JP6003224B2 - Composite reinforcing fiber bundle, method for producing the same, and molding material - Google Patents

Composite reinforcing fiber bundle, method for producing the same, and molding material Download PDF

Info

Publication number
JP6003224B2
JP6003224B2 JP2012117574A JP2012117574A JP6003224B2 JP 6003224 B2 JP6003224 B2 JP 6003224B2 JP 2012117574 A JP2012117574 A JP 2012117574A JP 2012117574 A JP2012117574 A JP 2012117574A JP 6003224 B2 JP6003224 B2 JP 6003224B2
Authority
JP
Japan
Prior art keywords
fiber bundle
reinforcing fiber
flame retardant
composite
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012117574A
Other languages
Japanese (ja)
Other versions
JP2013011050A (en
Inventor
哲也 本橋
哲也 本橋
祐樹 三辻
祐樹 三辻
西村 透
西村  透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2012117574A priority Critical patent/JP6003224B2/en
Publication of JP2013011050A publication Critical patent/JP2013011050A/en
Application granted granted Critical
Publication of JP6003224B2 publication Critical patent/JP6003224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced

Description

本発明は、複合強化繊維束、その製造方法、および成形材料に関する。さらに詳しくは、強化繊維束への樹脂の含浸性が良好であり、成形時に難燃性と耐候性を付与することができる複合強化繊維束、その製造方法、および成形材料に関する。   The present invention relates to a composite reinforcing fiber bundle, a method for producing the same, and a molding material. More specifically, the present invention relates to a composite reinforcing fiber bundle that has good resin impregnation into a reinforcing fiber bundle and can impart flame retardancy and weather resistance during molding, a method for producing the same, and a molding material.

強化繊維と熱可塑性樹脂からなる成形材料は、軽量で優れた力学特性を有するために、スポーツ用品用途、航空宇宙用途および一般産業用途に広く用いられている。これらの成形材料に使用される強化繊維は、その使用用途によって様々な形態で成形品を強化している。これらの強化繊維には、アルミニウム繊維やステンレス繊維などの金属繊維、アラミド繊維やPBO繊維などの有機繊維、およびシリコンカーバイド繊維などの無機繊維や炭素繊維などが使用されているが、比強度、比剛性および軽量性のバランスの観点から炭素繊維が好適であり、その中でもポリアクリロニトリル系炭素繊維が好適に用いられる。   Molding materials composed of reinforcing fibers and thermoplastic resins are widely used in sports equipment applications, aerospace applications and general industrial applications because they are lightweight and have excellent mechanical properties. The reinforcing fibers used in these molding materials reinforce the molded product in various forms depending on the usage. These reinforcing fibers include metal fibers such as aluminum fibers and stainless fibers, organic fibers such as aramid fibers and PBO fibers, inorganic fibers such as silicon carbide fibers, and carbon fibers. Carbon fibers are preferred from the viewpoint of the balance between rigidity and lightness, and among them, polyacrylonitrile-based carbon fibers are suitably used.

しかしながら、成形材料を製造する過程で、連続した強化繊維束に熱可塑性樹脂を含浸させるには経済性、生産性の面で問題があり、それほど広く用いられていないのが現状である。例えば、樹脂の溶融粘度が高いほど強化繊維束への含浸は困難とされることはよく知られている。靱性や伸度などの力学特性に優れた熱可塑性樹脂は、とりわけ高分子量体であり、プロセス温度も高温を必要とするため、成形材料を容易に、生産性よく製造することには不向きであった。   However, in the process of producing a molding material, there is a problem in terms of economy and productivity in impregnating a continuous reinforcing fiber bundle with a thermoplastic resin, and it is not widely used at present. For example, it is well known that the higher the melt viscosity of the resin, the more difficult the impregnation of the reinforcing fiber bundle is. Thermoplastic resins with excellent mechanical properties such as toughness and elongation are high molecular weight polymers and require high process temperatures, making them unsuitable for producing molding materials easily and with high productivity. It was.

また、近年輸送機械の構造部品のような外装材用途における需要が拡大しており、高い難燃性と耐候性が要求されている。しかしながら、樹脂は一般に熱に弱く、十分な難燃性を有していないことが多い。また、光の作用に対して敏感であり、その作用により劣化、すなわち変色もしくは機械的強度の低下を引き起こし、光照射の著しい条件下では樹脂をマトリックスとする成形品は長期の使用に耐えられないことが知られている。   In recent years, the demand for exterior materials such as structural parts of transport machinery is expanding, and high flame resistance and weather resistance are required. However, resins are generally vulnerable to heat and often do not have sufficient flame retardancy. In addition, it is sensitive to the action of light, which causes deterioration, that is, discoloration or lowering of mechanical strength, and molded products with resin as a matrix cannot withstand long-term use under conditions of significant light irradiation. It is known.

そこで、特許文献1には、金属被覆炭素繊維をリン酸エステル系化合物又は/及びフタル酸エステル系化合物と熱可塑性樹脂とで集束させた導電性プラスチック成形材料が開示されており、高い導電性、特にEMIシールド性において優れた物性を発現することが示されている。しかし、リン酸エステル系化合物や熱可塑性樹脂をメチルエチルケトンなどの有機溶剤に溶解したものを用いて金属被覆炭素繊維に付着させていることから、繊維内部に溶剤が残存しやすく、繊維束内部のボイドが発生しやすい傾向にある。さらに、乾燥不十分なまま成形材料として用いた場合には、成形時の揮発分が多かったり、成形品内部の欠陥となることが有り、好ましくない。また、十分な乾燥を行うためには、ライン速度を向上することが困難であり、経済性、生産性の面から劣ることがある。さらに、難燃性や耐候性については全く言及されていない。   Therefore, Patent Document 1 discloses a conductive plastic molding material obtained by focusing metal-coated carbon fibers with a phosphate ester compound or / and a phthalate ester compound and a thermoplastic resin, and has high conductivity, In particular, it has been shown that excellent physical properties are exhibited in EMI shielding properties. However, since the phosphoric acid ester compound or thermoplastic resin dissolved in an organic solvent such as methyl ethyl ketone is attached to the metal-coated carbon fiber, the solvent tends to remain inside the fiber and voids inside the fiber bundle. Tend to occur. Furthermore, when it is used as a molding material with insufficient drying, it is not preferable because it may have a large amount of volatile components during molding or may cause defects in the molded product. Moreover, in order to perform sufficient drying, it is difficult to improve a line speed, and it may be inferior from the surface of economical efficiency and productivity. Furthermore, no mention is made of flame retardancy and weather resistance.

かかる状況において、強化繊維束への樹脂の含浸性が良好であり、成形時に難燃性と耐候性を付与することができる複合強化繊維束が求められていた。   Under such circumstances, there has been a demand for a composite reinforcing fiber bundle that has good resin impregnation into the reinforcing fiber bundle and can impart flame retardancy and weather resistance during molding.

特開平1−271439号公報JP-A-1-271439

本発明は従来技術の有する問題点を鑑み、強化繊維束への樹脂の含浸性が良好であり、優れた難燃性と耐候性を兼ね備えた成形品を与え得る複合強化繊維や、その製造方法、及び成形材料を提供することを目的とする。   In view of the problems of the prior art, the present invention provides a composite reinforcing fiber that has good resin impregnation into a reinforcing fiber bundle and can provide a molded product having excellent flame retardancy and weather resistance, and a method for producing the same And a molding material.

上記の課題を解決するため、本発明は以下の構成からなる。すなわち、強化繊維束(A)100重量部に対し、リン系難燃剤(B)10〜200重量部および光安定剤(C)0.2〜10重量部を含浸させてなり、前記成分(A)が炭素繊維束である、複合強化繊維束である。 In order to solve the above problems, the present invention has the following configuration. That is, the reinforcing fiber bundle (A) 100 parts by weight of contrast, phosphorus-based flame retardant (B) 10 to 200 parts by weight of a light stabilizer (C) Ri Na impregnated with 0.2 to 10 parts by weight, the component ( A) is a composite reinforcing fiber bundle which is a carbon fiber bundle .

また、本発明者らは、鋭意検討した結果、上記課題を解決することができる次の複合強化繊維束の製造方法を発明するに至った。すなわち、リン系難燃剤(B)および光安定剤(C)を0〜320℃の溶融状態で強化繊維束(A)と接触させ、さらに加熱してリン系難燃剤(B)および光安定剤(C)の供給量の80〜100重量%を強化繊維束(A)に含浸させる請求項1〜6のいずれか記載の複合強化繊維束の製造方法である。   Further, as a result of intensive studies, the present inventors have invented the following method for producing a composite reinforcing fiber bundle that can solve the above-described problems. That is, the phosphorus-based flame retardant (B) and the light stabilizer (C) are brought into contact with the reinforcing fiber bundle (A) in a molten state at 0 to 320 ° C., and further heated to obtain the phosphorus-based flame retardant (B) and the light stabilizer. It is a manufacturing method of the composite reinforcing fiber bundle in any one of Claims 1-6 which makes a reinforcing fiber bundle (A) impregnate 80 to 100 weight% of the supply amount of (C).

さらに、本発明者らは、鋭意検討した結果、上記課題を解決することができる次の成形材料を発明するに至った。すなわち、前記した複合強化繊維束および熱可塑性樹脂組成物(D)から構成される成形材料である。   Furthermore, as a result of intensive studies, the inventors have invented the following molding material capable of solving the above-described problems. That is, it is a molding material composed of the above-described composite reinforcing fiber bundle and the thermoplastic resin composition (D).

本発明による複合強化繊維束、および成形材料を用いれば、難燃性、耐候性に優れた成形品を得ることができる。また、本発明の製造方法により、強化繊維束への含浸性が良好であり、かつボイドの少なく、成形時の揮発分が少ない複合強化繊維束が得られる。本発明による複合強化繊維束、および成形材料を用いて成形された成形品は、電気・電子機器、OA機器、家電機器、または自動車の部品、内部部材および筐体などの各種部品・部材に極めて有用である。   By using the composite reinforcing fiber bundle and the molding material according to the present invention, a molded product having excellent flame retardancy and weather resistance can be obtained. In addition, the production method of the present invention provides a composite reinforcing fiber bundle having good impregnation into the reinforcing fiber bundle, less voids, and less volatile content during molding. The composite reinforcing fiber bundle according to the present invention and a molded product molded using a molding material are extremely suitable for various parts and members such as electrical / electronic equipment, OA equipment, home appliances, automobile parts, internal members, and casings. Useful.

本発明で得られる複合強化繊維束の横断面形態の一例を示す概略図である。It is the schematic which shows an example of the cross-sectional form of the composite reinforcing fiber bundle obtained by this invention. 本発明の成形材料の好ましい縦断面形態の一例を示す概略図である。It is the schematic which shows an example of the preferable longitudinal cross-sectional form of the molding material of this invention. 本発明の成形材料の好ましい縦断面形態の一例を示す概略図である。It is the schematic which shows an example of the preferable longitudinal cross-sectional form of the molding material of this invention. 本発明の成形材料の好ましい縦断面形態の一例を示す概略図である。It is the schematic which shows an example of the preferable longitudinal cross-sectional form of the molding material of this invention. 本発明の成形材料の好ましい縦断面形態の一例を示す概略図である。It is the schematic which shows an example of the preferable longitudinal cross-sectional form of the molding material of this invention. 本発明の成形材料の好ましい縦断面形態の一例を示す概略図である。It is the schematic which shows an example of the preferable longitudinal cross-sectional form of the molding material of this invention. 本発明の成形材料の好ましい横断面形態の一例を示す概略図である。It is the schematic which shows an example of the preferable cross-sectional form of the molding material of this invention. 本発明の成形材料の好ましい横断面形態の一例を示す概略図である。It is the schematic which shows an example of the preferable cross-sectional form of the molding material of this invention. 本発明の成形材料の好ましい横断面形態の一例を示す概略図である。It is the schematic which shows an example of the preferable cross-sectional form of the molding material of this invention. 本発明の成形材料の好ましい横断面形態の一例を示す概略図である。It is the schematic which shows an example of the preferable cross-sectional form of the molding material of this invention. 本発明の成形材料の好ましい横断面形態の一例を示す概略図である。It is the schematic which shows an example of the preferable cross-sectional form of the molding material of this invention.

本発明を詳細に説明する。本発明は、少なくとも強化繊維束(A)、リン系難燃剤(B)、光安定剤(C)から構成される複合強化繊維束である。まず、これらの構成要素について説明する。なお、本発明において、複合強化繊維束とは、強化繊維束(A)に、熱可塑性樹脂との親和性を有する化合物(以下、被含浸化合物ともいう)を含浸させてなるものをいい、熱可塑性樹脂と組み合わせて好適に用いられる。   The present invention will be described in detail. The present invention is a composite reinforcing fiber bundle composed of at least a reinforcing fiber bundle (A), a phosphorus-based flame retardant (B), and a light stabilizer (C). First, these components will be described. In the present invention, the composite reinforcing fiber bundle refers to a fiber obtained by impregnating a reinforcing fiber bundle (A) with a compound having affinity with a thermoplastic resin (hereinafter also referred to as an impregnated compound). It is suitably used in combination with a plastic resin.

本発明において、強化繊維束(A)を構成する強化繊維(a)は特に限定されないが、例えば、炭素繊維、ガラス繊維、アラミド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維、金属繊維などの高強度、高弾性率繊維が使用でき、これらは1種または2種以上を併用してもよい。中でも、PAN系、ピッチ系、レーヨン系などの炭素繊維が力学特性の向上、成形品の軽量化効果の観点から好ましく、得られる成形品の強度と弾性率とのバランスの観点から、PAN系炭素繊維がさらに好ましい。また、導電性を付与する目的では、ニッケルや銅やイッテルビウムなどの金属を被覆した強化繊維を用いることもできる。   In the present invention, the reinforcing fiber (a) constituting the reinforcing fiber bundle (A) is not particularly limited, but, for example, a high fiber such as carbon fiber, glass fiber, aramid fiber, alumina fiber, silicon carbide fiber, boron fiber, metal fiber, etc. Strength and high modulus fibers can be used, and these may be used alone or in combination of two or more. Among these, PAN-based, pitch-based and rayon-based carbon fibers are preferable from the viewpoint of improving the mechanical properties and reducing the weight of the molded product, and from the viewpoint of the balance between the strength and elastic modulus of the molded product obtained. More preferred are fibers. For the purpose of imparting conductivity, reinforcing fibers coated with a metal such as nickel, copper, or ytterbium can also be used.

さらに炭素繊維としては、X線光電子分光法により測定される繊維表面の酸素(O)と炭素(C)の原子数の比である表面酸素濃度比[O/C]が0.05〜0.5であるものが好ましく、より好ましくは0.08〜0.4であり、さらに好ましくは0.1〜0.3である。表面酸素濃度比が0.05以上であることにより、炭素繊維表面の官能基量を確保でき、熱可塑性樹脂とより強固な接着を得ることができる。また、表面酸素濃度比の上限には特に制限はないが、炭素繊維の取扱い性、生産性のバランスから一般的に0.5以下とすることが例示できる。   Further, as the carbon fiber, the surface oxygen concentration ratio [O / C], which is the ratio of the number of atoms of oxygen (O) and carbon (C) on the fiber surface measured by X-ray photoelectron spectroscopy, is 0.05-0. 5 is preferable, more preferably 0.08 to 0.4, and still more preferably 0.1 to 0.3. When the surface oxygen concentration ratio is 0.05 or more, the functional group amount on the surface of the carbon fiber can be secured, and a stronger adhesion to the thermoplastic resin can be obtained. Moreover, although there is no restriction | limiting in particular in the upper limit of surface oxygen concentration ratio, Generally it can be illustrated to 0.5 or less from the balance of the handleability of carbon fiber, and productivity.

炭素繊維の表面酸素濃度比は、X線光電子分光法により、次の手順にしたがって求めるものである。まず、溶剤で炭素繊維表面に付着しているサイジング剤などを除去した炭素繊維束を20mmにカットして、銅製の試料支持台に拡げて並べた後、X線源としてA1Kα1、2を用い、試料チャンバー中を1×10Torrに保つ。測定時の帯電に伴うピークの補正値としてC1sの主ピークの運動エネルギー値(K.E.)を1202eVに合わせる。C1sピーク面積をK.E.として1191〜1205eVの範囲で直線のベースラインを引くことにより求める。O1sピーク面積をK.E.として947〜959eVの範囲で直線のベースラインを引くことにより求める。 The surface oxygen concentration ratio of the carbon fiber is determined by X-ray photoelectron spectroscopy according to the following procedure. First, after cutting the carbon fiber bundle from which the sizing agent and the like adhering to the carbon fiber surface with a solvent was cut to 20 mm and spreading and arranging on a copper sample support base, using A1Kα1,2 as the X-ray source, The sample chamber is maintained at 1 × 10 8 Torr. The kinetic energy value (KE) of the main peak of C 1s is adjusted to 1202 eV as a peak correction value associated with charging during measurement. C 1s peak area E. Is obtained by drawing a straight base line in the range of 1191 to 1205 eV. O 1s peak area E. Is obtained by drawing a straight base line in the range of 947 to 959 eV.

ここで、表面酸素濃度比とは、上記O1sピーク面積とC1sピーク面積の比から装置固有の感度補正値を用いて原子数比として算出する。X線光電子分光法装置として、国際電気社製モデルES−200を用いる場合には、感度補正値を1.74とする。   Here, the surface oxygen concentration ratio is calculated as an atomic ratio by using a sensitivity correction value unique to the apparatus from the ratio of the O1s peak area to the C1s peak area. When the model ES-200 manufactured by Kokusai Electric Inc. is used as the X-ray photoelectron spectroscopy apparatus, the sensitivity correction value is set to 1.74.

表面酸素濃度比[O/C]を0.05〜0.5に制御する手段としては、特に限定されるものではないが、例えば、電解酸化処理、薬液酸化処理および気相酸化処理などの手法を挙げることができ、中でも電解酸化処理が好ましい。   The means for controlling the surface oxygen concentration ratio [O / C] to 0.05 to 0.5 is not particularly limited. For example, techniques such as electrolytic oxidation, chemical oxidation, and vapor phase oxidation are used. Among them, electrolytic oxidation treatment is preferable.

