JP6003197B2 - Magnetic domain subdivision processing method - Google Patents

Magnetic domain subdivision processing method Download PDF

Info

Publication number
JP6003197B2
JP6003197B2 JP2012105811A JP2012105811A JP6003197B2 JP 6003197 B2 JP6003197 B2 JP 6003197B2 JP 2012105811 A JP2012105811 A JP 2012105811A JP 2012105811 A JP2012105811 A JP 2012105811A JP 6003197 B2 JP6003197 B2 JP 6003197B2
Authority
JP
Japan
Prior art keywords
steel sheet
magnetic domain
mass
energy beam
high energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012105811A
Other languages
Japanese (ja)
Other versions
JP2013234342A (en
Inventor
松田 広志
広志 松田
重宏 ▲高▼城
重宏 ▲高▼城
山口 広
山口  広
稔 高島
高島  稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012105811A priority Critical patent/JP6003197B2/en
Publication of JP2013234342A publication Critical patent/JP2013234342A/en
Application granted granted Critical
Publication of JP6003197B2 publication Critical patent/JP6003197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、方向性電磁鋼板の表面に高エネルギービームを照射して磁区細分化処理を施す方法に関するものである。 The present invention relates to how by irradiating a high energy beam to the surface of the oriented electrical steel sheet subjected to magnetic domain refining treatment.

方向性電磁鋼板は、主としてトランス等の鉄心材料として用いられるものであるため、磁気特性に優れること、特に鉄損特性に優れる(鉄損が低い)ことが強く求められている。磁気特性を向上するためには、結晶方位を制御し、二次再結晶粒を{110}<001>方位(ゴス方位)に高度に集積させてやることや、製品鋼板中の不純物を低減してやることが有効である。   The grain-oriented electrical steel sheet is mainly used as an iron core material such as a transformer, and therefore is strongly required to have excellent magnetic properties, particularly excellent iron loss properties (low iron loss). In order to improve the magnetic characteristics, the crystal orientation is controlled, and secondary recrystallized grains are highly accumulated in the {110} <001> orientation (Goth orientation), and impurities in the product steel plate are reduced. It is effective.

しかし、結晶方位を制御したり、不純物を低減したりすることは、既にかなりのレベルにまで達しており、これ以上の向上は原理的にもまた製造コストとの兼ね合いからも限界がある。そこで、この限界を打破する技術として、鋼板表面に物理的な手段を用いて不均一性(歪)を導入し、磁区幅を細分化して鉄損を低減する、いわゆる「磁区細分化技術」が開発され、実用化されている。   However, controlling the crystal orientation and reducing impurities have already reached a considerable level, and further improvement is limited both in principle and in consideration of the manufacturing cost. Therefore, as a technology to overcome this limit, there is a so-called “magnetic domain refinement technology” that introduces non-uniformity (strain) using a physical means on the steel sheet surface and subdivides the magnetic domain width to reduce iron loss. Developed and put into practical use.

例えば、特許文献1には、最終製品板にレーザビームを照射し、鋼板表層に線状の高転位密度領域(熱歪領域)を導入し、磁区幅を狭くすることによって、鉄損を低減する技術が提案されている。レーザ照射を用いる磁区細分化技術は、その後、さらに改良されて、鉄損特性がより良好な方向性電磁鋼板が得られるようになってきている(特許文献2〜特許文献4参照。)。   For example, in Patent Document 1, a core beam is reduced by irradiating a final product plate with a laser beam, introducing a linear high dislocation density region (thermal strain region) into a steel sheet surface layer, and narrowing the magnetic domain width. Technology has been proposed. Thereafter, the magnetic domain fragmentation technique using laser irradiation has been further improved to obtain grain-oriented electrical steel sheets with better iron loss characteristics (see Patent Documents 2 to 4).

