in this embodiment, the same code | symbol is attached | subjected in the figure about the member same as the member demonstrated in the said 2nd Embodiment.

図18に示すように、本実施形態では、2次側巻線部41aの板面の正面視において、2次側主シールド部材43から2次側主シールド部材43の長手方向及び幅方向のそれぞれの外側に向かって延びる複数の第1の突出部43cが備えられている。また、図19に示すように、第1の突出部43cのそれぞれにおいて、第1の突出部43cと直交する方向であってかつ送電パッド20側に向かって第1の突出部43cから延びる第2の突出部43dが備えられている。これら突出部43c,43dは、2次側主シールド部材43と同様に、軟磁性体からなる。ちなみに、第1の突出部43c及び第2の突出部43dは、2次側主シールド部材43と一体形成されているものであってもよいし、2次側主シールド部材43に別部材として連結されているものであってもよい。なお、送電パッド20側についても同様である。   As shown in FIG. 18, in this embodiment, in the front view of the plate surface of the secondary side winding portion 41a, the secondary side main shield member 43 to the secondary side main shield member 43 in the longitudinal direction and the width direction respectively. There are provided a plurality of first protrusions 43c extending outward. In addition, as shown in FIG. 19, in each of the first protrusions 43 c, a second direction extending from the first protrusion 43 c in the direction orthogonal to the first protrusion 43 c and toward the power transmission pad 20 side. 43d is provided. Similar to the secondary main shield member 43, these protrusions 43c and 43d are made of a soft magnetic material. Incidentally, the 1st protrusion part 43c and the 2nd protrusion part 43d may be integrally formed with the secondary side main shield member 43, and it connects with the secondary side main shield member 43 as another member. It may be what has been done. The same applies to the power transmission pad 20 side.

以上説明した本実施形態によれば、非接触給電装置の設置スペースに応じた突出部43c,43dを主シールド部材として備えることができる。このため、主シールド部材を備えることによる非接触給電装置の体格の増大を抑制しつつ、漏洩電磁界の低減効果を大きくすることができる。   According to the present embodiment described above, the protruding portions 43c and 43d corresponding to the installation space of the non-contact power feeding device can be provided as the main shield member. For this reason, the reduction effect of a leakage electromagnetic field can be enlarged, suppressing the increase in the physique of the non-contact electric power feeder by providing a main shield member.

(第6の実施形態)
以下、第6の実施形態について、先の第1の実施形態との相違点を中心に図面を参照しつつ説明する。
(Sixth embodiment)
Hereinafter, the sixth embodiment will be described with reference to the drawings with a focus on differences from the first embodiment.

本実施形態では、送電パッド20側の主シールド部材の配置態様を変更する。   In this embodiment, the arrangement | positioning aspect of the main shield member by the side of the power transmission pad 20 is changed.

図20に、駐車スペースにおける主シールド部材等の配置図を示し、図21に、図20の駐車スペースを車両10の上方から見た図を示す。なお、図20及び図21は、先の図5及び図6に対応している。   FIG. 20 shows a layout view of main shield members and the like in the parking space, and FIG. 21 shows a view of the parking space in FIG. 20 and 21 correspond to FIGS. 5 and 6 described above.

図20及び図21に示すように、本実施形態では、1次側主シールド部材23を除去し、輪止め72aと、駐車スペースを区画するライン74aとを主シールド部材として用いている。詳しくは、本実施形態では、輪止め72aの中に軟磁性体を配置し、軟磁性体が含まれる塗料によってライン74aを形成する。   As shown in FIG.20 and FIG.21, in this embodiment, the primary side main shield member 23 is removed and the ring stopper 72a and the line 74a which partitions a parking space are used as a main shield member. Specifically, in this embodiment, a soft magnetic material is disposed in the ring stopper 72a, and the line 74a is formed by a paint containing the soft magnetic material.

以上説明した本実施形態によれば、主シールド部材を駐車スペースに埋設することなく主シールド部材を設置することができる。このため、送電パッド20側の主シールド部材を配置するためのコストや工数の低減効果が期待できる。   According to this embodiment described above, the main shield member can be installed without burying the main shield member in the parking space. For this reason, the cost and the man-hour reduction effect for arrange | positioning the main shield member by the side of the power transmission pad 20 can be expected.