また、本発明に用いられる強化繊維束(A)を構成する強化繊維(a)の平均繊維径は特に限定されないが、得られる成形品の力学特性と表面外観の観点から、1〜20μmの範囲内であることが好ましく、3〜15μmの範囲内であることがより好ましい。   Further, the average fiber diameter of the reinforcing fiber (a) constituting the reinforcing fiber bundle (A) used in the present invention is not particularly limited, but in the range of 1 to 20 μm from the viewpoint of the mechanical properties and surface appearance of the obtained molded product. Is preferably within the range of 3 to 15 μm.

強化繊維束(A)の単繊維数には、特に制限はなく、100〜350,000本の範囲内で使用することができ、とりわけ1,000〜250,000本の範囲内で使用することが好ましい。また、本発明によれば、単繊維数が多い強化繊維束であっても、十分に含浸された複合強化繊維束を得ることができるため、20,000〜100,000本の範囲で使用することが、生産性の観点からも好ましい。   The number of single fibers of the reinforcing fiber bundle (A) is not particularly limited, and can be used within a range of 100 to 350,000, and particularly within a range of 1,000 to 250,000. Is preferred. Further, according to the present invention, even a reinforcing fiber bundle having a large number of single fibers can be obtained in a range of 20,000 to 100,000 since a sufficiently impregnated composite reinforcing fiber bundle can be obtained. It is also preferable from the viewpoint of productivity.

また、本発明に用いられる強化繊維束(A)はサイジング剤(b)が付与されてなることが、集束性、耐屈曲性や耐擦過性を改良し、高次加工工程において、毛羽、糸切れの発生を抑制でき、いわゆる糊剤、集束剤として高次加工性を向上させることもでき、好ましい。特に、炭素繊維の場合、サイジング剤(b)を付与することで、炭素繊維表面の官能基等の表面特性に適合させて接着性およびコンポジット総合特性を向上させることができる。   Further, the reinforcing fiber bundle (A) used in the present invention is provided with a sizing agent (b), which improves the bundling property, bending resistance and scratch resistance, and in the higher processing step, fluff, yarn It is preferable because it can suppress the occurrence of cutting and can improve higher-order workability as a so-called paste or bundling agent. In particular, in the case of carbon fiber, by applying the sizing agent (b), it is possible to improve the adhesion and composite overall characteristics by adapting to the surface characteristics such as functional groups on the surface of the carbon fiber.

サイジング剤(b)の付着量は特に限定されないが、強化繊維のみの質量に対して、0.01〜10重量%が好ましく、0.05〜5重量%がより好ましく、0.1〜2重量%付与することがさらに好ましい。0.01重量%未満では接着性向上効果が現れにくく、10重量%を越える付着量では、マトリックス樹脂の物性を低下させることがある。   The adhesion amount of the sizing agent (b) is not particularly limited, but is preferably 0.01 to 10% by weight, more preferably 0.05 to 5% by weight, and 0.1 to 2% by weight based on the mass of the reinforcing fiber alone. % Is more preferable. If it is less than 0.01% by weight, the effect of improving adhesiveness is hardly exhibited, and if it is more than 10% by weight, the physical properties of the matrix resin may be lowered.

さらに、本発明に用いられる強化繊維束(A)にサイジング剤(b)が付与されてなる場合、サイジング剤(b)とリン系難燃剤(B)との重量比(b)/(B)が0.01/1〜0.8/1であることが好ましい。より好ましくは、0.08〜0.5/1である。各成分を範囲内で用いることで、界面接着性、繊維分散性、機械特性、および難燃性をバランス良く向上することができるため好ましい。なお、サイジング剤(b)とリン系難燃剤(B)との重量比(b)/(B)を好ましい範囲にする手法としては特に限定されないが、例えば、ある一定のリン系難燃剤(B)の含浸量に対し、サイジング剤(b)の付着量を調整する手法や、ある一定のサイジング剤(b)の付着量に対し、リン系難燃剤(B)の含浸量を調整する手法などが工程管理上容易であることから好ましい。サイジング剤(b)とハロゲン系難燃剤(B)との重量比(b)/(B)は、サイジング剤(b)またはリン系難燃剤(B)に起因して発現する接着性や難燃性のバランスを考慮して調整するのが好ましい。   Furthermore, when the sizing agent (b) is applied to the reinforcing fiber bundle (A) used in the present invention, the weight ratio (b) / (B) of the sizing agent (b) and the phosphorus flame retardant (B). Is preferably 0.01 / 1 to 0.8 / 1. More preferably, it is 0.08-0.5 / 1. Use of each component within the range is preferable because the interfacial adhesion, fiber dispersibility, mechanical properties, and flame retardancy can be improved in a well-balanced manner. In addition, although it does not specifically limit as a method of making weight ratio (b) / (B) of sizing agent (b) and phosphorus flame retardant (B) into a preferable range, For example, a certain phosphorus flame retardant (B ) For adjusting the amount of sizing agent (b) adhering to the amount of impregnation), or for adjusting the amount of phosphorus-based flame retardant (B) impregnated for a certain amount of sizing agent (b). Is preferable from the viewpoint of process control. The weight ratio (b) / (B) between the sizing agent (b) and the halogen-based flame retardant (B) is the adhesiveness or flame retardant that is caused by the sizing agent (b) or the phosphorus-based flame retardant (B). It is preferable to adjust in consideration of the balance of sex.

なお、サイジング剤(b)とリン系難燃剤(B)との重量比(b)/(B)は、以下の式により求めることができる。
サイジング剤(b)とリン系難燃剤(B)との重量比(b)/(B)=WSz/W
ここで、WSzは、強化繊維束(A)中のサイジング剤(b)の付着量を表し、強化繊維束(A)の秤量値w(g)と、秤量した強化繊維束(A)を窒素雰囲気中450℃で15分間加熱した後の秤量値w(g)とから、以下の式により求めることができる。
Sz(単位:重量%)={(w−w)/w}×100
また、Wは、リン系難燃剤(B)量を表し、リン系難燃剤(B)および光安定剤(C)の含浸量WBCと、リン難燃剤(B)および光安定剤(C)の配合比r:rとから、以下の式により求めることができる。
(単位:重量%)=WBC×{r/(r+r)}
ここで、リン系難燃剤(B)および光安定剤(C)の含浸量WBCは、複合強化繊維束の秤量値W(g)と、秤量した複合強化繊維束を窒素雰囲気中450℃で15分間加熱した後の秤量値W(g)とから、以下の式により求めることができる。
BC(単位:重量%)={(W−W)/W}×100
なお、複合強化繊維束中の強化繊維束(A)にサイジング剤(b)が付与されてなる場合、リン系難燃剤(B)および光安定剤(C)の含浸量WBCは以下の式により求めることができる。
BC(単位:重量%)={(W−W−wSz)/W}×100
ここで、wSzは次式で表される複合強化繊維束中のサイジング剤(b)の付着重量(g)である。
Sz(単位:g)=WSz/(100−WSz
The weight ratio (b) / (B) between the sizing agent (b) and the phosphorus-based flame retardant (B) can be obtained by the following equation.
Weight ratio of sizing agent (b) to phosphorus flame retardant (B) (b) / (B) = W Sz / W B
Here, W Sz represents the adhesion amount of the sizing agent (b) in the reinforcing fiber bundle (A), the weighed value w 1 (g) of the reinforcing fiber bundle (A), and the weighed reinforcing fiber bundle (A). Can be obtained by the following formula from the weighed value w 2 (g) after heating at 450 ° C. for 15 minutes in a nitrogen atmosphere.
W Sz (unit: weight%) = {(w 1 −w 2 ) / w 1 } × 100
Further, W B represents a phosphorus-based flame retardant (B) weight, and the amount of impregnation W BC of phosphorus-based flame retardant (B) and light stabilizers (C), phosphorus flame retardant (B) and light stabilizers (C ) In the following formula: r B : r C
W B (unit:% by weight) = W BC × {r B / (r B + r C )}
Here, the impregnation amount W BC of the phosphorus-based flame retardant (B) and the light stabilizer (C) is the measured value W 1 (g) of the composite reinforcing fiber bundle and the weighed composite reinforcing fiber bundle at 450 ° C. in a nitrogen atmosphere. From the measured value W 2 (g) after heating for 15 minutes, the following formula can be used.
W BC (unit:% by weight) = {(W 1 −W 2 ) / W 1 } × 100
When the sizing agent (b) is applied to the reinforcing fiber bundle (A) in the composite reinforcing fiber bundle, the impregnation amount W BC of the phosphorus-based flame retardant (B) and the light stabilizer (C) is expressed by the following formula: It can ask for.
W BC (unit:% by weight) = {(W 1 −W 2 −w Sz ) / W 1 } × 100
Here, w Sz is an adhesion weight (g) of the sizing agent (b) in the composite reinforcing fiber bundle represented by the following formula.
w Sz (unit: g) = W Sz W 2 / (100−W Sz )

また、本発明において用いられるサイジング剤(b)としては特に限定されず、エポキシ樹脂、フェノール樹脂、ポリエチレングリコール、ポリウレタン、ポリエステル、乳化剤あるいは界面活性剤などが挙げられる。中でもマトリックス樹脂との接着性を発揮しやすいエポキシ樹脂が好ましい。これらは1種または2種以上を併用してもよい。   Moreover, it does not specifically limit as a sizing agent (b) used in this invention, An epoxy resin, a phenol resin, polyethyleneglycol, a polyurethane, polyester, an emulsifier, or surfactant etc. are mentioned. Among these, an epoxy resin that easily exhibits adhesiveness with the matrix resin is preferable. These may be used alone or in combination of two or more.

エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、脂肪族エポキシ樹脂、フェノールノボラック型エポキシ樹脂等が挙げられる。中でも機械特性向上の観点から、脂肪族エポキシ樹脂が好ましい。通常、エポキシ樹脂はエポキシ基を多数有すると、架橋反応後の架橋密度が高くなるために、靭性の低い構造になる傾向にあり、強化繊維とマトリックス樹脂間に介在させても、脆いために剥離しやすく、繊維強化による強度向上効果が発現しない場合がある。一方、脂肪族エポキシ樹脂は、柔軟な骨格のため、架橋密度が高くとも靭性の高い構造になりやすい。強化繊維とマトリックス樹脂間に介在させた場合、柔軟で剥離しにくくさせるため、繊維強化による強度向上効果が発現しやすく、好ましい。   Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, aliphatic epoxy resin, phenol novolac type epoxy resin, and the like. Of these, aliphatic epoxy resins are preferred from the viewpoint of improving mechanical properties. Normally, epoxy resins with a large number of epoxy groups tend to have a low toughness structure because the crosslinking density after the crosslinking reaction is high, and even if they are interposed between the reinforcing fibers and the matrix resin, they are peeled off because they are brittle. It is easy to do, and the strength improvement effect by fiber reinforcement may not appear. On the other hand, since the aliphatic epoxy resin has a flexible skeleton, it tends to have a high toughness structure even if the crosslinking density is high. When it is interposed between the reinforcing fiber and the matrix resin, it is soft and difficult to peel off.

脂肪族エポキシ樹脂の具体例としては、例えば、ジグリシジルエーテル化合物では、エチレングリコールジグリシジルエーテル及び、ポリエチレングリコールジグリシジルエーテル類、プロピレングリコールジグリシジルエーテル及び、ポリプロピレングリコールジグリシジルエーテル類、1,4−ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、ポリアルキレングリコールジグリシジルエーテル類等が挙げられる。また、ポリグリシジルエーテル化合物では、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル類、ソルビトールポリグリシジルエーテル類、アラビトールポリグリシジルエーテル類、トリメチロールプロパンポリグリシジルエーテル類、トリメチロールプロパングリシジルエーテル類、ペンタエリスリトールポリグリシジルエーテル類、脂肪族多価アルコールのポリグリシジルエーテル類等が挙げられる。   Specific examples of the aliphatic epoxy resin include, for example, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, 1,4-diglycidyl ether compound, and 1,4- Examples include butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, polytetramethylene glycol diglycidyl ether, and polyalkylene glycol diglycidyl ether. Also, in the polyglycidyl ether compound, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, arabitol polyglycidyl ether, trimethylolpropane polyglycidyl ether, trimethylolpropane Examples thereof include glycidyl ethers, pentaerythritol polyglycidyl ethers, polyglycidyl ethers of aliphatic polyhydric alcohols, and the like.

脂肪族エポキシ樹脂の中でも、3官能以上の多官能脂肪族エポキシ樹脂を用いるのが良く、さらには、反応性の高いグリシジル基を3個以上有する脂肪族のポリグリシジルエーテル化合物を用いるのがより好ましい。この中でも、さらに好ましくは、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ポリエチレングリコールグリシジルエーテル類、ポリプロピレングリコールグリシジルエーテル類が好ましい。脂肪族のポリグリシジルエーテル化合物は、柔軟性、架橋密度、マトリックス樹脂との相溶性のバランスがよく、効果的に接着性を向上させることから好ましい。   Among the aliphatic epoxy resins, it is preferable to use a trifunctional or higher polyfunctional aliphatic epoxy resin, and it is more preferable to use an aliphatic polyglycidyl ether compound having three or more highly reactive glycidyl groups. . Among these, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, polyethylene glycol glycidyl ether, and polypropylene glycol glycidyl ether are more preferable. Aliphatic polyglycidyl ether compounds are preferred because they have a good balance of flexibility, crosslink density, and compatibility with the matrix resin and effectively improve adhesion.

サイジング剤(b)の付与手段としては特に限定されるものではないが、例えばローラーを介してサイジング液に浸漬する方法、サイジング液の付着したローラーに接する方法、サイジング液を霧状にして吹き付ける方法などがある。また、バッチ式、連続式いずれでもよいが、生産性がよくバラツキが小さくできる連続式が好ましい。この際、強化繊維束(A)に対するサイジング剤(b)の有効成分の付着量が適正範囲内で均一に付着するように、サイジング液濃度、温度、糸条張力などをコントロールすることが好ましい。また、サイジング剤(b)付与時に強化繊維束(A)を超音波で加振させることはより好ましい。   The means for applying the sizing agent (b) is not particularly limited. For example, a method of immersing in a sizing solution through a roller, a method of contacting a roller to which the sizing solution is attached, and a method of spraying the sizing solution in a mist form and so on. Moreover, although either a batch type or a continuous type may be sufficient, the continuous type which has good productivity and small variations is preferable. At this time, it is preferable to control the sizing solution concentration, temperature, yarn tension and the like so that the amount of the active component of the sizing agent (b) attached to the reinforcing fiber bundle (A) is uniformly attached within an appropriate range. Moreover, it is more preferable to vibrate the reinforcing fiber bundle (A) with ultrasonic waves when applying the sizing agent (b).

乾燥温度と乾燥時間は化合物の付着量によって調整すべきであるが、サイジング剤(b)の付与に用いる溶媒の完全な除去、乾燥に要する時間を短くし、一方、サイジング剤(b)の熱劣化を防止し、サイジング処理された強化繊維束(A)が固くなって束の拡がり性が悪化するのを防止する観点から、乾燥温度は、150℃以上350℃以下であることが好ましく、180℃以上250℃以下であることがより好ましい。   The drying temperature and drying time should be adjusted according to the amount of the compound attached, but the complete removal of the solvent used for the application of the sizing agent (b) and the time required for drying are shortened, while the heat of the sizing agent (b) is reduced. From the viewpoint of preventing deterioration and preventing the sizing-treated reinforcing fiber bundle (A) from becoming hard and deteriorating the spreadability of the bundle, the drying temperature is preferably 150 ° C. or higher and 350 ° C. or lower, 180 It is more preferable that the temperature is not lower than 250 ° C.

サイジング剤(b)に使用する溶媒は、水、メタノール、エタノール、ジメチルホルムアミド、ジメチルアセトアミド、アセトン等が挙げられるが、取扱いが容易で防災の観点から水が好ましい。従って、水に不溶、若しくは難溶の化合物をサイジング剤として用いる場合には、乳化剤、界面活性剤を添加し、水分散して用いるのが良い。具体的には、乳化剤、界面活性剤としては、スチレン−無水マレイン酸共重合体、オレフィン−無水マレイン酸共重合体、ナフタレンスルホン酸塩のホルマリン縮合物、ポリアクリル酸ソーダ等のアニオン系乳化剤、ポリエチレンイミン、ポリビニルイミダゾリン等のカチオン系乳化剤、ノニルフェノールエチレンオキサイド付加物、ポリビニルアルコール、ポリオキシエチレンエーテルエステル共重合体、ソルビタンエステルエチルオキサイド付加物等のノニオン系乳化剤等を用いることができるが、相互作用の小さいノニオン系乳化剤が多官能化合物の接着性効果を阻害しにくく好ましい。   Examples of the solvent used for the sizing agent (b) include water, methanol, ethanol, dimethylformamide, dimethylacetamide, acetone and the like, but water is preferable from the viewpoint of easy handling and disaster prevention. Accordingly, when a compound insoluble or hardly soluble in water is used as a sizing agent, it is preferable to add an emulsifier and a surfactant and disperse in water. Specifically, as an emulsifier and a surfactant, styrene-maleic anhydride copolymer, olefin-maleic anhydride copolymer, formalin condensate of naphthalene sulfonate, anionic emulsifier such as sodium polyacrylate, Nonionic emulsifiers such as cationic emulsifiers such as polyethyleneimine and polyvinylimidazoline, nonylphenol ethylene oxide adducts, polyvinyl alcohol, polyoxyethylene ether ester copolymers, sorbitan ester ethyl oxide adducts, etc. can be used. A nonionic emulsifier having a small size is preferable because it hardly inhibits the adhesive effect of the polyfunctional compound.