また、レーザ照射以外の手段で熱歪領域を導入する方法として、特許文献5には、鋼板表面にプラズマ炎を放射して線状の高転位密度領域を導入する方法が、特許文献6には、鋼板表面に電子ビームを照射して線状の高転位密度領域を導入する方法がそれぞれ提案されている。   In addition, as a method for introducing a thermal strain region by means other than laser irradiation, Patent Document 5 discloses a method for introducing a linear high dislocation density region by radiating a plasma flame on a steel sheet surface. A method of introducing a linear high dislocation density region by irradiating the surface of a steel sheet with an electron beam is proposed.

しかし、レーザビームや電子ビームのような高いエネルギーを有するビームの照射は、鋼板表面に被成された絶縁被膜を溶融したり、破壊したりするため、絶縁被膜が薄くなったり、鋼板表面が露出したりするようになる。その結果、高エネルギービームの照射によって、磁区が細分化されて鉄損が低減されるものの、絶縁被膜の溶融や破壊によって、製品鋼板の絶縁性や防錆能が劣化してしまうという問題が発生する。   However, irradiation with a beam having a high energy such as a laser beam or an electron beam melts or destroys the insulating film formed on the surface of the steel sheet, so that the insulating film becomes thin or the surface of the steel sheet is exposed. To do. As a result, although the magnetic domain is subdivided by irradiation with a high energy beam and the iron loss is reduced, the insulation and rust prevention ability of the product steel plate deteriorates due to melting and destruction of the insulating coating. To do.

このような問題点を解決するため、絶縁被膜の破損部を補修する技術が提案されている。例えば、特許文献7には、磁区細分化により破壊された被膜の上に、絶縁被膜を再度コーティングする技術が、また、特許文献8には、再塗布する被膜中に固形物を添加して鋼板のすべり性を改善する技術が開示されている。   In order to solve such a problem, a technique for repairing a damaged portion of the insulating coating has been proposed. For example, Patent Document 7 discloses a technique for re-coating an insulating film on a film destroyed by magnetic domain fragmentation, and Patent Document 8 discloses a steel sheet in which a solid material is added to the film to be re-applied. A technique for improving the slipperiness of the image is disclosed.

特公昭57− 2252号公報Japanese Patent Publication No.57-2252 特開2006−117964号公報JP 2006-117964 A 特開平10−204533号公報JP-A-10-204533 特開平11−279645号公報Japanese Patent Laid-Open No. 11-279645 特開昭62− 96617号公報JP-A 62-96617 特開平01−281708号公報Japanese Patent Laid-Open No. 01-281708 特開昭56−105421号公報JP-A-56-105421 特開平04−165022号公報Japanese Patent Laid-Open No. 04-165022

しかし、上記特許文献7や特許文献8の技術のように、絶縁被膜を再コートする方法は、製造コストを上昇させる。そのため、磁気特性の改善には最適ではないが、高エネルギービームの照射エネルギーを制限し、被膜破壊を抑制可能な範囲として実施しているのが実情である。しかし、磁気特性を重視する場合には、敢えて被膜破壊が生ずる条件で高エネルギービームを照射しなければならない場合もある。   However, the method of recoating the insulating film as in the techniques of Patent Document 7 and Patent Document 8 increases the manufacturing cost. For this reason, it is not optimal for improving the magnetic characteristics, but the actual situation is that the irradiation energy of the high energy beam is limited and the film destruction can be suppressed. However, when emphasizing magnetic characteristics, there are cases where it is necessary to irradiate a high energy beam under conditions that cause film destruction.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、磁気特性の向上効果を十分に享受し得る条件で高エネルギービームを照射しても、被膜破壊を抑制することができ、しかも、絶縁被膜を再コートする必要がない磁区細分化処理方法を提案することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to suppress film destruction even when irradiated with a high-energy beam under conditions where the effect of improving magnetic properties can be fully enjoyed. to it can, moreover, in a Turkey proposes a magnetic domain refining treatment method is not required to re-coat the insulating coating.