(第7の実施形態)
以下、第7の実施形態について、先の第6の実施形態との相違点を中心に図面を参照しつつ説明する。
(Seventh embodiment)
Hereinafter, the seventh embodiment will be described with reference to the drawings with a focus on differences from the sixth embodiment.

本実施形態では、送電パッド20側の主シールド部材の配置態様を変更する。   In this embodiment, the arrangement | positioning aspect of the main shield member by the side of the power transmission pad 20 is changed.

図22に、駐車スペースにおける主シールド部材等の配置図を示し、図23に、図22の駐車スペースを車両10の上方から見た図を示す。なお、図22及び図23は、先の図20及び図21に対応している。   FIG. 22 shows a layout of main shield members and the like in the parking space, and FIG. 23 shows a view of the parking space in FIG. 22 and 23 correspond to FIGS. 20 and 21 described above.

図22に示すように、本実施形態では、駐車スペースに埋設する1次側主シールド部材23cを大型化する。詳しくは、図23に示すように、ライン74の内側にライン74に沿って枠形状の1次側主シールド部材23cを埋設する。1次側主シールド部材23cが大きいほど、漏洩電磁界の低減効果が大きくなることから、本実施形態によれば、漏洩電磁界の低減効果をいっそう大きくすることができる。   As shown in FIG. 22, in this embodiment, the primary side main shield member 23c embedded in a parking space is enlarged. Specifically, as shown in FIG. 23, a frame-shaped primary-side main shield member 23 c is embedded along the line 74 inside the line 74. Since the effect of reducing the leakage electromagnetic field is increased as the primary side main shield member 23c is larger, according to the present embodiment, the effect of reducing the leakage electromagnetic field can be further increased.

(第8の実施形態)
以下、第8の実施形態について、先の第2の実施形態との相違点を中心に図面を参照しつつ説明する。
(Eighth embodiment)
Hereinafter, the eighth embodiment will be described with reference to the drawings with a focus on differences from the second embodiment.

本実施形態では、受電パッド40側の副シールド部材の構成を変更する。   In the present embodiment, the configuration of the sub shield member on the power receiving pad 40 side is changed.

図24に、駐車スペースにおける主シールド部材等の配置図を示し、図25に、図24の車両10を車両10の下方から見た図を示す。なお、図24は、先の図10に対応している。   FIG. 24 shows a layout of main shield members and the like in the parking space, and FIG. 25 shows a view of the vehicle 10 of FIG. FIG. 24 corresponds to FIG.

図24に示すように、本実施形態では、受電パッド40側の副シールド部材を、2次側副シールド部材44に代えて、車両10のシャシーを構成する部材44aとする。こうした手法が適用できるのは、上記部材44aが通常、0.5mm以上の厚さを有する鉄鋼材料からなり、非接触給電の使用周波数帯において比透磁率が1よりも低いことによる。   As shown in FIG. 24, in the present embodiment, the sub shield member on the power receiving pad 40 side is replaced with the secondary side sub shield member 44 as a member 44 a that constitutes the chassis of the vehicle 10. Such a method can be applied because the member 44a is usually made of a steel material having a thickness of 0.5 mm or more, and the relative permeability is lower than 1 in the use frequency band of non-contact power feeding.

以上説明した本実施形態によれば、車両10を構成する部材を副シールド部材に流用することができるため、非接触給電装置のコストの低減を図り、また、車両10の重量を低減させることができる。   According to this embodiment described above, since the member which comprises the vehicle 10 can be diverted to a subshield member, the cost of a non-contact electric power feeder can be reduced and the weight of the vehicle 10 can be reduced. it can.

(その他の実施形態)
なお、上記各実施形態は、以下のように変更して実施してもよい。
(Other embodiments)
Each of the above embodiments may be modified as follows.