本発明に用いられるリン系難燃剤(B)としては、公知のものを用いることができる。その代表的なものとして、例えば、トリフェニルホスフェート、トリクレジルホスフェート、トリメチルホスフェート、トリエチルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、2−エチルヘキシルジフェニルホスフェート、その他芳香族リン酸エステル等のようなリン酸エステル系化合物や、トリスジクロロプロピルホスフェート、トリスクロロエチルホスフェート、トリスクロロプロピルホスフェート等の含ハロゲンリン酸エステル化合物、また、縮合リン酸エステル化合物、ポリリン酸塩類、赤リン系化合物などが挙げられる。これらは単独で用いても、2種以上を併用しても良い。さらに、取扱性、および安全性の観点から、成形するマトリックス樹脂と同種の樹脂と上記リン系難燃剤(B)をあらかじめ高濃度に配合、混練し、ペレットもしくは板状に加工した、いわゆるマスターバッチ化したものを用いても良い。これらリン系難燃剤(B)は、脱水炭化促進作用により、成形品表面に緻密なチャーが形成され、熱や酸素を遮断し、炎の伝播を阻止する。また、熱分解におけるラジカル連鎖反応に対し、ラジカルトラップ効果により燃焼場において活性なHラジカルやOHラジカルを安定化することで難燃性を発現する。   A well-known thing can be used as a phosphorus flame retardant (B) used for this invention. Typical examples thereof include triphenyl phosphate, tricresyl phosphate, trimethyl phosphate, triethyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, 2-ethylhexyl diphenyl phosphate, and other aromatic phosphate esters. Phosphoric acid ester compounds, halogen-containing phosphoric acid ester compounds such as trisdichloropropyl phosphate, trischloroethyl phosphate, trischloropropyl phosphate, condensed phosphoric acid ester compounds, polyphosphates, red phosphorus compounds, etc. It is done. These may be used alone or in combination of two or more. Furthermore, from the viewpoint of handling and safety, a so-called masterbatch in which the same type of resin as the matrix resin to be molded and the phosphorus flame retardant (B) are blended in high concentration in advance, kneaded, and processed into pellets or plates. It may be used. These phosphorus-based flame retardants (B) form a dense char on the surface of the molded product due to the dehydration carbonization promoting action, block heat and oxygen, and prevent flame propagation. Moreover, flame retardance is expressed by stabilizing H radicals and OH radicals active in the combustion field by radical trap effect against radical chain reaction in thermal decomposition.

本発明において、複合強化繊維束中に含浸されたリン系難燃剤(B)の量は、強化繊維束(A)100重量部に対し、10〜200重量部が好ましい。機械特性と難燃性のバランスから、より好ましくは15〜160重量部、さらに好ましくは20〜120重量部である。リン系難燃剤(B)の配合量が10重量部未満では十分な難燃効果が得られない場合があり、200重量部を越えると機械特性が低下したり、成形品の比重の増加や、成形品表面からリン系難燃剤(B)がブリードアウトする場合があるため好ましくない。   In the present invention, the amount of the phosphorus-based flame retardant (B) impregnated in the composite reinforcing fiber bundle is preferably 10 to 200 parts by weight with respect to 100 parts by weight of the reinforcing fiber bundle (A). From the balance between mechanical properties and flame retardancy, the amount is more preferably 15 to 160 parts by weight, still more preferably 20 to 120 parts by weight. If the blending amount of the phosphorus-based flame retardant (B) is less than 10 parts by weight, a sufficient flame retardant effect may not be obtained, and if it exceeds 200 parts by weight, the mechanical properties decrease, the specific gravity of the molded product increases, Since the phosphorus flame retardant (B) may bleed out from the surface of the molded product, it is not preferable.

本発明に用いられる光安定剤(C)とは、外部からの光エネルギーをマトリックス樹脂にとって無害な熱エネルギーに変換する紫外線吸収剤や、光酸化によって発生するラジカルをトラップするラジカル捕捉剤などを指す。   The light stabilizer (C) used in the present invention refers to an ultraviolet absorber that converts external light energy into harmless heat energy for the matrix resin, a radical scavenger that traps radicals generated by photooxidation, and the like. .

紫外線吸収剤はリン系難燃剤(B)の光安定化、すなわち難燃剤の光劣化を抑える効果を有する。またラジカル捕捉剤は、燃焼プロセスにおいて、マトリックス樹脂のポリマー主鎖が切れて生じるラジカルを捕捉することにより、ラジカルと酸素の反応を抑制する。そのため、リン系難燃剤(B)単独で用いた場合よりも、これら光安定剤(C)を併用することで難燃性をより向上することができる。   The ultraviolet absorber has the effect of stabilizing the light resistance of the phosphorus-based flame retardant (B), that is, suppressing the light deterioration of the flame retardant. In addition, the radical scavenger suppresses the reaction between radicals and oxygen by capturing radicals generated by the polymer main chain of the matrix resin being broken in the combustion process. Therefore, flame retardance can be further improved by using these light stabilizers (C) in combination, compared with the case where the phosphoric flame retardant (B) is used alone.

本発明において、光安定剤(C)は公知のものを用いることができ、例えばベンゾトリアゾール系、シアノアクリレート系、トリアジン系、ベンゾフェノン系、シュウ酸アニリド系などの紫外線吸収剤や、ヒンダードアミン系、ベンゾエート系のラジカル捕捉剤が挙げられる。これらは単独で用いても、2種以上を併用しても良い。特にヒンダードアミン系のラジカル捕捉剤は紫外線吸収剤と高い相乗効果を示すため、これらを同時に用いるのがより好ましい。   In the present invention, known light stabilizers (C) can be used, for example, UV absorbers such as benzotriazole, cyanoacrylate, triazine, benzophenone, and oxalic anilide, hindered amine, and benzoate. And radical scavengers of the system. These may be used alone or in combination of two or more. In particular, since a hindered amine radical scavenger exhibits a high synergistic effect with an ultraviolet absorber, it is more preferable to use these simultaneously.

また、ヒンダードアミン系の光安定剤の中でも、アミノエーテル型ヒンダードアミン系光安定剤を用いることが特に好ましい。アミノエーテル型ヒンダードアミン系光安定剤とは、下記構造式(1)で示される構造を化合物内に有するヒンダードアミン系光安定剤を指し、代表的なものとして例えばBASFジャパン(株)製Tinuvin123、Tinuvin 152、Tinuvin NOR 371 FF、TinuvinXT850 FF、Tinuvin XT855 FF、Flamestab NOR 116 FF、(株)ADEKA製アデカスタブLA−81などが挙げられる。これらは単独で用いても、2種以上を併用しても良い。   Among the hindered amine light stabilizers, it is particularly preferable to use an amino ether type hindered amine light stabilizer. The amino ether type hindered amine light stabilizer refers to a hindered amine light stabilizer having a structure represented by the following structural formula (1) in the compound, and representative examples thereof include Tinuvin 123 and Tinuvin 152 manufactured by BASF Japan Ltd. Tinuvin NOR 371 FF, Tinuvin XT850 FF, Tinuvin XT855 FF, Flamestab NOR 116 FF, ADEKA Corporation ADEKA STAB LA-81, and the like. These may be used alone or in combination of two or more.

Figure 0006003224
Figure 0006003224

(式中Rは水素以外の任意の構造、Rはアルキル基、シクロアルキル基、アルキルカルボニル基およびシクロアルキルカルボニル基からなる群より選ばれる少なくとも1つの基を示す。好ましいRの炭素数は5〜12である。) (Wherein R 1 represents an arbitrary structure other than hydrogen, R 2 represents at least one group selected from the group consisting of an alkyl group, a cycloalkyl group, an alkylcarbonyl group and a cycloalkylcarbonyl group. Preferred carbon number of R 2 Is 5-12.)

アミノエーテル型ヒンダードアミン光安定剤は、酸素、紫外線などにより酸化され、ニトロオキサイドラジカルを生成し、マトリックス樹脂中に生成したラジカルを捕捉して、アミノエーテル(−NOR)の構造をとり、さらにアルキルラジカルおよび過酸化物ラジカルを捕獲することで耐候性を保持する。   Amino ether type hindered amine light stabilizers are oxidized by oxygen, ultraviolet rays, etc. to generate nitrooxide radicals, capture the radicals generated in the matrix resin, take the structure of amino ether (-NOR), and further alkyl radicals And it retains the weather resistance by capturing peroxide radicals.

また、樹脂組成物の燃焼のプロセスにおいて、可燃性ガスの発生をもたらす熱分解は活性ラジカルが関与する連鎖反応であることが知られている。ここで、アミノエーテル型ヒンダードアミン系光安定剤から燃焼時に上記のようなニトロオキサイドラジカルが発生し、これが活性ラジカルを捕捉・低活性化し、難燃性を発現する。この際の難燃性はリン系難燃剤と併用することによって、相乗的に向上する。かかる機構が発現する原因は必ずしも明らかではないが、アミノエーテル型ヒンダードアミン系光安定剤由来のニトロオキサイドラジカルが、リン系難燃剤のラジカルトラップ効果を促進し、いわゆる難燃助剤と同等の働きをするためと推定している。 一方、NHまたはNR(R:アルキル基)構造をもつ非アミノエーテル型ヒンダードアミン系光安定剤は、アミン系化合物であるため酸による攻撃があった際に中和反応を起こし耐候性発現の効果が低下することがある。また、構造上、ニトロオキサイドラジカル生成に時間がかかるものがあり、マトリックス樹脂中において過酸化物ラジカルを捕獲できない場合があるため、アミノエーテル型ヒンダードアミン光安定剤を用いるのがより好ましい。   Further, it is known that in the process of burning the resin composition, thermal decomposition that causes generation of combustible gas is a chain reaction involving active radicals. Here, the nitrooxide radical as described above is generated during combustion from the amino ether type hindered amine light stabilizer, and this captures and lowers the active radical, and exhibits flame retardancy. The flame retardancy at this time is synergistically improved by using it together with a phosphorus flame retardant. The cause of this mechanism is not always clear, but nitrooxide radicals derived from aminoether-type hindered amine light stabilizers promote the radical trapping effect of phosphorus-based flame retardants, and perform the same function as so-called flame retardant aids. Estimated to do. On the other hand, the non-amino ether type hindered amine light stabilizer having an NH or NR (R: alkyl group) structure is an amine compound, and thus has a neutralizing reaction when attacked by an acid and has an effect of weather resistance. May decrease. In addition, it is more preferable to use an amino ether type hindered amine light stabilizer because there are cases where it takes time to generate a nitrooxide radical due to the structure and the peroxide radical cannot be captured in the matrix resin.

本発明において、複合強化繊維束中に含浸された光安定剤(C)の量は、強化繊維束(A)100重量部に対し、0.2〜10重量部が好ましい。光安定剤(C)が0.2重量部未満では十分な耐候性と難燃性を得られない場合があり、10重量部を越えると光安定剤自身が分解ガスの発生源となり、難燃性を低下する場合があるため好ましくない。   In the present invention, the amount of the light stabilizer (C) impregnated in the composite reinforcing fiber bundle is preferably 0.2 to 10 parts by weight with respect to 100 parts by weight of the reinforcing fiber bundle (A). If the light stabilizer (C) is less than 0.2 parts by weight, sufficient weather resistance and flame retardancy may not be obtained. If the light stabilizer (C) exceeds 10 parts by weight, the light stabilizer itself becomes a generation source of decomposition gas, and the flame retardant It is not preferable because the properties may be lowered.

本発明における複合強化繊維束の製造方法では、リン系難燃剤(B)と光安定剤(C)を0〜320℃の溶融状態で強化繊維束(A)と接触させる工程を有する。好ましくは50〜250℃、より好ましくは80〜200℃である。この時、供給するリン系難燃剤(B)と光安定剤(C)の融点や、後述する溶融粘度を考慮して、前記温度の範囲から適当な温度に調整するのが好ましい。ここで、0℃未満では、リン系難燃剤(B)と光安定剤(C)の粘度が高くなり、供給する際に、付着むらが発生することがある。また、320℃を越えると、長時間にわたり製造した場合に、リン系難燃剤(B)と光安定剤(C)が熱分解する可能性がある。0〜320℃の溶融状態で強化繊維束(A)と接触させることで、リン系難燃剤(B)と光安定剤(C)を安定して供給、含浸させることができる。   In the manufacturing method of the composite reinforcement fiber bundle in this invention, it has a process which makes a phosphorus flame retardant (B) and a light stabilizer (C) contact a reinforcement fiber bundle (A) in a 0-320 degreeC molten state. Preferably it is 50-250 degreeC, More preferably, it is 80-200 degreeC. At this time, in consideration of the melting point of the phosphorus-based flame retardant (B) and the light stabilizer (C) to be supplied and the melt viscosity described later, it is preferable to adjust the temperature range to an appropriate temperature. Here, when the temperature is lower than 0 ° C., the viscosity of the phosphorus-based flame retardant (B) and the light stabilizer (C) is increased, and uneven adhesion may occur during supply. Moreover, when it exceeds 320 degreeC, when it manufactures over a long time, a phosphorus flame retardant (B) and a light stabilizer (C) may thermally decompose. By bringing the reinforcing fiber bundle (A) into contact in a molten state of 0 to 320 ° C., the phosphorus-based flame retardant (B) and the light stabilizer (C) can be stably supplied and impregnated.

リン系難燃剤(B)と光安定剤(C)を強化繊維束(A)と接触させる際の温度を制御する手法については、リン系難燃剤(B)と光安定剤(C)を強化繊維束(A)と接触させる方法に合わせて適当な手法を選択すれば良いが、例えば、リン系難燃剤(B)と光安定剤(C)を溶融する溶融バスの温度や、コーティングロールの表面温度を調節する手法が挙げられる。   Reinforce the phosphorus flame retardant (B) and the light stabilizer (C) for the method of controlling the temperature when bringing the phosphorus flame retardant (B) and the light stabilizer (C) into contact with the reinforcing fiber bundle (A). An appropriate method may be selected according to the method of contacting with the fiber bundle (A). For example, the temperature of the melting bath for melting the phosphorus flame retardant (B) and the light stabilizer (C), the coating roll A method for adjusting the surface temperature can be mentioned.

また、本発明において、リン系難燃剤(B)および光安定剤(C)を溶融状態で強化繊維束(A)と接触させる工程において、リン系難燃剤(B)および光安定剤(C)の溶融粘度が0.01〜1000Pa・sであるのが好ましい。より好ましくは0.05〜100Pa・sであり、さらに好ましくは0.05〜10Pa・sである。かかる範囲において、リン系難燃剤(B)および光安定剤(C)を安定的に供給することができ、さらに強化繊維(A)と接触させる際、強化繊維(A)内にリン系難燃剤(B)および光安定剤(C)が適度に浸透することによって、後に続く、さらに加熱してリン系難燃剤(B)および光安定剤(C)の供給量の80〜100重量%を強化繊維束(A)に含浸させる工程において、均一かつ、好ましい範囲の量を含浸させることが容易になるため好ましい。   In the present invention, in the step of bringing the phosphorus-based flame retardant (B) and the light stabilizer (C) into contact with the reinforcing fiber bundle (A) in a molten state, the phosphorus-based flame retardant (B) and the light stabilizer (C) The melt viscosity of is preferably 0.01 to 1000 Pa · s. More preferably, it is 0.05-100 Pa.s, More preferably, it is 0.05-10 Pa.s. In such a range, the phosphorus-based flame retardant (B) and the light stabilizer (C) can be stably supplied, and when contacting with the reinforcing fiber (A), the phosphorus-based flame retardant is contained in the reinforcing fiber (A). When (B) and the light stabilizer (C) permeate moderately, the subsequent heating further strengthens 80 to 100% by weight of the supply amount of the phosphorus-based flame retardant (B) and the light stabilizer (C). In the step of impregnating the fiber bundle (A), it is preferable because it is easy to impregnate a uniform and preferable amount.

本発明において、溶融粘度を制御する手法としては、前記0〜320℃の温度範囲から、好ましい範囲の溶融粘度になるよう、温度を調整する方法が挙げられる。その他の手法としては、本発明の効果を損なわない範囲で、溶融粘度調整剤を添加する方法が挙げられる。本発明における溶融粘度調整剤は特に限定されず、エポキシ樹脂、フェノール樹脂、ポリエチレングリコール、ポリウレタン、ポリエステル、可塑剤などが例示できる。中でもマトリックス樹脂との接着性を発現し得るエポキシ樹脂が好ましい。   In the present invention, as a method for controlling the melt viscosity, a method of adjusting the temperature from the temperature range of 0 to 320 ° C. so that the melt viscosity is in a preferable range can be mentioned. Other methods include a method of adding a melt viscosity modifier within a range not impairing the effects of the present invention. The melt viscosity modifier in this invention is not specifically limited, An epoxy resin, a phenol resin, polyethyleneglycol, a polyurethane, polyester, a plasticizer etc. can be illustrated. Among these, an epoxy resin that can express adhesiveness with the matrix resin is preferable.

なお、本発明における溶融粘度は、粘弾性測定器を用い、40mmのパラレルプレートを使用して、0.5Hzの条件下で測定を行い求めることができる。   In addition, the melt viscosity in this invention can be calculated | required by measuring on 0.5 Hz conditions using a 40-mm parallel plate using a viscoelasticity measuring device.

また、リン系難燃剤(B)と光安定剤(C)を供給して強化繊維束(A)と接触させる方法について特に限定はないが、繊維束に油剤、サイジング剤、マトリックス樹脂を付与するような公知の製造方法を用いることができる。中でも、ディッピング、もしくは、コーティングが好ましく、具体的なコーティングとしては、リバースロール、正回転ロール、キスロール、スプレイ、カーテンが好ましく用いられる。これらの方法を2種以上組み合わせてもよい。   Moreover, although there is no limitation in particular about the method of supplying a phosphorus flame retardant (B) and a light stabilizer (C) and making it contact with a reinforced fiber bundle (A), an oil agent, a sizing agent, and a matrix resin are provided to a fiber bundle. Such a known production method can be used. Among them, dipping or coating is preferable, and as a specific coating, a reverse roll, a normal rotation roll, a kiss roll, a spray, and a curtain are preferably used. Two or more of these methods may be combined.