発明者らは、上記の課題を解決するべく、高エネルギービームの照射による熱歪導入方法について鋭意検討を重ねた。その結果、仕上焼鈍後、張力絶縁被膜を形成した方向性電磁鋼板の表面に、圧縮応力を付与した状態で高エネルギービームを照射することで、絶縁被膜を破壊することなく十分に磁区細分化を図ることができることを見出し、本発明を完成するに至った。   In order to solve the above-described problems, the inventors have made extensive studies on a method for introducing thermal strain by irradiation with a high energy beam. As a result, after finish annealing, the surface of the grain-oriented electrical steel sheet on which the tensile insulating coating is formed is irradiated with a high energy beam in a state where compressive stress is applied, thereby sufficiently subdividing the magnetic domain without destroying the insulating coating. As a result, the present invention has been completed.

上記知見に基く本発明は、仕上焼鈍後、被膜張力が5MPa以上の絶縁被膜を形成してなる方向性電磁鋼板の表面に、高エネルギービームを圧延方向と交差する方向に走査して照射し、熱歪領域を導入して磁区細分化処理する方法において、前記鋼板を捩じり変形して湾曲させて、被照射面に圧縮応力を付与した状態で高エネルギービームを照射することを特徴とする磁区細分化処理方法である。 The present invention based on the above knowledge, after finish annealing, irradiates the surface of a grain-oriented electrical steel sheet formed with an insulating film having a film tension of 5 MPa or more by scanning a high energy beam in a direction crossing the rolling direction, In the method of introducing a thermal strain region and subdividing the magnetic domain, the steel sheet is twisted and deformed, and is irradiated with a high energy beam in a state where compressive stress is applied to the irradiated surface. This is a magnetic domain subdivision processing method.

本発明の磁区細分化処理方法は、上記鋼板を板厚の10000倍以下の曲率半径で湾曲させることにより、被照射面に降伏応力の90%以下の圧縮応力を付与することを特徴とする。   The magnetic domain subdivision processing method of the present invention is characterized in that a compressive stress of 90% or less of the yield stress is applied to the irradiated surface by curving the steel plate with a radius of curvature of 10,000 times or less of the plate thickness.

また、本発明の磁区細分化処理方法は、上記湾曲面の母線と鋼板の圧延方向とがなす角度が5°以上であることを特徴とする。   Moreover, the magnetic domain subdivision processing method of the present invention is characterized in that the angle formed by the generatrix of the curved surface and the rolling direction of the steel sheet is 5 ° or more.

また、本発明の磁区細分化処理方法は、上記高エネルギービームの走査方向と鋼板の圧延方向とがなす角度が45°以上であることを特徴とする。   Moreover, the magnetic domain fragmentation processing method of the present invention is characterized in that an angle formed by the scanning direction of the high energy beam and the rolling direction of the steel sheet is 45 ° or more.

本発明によれば、方向性電磁鋼板の磁区細分化効果を十分に享受し得る高いエネルギービームを照射しても、絶縁被膜の破壊を抑制することができるので、絶縁被膜を再コートする必要のない低鉄損の方向性電磁鋼板を安価に製造することが可能となる。   According to the present invention, since the destruction of the insulating coating can be suppressed even by irradiation with a high energy beam that can sufficiently enjoy the magnetic domain refinement effect of the grain-oriented electrical steel sheet, it is necessary to recoat the insulating coating. It is possible to manufacture a grain-oriented electrical steel sheet having no low iron loss at low cost.

捩じり変形して鋼板に湾曲部を形成する方法を説明する図である。It is a figure explaining the method of twisting and forming a curved part in a steel plate. 被膜張力の測定方法について説明する図である。It is a figure explaining the measuring method of film tension.