・「主シールド部材」としては、コアを囲む枠形状をなすものに限らない。例えば、図26に示すように、2次側巻線部41aの板面の正面視において、2次側連結部41bの長手方向と平行に2次側コア41を挟んで配置される一対の部材43e,43fとして構成してもよい。また、例えば、図27に示すように、2次側巻線部41aの板面の正面視において、2次側連結部41bの長手方向と平行であってかつ一対の2次側巻線部41aの間付近のみに2次側コア41を挟んで配置される一対の棒状の部材43g,43hとして構成してもよい。これらの場合であっても、主シールド部材によって、一対の2次側巻線部41aの板面の一方から他方へと磁束を導くことができることから、漏洩電磁界の低減効果を得ることはできる。なお、送電パッド20側についても同様である。また、図26及び図27は、先の図3に対応している。   -The "main shield member" is not limited to a frame shape surrounding the core. For example, as shown in FIG. 26, in a front view of the plate surface of the secondary side winding part 41a, a pair of members arranged with the secondary side core 41 sandwiched in parallel with the longitudinal direction of the secondary side coupling part 41b You may comprise as 43e and 43f. Further, for example, as shown in FIG. 27, in a front view of the plate surface of the secondary side winding portion 41a, the pair of secondary side winding portions 41a are parallel to the longitudinal direction of the secondary side coupling portion 41b. You may comprise as a pair of rod-shaped member 43g, 43h arrange | positioned on both sides of the secondary side core 41 on both sides. Even in these cases, since the magnetic flux can be guided from one of the plate surfaces of the pair of secondary winding portions 41a to the other by the main shield member, the effect of reducing the leakage electromagnetic field can be obtained. . The same applies to the power transmission pad 20 side. 26 and 27 correspond to FIG. 3 described above.

また、「主シールド部材」としては、1次側コイル22及び2次側コイル42のそれぞれに対応して配置されるものに限らず、これらコイル22,42で共有されるものであってもよい。   Further, the “main shield member” is not limited to the one arranged corresponding to each of the primary side coil 22 and the secondary side coil 42, and may be shared by these coils 22 and 42. .

・「主シールド部材」の配置手法としては、上記第2の実施形態に例示したものに限らない。例えば、図28に示すように、枠形状の2次側主シールド部材43iを、2次側副シールド部材44の表面のうち受電パッド40側に接するように配置してもよい。また、例えば、図29に示すように、枠形状の2次側主シールド部材43jを、2次側副シールド部材44の表面のうち受電パッド40側とは反対側に接するように配置してもよい。なお、図28及び図29は、先の図9に対応している。   The arrangement method of the “main shield member” is not limited to the one exemplified in the second embodiment. For example, as shown in FIG. 28, the frame-shaped secondary side main shield member 43 i may be disposed so as to be in contact with the power receiving pad 40 side on the surface of the secondary side sub shield member 44. Further, for example, as shown in FIG. 29, a frame-shaped secondary side main shield member 43j may be arranged so as to be in contact with the opposite side of the surface of the secondary side sub shield member 44 from the power receiving pad 40 side. Good. 28 and 29 correspond to FIG. 9 described above.

・受電パッドの配置位置としては、車両10の床面外側に限らない。例えば、送電パッドが車両10の上方に配置される給電設備があるなら、受電パッドの配置位置を車両の上部としてもよい。また、例えば、送電パッドが車両10の後方に配置される給電設備があるなら、受電パッドの配置位置を車両10の後部としてもよい。   -The position of the power receiving pad is not limited to the outside of the floor surface of the vehicle 10. For example, if there is a power supply facility in which the power transmission pad is arranged above the vehicle 10, the arrangement position of the power reception pad may be the upper part of the vehicle. Further, for example, if there is a power supply facility in which the power transmission pad is disposed behind the vehicle 10, the power receiving pad may be disposed at the rear portion of the vehicle 10.

・「1次側コア」及び「2次側コア」としては、上記第1の実施形態に例示したものに限らない。例えば、上記特許文献1に記載されたものであってもよい。   The “primary core” and the “secondary core” are not limited to those exemplified in the first embodiment. For example, what was described in the said patent document 1 may be used.