ここで、ディッピングとは、ポンプにてリン系難燃剤(B)と光安定剤(C)を溶融バスに供給し、該溶融バス内で強化繊維束(A)を通過させる方法をいう。強化繊維束(A)をリン系難燃剤(B)と光安定剤(C)の溶融バスに浸すことで、確実にリン系難燃剤(B)と光安定剤(C)を強化繊維束(A)に付着させることができる。また、リバースロール、正回転ロール、キスロールとは、ポンプで溶融させたリン系難燃剤(B)と光安定剤(C)をロールに供給し、強化繊維束(A)にリン系難燃剤(B)と光安定剤(C)の溶融物を塗布する方法をいう。さらに、リバースロールは、2本のロールが互いに逆方向に回転し、ロール上に溶融したリン系難燃剤(B)と光安定剤(C)を塗布する方法であり、正回転ロールは、2本のロールが同じ方向に回転し、ロール上に溶融したリン系難燃剤(B)と光安定剤(C)を塗布する方法である。通常、リバースロール、正回転ロールでは、強化繊維束(A)を挟み、さらにロールを設置し、リン系難燃剤(B)と光安定剤(C)を確実に付着させる方法が用いられる。一方で、キスロールは、強化繊維束(A)とロールが接触しているだけで、リン系難燃剤(B)と光安定剤(C)を付着させる方法である。そのため、キスロールは比較的粘度の低い場合の使用が好ましいが、いずれのロール方法を用いても、加熱溶融したリン系難燃剤(B)と光安定剤(C)の所定量を塗布させ、強化繊維束(A)を接着させながら走らせることで、繊維束の単位長さ当たりに所定量のリン系難燃剤(B)と光安定剤(C)を付着させることができる。スプレイは、霧吹きの原理を利用したもので、溶融したリン系難燃剤(B)と光安定剤(C)を霧状にして強化繊維束(A)に吹き付ける方法であり、カーテンは、溶融したリン系難燃剤(B)と光安定剤(C)を小孔から自然落下させ塗布する方法、または溶融槽からオーバーフローさせ塗布する方法である。塗布に必要な量を調節しやすいため、リン系難燃剤(B)と光安定剤(C)の損失を少なくできる。   Here, dipping refers to a method in which a phosphorus-based flame retardant (B) and a light stabilizer (C) are supplied to a melting bath with a pump, and the reinforcing fiber bundle (A) is passed through the melting bath. By immersing the reinforcing fiber bundle (A) in a molten bath of the phosphorus-based flame retardant (B) and the light stabilizer (C), the phosphorus-based flame retardant (B) and the light stabilizer (C) are surely added to the reinforcing fiber bundle ( A) can be attached. The reverse roll, the positive rotation roll, and the kiss roll are prepared by supplying a phosphorus-based flame retardant (B) and a light stabilizer (C) melted by a pump to the roll, and adding a phosphorus-based flame retardant (A) to the reinforcing fiber bundle (A). A method of applying a melt of B) and a light stabilizer (C). Further, the reverse roll is a method in which two rolls rotate in opposite directions to each other, and a molten phosphorus-based flame retardant (B) and a light stabilizer (C) are applied on the roll. This is a method in which a roll of a book rotates in the same direction, and a phosphorus flame retardant (B) and a light stabilizer (C) melted on the roll are applied. Usually, in the reverse roll and the positive rotation roll, a method is used in which the reinforcing fiber bundle (A) is sandwiched, and further, a roll is installed, and the phosphorus-based flame retardant (B) and the light stabilizer (C) are securely attached. On the other hand, the kiss roll is a method of adhering the phosphorus-based flame retardant (B) and the light stabilizer (C) only by contacting the reinforcing fiber bundle (A) and the roll. Therefore, the kiss roll is preferably used when the viscosity is relatively low, but with any roll method, a predetermined amount of the heated and melted phosphorus-based flame retardant (B) and light stabilizer (C) is applied and reinforced. By running while adhering the fiber bundle (A), a predetermined amount of the phosphorus-based flame retardant (B) and the light stabilizer (C) can be adhered per unit length of the fiber bundle. Spraying uses the principle of spraying, and is a method of spraying molten phosphorus flame retardant (B) and light stabilizer (C) in the form of a mist onto the reinforcing fiber bundle (A), and the curtain is melted It is a method in which the phosphorus-based flame retardant (B) and the light stabilizer (C) are naturally dropped from a small hole and applied, or overflowed from a melting tank and applied. Since it is easy to adjust the amount required for coating, the loss of the phosphorus-based flame retardant (B) and the light stabilizer (C) can be reduced.

本発明における複合強化繊維束の製造方法では、前記のリン系難燃剤(B)と光安定剤(C)を溶融状態で強化繊維束(A)と接触させる工程に続いて、さらに加熱してリン系難燃剤(B)および光安定剤(C)の供給量の80〜100重量%を強化繊維束(A)に含浸させる工程を有する。   In the method for producing a composite reinforcing fiber bundle according to the present invention, following the step of bringing the phosphorus-based flame retardant (B) and the light stabilizer (C) into contact with the reinforcing fiber bundle (A) in a molten state, further heating is performed. A step of impregnating the reinforcing fiber bundle (A) with 80 to 100% by weight of the supply amount of the phosphorus-based flame retardant (B) and the light stabilizer (C).

具体的には、リン系難燃剤(B)および光安定剤(C)と接触した状態の強化繊維束(A)に対して、リン系難燃剤(B)および光安定剤(C)が溶融する温度において、ロールやバーで張力をかける、拡幅、集束を繰り返す、圧力や振動を加えるなどの操作でリン系難燃剤(B)および光安定剤(C)を強化繊維束(A)の内部まで含浸するようにする工程である。   Specifically, the phosphorus-based flame retardant (B) and the light stabilizer (C) melt into the reinforcing fiber bundle (A) in contact with the phosphorus-based flame retardant (B) and the light stabilizer (C). The phosphorus flame retardant (B) and the light stabilizer (C) are added to the inside of the reinforcing fiber bundle (A) by applying tensions with rolls and bars, repeating widening and focusing, and applying pressure and vibration at a temperature to be applied. It is the process of making it impregnate.

より具体的な例として、加熱された複数のロールやバーの表面に繊維束を接触するように通して拡幅などを行う方法を挙げることができ、中でも、絞り口金、絞りロール、ロールプレス、ダブルベルトプレスを用いて含浸させる方法が好適に用いられる。   As a more specific example, there can be mentioned a method of widening by passing the fiber bundle so as to contact the surface of a plurality of heated rolls or bars, among which, a drawing base, a drawing roll, a roll press, a double A method of impregnation using a belt press is preferably used.

ここで、絞り口金とは、進行方向に向かって、口金径の狭まる口金のことであり、強化繊維束を集束させながら、余分に付着したリン系難燃剤(B)および光安定剤(C)を掻き取ると同時に、含浸を促す口金である。また、絞りロールとは、ローラーで強化繊維束に張力をかけることで、余分に付着したリン系難燃剤(B)および光安定剤(C)を掻き取ると同時に、含浸を促すローラーのことである。また、ロールプレスは、2つのロール間の圧力で連続的に強化繊維束内部の空気を除去するのと同時に、含浸を促す装置であり、ダブルベルトプレスとは、強化繊維束の上下からベルトを介してプレスすることで、含浸を促す装置である。   Here, the squeezing base is a base whose diameter decreases in the direction of travel, and the phosphorus-based flame retardant (B) and the light stabilizer (C) that are excessively adhered while focusing the reinforcing fiber bundle. It is a base that promotes impregnation at the same time as scraping off. The squeeze roll is a roller that urges impregnation at the same time as scraping off the excessively attached phosphorus-based flame retardant (B) and light stabilizer (C) by applying tension to the reinforcing fiber bundle with a roller. is there. The roll press is a device that continuously removes the air inside the reinforcing fiber bundle by the pressure between the two rolls and at the same time promotes the impregnation. The double belt press is a device that pushes the belt from above and below the reinforcing fiber bundle. It is a device that promotes impregnation by pressing through.

また、本工程において、リン系難燃剤(B)および光安定剤(C)の供給量の80〜100重量%が強化繊維束(A)に含浸されていることが必要である。収率に直接影響するため、経済性、生産性の観点から高いほど好ましい。より好ましくは、85〜100重量%であり、さらに好ましくは90〜100重量%である。80重量%未満では、経済性の観点からだけでなく、リン系難燃剤(B)および光安定剤(C)が本工程において、揮発成分を発生させている可能性があり、強化繊維束(A)内部にボイドが残存する可能性がある。リン系難燃剤(B)および光安定剤(C)の供給量の80〜100重量%を含浸させる方法としては特に限定されないが、例えば、加熱温度を高くして、リン系難燃剤(B)および光安定剤(C)の溶融粘度を下げたる方法、予め強化繊維束(A)を開繊する方法、前記例示した含浸方法を2種以上組み合わせる方法などが挙げられる。   In this step, it is necessary that the reinforcing fiber bundle (A) is impregnated with 80 to 100% by weight of the supply amount of the phosphorus-based flame retardant (B) and the light stabilizer (C). Since the yield is directly affected, the higher the yield from the viewpoints of economy and productivity, the better. More preferably, it is 85-100 weight%, More preferably, it is 90-100 weight%. If it is less than 80% by weight, not only from the economical viewpoint, but also the phosphorus-based flame retardant (B) and the light stabilizer (C) may generate volatile components in this step, and the reinforcing fiber bundle ( A) A void may remain inside. Although it does not specifically limit as a method to impregnate 80-100 weight% of the supply amount of a phosphorus flame retardant (B) and a light stabilizer (C), For example, heating temperature is made high and a phosphorus flame retardant (B) And a method of lowering the melt viscosity of the light stabilizer (C), a method of previously opening the reinforcing fiber bundle (A), a method of combining two or more of the exemplified impregnation methods, and the like.

リン系難燃剤(B)および光安定剤(C)の供給量に対する含浸量は次式によって求めることができる。
リン系難燃剤(B)および光安定剤(C)の供給量に対する含浸量(単位:重量%)=wBC/wsp
ここで、wBCはリン系難燃剤(B)および光安定剤(C)の含浸重量(g)であり、複合強化繊維束の秤量値W(g)と、秤量した複合強化繊維束を窒素雰囲気中450℃で15分間加熱した後の秤量値W(g)とから、以下の式により求めることができる。
BC=W−W
また、wspは上記複合強化繊維束を作製する際に供給したリン系難燃剤(B)および光安定剤(C)の重量(g)である。
The impregnation amount with respect to the supply amount of the phosphorus-based flame retardant (B) and the light stabilizer (C) can be obtained by the following equation.
Impregnation amount (unit:% by weight) with respect to the supply amount of the phosphorus-based flame retardant (B) and the light stabilizer (C) = w BC / w sp
Here, w BC is the impregnation weight (g) of the phosphorus-based flame retardant (B) and the light stabilizer (C), and the weighed value W 1 (g) of the composite reinforcing fiber bundle and the weighed composite reinforcing fiber bundle From the measured value W 2 (g) after heating at 450 ° C. for 15 minutes in a nitrogen atmosphere, it can be obtained by the following equation.
w BC = W 1 −W 2
Wsp is the weight (g) of the phosphorus-based flame retardant (B) and the light stabilizer (C) supplied when the composite reinforcing fiber bundle is produced.

なお、複合強化繊維束中の強化繊維束(A)にサイジング剤が付与されてなる場合、リン系難燃剤(B)および光安定剤(C)の含浸重量wBCは次式によって求めることができる。
BC=W−W−wSz
ここで、wSzは前記同様、次式で表される複合強化繊維束中のサイジング剤の付着重量(g)である。
Sz(単位:g)=WSz/(100−WSz
In addition, when a sizing agent is added to the reinforcing fiber bundle (A) in the composite reinforcing fiber bundle, the impregnation weight w BC of the phosphorus-based flame retardant (B) and the light stabilizer (C) is obtained by the following equation. it can.
w BC = W 1 −W 2 −w Sz
Here, w Sz is the adhesion weight (g) of the sizing agent in the composite reinforcing fiber bundle represented by the following formula, as described above.
w Sz (unit: g) = W Sz W 2 / (100−W Sz )

リン系難燃剤(B)および光安定剤(C)を強化繊維束(A)に含浸させる工程において、加熱方法としては特に限定しないが、具体的には、加熱したチャンバーを用いる方法や、ホットローラーを用いて加熱と加圧を同時に行う方法が例示できる。   In the step of impregnating the reinforcing fiber bundle (A) with the phosphorus-based flame retardant (B) and the light stabilizer (C), the heating method is not particularly limited. Specifically, a method using a heated chamber, The method of performing a heating and pressurization simultaneously using a roller can be illustrated.

また、リン系難燃剤(B)や光安定剤(C)の分解反応など、好ましくない副反応の発生を抑制する観点から、非酸化性雰囲気下で加熱することが好ましい。ここで、非酸化性雰囲気とは酸素濃度が5体積%以下、好ましくは2体積%以下、さらに好ましくは酸素を含有しない雰囲気、すなわち、窒素、ヘリウム、アルゴンなどの不活性ガス雰囲気であることを指し、この中でも特に経済性および取り扱いの容易さの面から、窒素雰囲気が好ましい。   Moreover, it is preferable to heat in non-oxidizing atmosphere from a viewpoint which suppresses generation | occurrence | production of an undesirable side reaction, such as a decomposition reaction of a phosphorus flame retardant (B) and a light stabilizer (C). Here, the non-oxidizing atmosphere is an atmosphere having an oxygen concentration of 5% by volume or less, preferably 2% by volume or less, more preferably an oxygen-free atmosphere, that is, an inert gas atmosphere such as nitrogen, helium or argon. Of these, a nitrogen atmosphere is particularly preferred from the standpoints of economy and ease of handling.

本発明において、リン系難燃剤(B)および光安定剤(C)を強化繊維束(A)と接触させる際の引取速度および含浸させる際の引取速度は、いずれも工程速度に直接影響するため、経済性、生産性の観点から高いほど好ましい。具体的には、引取速度としては、10〜100m/分が好ましい。より好ましくは、20〜100m/分であり、さらに好ましくは30〜100m/分である。引取方法としては、ニップローラーで引き出す方法や、ドラムワインダーで巻き取る方法や、直接ストランドカッターなどで、一定長に切断しながら複合強化繊維束を引き取る方法が挙げられる。   In the present invention, the take-up speed when bringing the phosphorus-based flame retardant (B) and the light stabilizer (C) into contact with the reinforcing fiber bundle (A) and the take-up speed when impregnating both directly affect the process speed. From the viewpoint of economy and productivity, the higher the better. Specifically, the take-up speed is preferably 10 to 100 m / min. More preferably, it is 20-100 m / min, More preferably, it is 30-100 m / min. Examples of the pulling method include a method of drawing with a nip roller, a method of winding with a drum winder, and a method of pulling a composite reinforcing fiber bundle while cutting it to a certain length directly with a strand cutter or the like.

また、前記リン系難燃剤(B)および光安定剤(C)を強化繊維束(A)と接触させる工程の前段階で、強化繊維束(A)を予め開繊してもよい。開繊とは収束された強化繊維束(A)を分繊させる操作であり、溶融したリン系難燃剤(B)および光安定剤(C)の含浸性をさらに高める効果が期待できる。開繊により、強化繊維束(A)の厚みは薄くなり、開繊前の強化繊維束(A)の幅をw1(mm)、厚みをt1(μm)、開繊後の強化繊維束(A)の幅をw2(mm)、厚みをt2(μm)とした場合、開繊比=(w2/t2)/(w1/t1)を2.0以上とするのが好ましく、2.5以上とするのがさらに好ましい。   Further, the reinforcing fiber bundle (A) may be opened in advance before the step of bringing the phosphorus-based flame retardant (B) and the light stabilizer (C) into contact with the reinforcing fiber bundle (A). The opening is an operation for dividing the converged reinforcing fiber bundle (A), and an effect of further improving the impregnation property of the molten phosphorus-based flame retardant (B) and the light stabilizer (C) can be expected. By opening the fiber, the thickness of the reinforcing fiber bundle (A) is reduced, the width of the reinforcing fiber bundle (A) before opening is w1 (mm), the thickness is t1 (μm), and the reinforcing fiber bundle after opening (A ) Width is w2 (mm) and the thickness is t2 (μm), it is preferable that the opening ratio = (w2 / t2) / (w1 / t1) is 2.0 or more, and 2.5 or more. More preferably.

前記強化繊維束(A)の開繊方法としては、特に制限はなく、例えば凹凸ロールを交互に通過させる方法、太鼓型ロールを使用する方法、軸方向振動に張力変動を加える方法、垂直に往復運動する2個の摩擦体による強化繊維束(A)の張力を変動させる方法、強化繊維束(A)にエアを吹き付ける方法を利用できる。   The method for opening the reinforcing fiber bundle (A) is not particularly limited. For example, a method of alternately passing concave and convex rolls, a method of using a drum-type roll, a method of applying a tension fluctuation to axial vibration, and a reciprocating vertically A method of changing the tension of the reinforcing fiber bundle (A) by two moving friction bodies and a method of blowing air to the reinforcing fiber bundle (A) can be used.

図1は、本発明で得られる複合強化繊維束の横断面形態の一例を示す概略図である。なお、本発明において、横断面とは、軸心方向に直交する面での断面を意味する。前記製造方法により得られる複合強化繊維束は、強化繊維束(A)にリン系難燃剤(B)および光安定剤(C)を塗布、含浸せしめた複合体として形成されている(以下、複合強化繊維束を複合体とも称す)。この複合体の形態は図1に示すようなものであり、強化繊維束(A)の各単繊維間にリン系難燃剤(B)および光安定剤(C)が満たされている。すなわち、リン系難燃剤(B)および光安定剤(C)の海に、強化繊維束(A)の各単繊維が島のように分散している状態である。   FIG. 1 is a schematic view showing an example of a cross-sectional form of a composite reinforcing fiber bundle obtained by the present invention. In the present invention, the transverse section means a section in a plane orthogonal to the axial direction. The composite reinforcing fiber bundle obtained by the production method is formed as a composite in which the reinforcing fiber bundle (A) is coated and impregnated with a phosphorus-based flame retardant (B) and a light stabilizer (C) (hereinafter referred to as composite). Reinforcing fiber bundles are also called composites). The form of this composite is as shown in FIG. 1, and the phosphorus-based flame retardant (B) and the light stabilizer (C) are filled between the single fibers of the reinforcing fiber bundle (A). That is, the single fibers of the reinforcing fiber bundle (A) are dispersed like islands in the sea of the phosphorus-based flame retardant (B) and the light stabilizer (C).