本発明は、コイル状に巻き取った方向性電磁鋼板の素材鋼板に仕上焼鈍を施し、張力絶縁被膜を被成した後、上記鋼板表面に圧縮応力を付与した状態で、電子ビームやレーザビームなどの高エネルギービームを照射して、点状もしくは線状の熱歪領域を導入することによって、上記絶縁被膜に損傷を与えることなく磁区細分化処理を施すところに特徴がある。   In the present invention, the material steel plate of the grain-oriented electrical steel sheet wound in a coil shape is subjected to finish annealing, and after forming a tension insulating coating, an electron beam, a laser beam, etc. are applied to the steel sheet surface in a state where compressive stress is applied. It is characterized in that the magnetic domain subdivision treatment is performed without damaging the insulating film by irradiating a high-energy beam and introducing a dotted or linear thermal strain region.

なお、上記張力絶縁被膜とは、鉄損低減のために鋼板に張力を付与する絶縁被膜のことを意味し、具体的には、下地のフォルステライトを主体とするガラス質の被膜と、仕上焼鈍後に被成した絶縁被膜との合計で5MPa以上の引張応力を付与するものであることが必要である。5MPa未満では、鉄損低減効果が十分に得られないからである。   The tension insulating coating means an insulating coating that imparts tension to a steel sheet to reduce iron loss. Specifically, a glassy coating mainly composed of underlying forsterite, and finish annealing. It is necessary to apply a tensile stress of 5 MPa or more in total with the insulating coating formed later. This is because if it is less than 5 MPa, the effect of reducing iron loss cannot be obtained sufficiently.

ここで、本発明において重要なことは、高エネルギービームの照射は、仕上焼鈍と張力絶縁被膜の被成後に行う必要があることである。これは、方向性電磁鋼板の素材鋼板に二次再結晶粒を起こさせてゴス方位を優先成長させる仕上焼鈍工程、および、絶縁被膜に張力付与効果を発現させる被膜形成工程は、いずれも高温で熱処理を施す工程であるため、高エネルギービームの照射で熱歪を付与しても、それらの熱処理によって上記熱歪が減少または消滅し、磁区細分化の効果が消失してしまうからである。   Here, what is important in the present invention is that irradiation with a high energy beam needs to be performed after finish annealing and deposition of a tensile insulating coating. This is because the finish annealing process in which secondary recrystallized grains are generated in the raw steel sheet of the grain-oriented electrical steel sheet and the Goss orientation is preferentially grown, and the film forming process in which the tension application effect is exerted on the insulating film are both at high temperatures. This is because it is a step of performing heat treatment, and even if thermal strain is applied by irradiation with a high energy beam, the thermal strain is reduced or eliminated by the heat treatment, and the effect of magnetic domain fragmentation is lost.

次に、本発明において重要なことは、鋼板表面に圧縮応力を付与した状態で、高エネルギービームを照射する必要があることである。圧縮応力を付与することで、高エネルギービーム照射による絶縁被膜の破壊が抑制される理由は、現時点ではまだ十分に明確になっていないが、発明者らは次のように考えている。
鋼板表面に形成された張力絶縁被膜は、高エネルギービームの照射によって、加熱、冷却されるが、その際、被膜と地鉄との熱膨張差に起因した引張応力により破壊が発生する。そこで、絶縁被膜に予め圧縮応力を付与しておくことで、上記照射時の引張応力が緩和されて、破壊が抑制される。また、絶縁被膜が高エネルギービームの照射によって溶融する場合でも、引張応力が付与された状態で溶融すると、地鉄が露出し易くなるが、圧縮応力が予め付与されていることで、斯かる露出も軽減されるためと考えられる。したがって、圧縮応力付与による上記被膜損傷抑制効果は、被膜張力が大きいほど大きい。
Next, what is important in the present invention is that it is necessary to irradiate a high energy beam in a state where compressive stress is applied to the surface of the steel sheet. The reason why the breakdown of the insulating film due to the irradiation with the high energy beam is suppressed by applying the compressive stress has not been clarified yet at present, but the inventors consider as follows.
The tension insulating coating formed on the surface of the steel sheet is heated and cooled by irradiation with a high energy beam, but at that time, the tensile stress caused by the difference in thermal expansion between the coating and the ground iron causes breakage. Therefore, by applying a compressive stress to the insulating coating in advance, the tensile stress at the time of irradiation is relaxed, and the destruction is suppressed. In addition, even when the insulating coating is melted by irradiation with a high energy beam, if it is melted in a state where a tensile stress is applied, the ground iron is likely to be exposed, but since the compressive stress is applied in advance, such exposure is performed. It is thought to be reduced. Therefore, the effect of suppressing damage to the film by applying compressive stress is larger as the film tension is larger.