・上記各実施形態では、送電パッド20及び受電パッド40のそれぞれに対応した主シールド部材(例えば上記第1の実施形態において、1次側主シールド部材23及び2次側主シールド部材43)が備えられる構成を採用したがこれに限らず、いずれか一方に対応した主シールド部材が備えられる構成を採用してもよい。この場合であっても、本発明者らにより、送電パッド20及び受電パッド40のそれぞれに対応した主シールド部材が備えられる場合における漏洩電磁界の低減効果の少なくとも50%の効果が得られることが調べられている。   In each of the above embodiments, a main shield member corresponding to each of the power transmission pad 20 and the power reception pad 40 (for example, the primary side main shield member 23 and the secondary side main shield member 43 in the first embodiment) is provided. However, the present invention is not limited to this, and a configuration in which a main shield member corresponding to one of them is provided may be employed. Even in this case, the present inventors can obtain at least 50% of the effect of reducing the leakage electromagnetic field when the main shield member corresponding to each of the power transmission pad 20 and the power reception pad 40 is provided. It is being investigated.

・「副シールド部材」の配置態様としては、上記第2の実施形態に例示したものに限らない。例えば、2次側巻線部41aの板面の正面視において、2次側主シールド部材43の内側にこのシールド部材43と離間した状態で2次側副シールド部材44が配置されていてもよい。この場合であっても、上記第1の実施形態と比較して、漏洩電磁界の低減効果を大きくすることはできる。なお、1次側副シールド部材24についても同様である。   The arrangement mode of the “sub shield member” is not limited to that illustrated in the second embodiment. For example, the secondary auxiliary shield member 44 may be disposed inside the secondary main shield member 43 while being separated from the shield member 43 in a front view of the plate surface of the secondary winding portion 41a. . Even in this case, the effect of reducing the leakage electromagnetic field can be increased as compared with the first embodiment. The same applies to the primary side auxiliary shield member 24.

・突出部としては、上記第5の実施形態に例示したものに限らない。例えば、2次側巻線部41aの板面の正面視において、2次側主シールド部材43の長手方向に延びる突出部、幅方向に延びる突出部、及びこれらと直交する方向に延びる突出部のうちいずれか1つ又は2つのみ備えるようにしてもよい。また、突出部の延びる方向としては、上記長手方向や幅方向に限らない。   -As a protrusion part, it is not restricted to what was illustrated to the said 5th Embodiment. For example, in a front view of the plate surface of the secondary side winding part 41a, a protrusion that extends in the longitudinal direction of the secondary side main shield member 43, a protrusion that extends in the width direction, and a protrusion that extends in a direction orthogonal to these. Only one or two of them may be provided. Further, the extending direction of the protruding portion is not limited to the longitudinal direction and the width direction.

・上記第6の実施形態において、輪止め72aの中に軟磁性体を配置しなくてもよい。すなわち、輪止め72aを主シールド部材として用いなくてもよい。   In the sixth embodiment, it is not necessary to place a soft magnetic body in the ring stopper 72a. That is, the ring stopper 72a may not be used as the main shield member.

・上記第2の実施形態では、1次側主シールド部材23及び1次側副シールド部材24を駐車スペースに埋設したがこれに限らない。例えば、図30に示すように、駐車スペースの路面上に配置してもよい。また、上記第7の実施形態において、1次側主シールド部材23cを、駐車スペースの路面に露出させて配置してもよい。この場合、駐車スペースを区画するラインとして1次側主シールド部材23cを用いることができる。   In the second embodiment, the primary side main shield member 23 and the primary side sub shield member 24 are embedded in the parking space, but the present invention is not limited to this. For example, as shown in FIG. 30, you may arrange | position on the road surface of a parking space. In the seventh embodiment, the primary main shield member 23c may be disposed so as to be exposed on the road surface of the parking space. In this case, the primary side main shield member 23c can be used as a line that partitions the parking space.

・コアの形状やコイルの巻回手法としては、上記各実施形態に例示したものに限らない。例えば、図31に示すように、2次側巻線部41aの周縁部41cのうち内側と2次側連結部41bの周縁部46とを通るように2次側コイル42を巻回する手法を採用してもよい。これにより、2次側巻線部41aの周縁部41cのうち外側にコイルが巻回されなくなるため、体格の増大を回避できる。また、例えば、図32に示すように、2次側連結部41bの表面のうち送電パッド20側において一対の2次側巻線部41aに巻回される2次側コイル42同士が接触するようにコアを形成してもよい。さらに、例えば、2次側巻線部41aに2次側コイル42を巻回せず、2次側連結部41bに2次側コイル42を巻回してもよい。なお、送電パッド20側についても同様である。   The core shape and coil winding method are not limited to those exemplified in the above embodiments. For example, as shown in FIG. 31, a method of winding the secondary coil 42 so as to pass through the inside of the peripheral edge portion 41c of the secondary winding portion 41a and the peripheral edge portion 46 of the secondary side connecting portion 41b. It may be adopted. Thereby, since a coil is no longer wound outside the peripheral part 41c of the secondary side winding part 41a, the increase in a physique can be avoided. Further, for example, as shown in FIG. 32, the secondary coils 42 wound around the pair of secondary winding portions 41a on the power transmission pad 20 side in the surface of the secondary side connecting portion 41b come into contact with each other. A core may be formed. Further, for example, the secondary side coil 42 may not be wound around the secondary side winding part 41a but the secondary side coil 42 may be wound around the secondary side coupling part 41b. The same applies to the power transmission pad 20 side.