上記複合体において、リン系難燃剤(B)および光安定剤(C)が強化繊維束(A)に良好に含浸した複合体とすることで、例えば、熱可塑性樹脂組成物(D)と共に射出成形すると、射出成形機のシリンダー内で溶融混練されたリン系難燃剤(B)および光安定剤(C)が熱可塑性樹脂組成物(D)に拡散し、強化繊維束(A)が熱可塑性樹脂組成物(D)に分散することを助け、同時に熱可塑性樹脂組成物(D)が強化繊維束(A)に置換、含浸することを助ける、いわゆる含浸助剤・分散助剤としての役割を持つ。   In the above composite, a composite in which the reinforcing fiber bundle (A) is satisfactorily impregnated with the phosphorus-based flame retardant (B) and the light stabilizer (C) is injected together with, for example, the thermoplastic resin composition (D). When molded, the phosphorus-based flame retardant (B) and light stabilizer (C) melted and kneaded in the cylinder of the injection molding machine diffuse into the thermoplastic resin composition (D), and the reinforcing fiber bundle (A) is thermoplastic. Helps to disperse in the resin composition (D), and at the same time, helps the thermoplastic resin composition (D) to replace and impregnate the reinforcing fiber bundle (A), so-called impregnation aid / dispersion aid Have.

本発明における成形材料は、前記複合体および熱可塑性樹脂組成物(D)から構成される。ここで、本発明において成形材料とは、成形品を射出成形などで成形する際に用いる原材料を意味する。   The molding material in this invention is comprised from the said composite_body | complex and a thermoplastic resin composition (D). Here, the molding material in the present invention means a raw material used when molding a molded product by injection molding or the like.

本発明において、熱可塑性樹脂組成物(D)とは熱可塑性樹脂に、その他の種々の添加剤や充填剤が配合されてなるものを指す。ここで用いられる熱可塑性樹脂としては、特に限定されないが、ポリカーボネート樹脂、スチレン系樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂(PPS樹脂)、変性ポリフェニレンエーテル樹脂(変性PPE樹脂)、ポリアセタール樹脂(POM樹脂)、液晶ポリエステル、ポリアリーレート、ポリメチルメタクリレート樹脂(PMMA)などのアクリル樹脂、塩化ビニル、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルホン、ポリエーテルスルホン、ポリケトン、ポリエーテルケトン、ポリエーテルエーテルケトン(PEEK)ポリエチレン、ポリプロピレン等のポリオレフィン、変性ポリオレフィン、フェノール樹脂、フェノキシ樹脂、さらにはエチレン/プロピレン共重合体、エチレン/1−ブテン共重合体、エチレン/プロピレン/ジエン共重合体、エチレン/一酸化炭素/ジエン共重合体、エチレン/(メタ)アクリル酸エチル共重合体、エチレン/(メタ)アクリル酸グリシジル、エチレン/酢酸ビニル/(メタ)アクリル酸グリシジル共重合体、ポリエーテルエステルエラストマー、ポリエーテルエーテルエラストマー、ポリエーテルエステルアミドエラストマー、ポリエステルアミドエラストマー、ポリエステルエステルエラストマーなどの各種エラストマー類などが挙げられ、これらの1種または2種以上を併用しても良い。特に汎用性の高い、ポリプロピレン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリフェニレンスルフィド系樹脂が好ましい。   In the present invention, the thermoplastic resin composition (D) refers to a composition obtained by blending other various additives and fillers with a thermoplastic resin. The thermoplastic resin used here is not particularly limited, but polycarbonate resin, styrene resin, polyamide resin, polyester resin, polyphenylene sulfide resin (PPS resin), modified polyphenylene ether resin (modified PPE resin), polyacetal resin (POM). Resin), liquid crystal polyester, polyarylate, acrylic resin such as polymethyl methacrylate resin (PMMA), vinyl chloride, polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone, polyethersulfone, polyketone , Polyetherketone, Polyetheretherketone (PEEK) Polyethylene such as polyethylene, polypropylene, modified polyolefin, phenolic resin, phenoxy resin, and ethylene Propylene copolymer, ethylene / 1-butene copolymer, ethylene / propylene / diene copolymer, ethylene / carbon monoxide / diene copolymer, ethylene / (meth) ethyl acrylate copolymer, ethylene / (meta ) Glycidyl acrylate, ethylene / vinyl acetate / glycidyl (meth) acrylate copolymer, polyether ester elastomer, polyether ether elastomer, polyether ester amide elastomer, polyester amide elastomer, polyester ester elastomer and various other elastomers These may be used alone or in combination of two or more. In particular, polypropylene resins, polyamide resins, polycarbonate resins, and polyphenylene sulfide resins that are highly versatile are preferable.

また、熱可塑性樹脂組成物(D)に配合されてなる種々の添加剤や充填剤は、本発明の目的を損なわない範囲で任意のものを選択できる。添加剤や充填剤の例として、例えば、無機充填材、導電性付与剤、結晶核剤、難燃助剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、あるいは、カップリング剤が挙げられ、これらの1種または2種以上を併用しても良い。特に、難燃性の更なる向上の観点から難燃助剤が配合されてなるのが好ましく、リン系難燃剤と高い相乗効果を示すことから、金属水酸化物がより好ましく、水酸化マグネシウムや水酸化アルミニウムがさらに好ましい。   Moreover, the various additives and fillers which are mix | blended with a thermoplastic resin composition (D) can select arbitrary things in the range which does not impair the objective of this invention. Examples of additives and fillers include, for example, inorganic fillers, conductivity imparting agents, crystal nucleating agents, flame retardant aids, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, anti-coloring agents, Examples include heat stabilizers, mold release agents, antistatic agents, plasticizers, lubricants, colorants, pigments, dyes, foaming agents, antifoaming agents, or coupling agents. Use one or more of these in combination. You may do it. In particular, it is preferable that a flame retardant aid is blended from the viewpoint of further improving the flame retardancy, and since it exhibits a high synergistic effect with a phosphorus flame retardant, a metal hydroxide is more preferred, and magnesium hydroxide and More preferred is aluminum hydroxide.

また、本発明における複合体および熱可塑性樹脂組成物(D)から構成される成形材料の形態は特に限定されず、例えば、複合体を切断してチョップドストランドとしたものと熱可塑性樹脂組成物(D)とをドライブレンドしたもののように、複合体と熱可塑性樹脂組成物(D)を分離して扱うものや、複合体に熱可塑性樹脂組成物(D)が接着されて一体化されたものが挙げられるが、成形時の流動性、および成形品の機械特性の均一性や、成形工程におけるブロッキング懸念の観点から、複合体に熱可塑性樹脂組成物(D)が接着されて一体化されたものがより好ましい。具体的には、押出機と電線被覆法用のコーティングダイを用いて、連続的に複合体の周囲に熱可塑性樹脂組成物(D)を被覆するように配置したものや、ロール等で扁平化した複合体の片面あるいは両面から押出機とTダイを用いて溶融したフィルム状の熱可塑性樹脂組成物(D)を配置し、ロール等で一体化させたものを挙げることができる。   Further, the form of the molding material composed of the composite and the thermoplastic resin composition (D) in the present invention is not particularly limited. For example, the composite is cut into a chopped strand and the thermoplastic resin composition ( D) and the composite and the thermoplastic resin composition (D) are separated and treated, or the thermoplastic resin composition (D) is bonded and integrated with the composite. The thermoplastic resin composition (D) was bonded and integrated with the composite from the viewpoint of flowability during molding, uniformity of mechanical properties of the molded product, and concerns about blocking in the molding process. More preferred. Specifically, using an extruder and a coating die for the wire coating method, the composite is continuously flattened around the composite with the thermoplastic resin composition (D), or rolled, etc. A film-like thermoplastic resin composition (D) melted by using an extruder and a T-die from one side or both sides of the composite is placed and integrated with a roll or the like.

図2は、本発明の成形材料の好ましい縦断面形態の一例を示す概略図である。なお、本発明において、縦断面とは、軸心方向を含む面での断面を意味する。本発明の成形材料の一例は、図2に示すように、強化繊維束(A)が成形材料の軸心方向にほぼ平行に配列され、かつ強化繊維束(A)の長さは成形材料の長さと実質的に同じ長さである。   FIG. 2 is a schematic view showing an example of a preferred longitudinal sectional form of the molding material of the present invention. In the present invention, the longitudinal section means a section in a plane including the axial direction. As an example of the molding material of the present invention, as shown in FIG. 2, the reinforcing fiber bundle (A) is arranged substantially parallel to the axial direction of the molding material, and the length of the reinforcing fiber bundle (A) is the same as that of the molding material. The length is substantially the same as the length.

ここで言う、「ほぼ平行に配列され」とは、強化繊維束(A)の長軸の軸線と、成形材料の長軸の軸線とが、同方向を指向している状態を示し、軸線同士の角度のずれが、好ましくは20°以下であり、より好ましくは10°以下であり、さらに好ましくは5°以下である。また、「実質的に同じ長さ」とは、例えばペレット状の成形材料において、ペレット内部の途中で強化繊維束(A)が切断されていたり、ペレット全長よりも有意に短い強化繊維束(A)が実質的に含まれたりしないことである。特に、そのペレット全長よりも短い強化繊維束(A)の量について規定されているわけではないが、ペレット全長の50%以下の長さの強化繊維束(A)の含有量が30重量%以下である場合には、ペレット全長よりも有意に短い強化繊維束(A)が実質的に含まれていないと評価する。さらに、ペレット全長の50%以下の長さの強化繊維束(A)の含有量は20質量%以下であることが好ましい。なお、ペレット全長とはペレット中の強化繊維束(A)配向方向の長さである。強化繊維束(A)が成形材料と同等の長さを持つことで、成形品中の強化繊維長を長くすることが出来るため、優れた力学特性を得ることができる。   Here, “arranged substantially in parallel” means that the long axis of the reinforcing fiber bundle (A) and the long axis of the molding material are oriented in the same direction. The angle deviation is preferably 20 ° or less, more preferably 10 ° or less, and further preferably 5 ° or less. Further, “substantially the same length” means, for example, in a pellet-shaped molding material, the reinforcing fiber bundle (A) is cut in the middle of the pellet, or the reinforcing fiber bundle (A) significantly shorter than the entire length of the pellet. ) Is not substantially included. In particular, the amount of the reinforcing fiber bundle (A) shorter than the entire length of the pellet is not specified, but the content of the reinforcing fiber bundle (A) having a length of 50% or less of the total length of the pellet is 30% by weight or less. If it is, it is evaluated that the reinforcing fiber bundle (A) significantly shorter than the entire length of the pellet is substantially not contained. Furthermore, the content of the reinforcing fiber bundle (A) having a length of 50% or less of the total length of the pellet is preferably 20% by mass or less. In addition, a pellet full length is the length of the reinforcing fiber bundle (A) orientation direction in a pellet. Since the reinforcing fiber bundle (A) has a length equivalent to that of the molding material, the reinforcing fiber length in the molded product can be increased, so that excellent mechanical properties can be obtained.

図3〜6はそれぞれ、本発明の成形材料の縦断面形態の一例を模式的に表したものであり、図7〜11はそれぞれ、本発明の成形材料の横断面形態の一例を模式的に表したものである。   3 to 6 each schematically show an example of the longitudinal cross-sectional form of the molding material of the present invention, and FIGS. 7 to 11 schematically show examples of the cross-sectional form of the molding material of the present invention. It is a representation.

成形材料の断面形態は、強化繊維束(A)とリン系難燃剤(B)および光安定剤(C)からなる複合体に、熱可塑性樹脂組成物(D)が接着するように配置されていれば図に示されたものに限定されないが、好ましくは図3〜5に示されるように、複合体が芯材となり熱可塑性樹脂組成物(D)で層状に挟まれて配置されている構成が好ましい。   The cross-sectional form of the molding material is arranged such that the thermoplastic resin composition (D) adheres to the composite composed of the reinforcing fiber bundle (A), the phosphorus-based flame retardant (B), and the light stabilizer (C). However, it is not limited to the one shown in the figure, but preferably, as shown in FIGS. 3 to 5, the composite is a core material and is sandwiched and arranged in layers with the thermoplastic resin composition (D) Is preferred.

また図7〜9に示されるように、複合体を芯構造として、その周囲を熱可塑性樹脂組成物(D)が被覆するような芯鞘構造に配置されている構成が好ましい。また、図11に示されるような複数の複合体を成熱可塑性樹脂組成物(D)が被覆するように配置する場合、複合体の数は2〜6程度が望ましい。   Moreover, as FIG. 7-9 shows, the structure arrange | positioned at the core sheath structure which makes a composite_body | complex a core structure and the circumference | surroundings are covered with a thermoplastic resin composition (D) is preferable. Moreover, when arrange | positioning so that a composite thermoplastic resin composition (D) may coat | cover several composite_body | complex as shown in FIG. 11, the number of composite_body | complexes is about 2-6.

複合体と熱可塑性樹脂組成物(D)の境界は接着され、境界付近で部分的に熱可塑性樹脂組成物(D)が複合体の一部に入り込み、複合体を構成するリン系難燃剤(B)および光安定剤(C)と相溶しているような状態、あるいは強化繊維に含浸しているような状態になっていてもよい。   The boundary between the composite and the thermoplastic resin composition (D) is bonded, and the thermoplastic resin composition (D) partially enters the composite near the boundary, and the phosphorus-based flame retardant ( B) and the light stabilizer (C) may be in a compatible state, or the reinforcing fiber may be impregnated.

本発明の成形材料は、例えば射出成形やプレス成形などの手法により混練されて最終的な成形品となる。成形材料の取扱性の点から、複合体と熱可塑性樹脂組成物(D)は成形が行われるまでは接着されたまま分離せず、前述したような形状を保っていることがより好ましい。複合体と熱可塑性樹脂組成物(D)では、形状(サイズ、アスペクト比)、比重、質量が全く異なるため、成形までの材料の運搬、取り扱い時、成形工程での材料移送時に分級し、成形品の力学特性にバラツキを生じたり、流動性が低下して金型詰まりを起こしたり、成形工程でブロッキングする場合がある。   The molding material of the present invention is kneaded by a technique such as injection molding or press molding to form a final molded product. From the viewpoint of the handling property of the molding material, it is more preferable that the composite and the thermoplastic resin composition (D) are not separated while being bonded until the molding is performed, and the shape as described above is maintained. The composite and the thermoplastic resin composition (D) are completely different in shape (size, aspect ratio), specific gravity, and mass, so they are classified and molded at the time of transportation and handling of materials until molding, and at the time of material transfer in the molding process. There are cases where the mechanical properties of the product vary, the fluidity is lowered and the mold is clogged, or blocking occurs in the molding process.

かかる観点から、前記したような、図7〜9に例示されるような芯鞘構造に配置されている構成が好ましい。このような配置であれば、熱可塑性樹脂組成物(D)が複合体を拘束し、より強固な複合化ができる。また、図7〜9に例示されるような芯鞘構造にするか、図10に例示されるような層状配置とするか、いずれが有利であるかについては、製造の容易さと、材料の取り扱いの容易さから、芯鞘構造とすることがより好ましい。   From such a viewpoint, the configuration arranged in the core-sheath structure as illustrated in FIGS. If it is such arrangement | positioning, a thermoplastic resin composition (D) will restrain a composite_body | complex and a stronger composite can be performed. In addition, as to which of the core-sheath structure as illustrated in FIGS. 7 to 9 or the layered arrangement as illustrated in FIG. From the viewpoint of ease, a core-sheath structure is more preferable.

本発明の成形材料は、その軸心方向には、ほぼ同一の断面形状を保っていれば、連続であってもよいし、成形方法によっては連続のものをある長さに切断されてなっていてもよい。好ましくは1〜50mmの範囲の長さに切断されてなっているのが良い。この長さに調製することにより、成形時の流動性、取扱性を十分に高めることができる。このように適切な長さに切断されてなる成形材料としてとりわけ好ましい態様は、射出成形用の長繊維ペレットが例示できる。   The molding material of the present invention may be continuous as long as it has substantially the same cross-sectional shape in the axial direction, and depending on the molding method, a continuous material is cut into a certain length. May be. Preferably, it is cut into a length in the range of 1 to 50 mm. By adjusting to this length, the fluidity and handleability during molding can be sufficiently enhanced. A particularly preferred embodiment of the molding material cut into an appropriate length in this way can be exemplified by long fiber pellets for injection molding.

また、本発明の成形材料は、連続、長尺のままでも成形法によっては使用可能である。例えば、熱可塑性ヤーンプリプレグとして、加熱しながらマンドレルに巻き付け、ロール状成形品を得たりすることができる。このような成形品の例としては、液化天然ガスタンクなどが挙げられる。また本発明の成形材料を、連続のまま、複数本一方向に引き揃えて加熱・融着させることにより一方向熱可塑性プリプレグを作製することも可能である。このようなプリプレグは、軽量性、高強度、弾性率、耐衝撃性が要求されるような分野、例えば自動車部材などに適用が可能である。   Further, the molding material of the present invention can be used depending on the molding method even if it is continuous or long. For example, as a thermoplastic yarn prepreg, it can be wound around a mandrel while heating to obtain a roll-shaped molded product. Examples of such molded products include liquefied natural gas tanks. Moreover, it is also possible to produce a unidirectional thermoplastic prepreg by heating and fusing a plurality of molding materials of the present invention while keeping them continuous in one direction. Such a prepreg can be applied to fields where lightness, high strength, elastic modulus, and impact resistance are required, such as automobile members.