本発明において、高エネルギービームの照射面に圧縮応力を付与する方法については、特に限定されないが、例えば、例えば、図1に示したように、鋼板を円柱等に巻き付けてヘリカルターンさせるときのようにして捩じり変形して、鋼板に湾曲部を形成することによって、その湾曲部の内面に圧縮応力を生じさせる方法がある。この方法は、鋼板の通板経路(パスライン)を屈曲させるだけで鋼板を容易に湾曲させることが可能であり、また、鋼板を湾曲させるのに要する長さも短くできるなどのメリットがある。   In the present invention, the method for applying the compressive stress to the irradiation surface of the high energy beam is not particularly limited. For example, as shown in FIG. 1, as shown in FIG. Then, there is a method of generating a compressive stress on the inner surface of the curved portion by twisting and forming a curved portion on the steel sheet. This method has the merit that the steel plate can be easily bent only by bending the plate passage (pass line) of the steel plate, and the length required for bending the steel plate can be shortened.

鋼板を湾曲させて圧縮応力を付与する場合、湾曲部の曲率半径は板厚の10000倍以下とするのが好ましい。板厚の10000倍を超える曲率半径では、湾曲部の内面に生じる圧縮応力が小さくなり、本発明の損傷低減効果が得られ難い。一方、曲率半径を小さくし過ぎて、湾曲部の内面に生じる圧縮応力が鋼板の降伏応力の90%を超えると、鋼板が塑性変形を起こして磁気特性の劣化が生じる易くなる。よって、鋼板を湾曲させるときの曲率半径は、板厚の10000倍以下とし、かつ、鋼板に付与される圧縮応力が降伏応力の90%以下となるように下限値を設定することが好ましい。   When applying a compressive stress by curving a steel plate, the curvature radius of the curved portion is preferably 10,000 times or less of the plate thickness. When the radius of curvature exceeds 10,000 times the plate thickness, the compressive stress generated on the inner surface of the curved portion becomes small, and it is difficult to obtain the damage reducing effect of the present invention. On the other hand, if the radius of curvature is made too small and the compressive stress generated on the inner surface of the curved portion exceeds 90% of the yield stress of the steel plate, the steel plate is likely to be plastically deformed, resulting in deterioration of magnetic properties. Therefore, it is preferable to set the lower limit value so that the radius of curvature when bending the steel sheet is 10,000 times or less of the plate thickness and the compressive stress applied to the steel sheet is 90% or less of the yield stress.

ここで、湾曲させた鋼板表面に付与される圧縮応力は、下記(1)式で求めることができる。

σ=E・ε=E・(t/2R) ・・・(1)
ここで、E:鋼板の<100>方向(圧延方向)のヤング率E(=1.4×10MPa)
ε:鋼板表面の歪量(板厚中心でε=0)
R:曲率半径(mm)
t:板厚(mm)
Here, the compressive stress given to the curved steel sheet surface can be obtained by the following equation (1).
Σ = E · ε = E · (t / 2R) (1)
Here, E: Young's modulus E (= 1.4 × 10 5 MPa) in the <100> direction (rolling direction) of the steel plate
ε: amount of strain on the steel sheet surface (ε = 0 at the center of the plate thickness)
R: radius of curvature (mm)
t: Plate thickness (mm)