・上記第6の実施形態では、輪止め72aやライン74aを主シールド部材として用いたがこれに限らない。要は、車両10の給電設備が備えられるスペース付近にある他の部材や装置を主シールド部材として用いることができるなら、これらを主シールド部材として用いてもよい。   -In the said 6th Embodiment, although the wheel stopper 72a and the line 74a were used as a main shield member, it is not restricted to this. In short, if other members or devices in the vicinity of the space where the power supply facility of the vehicle 10 is provided can be used as the main shield member, these may be used as the main shield member.

・「1次側コイル」及び「2次側コイル」としては、コアに巻回されたものに限らず、空芯コイルであってもよい。この場合、1次側コイル及び2次側コイルのそれぞれについて、対となる磁極部は、例えば、コイル両端の開口面とすればよい。   The “primary coil” and the “secondary coil” are not limited to those wound around the core, and may be air-core coils. In this case, for each of the primary side coil and the secondary side coil, the pair of magnetic pole portions may be, for example, open surfaces at both ends of the coil.

なお、空芯コイルを用いる場合、本発明の適用対象としては、電磁誘導を用いた非接触給電装置に限らず、共鳴法を用いた非接触給電装置であってもよい。ここで、共鳴法とは、一対の共鳴回路(例えば一対の共振コイル)を電磁界において共鳴させ、電磁界を介して送電する技術である。この場合であっても、共振コイル間で生じる電磁界が外部に漏洩し、電力伝送効率が低下することがあるなら、本発明の適用が有効であると考えられる。   When an air-core coil is used, the application target of the present invention is not limited to a non-contact power feeding device using electromagnetic induction, but may be a non-contact power feeding device using a resonance method. Here, the resonance method is a technique in which a pair of resonance circuits (for example, a pair of resonance coils) are resonated in an electromagnetic field and power is transmitted through the electromagnetic field. Even in this case, the application of the present invention is considered to be effective if the electromagnetic field generated between the resonant coils leaks to the outside and the power transmission efficiency may decrease.

22…1次側コイル、23…1次側主シールド部材、42…2次側コイル、43…2次側主シールド部材。   22 ... primary side coil, 23 ... primary side main shield member, 42 ... secondary side coil, 43 ... secondary side main shield member.

Claims (10)