また、上記成形材料に占める熱可塑性樹脂組成物(D)の割合は、複合体100重量部に対し、10〜1000重量部、好ましくは50〜700重量部、より好ましくは100〜400重量部であり、この範囲内で用いることで、力学特性に優れる成形品を得ることができる。   The proportion of the thermoplastic resin composition (D) in the molding material is 10 to 1000 parts by weight, preferably 50 to 700 parts by weight, and more preferably 100 to 400 parts by weight with respect to 100 parts by weight of the composite. Yes, by using within this range, a molded article having excellent mechanical properties can be obtained.

本発明で得られる成形材料の成形方法としては、特に限定しないが、射出成形、オートクレーブ成形、プレス成形、フィラメントワインディング成形、スタンピング成形などの生産性に優れた成形方法に適用でき、これらを組み合わせて用いることもできる。また、インサート成形、アウトサート成形などの一体化成形も容易に実施できる。さらに、成形後にも加熱による矯正処置や、熱溶着、振動溶着、超音波溶着などの生産性に優れた接着工法を活用することもできる。   The molding method of the molding material obtained in the present invention is not particularly limited, but can be applied to molding methods having excellent productivity such as injection molding, autoclave molding, press molding, filament winding molding, stamping molding, etc. It can also be used. Also, integrated molding such as insert molding and outsert molding can be easily performed. Furthermore, it is possible to utilize an adhesive method having excellent productivity such as a correction treatment by heating, heat welding, vibration welding, ultrasonic welding, etc. after molding.

上記成形方法により得られる成形品としては、インストルメントパネル、ドアビーム、アンダーカバー、ランプハウジング、ペダルハウジング、ラジエータサポート、スペアタイヤカバー、フロントエンドなどの各種モジュール、シリンダーヘッドカバー、ベアリングリテーナ、インテークマニホールド、ペダル等の自動車部品、部材および外板、ランディングギアポッド、ウィングレット、スポイラー、エッジ、ラダー、フェイリング、リブなどの航空機関連部品、部材および外板、モンキー、レンチ等の工具類、さらに電話、ファクシミリ、VTR、コピー機、テレビ、電子レンジ、音響機器、トイレタリー用品、レーザーディスク(登録商標)、冷蔵庫、エアコンなどの家庭・事務電気製品部品も挙げられる。またパーソナルコンピューター、携帯電話などに使用されるような筐体や、パーソナルコンピューターの内部でキーボードを支持する部材であるキーボード支持体に代表されるような電気・電子機器用部材も挙げられる。本発明において、強化繊維束(A)として、導電性を有する炭素繊維束を使用した場合、このような電気・電子機器用部材では、電磁波シールド性が付与されるためにより好ましい。   Molded products obtained by the above molding methods include instrument panels, door beams, under covers, lamp housings, pedal housings, radiator supports, spare tire covers, front end and other various modules, cylinder head covers, bearing retainers, intake manifolds, pedals Aircraft parts such as automobile parts, parts and skins, landing gear pods, winglets, spoilers, edges, ladders, failings, ribs, etc., parts and skins, tools such as monkeys, wrenches, telephones, facsimiles , VTRs, photocopiers, televisions, microwave ovens, audio equipment, toiletries, laser discs (registered trademark), refrigerators, air conditioners, and other home / office electrical product parts. Further, there may be mentioned a housing used for a personal computer, a mobile phone or the like, or a member for electric / electronic equipment represented by a keyboard support which is a member for supporting a keyboard inside the personal computer. In the present invention, when a carbon fiber bundle having conductivity is used as the reinforcing fiber bundle (A), such a member for electric / electronic equipment is more preferable because it imparts electromagnetic wave shielding properties.

以下、実施例により本発明を詳細に説明するが、下記実施例は本発明を限定するものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, the following Example does not limit this invention.

(1)被含浸化合物の溶融粘度測定
粘弾性測定器(アントンパールジャパン製)を用い、40mmのパラレルプレートを使用して、0.5Hzの条件下で、温度範囲100〜250℃における被含浸化合物の溶融粘度を測定した。
(1) Measurement of melt viscosity of impregnated compound Using a viscoelasticity measuring instrument (manufactured by Anton Paar Japan) and using a 40 mm parallel plate, the impregnated compound in a temperature range of 100 to 250 ° C. under the condition of 0.5 Hz. The melt viscosity of was measured.

(2)被含浸化合物の供給量に対する含浸量測定
複合体を連続的に作製している中から1分間採取し、耐熱ガラス製の容器に投入した。次に、この容器を3時間真空乾燥し、吸湿しないように注意しながら室温まで冷却後、秤量した値をW(g)とした。次いで、容器ごと窒素雰囲気中450℃で15分間加熱後、吸湿しないように注意しながら室温まで冷却し、秤量した値をW(g)とした。以上の処理を経て、被含浸化合物の含浸重量を次式により求め、その平均値を含浸重量wBCとした(測定n数=5)。
BC=W−W
なお、強化繊維にサイジング剤が付与されてなる場合、wBCは次式によって算出した。
BC=W−W−wSz
ここで、wSzはサイジング剤の付着重量(g)であり、後述の参考例2によって求められるWSzの値を用いて、次式によって求めた。
Sz=WSz/(100−WSz
(2) Measurement of impregnation amount with respect to supply amount of compound to be impregnated The composite was continuously collected for 1 minute, and placed in a heat-resistant glass container. Next, this container was vacuum-dried for 3 hours, cooled to room temperature while taking care not to absorb moisture, and the weighed value was defined as W 1 (g). Next, the whole container was heated at 450 ° C. for 15 minutes in a nitrogen atmosphere, then cooled to room temperature while taking care not to absorb moisture, and the weighed value was defined as W 2 (g). Through the above treatment, the impregnation weight of the compound to be impregnated was determined by the following formula, and the average value was defined as the impregnation weight w BC (measured n number = 5).
w BC = W 1 −W 2
In the case where the sizing agent is granted to the reinforcing fiber, w BC was calculated from the following equation.
w BC = W 1 −W 2 −w Sz
Here, w Sz is the adhesion weight (g) of the sizing agent, and was obtained by the following equation using the value of W Sz obtained in Reference Example 2 described later.
w Sz = W Sz W 2 / (100−W Sz )

次いで供給した被含浸化合物を、複合体と同様に1分間採取し、重量を測定して、被含浸化合物の供給重量wspを求め、次式より被含浸化合物の供給量に対する含浸量を算出した。
被含浸化合物の供給量に対する含浸量=wBC/wsp(単位:重量%)
Next, the supplied impregnated compound was collected for 1 minute in the same manner as the composite, and the weight was measured to determine the supply weight wsp of the impregnated compound, and the impregnation amount with respect to the supply amount of the impregnated compound was calculated from the following equation. .
Impregnation amount with respect to supply amount of impregnated compound = w BC / w sp (unit: wt%)

(3)サイジング剤(b)とリン系難燃剤(B)の重量比(b)/(B)の算出
リン難燃剤(B)および光安定剤(C)の配合比をr:rとし、リン系難燃剤(B)の含浸量Wを次式より算出した。
=WBC×{r/(r+r)}(単位:重量%)
ここで、WBCはリン難燃剤(B)および光安定剤(C)の含浸量であり、上記(2)におけるW、Wの値を用いて、次式によって求めた。
BC={(W−W)/W}×100
なお、複合体中の強化繊維(A)にサイジング剤が付与されてなる場合、上記(2)にけるwSzの値を用いて、WBCは以下の式により求めた。
BC={(W−W−wSz)/W}×100
算出したWと後述の参考例2によって求められるWSzの値を用いて、次式によって(b)/(B)を算出した。
(b)/(B)=WSz/W
(3) Calculation of weight ratio (b) / (B) of sizing agent (b) and phosphorus flame retardant (B) The mixing ratio of phosphorus flame retardant (B) and light stabilizer (C) is r B : r C and then, it was calculated by the following formula impregnation amount W B of the phosphorus-based flame retardant (B).
W B = W BC × {r B / (r B + r C )} (unit: weight%)
Here, W BC is the impregnation amount of the phosphorus flame retardant (B) and the light stabilizer (C), and was obtained by the following equation using the values of W 1 and W 2 in the above (2).
W BC = {(W 1 −W 2 ) / W 2 } × 100
In addition, when the sizing agent was provided to the reinforcing fiber (A) in the composite, W BC was obtained by the following equation using the value of w Sz in (2) above.
W BC = {(W 1 −W 2 −w Sz ) / W 2 } × 100
And calculated W B using the values of W Sz obtained by Reference Example 2 described later, it was calculated by the following formula (b) / (B).
(B) / (B) = W Sz / W B

(4)曲げ試験
ISO 178に準拠し、3点曲げ試験冶具(圧子半径5mm)を用いて支点距離を64mmに設定し、試験速度2mm/minの試験条件にて曲げ強度を測定した。試験機として、“インストロン(登録商標)”万能試験機5566型(インストロン社製)を用いた。
(4) Bending test Based on ISO 178, the fulcrum distance was set to 64 mm using a three-point bending test jig (indenter radius 5 mm), and the bending strength was measured under the test conditions of a test speed of 2 mm / min. As a testing machine, an “Instron (registered trademark)” universal testing machine type 5566 (manufactured by Instron) was used.

(5)難燃性
FMVSS No.302延焼試験に準拠し、寸法100mm×150mm×3mmtの角板を用いて、高さ38mmのガスバーナー炎を角板の端部に着火するまで接炎し、端部から標線に至るまでの間の自己消火性を測定した。
以下の基準に基づき判定を行い、◎、○、△を合格とした。
◎:接炎着火後、30秒以内に自己消火。
○:接炎着火後、30秒〜3分以内に自己消火。
△:接炎着火後、3〜7分以内に自己消火。
×:自己消火せず、または着火後7分以内に標線まで延焼。
(5) Flame retardancy FMVSS No. Using a square plate with dimensions of 100 mm x 150 mm x 3 mmt in accordance with 302 fire spread test, a gas burner flame with a height of 38 mm was contacted until the end of the square plate was ignited, and from the end to the marked line The self-extinguishing properties during were measured.
Judgment was made based on the following criteria, and ◎, ○, and Δ were regarded as acceptable.
A: Self-extinguishment within 30 seconds after flame contact.
○: Self-extinguishment within 30 seconds to 3 minutes after flame ignition.
Δ: Self-extinguishing within 3-7 minutes after flame contact.
X: It does not self-extinguish or it spreads to the marked line within 7 minutes after ignition.

(6)耐候性
紫外線ロングライフフェードメーター(スガ試験機械(株)製)を用いて、83℃、水スプレーサイクルなしの条件下、寸法100mm×100mm×3mmtの角板に光照射した。 光照射時間が500時間を経過した際の試験片表面をデジタルマイクロスコープ(キーエンス(株)製 型式:VHX−900)で観察し、表面の状態で耐候性を測定した。
以下の基準に基づき判定を行い、◎、○、△を合格とした。
◎:クラック、表面荒れなし。
○:計数可能な量のクラックが発生しているものの、表面の触感に平滑性が保たれている。
△:試験片表面全面に渡って微小なクラックが生じており、表面の触感にざらつきがある炭素繊維は露出していない。
×:試験片表面全体に無数のクラックが生じ、表面の炭素繊維が露出している。
(6) Weather resistance Using a UV long life fade meter (manufactured by Suga Test Machine Co., Ltd.), light was irradiated to a square plate having dimensions of 100 mm × 100 mm × 3 mmt under conditions of 83 ° C. and no water spray cycle. The surface of the test piece when the light irradiation time passed 500 hours was observed with a digital microscope (Model: VHX-900, manufactured by Keyence Corporation), and the weather resistance was measured in the state of the surface.
Judgment was made based on the following criteria, and ◎, ○, and Δ were regarded as acceptable.
A: No crack or surface roughness.
○: Although the number of cracks that can be counted is generated, the surface feel is smooth.
(Triangle | delta): The fine crack has arisen over the test piece surface whole surface, and the carbon fiber which is rough in the surface tactile sense is not exposed.
X: Innumerable cracks are generated on the entire surface of the test piece, and the carbon fibers on the surface are exposed.

(参考例1−1)炭素繊維−1の作製
ポリアクリロニトリルを主成分とする共重合体から紡糸、焼成処理、電解酸化処理を行い、総単糸数24,000本、単繊維径7μm、単位長さ当たりの質量1.6g/m、比重1.8g/cm、表面酸素濃度[O/C]0.06の連続炭素繊維を得た。この連続炭素繊維のストランド引張強度は4880MPa、ストランド引張弾性率は225GPaであった。
(Reference Example 1-1) Production of carbon fiber-1 Spinning, baking treatment and electrolytic oxidation treatment were carried out from a copolymer mainly composed of polyacrylonitrile, the total number of single yarns was 24,000, the single fiber diameter was 7 μm, and the unit length. A continuous carbon fiber having a mass per unit thickness of 1.6 g / m, a specific gravity of 1.8 g / cm 3 , and a surface oxygen concentration [O / C] of 0.06 was obtained. The continuous carbon fiber had a strand tensile strength of 4880 MPa and a strand tensile modulus of 225 GPa.

(参考例1−2)炭素繊維−2の作製
ポリアクリロニトリルを主成分とする共重合体から紡糸、焼成処理、電解酸化処理を行い、総単糸数24,000本、単繊維径7μm、単位長さ当たりの質量1.6g/m、比重1.8g/cm、表面酸素濃度[O/C]0.12の連続炭素繊維を得た。この連続炭素繊維のストランド引張強度は4880MPa、ストランド引張弾性率は225GPaであった。
(Reference Example 1-2) Production of carbon fiber-2 Spinning, baking treatment and electrolytic oxidation treatment were carried out from a copolymer mainly composed of polyacrylonitrile, the total number of single yarns was 24,000, the single fiber diameter was 7 μm, and the unit length. A continuous carbon fiber having a mass per unit thickness of 1.6 g / m, a specific gravity of 1.8 g / cm 3 and a surface oxygen concentration [O / C] of 0.12 was obtained. The continuous carbon fiber had a strand tensile strength of 4880 MPa and a strand tensile modulus of 225 GPa.

(参考例2)サイジング剤の付与
サイジング剤を水に溶解、または分散させたサイジング剤母液を調製し、ローラーを介して、サイジング剤母液に浸漬する方法により強化繊維にサイジング剤を付与し、230℃で乾燥を行った。
(Reference Example 2) Application of Sizing Agent A sizing agent mother liquor in which a sizing agent is dissolved or dispersed in water is prepared, and a sizing agent is applied to reinforcing fibers by a method of immersing in a sizing agent mother liquor via a roller. Drying was performed at ° C.

サイジング剤の付着量WSzは、以下の方法により測定した。サイジング剤を付与した強化繊維約5gを採取し、耐熱ガラス製の容器に投入した。次に、この容器を3時間真空乾燥し、吸湿しないように注意しながら室温まで冷却後、秤量した値をw(g)とした。次いで、容器ごと、窒素雰囲気中、450℃で15分間加熱後、吸湿しないように注意しながら室温まで冷却し、秤量した値をw(g)とした。以上の処理を経て、サイジング剤の付着量を次式により求め、その平均値を付着量WSzとした(測定n数=5)。
Sz=(w−w)/w}×100(単位:重量%)。
The adhesion amount W Sz of the sizing agent was measured by the following method. About 5 g of reinforcing fiber to which a sizing agent was added was collected and placed in a heat-resistant glass container. Next, this container was vacuum-dried for 3 hours, cooled to room temperature while taking care not to absorb moisture, and the weighed value was defined as w 1 (g). Next, the whole container was heated in a nitrogen atmosphere at 450 ° C. for 15 minutes, then cooled to room temperature while taking care not to absorb moisture, and the weighed value was defined as w 2 (g). Through the above processing, the adhesion amount of the sizing agent was determined by the following equation, and the average value was defined as the adhesion amount W Sz (measurement n number = 5).
W Sz = (w 1 −w 2 ) / w 2 } × 100 (unit: wt%).

(参考例3)複合体の作製
被含浸化合物を強化繊維束と接触させる温度(以後、塗布温度とも称する)に加熱されたロール上に、被含浸化合物を加熱溶融した液体の被膜を形成させた。ロール上に一定した厚みの被膜を形成するためリバースロールを用いた。このロール上を連続した強化繊維束(A)を接触させながら通過させて被含浸化合物を付着させた。次に、含浸温度に加熱されたチャンバー内にて、5組の直径50mmのロールプレス間を通過させた。この操作により、被含浸化合物を繊維束の内部まで含浸させ、所定の配合量とした複合体を形成した。
Reference Example 3 Production of Composite A liquid film in which the impregnated compound was heated and melted was formed on a roll heated to a temperature at which the impregnated compound was brought into contact with the reinforcing fiber bundle (hereinafter also referred to as coating temperature). . A reverse roll was used to form a film having a constant thickness on the roll. The continuous reinforcing fiber bundle (A) was passed through the roll while being in contact therewith to adhere the impregnated compound. Next, it passed between 5 sets of 50 mm diameter roll presses in the chamber heated to the impregnation temperature. By this operation, the compound to be impregnated was impregnated to the inside of the fiber bundle to form a composite having a predetermined blending amount.