また、捩じり変形で鋼板を湾曲させる場合には、鋼板の圧延方向(進行方向)と湾曲面の母線とがなす角度を5°以上とするのが好ましい。5°未満では、鋼板を捩じり変形して湾曲させるのに必要な長さが長くなるため設備が長大化する。なお、上限は、45°を超えると捩じり変形による鋼板のパスラインの角度変化が直角(90°)を超えるため、設備配列上好ましくはない場合が生じたり、高エネルギービームの走査方向が、圧延方向に近づいたりするため、好ましくない。   Further, when the steel plate is bent by torsional deformation, it is preferable that the angle formed by the rolling direction (traveling direction) of the steel plate and the generatrix of the curved surface is 5 ° or more. If it is less than 5 °, the length required for twisting and deforming the steel sheet becomes longer, and the equipment becomes longer. If the upper limit exceeds 45 °, the angle change of the pass line of the steel sheet due to torsional deformation exceeds a right angle (90 °), which may be undesirable in terms of equipment arrangement, or the scanning direction of the high energy beam This is not preferable because it approaches the rolling direction.

次に、本発明の方向性電磁鋼板の成分組成について説明する。
本発明の方向性電磁鋼板は、従来公知の成分組成を有する方向性電磁鋼板であればよく、例えば、下記の成分組成を有するものであることが好ましい。
Si:2.0〜8.0mass%
Siは、鋼の電気抵抗を高め、鉄損を低減するのに有効な元素であり、含有量が2.0mass%に満たないと、十分な鉄損低減効果が得られない。一方、8.0mass%を超えると、加工性が著しく低下するだけでなく、磁束密度も低下するようになる。よって、Siは2.0〜8.0mass%の範囲とするのが好ましい。より好ましくは2.5〜6.0mass%の範囲である。
Next, the component composition of the grain-oriented electrical steel sheet according to the present invention will be described.
The grain-oriented electrical steel sheet of the present invention may be a grain-oriented electrical steel sheet having a conventionally known component composition, and preferably has, for example, the following component composition.
Si: 2.0 to 8.0 mass%
Si is an element effective for increasing the electrical resistance of steel and reducing iron loss. If the content is less than 2.0 mass%, a sufficient effect of reducing iron loss cannot be obtained. On the other hand, if it exceeds 8.0 mass%, not only the workability is remarkably lowered but also the magnetic flux density is lowered. Therefore, Si is preferably in the range of 2.0 to 8.0 mass%. More preferably, it is the range of 2.5-6.0 mass%.

C:0.0050mass%以下
Cは、磁気時効を起こして磁気特性を劣化させる元素であるため、製品板中に含まれるC量は0.0050mass%以下であることが好ましい。
なお、鋼素材(スラブ)中に含まれるC量は、低くても二次再結晶が可能であるので下限を設ける必要はない。また、熱延板組織を改善する効果があるため、0.0050mass%を超えて含有していてもよい。しかし、0.15mass%を超えて含有させると、製造工程の脱炭焼鈍で磁気時効の起こらない0.0050mass%以下まで低減することが難しくなるので、上限は0.15mass%以下とするのが好ましい。より好ましくは0.0050〜0.10mass%の範囲である。
C: 0.0050 mass% or less Since C is an element that causes magnetic aging and deteriorates magnetic properties, the amount of C contained in the product plate is preferably 0.0050 mass% or less.
Even if the amount of C contained in the steel material (slab) is low, secondary recrystallization is possible, so there is no need to provide a lower limit. Moreover, since there exists an effect which improves a hot-rolled sheet structure, you may contain exceeding 0.0050 mass%. However, if the content exceeds 0.15 mass%, it is difficult to reduce to 0.0050 mass% or less at which no magnetic aging occurs due to decarburization annealing in the production process, so the upper limit is 0.15 mass% or less. preferable. More preferably, it is the range of 0.0050-0.10 mass%.

Mn:0.005〜1.0mass%
Mnは、鋼の熱間加工性を向上させるために必要な元素であるが、0.005mass%未満では上記添加効果に乏しく、一方、1.0mass%を超えると、磁束密度が低下するようになる。よって、Mnは0.005〜1.0mass%の範囲とするのが好ましい。より好ましくは0.01〜0.3mass%の範囲である。
Mn: 0.005 to 1.0 mass%
Mn is an element necessary for improving the hot workability of steel. However, if it is less than 0.005 mass%, the effect of addition is poor, whereas if it exceeds 1.0 mass%, the magnetic flux density is lowered. Become. Therefore, Mn is preferably in the range of 0.005 to 1.0 mass%. More preferably, it is the range of 0.01-0.3 mass%.