送電用の1次側コイル(22)と、
受電用の2次側コイル(42)と、
非接触給電が行われる場合に前記1次側コイルに対して印加される電圧の周波数における比透磁率が1よりも高い強磁性体からなる主シールド部材(23,43,23a,43a,72a,74a,23c,43e〜43j)と、
を備え、
前記主シールド部材は、前記1次側コイル及び前記2次側コイルのうち前記1次側コイルのみに対応して配置されるもの、前記1次側コイル及び前記2次側コイルのうち前記2次側コイルのみに対応して配置されるもの、又は前記1次側コイル及び前記2次側コイルそれぞれに対応して個別に配置されるものであり、
前記主シールド部材は、前記1次側コイル及び前記2次側コイルのうち前記主シールド部材自身に対応するコイルに対応する対となる磁極部について一方から他方へと磁束を導くようにかつ、前記1次側コイル及び前記2次側コイルのそれぞれと離間して配置され、
前記主シールド部材は、扁平形状をなしてかつ、前記1次側コイル及び前記2次側コイルが対向する方向において前記主シールド部材自身に対応するコイルと近接して配置されていることを特徴とする非接触給電装置。
A primary coil (22) for power transmission;
A secondary coil (42) for receiving power;
When non-contact power feeding is performed, main shield members (23, 43, 23a, 43a, 72a, 74a, 23c, 43e-43j),
With
The main shield member is disposed corresponding to only the primary side coil among the primary side coil and the secondary side coil, and the secondary side among the primary side coil and the secondary side coil. Are arranged corresponding to only the side coils, or individually arranged corresponding to the primary side coil and the secondary side coil,
The main shield member guides a magnetic flux from one to the other with respect to a pair of magnetic pole portions corresponding to a coil corresponding to the main shield member among the primary side coil and the secondary side coil, and Arranged separately from each of the primary coil and the secondary coil;
Said main shield member, and forms a Bian flat shape, characterized in that said primary coil and said secondary coil are arranged in proximity with the coils corresponding to said main shield member itself in a direction opposite A non-contact power feeding device.
前記1次側コイルが巻回された1次側コア(21)と、
前記2次側コイルが巻回された2次側コア(41)と、
を備え、
前記主シールド部材は、更に、前記1次側コア及び前記2次側コアのそれぞれと離間して配置されていることを特徴とする請求項1記載の非接触給電装置。
A primary core (21) around which the primary coil is wound;
A secondary core (41) around which the secondary coil is wound;
With
The non-contact power feeding device according to claim 1, wherein the main shield member is further disposed apart from each of the primary side core and the secondary side core.
前記1次側コア及び前記2次側コアのそれぞれは、
互いに平行な平面を有してかつ互いに離間した一対の離間部(21a,41a)と、
これら離間部同士を連結する連結部(21b,41b)と、
を備えることを特徴とする請求項2記載の非接触給電装置。
Each of the primary side core and the secondary side core is:
A pair of spaced-apart portions (21a, 41a) having planes parallel to each other and spaced apart from each other;
A connecting portion (21b, 41b) that connects these spaced-apart portions;
The non-contact electric power feeder of Claim 2 characterized by the above-mentioned.
当該非接触給電装置は、非接触給電が行われる場合において前記1次側コアの備える前記離間部(21a)の平面及び前記2次側コアの備える前記離間部(41a)の平面同士が対向するように構成されていることを特徴とする請求項3記載の非接触給電装置。   In the non-contact power feeding device, when the non-contact power feeding is performed, the plane of the separation portion (21a) included in the primary core and the plane of the separation portion (41a) included in the secondary core face each other. The contactless power feeding device according to claim 3, wherein the contactless power feeding device is configured as described above. 前記1次側コイル及び前記2次側コイルのうち、前記主シールド部材(23,43,74a,23c)自身に対応して配置されるコイルを対象コイルとし、
前記主シールド部材は、前記1次側コア及び前記2次側コアのうち前記対象コイルが巻回されたコアの備える前記離間部の平面の正面視において、該対象コイルが巻回されたコアを囲む枠形状をなしていることを特徴とする請求項3又は4記載の非接触給電装置。
Of the primary side coil and the secondary side coil, a coil arranged corresponding to the main shield member (23, 43, 74a, 23c) itself is a target coil,
It said main shield member, in a front view of the plane of the separation portion provided in the core where the target coil is wound among the primary core and the secondary core, a core the subject coil is wound The non-contact power feeding device according to claim 3 or 4, wherein the non-contact power feeding device has a surrounding frame shape.
前記1次側コイル及び前記2次側コイルのうち少なくとも一方に対応してかつ、該1次側コイル及び該2次側コイル同士が対向する側とは反対側に配置される副シールド部材(24,44,44a)を更に備え、
前記副シールド部材は、非接触給電が行われる場合に前記1次側コイルに対して印加される電圧の周波数における比透磁率が1よりも低い材料からなることを特徴とする請求項2〜5のいずれか1項に記載の非接触給電装置。
A secondary shield member (24) corresponding to at least one of the primary side coil and the secondary side coil and disposed on the side opposite to the side where the primary side coil and the secondary side coil face each other. , 44, 44a),