(参考例4)熱可塑性樹脂組成物(D)−1の作製
JSW製TEX−30α型2軸押出機(スクリュー直径30mm、ダイス直径5mm、バレル温度220℃、スクリュー回転数150rpm)を使用し、ポリプロピレン樹脂(プライムポリマー(株)製プライムポリプロJ105G樹脂)(D−1)、マレイン酸変性ポリプロピレン樹脂(三井化学(株)製アドマーQE840)(D−2)、水酸化マグネシウム(D−3)を重量比D−1/D−2/D−3=100/20/25でドライブレンドしたものをメインホッパーから供給し、下流の真空ベントより脱気を行いながら、溶融樹脂をダイス口から吐出し、得られたストランドを冷却後、カッターで切断して熱可塑性樹脂組成物(D)−1の溶融混練ペレットを得た。
(Reference Example 4) Production of thermoplastic resin composition (D) -1 A JSW TEX-30α type twin screw extruder (screw diameter 30 mm, die diameter 5 mm, barrel temperature 220 ° C., screw rotation speed 150 rpm) was used. Polypropylene resin (Prime Polymer Co., Ltd. Prime Polypro J105G resin) (D-1), maleic acid-modified polypropylene resin (Mitsui Chemicals Co., Ltd. Admer QE840) (D-2), magnesium hydroxide (D-3) A dry blend with a weight ratio of D-1 / D-2 / D-3 = 100/20/25 is supplied from the main hopper, and the molten resin is discharged from the die port while degassing from the downstream vacuum vent. The obtained strand was cooled and then cut with a cutter to obtain a melt-kneaded pellet of the thermoplastic resin composition (D) -1.

(参考例5)成形材料の作製
参考例3で得られた複合体を、日本製鋼所(株)TEX−30α型2軸押出機(スクリュー直径30mm、L/D=32)の先端に設置された電線被覆法用のコーティングダイ中に通し、押出機からダイ内に参考例4で得られた熱可塑性樹脂組成物(D)−1を溶融した状態で吐出させて、複合体の周囲を被覆するように連続的に配置した。この際、所望の強化繊維含有率になるよう、複合体量と、熱可塑性樹脂組成物(D)−1量を調整した。得られた連続状の成形材料を冷却後、カッターで切断して7mmの長繊維ペレット状の成形材料とした。
(Reference Example 5) Production of molding material The composite obtained in Reference Example 3 was installed at the tip of a Nippon Steel Works TEX-30α type twin screw extruder (screw diameter 30 mm, L / D = 32). Then, the mixture was passed through a coating die for the wire coating method, and the thermoplastic resin composition (D) -1 obtained in Reference Example 4 was discharged from the extruder into the die in a molten state to cover the periphery of the composite. Were arranged continuously. At this time, the amount of the composite and the amount of the thermoplastic resin composition (D) -1 were adjusted so as to obtain a desired reinforcing fiber content. The obtained continuous molding material was cooled and then cut with a cutter to obtain a 7 mm long fiber pellet molding material.

(実施例1)
強化繊維束(A)として参考例1−1に従い得られる炭素繊維−1を用い、被含浸化合物として、リン系難燃剤(B)には縮合リン酸エステル系難燃剤(大八化学工業(株)製PX−200)((B)−1)、光安定剤(C)にはアミノエーテル型ヒンダードアミン系光安定剤(BASFジャパン(株)製Tinuvin123)((C)−1)を用いた。参考例3に従い、塗布温度150℃、含浸温度180℃、引取速度30m/分にて、強化繊維束(A)100重量部に対して、縮合リン酸エステル系難燃剤(B)−1が50重量部、アミノエーテル型ヒンダードアミン系光安定剤(C)−1が1重量部含浸されるよう、供給量を調整して複合体を得た。ここで、上記(1)に従い測定した被含浸化合物の溶融粘度は150℃において、0.06Pa・sであった。次いで上記(2)に従い、縮合リン酸エステル系難燃剤(B)−1、アミノエーテル型ヒンダードアミン系光安定剤(C)−1の供給量に対する含浸量を測定した。
Example 1
Carbon fiber-1 obtained according to Reference Example 1-1 was used as the reinforcing fiber bundle (A), and as the compound to be impregnated, a condensed phosphate ester flame retardant (Daihachi Chemical Industry Co., Ltd.) was used as the phosphorus flame retardant (B). PX-200) ((B) -1), an amino ether type hindered amine light stabilizer (Tinvin 123 manufactured by BASF Japan Ltd.) ((C) -1) was used as the light stabilizer (C). According to Reference Example 3, at a coating temperature of 150 ° C., an impregnation temperature of 180 ° C., and a take-off speed of 30 m / min, 50 parts of the condensed phosphate ester flame retardant (B) -1 is used for 100 parts by weight of the reinforcing fiber bundle (A). A supply amount was adjusted so as to be impregnated with 1 part by weight of an aminoether-type hindered amine light stabilizer (C) -1 by weight, thereby obtaining a composite. Here, the melt viscosity of the impregnated compound measured according to the above (1) was 0.06 Pa · s at 150 ° C. Then, according to the above (2), the impregnation amount with respect to the supply amount of the condensed phosphate ester flame retardant (B) -1 and the amino ether type hindered amine light stabilizer (C) -1 was measured.

続いて参考例4に従い、作製したポリプロピレン樹脂組成物(D)−1を得、これを用いて参考例5に従い、長繊維ペレット状の成形材料を得た。この際、複合体100重量部に対し、ポリプロピレン樹脂組成物(D)−1は200重量部となるようにポリプロピレン樹脂組成物(D)−1の吐出量を調整した。   Subsequently, according to Reference Example 4, the produced polypropylene resin composition (D) -1 was obtained, and according to Reference Example 5, a long fiber pellet-shaped molding material was obtained. Under the present circumstances, the discharge amount of polypropylene resin composition (D) -1 was adjusted so that polypropylene resin composition (D) -1 might be 200 weight part with respect to 100 weight part of composites.

次に得られた長繊維ペレット状の成形材料を、住友重機械工業社製SE75DUZ−C250型射出成形機を用いて、射出時間:10秒、保圧力:成形下限圧+10MPa、保圧時間:10秒、シリンダー温度:230℃、金型温度:60℃で特性評価用試験片(成形品)を成形した。得られた試験片は、温度23℃、50%RHに調整された恒温恒湿室に24時間放置後に特性評価試験に供した。次に、得られた特性評価用試験片(成形品)を上記(4)〜(6)に示した射出成形品評価方法に従い評価した。評価結果をまとめて表1に示した。   Next, using the SE75DUZ-C250 type injection molding machine manufactured by Sumitomo Heavy Industries, Ltd., injection time: 10 seconds, holding pressure: molding lower limit pressure + 10 MPa, holding pressure time: 10 A test piece for characteristic evaluation (molded product) was molded at a second, cylinder temperature: 230 ° C., and mold temperature: 60 ° C. The obtained test piece was subjected to a characteristic evaluation test after being left in a constant temperature and humidity chamber adjusted to a temperature of 23 ° C. and 50% RH for 24 hours. Next, the obtained test pieces for characteristic evaluation (molded products) were evaluated according to the injection molded product evaluation methods shown in the above (4) to (6). The evaluation results are summarized in Table 1.

(実施例2)
強化繊維束(A)として参考例1−1に従い得られる炭素繊維−1を用い、被含浸化合物として、リン系難燃剤(B)には縮合リン酸エステル系難燃剤(大八化学工業(株)製PX−200)((B)−1)、光安定剤(C)にはアミノエーテル型ヒンダードアミン系光安定剤(BASFジャパン(株)製Tinuvin123)((C)−1)を用いた。参考例3に従い、塗布温度150℃、含浸温度180℃にて、強化繊維束(A)100重量部に対して、縮合リン酸エステル系難燃剤(B)−1が50重量部、アミノエーテル型ヒンダードアミン系光安定剤(C)−1が1重量部含浸されるよう、供給量を調整して複合体を得た。ここで、上記(1)に従い測定した被含浸化合物の溶融粘度は150℃において、0.06Pa・sであった。次いで上記(2)に従い、縮合リン酸エステル系難燃剤(B)−1、アミノエーテル型ヒンダードアミン系光安定剤(C)−1の供給量に対する含浸量を測定した。
(Example 2)
Carbon fiber-1 obtained according to Reference Example 1-1 was used as the reinforcing fiber bundle (A), and as the compound to be impregnated, a condensed phosphate ester flame retardant (Daihachi Chemical Industry Co., Ltd.) was used as the phosphorus flame retardant (B). PX-200) ((B) -1), an amino ether type hindered amine light stabilizer (Tinvin 123 manufactured by BASF Japan Ltd.) ((C) -1) was used as the light stabilizer (C). According to Reference Example 3, at a coating temperature of 150 ° C. and an impregnation temperature of 180 ° C., 50 parts by weight of the condensed phosphate ester flame retardant (B) -1 and 100 parts by weight of the reinforcing fiber bundle (A), amino ether type The amount of supply was adjusted so that 1 part by weight of the hindered amine light stabilizer (C) -1 was impregnated to obtain a composite. Here, the melt viscosity of the impregnated compound measured according to the above (1) was 0.06 Pa · s at 150 ° C. Then, according to the above (2), the impregnation amount with respect to the supply amount of the condensed phosphate ester flame retardant (B) -1 and the amino ether type hindered amine light stabilizer (C) -1 was measured.

続いて得られた複合体をカッターで切断して6mmの炭素繊維チョップドストランドとした。次いで参考例4に従い、作製したポリプロピレン樹脂組成物(D)−1と前記炭素繊維チョップドストランドとを、炭素繊維チョップドストランド100重量部に対してポリプロピレン樹脂組成物(D)−1を200重量部混合、ドライブレンドした成形材料を得た。   Subsequently, the obtained composite was cut with a cutter to obtain a 6 mm carbon fiber chopped strand. Subsequently, according to Reference Example 4, the produced polypropylene resin composition (D) -1 and the carbon fiber chopped strand were mixed with 200 parts by weight of the polypropylene resin composition (D) -1 with respect to 100 parts by weight of the carbon fiber chopped strand. A dry blended molding material was obtained.

次いで得られたドライブレンドした成形材料を、住友重機械工業社製SE75DUZ−C250型射出成形機を用いて、射出時間:10秒、保圧力:成形下限圧+10MPa、保圧時間:10秒、シリンダー温度:230℃、金型温度:60℃で特性評価用試験片(成形品)を成形した。得られた試験片は、温度23℃、50%RHに調整された恒温恒湿室に24時間放置後に特性評価試験に供した。次に、得られた特性評価用試験片(成形品)を上記(4)〜(6)に示した射出成形品評価方法に従い評価した。評価結果をまとめて表1に示した。   Next, the obtained dry blended molding material was subjected to injection time: 10 seconds, holding pressure: molding lower limit pressure + 10 MPa, holding pressure time: 10 seconds, cylinder using Sumitomo Heavy Industries, Ltd. SE75DUZ-C250 type injection molding machine. A test piece for characteristic evaluation (molded product) was molded at a temperature of 230 ° C. and a mold temperature of 60 ° C. The obtained test piece was subjected to a characteristic evaluation test after being left in a constant temperature and humidity chamber adjusted to a temperature of 23 ° C. and 50% RH for 24 hours. Next, the obtained test pieces for characteristic evaluation (molded products) were evaluated according to the injection molded product evaluation methods shown in the above (4) to (6). The evaluation results are summarized in Table 1.

(実施例3)
複合体において、強化繊維束(A)に含浸する縮合リン酸エステル系難燃剤(大八化学工業(株)製PX−200)((B)−1)の含浸量が、強化繊維束(A)100重量部に対して180重量部となるようにし、長繊維ペレット状の成形材料において、複合体100重量部に対してポリプロピレン樹脂組成物(D)−1が60重量部被覆されてなるようにした以外は実施例1と同様にして成形評価を行った。評価結果をまとめて表1に示した。
(Example 3)
In the composite, the impregnation amount of the condensed phosphate ester flame retardant impregnated in the reinforcing fiber bundle (A) (PX-200 manufactured by Daihachi Chemical Industry Co., Ltd.) ((B) -1) ) 180 parts by weight with respect to 100 parts by weight, and in the long fiber pellet-shaped molding material, 60 parts by weight of the polypropylene resin composition (D) -1 is coated with respect to 100 parts by weight of the composite. Molding evaluation was carried out in the same manner as in Example 1 except that. The evaluation results are summarized in Table 1.

(実施例4)
複合体において、強化繊維束(A)に含浸する縮合リン酸エステル系難燃剤(大八化学工業(株)製PX−200)((B)−1)の含浸量が、強化繊維束(A)100重量部に対して20重量部となるようにし、長繊維ペレット状の成形材料において、複合体100重量部に対してポリプロピレン樹脂組成物(D)−1が260重量部被覆されてなるようにした以外は実施例1と同様にして成形評価を行った。評価結果をまとめて表1に示した。
Example 4
In the composite, the impregnation amount of the condensed phosphate ester flame retardant impregnated in the reinforcing fiber bundle (A) (PX-200 manufactured by Daihachi Chemical Industry Co., Ltd.) ((B) -1) ) 20 parts by weight with respect to 100 parts by weight, and 260 parts by weight of the polypropylene resin composition (D) -1 is coated on 100 parts by weight of the composite in the long fiber pellet-shaped molding material. Molding evaluation was carried out in the same manner as in Example 1 except that. The evaluation results are summarized in Table 1.

(実施例5)
複合体において、強化繊維束(A)に含浸するアミノエーテル型ヒンダードアミン系光安定剤(C)−1の含浸量が、強化繊維束(A)100重量部に対して10重量部となるようにし、長繊維ペレット状の成形材料において、複合体100重量部に対してポリプロピレン樹脂組成物(D)−1が180重量部被覆されてなるようにした以外は実施例1と同様にして成形評価を行った。評価結果をまとめて表1に示した。
(Example 5)
In the composite, the impregnation amount of the amino ether type hindered amine light stabilizer (C) -1 impregnated in the reinforcing fiber bundle (A) is 10 parts by weight with respect to 100 parts by weight of the reinforcing fiber bundle (A). In the long fiber pellet-shaped molding material, molding evaluation was performed in the same manner as in Example 1 except that 100 parts by weight of the composite was coated with 180 parts by weight of the polypropylene resin composition (D) -1. went. The evaluation results are summarized in Table 1.

(実施例6)
複合体作製時、強化繊維束(A)に含浸する被含浸化合物として、リン系難燃剤(B)に赤リンマスターバッチ(燐化学工業(株)製ノーバペレットPP)((B)−2)を用い、塗布温度190℃、含浸温度210℃とし、強化繊維束(A)100重量部に対して150重量部含浸されるようにした。ここで、上記(1)に従い測定した被含浸化合物の溶融粘度は190℃において、777Pa・sであった。また、長繊維ペレット状の成形材料において、複合体100重量部に対してポリプロピレン樹脂組成物(D)−1が120重量部被覆されてなるようにした以外は実施例1と同様にして成形評価を行った。評価結果をまとめて表1に示した。
(Example 6)
As an impregnated compound to be impregnated into the reinforcing fiber bundle (A) at the time of producing the composite, a red phosphorus masterbatch (Nova Pellet PP manufactured by Rin Chemical Industry Co., Ltd.) ((B) -2) The coating temperature was 190 ° C. and the impregnation temperature was 210 ° C., so that 100 parts by weight of the reinforcing fiber bundle (A) was impregnated with 150 parts by weight. Here, the melt viscosity of the impregnated compound measured according to the above (1) was 777 Pa · s at 190 ° C. Further, in the long fiber pellet-shaped molding material, molding evaluation was performed in the same manner as in Example 1 except that 100 parts by weight of the composite was coated with 120 parts by weight of the polypropylene resin composition (D) -1. Went. The evaluation results are summarized in Table 1.

(実施例7)
複合体作製時、強化繊維束(A)に含浸する被含浸化合物として、光安定剤(C)に非アミノエーテル型ヒンダードアミン系光安定剤(BASFジャパン(株)製Chimassorb2020 FDL)((C)−2)を用いた以外は実施例1と同様にして成形評価を行った。評価結果をまとめて表1に示した。
(Example 7)
As an impregnated compound to be impregnated into the reinforcing fiber bundle (A) at the time of producing the composite, the light stabilizer (C) is added to a non-aminoether type hindered amine light stabilizer (Chimassorb2020 FDL, manufactured by BASF Japan Ltd.) ((C)- Molding evaluation was performed in the same manner as in Example 1 except that 2) was used. The evaluation results are summarized in Table 1.

(実施例8)
複合体作製時、強化繊維束(A)に含浸する被含浸化合物として、光安定剤(C)にベンゾエート系光安定剤(BASFジャパン(株)製Tinuvin120)((C)−3)を用いた以外は実施例1と同様にして成形評価を行った。評価結果をまとめて表1に示した。
(実施例9)
強化繊維束(A)として用いる炭素繊維に、上記(3)、及び参考例2に従い、サイジング剤(b)としてポリグリセロールポリグリシジルエーテル((b)−1)をリン系難燃剤(B)との重量比(b)/(B)=0.01/1となるように付与し、複合体作製時の引取速度を50m/分とした以外は実施例1と同様にして成形評価を行った。評価結果をまとめて表2に示した。
(Example 8)
As the compound to be impregnated into the reinforcing fiber bundle (A) at the time of producing the composite, a benzoate light stabilizer (Tinuvin 120 manufactured by BASF Japan Ltd.) ((C) -3) was used as the light stabilizer (C). Except for the above, molding evaluation was carried out in the same manner as in Example 1. The evaluation results are summarized in Table 1.
Example 9
In accordance with the above (3) and Reference Example 2, polyglycerol polyglycidyl ether ((b) -1) is added to the carbon fiber used as the reinforcing fiber bundle (A) as a sizing agent (b) and a phosphorus-based flame retardant (B). The weight ratio of (b) / (B) was set to 0.01 / 1, and molding evaluation was performed in the same manner as in Example 1 except that the take-up speed at the time of producing the composite was 50 m / min. . The evaluation results are summarized in Table 2.

(実施例10)
強化繊維束(A)として用いる炭素繊維に、上記(3)、及び参考例2に従い、サイジング剤(b)としてポリグリセロールポリグリシジルエーテル((b)−1)をリン系難燃剤(B)との重量比(b)/(B)=0.4/1となるように付与し、複合体作製時の引取速度を80m/分とした以外は実施例1と同様にして成形評価を行った。評価結果をまとめて表2に示した。
(Example 10)
In accordance with the above (3) and Reference Example 2, polyglycerol polyglycidyl ether ((b) -1) is added to the carbon fiber used as the reinforcing fiber bundle (A) as a sizing agent (b) and a phosphorus-based flame retardant (B). The weight ratio of (b) / (B) was set to 0.4 / 1, and molding evaluation was performed in the same manner as in Example 1 except that the take-up speed at the time of producing the composite was 80 m / min. . The evaluation results are summarized in Table 2.