The secondary shield member is made of a material having a relative permeability lower than 1 at a frequency of a voltage applied to the primary coil when non-contact power feeding is performed. The contactless power supply device according to any one of the above.
前記1次側コア及び前記2次側コアのそれぞれは、
互いに平行な平面を有してかつ互いに離間した一対の離間部(21a,41a)と、
これら離間部同士を連結する連結部(21b,41b)と、
を備え、
当該非接触給電装置は、非接触給電が行われる場合において前記1次側コアの備える前記離間部(21a)の平面及び前記2次側コアの備える前記離間部(41a)の平面同士が対向するように構成され、
当該非接触給電装置は、更に、非接触給電が行われる場合において、前記1次側コアの備える前記離間部の平面の外縁及び前記主シールド部材間の距離と前記2次側コアの備える前記離間部の平面の外縁及び該主シールド部材間の距離とのうち短い方が、前記1次側コアの備える前記離間部の平面及び前記2次側コアの備える前記離間部の平面間の距離よりも長くなるように構成されていることを特徴とする請求項2〜6のいずれか1項に記載の非接触給電装置。
Each of the primary side core and the secondary side core is:
A pair of spaced-apart portions (21a, 41a) having planes parallel to each other and spaced apart from each other;
A connecting portion (21b, 41b) that connects these spaced-apart portions;
With
In the non-contact power feeding device, when the non-contact power feeding is performed, the plane of the separation portion (21a) included in the primary core and the plane of the separation portion (41a) included in the secondary core face each other. Configured as
The contactless power supply device further includes a distance between the outer edge of the plane of the separation portion provided in the primary core and the main shield member and the separation provided in the secondary core when contactless power supply is performed. The shorter one of the outer edge of the plane of the part and the distance between the main shield members is shorter than the distance between the plane of the spacing part provided in the primary core and the plane of the spacing part provided in the secondary core. It is comprised so that it may become long, The non-contact electric power feeder of any one of Claims 2-6 characterized by the above-mentioned.
前記主シールド部材(43)は、該主シールド部材から突出してかつ強磁性体からなる複数の突出部(43c,43d)を更に備えることを特徴とする請求項1〜7のいずれか1項に記載の非接触給電装置。 Said main shield member (43) has a plurality of protrusions made of and ferromagnetic projecting from the main shield member (43c, 43d) to any one of claims 1 to 7, further comprising a The non-contact electric power feeder of description. 前記2次側コイルは、車両(10)に備えられ、
前記1次側コイルは、前記車両を給電対象とする給電設備に備えられ、
前記主シールド部材(23,74a,23c)は、前記1次側コイルに対応する前記対となる磁極部について一方から他方へと磁束を導くように配置されてかつ、該1次側コイルとは別体にて構成されていることを特徴とする請求項1〜8のいずれか1項に記載の非接触給電装置。
The secondary coil is provided in the vehicle (10),
The primary coil is provided in a power supply facility for supplying power to the vehicle,
The main shield member (23, 74a, 23c) is arranged so as to guide a magnetic flux from one to the other with respect to the pair of magnetic pole portions corresponding to the primary coil, and the primary coil is The non-contact power feeding device according to claim 1, wherein the non-contact power feeding device is configured as a separate body.
前記2次側コイルは、車両(10)に備えられ、
前記1次側コイルは、前記車両を給電対象とする給電設備に備えられ、
前記2次側コイルに対応してかつ、該2次側コイル及び前記1次側コイル同士が対向する側とは反対側に配置される副シールド部材(44a)を更に備え、
前記副シールド部材は、前記車両の構成部材であってかつ、非接触給電が行われる場合に前記1次側コイルに対して印加される電圧の周波数における比透磁率が1よりも低い材料からなることを特徴とする請求項1〜9のいずれか1項に記載の非接触給電装置。
The secondary coil is provided in the vehicle (10),
The primary coil is provided in a power supply facility for supplying power to the vehicle,
A secondary shield member (44a) disposed on the side opposite to the side where the secondary side coil and the primary side coil are opposed to each other further corresponds to the secondary side coil,
The sub shield member is a component of the vehicle and is made of a material having a relative permeability lower than 1 at a frequency of a voltage applied to the primary coil when non-contact power feeding is performed. The non-contact electric power feeder of any one of Claims 1-9 characterized by the above-mentioned.
JP2012253056A 2012-11-19 2012-11-19 Non-contact power feeding device Active JP6003565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012253056A JP6003565B2 (en) 2012-11-19 2012-11-19 Non-contact power feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012253056A JP6003565B2 (en) 2012-11-19 2012-11-19 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2014103735A JP2014103735A (en) 2014-06-05
JP6003565B2 true JP6003565B2 (en) 2016-10-05

Family

ID=51025803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012253056A Active JP6003565B2 (en) 2012-11-19 2012-11-19 Non-contact power feeding device

Country Status (1)

Country Link
JP (1) JP6003565B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2501482A (en) * 2012-04-23 2013-10-30 Bombardier Transp Gmbh Providing a land vehicle with electric energy by magnetic induction
US9889754B2 (en) * 2014-09-09 2018-02-13 Qualcomm Incorporated System and method for reducing leakage flux in wireless electric vehicle charging systems
JP6476721B2 (en) 2014-10-10 2019-03-06 株式会社Ihi Power receiving coil device and non-contact power feeding system
JP6458466B2 (en) * 2014-11-28 2019-01-30 トヨタ自動車株式会社 Coil unit
JP6392649B2 (en) * 2014-11-28 2018-09-19 トヨタ自動車株式会社 Power receiving device and power transmitting device
JP6437954B2 (en) * 2016-06-02 2018-12-12 パナソニック株式会社 Wireless power supply method
JP6825501B2 (en) * 2017-07-03 2021-02-03 トヨタ自動車株式会社 Power transmission device and power receiving device
JP7331394B2 (en) 2019-03-15 2023-08-23 株式会社デンソー Power supply system while driving

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL120002A0 (en) * 1997-01-13 1997-04-15 Amt Ltd Electrical coupler device
JP2001354179A (en) * 2000-06-14 2001-12-25 Honda Motor Co Ltd Fuel cell-mounted motorcycle
JP2010233307A (en) * 2009-03-26 2010-10-14 Autech Japan Inc Electric vehicle
JP5646470B2 (en) * 2009-05-26 2014-12-24 株式会社ヘッズ Non-contact power supply device
JP5746049B2 (en) * 2009-12-17 2015-07-08 トヨタ自動車株式会社 Power receiving device and power transmitting device
JP5592242B2 (en) * 2010-12-03 2014-09-17 富士通テン株式会社 Power receiving device, power transmitting device, and wireless power transmission system
JP5836598B2 (en) * 2011-01-19 2015-12-24 株式会社テクノバ Non-contact power supply core

Also Published As

Publication number Publication date
JP2014103735A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP6003565B2 (en) Non-contact power feeding device
EP2914454B1 (en) Coil arrangements in wireless power transfer systems for low electromagnetic emissions
JP5437650B2 (en) Non-contact power feeding device
EP3402030A1 (en) Coil topologies for inductive power transfer
WO2013001636A1 (en) Power transmitting device, power receiving device, and power transmission system
WO2017159167A1 (en) Coil apparatus
JP6217518B2 (en) Wireless power supply system and wireless power transmission system
JP2010093180A (en) Non-contact power supply
US9515493B2 (en) Power feeding coil unit and wireless power transmission device
KR20110135334A (en) Non-contact power feeding device
JP2011223703A (en) Portable type non-contact power supply device
WO2013061610A1 (en) Power supplying apparatus, power receiving apparatus, and non-contact charging apparatus
JP5490385B2 (en) Non-contact power feeding device
JP2012204469A (en) Contactless current feeding coil device
WO2012001758A1 (en) Non-contact electric power feeding device
JP2013135491A (en) Antenna
JP6476721B2 (en) Power receiving coil device and non-contact power feeding system
JP5991054B2 (en) Non-contact power feeding device
JP6022267B2 (en) Mobile power supply type non-contact power supply device
JP2013214613A (en) Coil unit and power transmission device having coil unit
JP5930182B2 (en) antenna
JP6340968B2 (en) Coil unit and wireless power transmission device
JP2017212302A (en) Coil device, non-contact power supply device and non-contact power reception device
KR101172757B1 (en) Power Intermediating Apparatus, Power Intermediate-Feeding Apparatus and Power Transmission Apparatus by Using Contactless Method
JP6285810B2 (en) Coil unit in non-contact power feeder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R151 Written notification of patent or utility model registration

Ref document number: 6003565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250