(実施例11)
複合体作製時、強化繊維束(A)に含浸する被含浸化合物を参考例3に従い、塗布温度100℃、含浸温度180℃、引取速度35m/分にて複合体を作製した以外は実施例1と同様にして成形評価を行った。なお、上記(1)に従い測定した被含浸化合物の溶融粘度は100℃において、0.16Pa・sであった。評価結果をまとめて表2に示した。
(Example 11)
Example 1 except that the compound to be impregnated into the reinforcing fiber bundle (A) was prepared according to Reference Example 3 at a coating temperature of 100 ° C., an impregnation temperature of 180 ° C., and a take-up speed of 35 m / min. The molding was evaluated in the same manner as described above. The melt viscosity of the impregnated compound measured according to the above (1) was 0.16 Pa · s at 100 ° C. The evaluation results are summarized in Table 2.

(実施例12)
複合体作製時、強化繊維束(A)に含浸する被含浸化合物として、リン系難燃剤(B)に縮合リン酸エステル系難燃剤(大八化学工業(株)製PX−200)とビスフェノールA型エポキシ樹脂(三菱化学(株)製jER1003)を重量比3:1で混合したもの((B)−3)、光安定剤(C)にアミノエーテル型ヒンダードアミン系光安定剤(BASFジャパン(株)製Tinuvin123)((C)−1)を用い、塗布温度150℃、含浸温度180℃、引取速度35m/分にて、強化繊維束(A)100重量部に対して70重量部含浸されるようにした以外は実施例1と同様にして成形評価を行った。なお、上記(1)に従い測定した被含浸化合物の溶融粘度は150℃において、0.11Pa・sであった。評価結果をまとめて表2に示した。
(Example 12)
As an impregnated compound to be impregnated into the reinforcing fiber bundle (A) at the time of preparing the composite, a phosphoric flame retardant (B), a condensed phosphate ester flame retardant (PX-200 manufactured by Daihachi Chemical Industry Co., Ltd.) and bisphenol A Type epoxy resin (Mitsubishi Chemical Co., Ltd. jER1003) mixed at a weight ratio of 3: 1 ((B) -3), light stabilizer (C) and aminoether type hindered amine light stabilizer (BASF Japan Ltd.) ) Tinuvin 123) ((C) -1) is used and impregnated with 70 parts by weight with respect to 100 parts by weight of the reinforcing fiber bundle (A) at an application temperature of 150 ° C., an impregnation temperature of 180 ° C., and a take-off speed of 35 m / min Molding evaluation was performed in the same manner as in Example 1 except for the above. The melt viscosity of the impregnated compound measured according to the above (1) was 0.11 Pa · s at 150 ° C. The evaluation results are summarized in Table 2.

(実施例13)
複合体作製時、強化繊維束(A)に含浸する被含浸化合物を参考例3に従い、塗布温度100℃、含浸温度180℃、引取速度40m/分にて複合体を作製した以外は実施例12と同様にして成形評価を行った。なお、上記(1)に従い測定した被含浸化合物の溶融粘度は100℃において、1.3Pa・sであった。評価結果をまとめて表2に示した。
(Example 13)
Example 12 except that the compound to be impregnated into the reinforcing fiber bundle (A) was prepared according to Reference Example 3 at a coating temperature of 100 ° C., an impregnation temperature of 180 ° C., and a take-up speed of 40 m / min. The molding was evaluated in the same manner as described above. The melt viscosity of the impregnated compound measured according to the above (1) was 1.3 Pa · s at 100 ° C. The evaluation results are summarized in Table 2.

(実施例14)
強化繊維束(A)として参考例1−2に従い得られる炭素繊維−2を用いた以外は実施例1と同様にして成形評価を行った。評価結果をまとめて表2に示した。
(Example 14)
Molding evaluation was performed in the same manner as in Example 1 except that carbon fiber-2 obtained according to Reference Example 1-2 was used as the reinforcing fiber bundle (A). The evaluation results are summarized in Table 2.

(実施例15)
強化繊維束(A)として参考例1−2に従い得られる炭素繊維−2を用いた以外は実施例9と同様にして成形評価を行った。評価結果をまとめて表2に示した。
(Example 15)
Molding evaluation was performed in the same manner as in Example 9 except that carbon fiber-2 obtained according to Reference Example 1-2 was used as the reinforcing fiber bundle (A). The evaluation results are summarized in Table 2.

(比較例1)
複合体作製時、強化繊維束(A)に含浸する被含浸化合物として、光安定剤(C)を用いなかった以外は実施例1と同様にして成形評価を行った。評価結果をまとめて表3に示した。
(Comparative Example 1)
Molding evaluation was performed in the same manner as in Example 1 except that the light stabilizer (C) was not used as the compound to be impregnated into the reinforcing fiber bundle (A) when the composite was produced. The evaluation results are summarized in Table 3.

(比較例2)
複合体において、強化繊維束(A)に含浸する縮合リン酸エステル系難燃剤(大八化学工業(株)製PX−200)((B)−1)の含浸量が、強化繊維束(A)100重量部に対して250重量部となるようにし、長繊維ペレット状の成形材料において、複合体100重量部に対してポリプロピレン樹脂組成物(D)−1が30重量部被覆されてなるようにした以外は実施例1と同様にして成形評価を行った。評価結果をまとめて表3に示した。
(Comparative Example 2)
In the composite, the impregnation amount of the condensed phosphate ester flame retardant impregnated in the reinforcing fiber bundle (A) (PX-200 manufactured by Daihachi Chemical Industry Co., Ltd.) ((B) -1) ) In the long fiber pellet-shaped molding material, 30 parts by weight of the polypropylene resin composition (D) -1 is coated with respect to 100 parts by weight of the composite. Molding evaluation was carried out in the same manner as in Example 1 except that. The evaluation results are summarized in Table 3.

(比較例3)
複合体において、強化繊維束(A)に含浸するアミノエーテル型ヒンダードアミン系光安定剤(C)−1の含浸量が、強化繊維束(A)100重量部に対して15重量部となるようにし、長繊維ペレット状の成形材料において、複合体100重量部に対して熱可塑性樹脂組成物(D)−1が180重量部被覆されてなるようにした以外は実施例1と同様にして成形評価を行った。評価結果をまとめて表3に示した。
(Comparative Example 3)
In the composite, the impregnation amount of the amino ether type hindered amine light stabilizer (C) -1 impregnated in the reinforcing fiber bundle (A) is 15 parts by weight with respect to 100 parts by weight of the reinforcing fiber bundle (A). The molding evaluation in the same manner as in Example 1 except that the thermoplastic resin composition (D) -1 was coated with 180 parts by weight of 100 parts by weight of the composite in the long fiber pellet-shaped molding material. Went. The evaluation results are summarized in Table 3.

Figure 0006003224
Figure 0006003224

Figure 0006003224
Figure 0006003224

Figure 0006003224
Figure 0006003224

以上のように、実施例1〜15においては、本発明における複合強化繊維束、および成形材料から得られた成形品は、優れた難燃性と耐候性を示した。また、本発明における複合強化繊維束の製造方法により、含浸性が良好であり、かつボイドの少ない複合強化繊維束が得られた。   As mentioned above, in Examples 1-15, the molded article obtained from the composite reinforcing fiber bundle in the present invention and the molding material showed excellent flame retardancy and weather resistance. In addition, a composite reinforcing fiber bundle having good impregnation properties and few voids was obtained by the method for manufacturing a composite reinforcing fiber bundle in the present invention.

一方比較例1〜3において得られた複合強化繊維束、および成形材料を用いて成形した成形品は難燃性、耐候性が十分に発現しない、若しくは著しい機械特性の低下が見られた。   On the other hand, the composite reinforcing fiber bundles obtained in Comparative Examples 1 to 3 and molded articles molded using the molding materials did not sufficiently exhibit flame retardancy and weather resistance, or markedly deteriorated mechanical properties.

本発明の複合強化繊維束、その製造方法、および成形材料は、強化繊維束への樹脂の含浸性が良好であり、優れた難燃性と耐候性を兼ね備えた成形品を与え得るものであり、電気・電子機器、OA機器、家電機器、または自動車の部品、内部部材および筐体などの各種部品・部材に極めて有用である。   The composite reinforcing fiber bundle of the present invention, the production method thereof, and the molding material have good resin impregnation into the reinforcing fiber bundle, and can give a molded product having excellent flame retardancy and weather resistance. It is extremely useful for various parts and members such as electrical / electronic equipment, office automation equipment, home appliances, or automobile parts, internal members, and housings.

1 強化繊維の単繊維
2 リン系難燃剤(B)および光安定剤(C)
3 複合強化繊維束
4 熱可塑性樹脂組成物(D)
1 Single fiber of reinforcing fiber 2 Phosphorus flame retardant (B) and light stabilizer (C)
3 Composite Reinforced Fiber Bundle 4 Thermoplastic Resin Composition (D)

Claims (11)

強化繊維束(A)100重量部に対し、リン系難燃剤(B)10〜200重量部および光安定剤(C)0.2〜10重量部を含浸させてなり、前記成分(A)が炭素繊維束である、複合強化繊維束。 To the reinforcing fiber bundle (A) 100 parts by weight of, phosphorus-based flame retardant (B) 10 to 200 parts by weight of a light stabilizer (C) Ri Na impregnated with 0.2 to 10 parts by weight, the component (A) Is a carbon fiber bundle, a composite reinforcing fiber bundle. 前記成分(C)がアミノエーテル型ヒンダードアミン系光安定剤である請求項1に記載の複合強化繊維束。 The composite reinforcing fiber bundle according to claim 1, wherein the component (C) is an amino ether type hindered amine light stabilizer. 前記成分(A)が、強化繊維(a)およびサイジング剤(b)を含む請求項1または2に記載の複合強化繊維束。 The composite reinforcing fiber bundle according to claim 1 or 2, wherein the component (A) includes a reinforcing fiber (a) and a sizing agent (b). 前記成分(b)と前記成分(B)の重量比(b)/(B)が、0.01/1〜0.8/1である請求項3に記載の複合強化繊維束。 The composite reinforcing fiber bundle according to claim 3, wherein a weight ratio (b) / (B) of the component (b) to the component (B) is 0.01 / 1 to 0.8 / 1. 前記成分(b)が3官能以上の多官能脂肪族エポキシである請求項3または4に記載の複合強化繊維束。 The composite reinforcing fiber bundle according to claim 3 or 4, wherein the component (b) is a trifunctional or higher polyfunctional aliphatic epoxy. リン系難燃剤(B)および光安定剤(C)を0〜320℃の溶融状態で強化繊維束(A)と接触させ、さらに加熱してリン系難燃剤(B)および光安定剤(C)の供給量の80〜100重量%を強化繊維束(A)に含浸させる請求項1〜のいずれか記載の複合強化繊維束の製造方法。 The phosphorus-based flame retardant (B) and the light stabilizer (C) are brought into contact with the reinforcing fiber bundle (A) in a molten state at 0 to 320 ° C., and further heated to obtain the phosphorus-based flame retardant (B) and the light stabilizer (C The method for producing a composite reinforcing fiber bundle according to any one of claims 1 to 5 , wherein the reinforcing fiber bundle (A) is impregnated with 80 to 100% by weight of the supply amount of. 前記成分(B)および前記成分(C)を溶融状態で前記成分(A)と接触させる工程において、前記成分(B)および前記成分(C)の溶融粘度が0.01〜1000Pa・sである請求項に記載の複合強化繊維束の製造方法。 In the step of bringing the component (B) and the component (C) into contact with the component (A) in a molten state, the melt viscosity of the component (B) and the component (C) is 0.01 to 1000 Pa · s. A method for producing a composite reinforcing fiber bundle according to claim 6 . リン系難燃剤(B)および光安定剤(C)の供給を、ディッピング、リバースロール、正回転ロール、キスロール、スプレイおよびカーテンから選択される少なくとも1種を用いて行う請求項またはに記載の複合強化繊維束の製造方法。 Phosphorus-based flame retardant (B) and light stabilizers supply of (C), dipping, reverse roll, forward rotation roll, kiss roll, according to claim 6 or 7 carried out using at least one selected from spray and curtain A method for producing a composite reinforcing fiber bundle. 強化繊維束(A)の含浸を、絞り口金、絞りロール、ロールプレスおよびダブルベルトプレスから選択される少なくとも1種を用いて行う請求項いずれかに記載の複合強化繊維束の製造方法。 The method for producing a composite reinforcing fiber bundle according to any one of claims 6 to 8, wherein the reinforcing fiber bundle (A) is impregnated using at least one selected from a drawing base, a drawing roll, a roll press and a double belt press. . リン系難燃剤(B)および光安定剤(C)を強化繊維束(A)に接触および含浸させる際の引取速度が10〜100m/分である請求項いずれかに記載の複合強化繊維束の製造方法。 Composite reinforcement according to any one of phosphorus-based flame retardant (B) and the light take-off speed at the time of contacting and impregnation stabilizer (C) in the reinforcing fiber bundle (A) is 10 to 100 m / min claims 6-9 A method of manufacturing a fiber bundle. 請求項1〜いずれかに記載の複合強化繊維束および熱可塑性樹脂組成物(D)から構成される成形材料。 A molding material comprising the composite reinforcing fiber bundle according to any one of claims 1 to 5 and a thermoplastic resin composition (D).
JP2012117574A 2011-05-30 2012-05-23 Composite reinforcing fiber bundle, method for producing the same, and molding material Active JP6003224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012117574A JP6003224B2 (en) 2011-05-30 2012-05-23 Composite reinforcing fiber bundle, method for producing the same, and molding material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011120184 2011-05-30
JP2011120184 2011-05-30
JP2012117574A JP6003224B2 (en) 2011-05-30 2012-05-23 Composite reinforcing fiber bundle, method for producing the same, and molding material

Publications (2)

Publication Number Publication Date
JP2013011050A JP2013011050A (en) 2013-01-17
JP6003224B2 true JP6003224B2 (en) 2016-10-05

Family

ID=47685147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012117574A Active JP6003224B2 (en) 2011-05-30 2012-05-23 Composite reinforcing fiber bundle, method for producing the same, and molding material

Country Status (1)

Country Link
JP (1) JP6003224B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104169340B (en) 2012-03-14 2016-03-09 帝人株式会社 The manufacture method of molding material, the molded article obtained by it and this molded article
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
WO2018083978A1 (en) * 2016-11-01 2018-05-11 帝人株式会社 Molding material, assembly of molding materials, method for producing molding material, and method for producing assembly of molding materials
WO2018155411A1 (en) * 2017-02-22 2018-08-30 東洋紡株式会社 Polyester elastomer resin composition
EP4079812A4 (en) * 2019-12-20 2024-01-10 Toray Industries Fiber-reinforced resin molding material, fiber-reinforced resin molded article, and method for manufacturing fiber-reinforced resin molded article
CN113293614B (en) * 2021-05-28 2023-01-24 成都新晨新材科技有限公司 PBO fiber sizing agent with ultraviolet aging resistance, PBO fiber and preparation method thereof
WO2023153372A1 (en) * 2022-02-09 2023-08-17 日鉄ケミカル&マテリアル株式会社 Reinforcing filler and production method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032277A1 (en) * 2005-09-14 2007-03-22 Daihachi Chemical Industry Co., Ltd. Phosphorus compound, use thereof and flame-retardant polyester fiber

Also Published As

Publication number Publication date
JP2013011050A (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP6003224B2 (en) Composite reinforcing fiber bundle, method for producing the same, and molding material
CN111094407B (en) Fiber-reinforced thermoplastic resin molded article
KR101770663B1 (en) Sizing-agent-coated carbon fibers, process for producing sizing-agent-coated carbon fibers, carbon-fiber-reinforced composite material, and process for producing carbon-fiber-reinforced composite material
JP5614187B2 (en) Manufacturing method of composite reinforcing fiber bundle and molding material using the same
JP5494375B2 (en) Manufacturing method of composite reinforcing fiber bundle and molding material using the same
JP5857957B2 (en) Molding material
US10889070B2 (en) Composite material including unidirectional continuous fibers and thermoplastic resin
JP5477312B2 (en) Sizing agent-coated carbon fiber bundle and method for producing the same
JP2013173811A (en) Resin composition, molding material and method for producing the same
KR102481163B1 (en) Fiber Reinforced Thermoplastic Molding Articles and Fiber Reinforced Thermoplastic Molding Materials
JP6098213B2 (en) Polycarbonate resin molding material and molded product
WO2015064485A1 (en) Molding material, method for producing same, and master batch used in same
JP2015178611A (en) composite reinforcing fiber bundle and molding material
JP2015143339A (en) Fiber-reinforced thermoplastic resin molding material and fiber-reinforced thermoplastic resin molded article
JP2013173810A (en) Resin composition, molding material and method for producing the same
JP6003223B2 (en) Composite reinforcing fiber bundle, method for producing the same, and molding material
JP6467864B2 (en) Molding material, method for producing the same, and molded product
US20220403122A1 (en) Fiber-reinforced resin molding material, fiber-reinforced resin molded article, and method of manufacturing fiber-reinforced resin molded article
JP2014173053A (en) Prepreg for press molding and fiber reinforced composite material
JP6015027B2 (en) Sizing agent, carbon fiber bundle and method for producing carbon fiber bundle
JP2020084382A (en) Aramid reinforced fiber composite material and thermoplastic resin composite material
JP2013018821A (en) Composite reinforced fiber bundle, its production method, and its molding material
JP5967333B1 (en) Sizing agent coated carbon fiber, method for producing sizing agent coated carbon fiber, carbon fiber reinforced composite material, and method for producing carbon fiber reinforced composite material
US11312825B2 (en) Structure
JP2015124275A (en) Polycarbonate resin molding material and molded article thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R151 Written notification of patent or utility model registration

Ref document number: 6003224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151