上記Si,CおよびMn以外の成分は、二次再結晶を生じさせるためにインヒビターを利用する場合と、しない場合とで分けられる。
まず、二次再結晶を生じさせるためにインヒビターを利用する場合で、例えば、AlN系インヒビターを利用するときには、AlおよびNを、Al:0.01〜0.065mass%、N:0.005〜0.012mass%の範囲で含有させるのが好ましい。また、MnS・MnSe系インヒビターを利用するときには、前述した量のMnと、Seおよび/またはSを、S:0.005〜0.03mass%、Se:0.005〜0.03mass%の範囲で含有させるのが好ましい。なお、AlN系とMnS・MnSe系インヒビターを併用してもよい。
Components other than Si, C, and Mn are classified into cases where an inhibitor is used to cause secondary recrystallization and cases where an inhibitor is not used.
First, when an inhibitor is used to cause secondary recrystallization, for example, when an AlN-based inhibitor is used, Al and N are changed to Al: 0.01 to 0.065 mass%, N: 0.005. It is preferable to make it contain in 0.012 mass%. When using an MnS / MnSe-based inhibitor, the amount of Mn described above and Se and / or S are within the range of S: 0.005 to 0.03 mass%, Se: 0.005 to 0.03 mass%. It is preferable to contain. AlN and MnS / MnSe inhibitors may be used in combination.

次に、二次再結晶を生じさせるためにインヒビターを利用しない場合には、上述したインヒビター形成成分であるAl,N,SおよびSeの含有量を極力低減し、Al:0.01mass%以下、N:0.0050mass%以下、S:0.0050mass%以下およびSe:0.0050mass%以下に制限するのが好ましい。   Next, when an inhibitor is not used to cause secondary recrystallization, the content of Al, N, S and Se, which are the above-described inhibitor forming components, is reduced as much as possible, Al: 0.01 mass% or less, It is preferable to limit to N: 0.0050 mass% or less, S: 0.0050 mass% or less, and Se: 0.0050 mass% or less.

上記の基本成分以外の残部は、Feおよび不可避的不純物である。
ただし、磁気特性の改善を目的として、Ni:0.03〜1.50mass%、Sn:0.01〜1.50mass%、Sb:0.005〜1.50mass%、Cu:0.03〜3.0mass%、P:0.03〜0.50mass%、Mo:0.005〜0.10mass%およびCr:0.03〜1.50mass%のうちから選ばれる1種または2種以上を添加してもよい。
上記Niは、熱延板の組織を改善して磁気特性を向上させるのに有用な元素であるが、0.03mass%未満では、上記磁気特性の向上効果が小さく、一方、1.5mass%を超えると、二次再結晶が不安定になり、磁気特性が劣化するため、0.03〜1.5%の範囲とするのが好ましい。
また、Sn,Sb,Cu,P,MoおよびCrは、いずれも磁気特性の向上に有用な元素であるが、上記した下限値に満たない添加量では磁気特性の向上効果が小さく、一方、上記した上限値を超える添加は、二次再結晶粒の発達を阻害するようになる。よって、上記元素は、それぞれ、上記の範囲で含有させることが好ましい。
The balance other than the above basic components is Fe and inevitable impurities.
However, for the purpose of improving magnetic properties, Ni: 0.03-1.50 mass%, Sn: 0.01-1.50 mass%, Sb: 0.005-1.50 mass%, Cu: 0.03-3 0.0 mass%, P: 0.03 to 0.50 mass%, Mo: 0.005 to 0.10 mass% and Cr: 0.03 to 1.50 mass% May be.
Ni is an element useful for improving the magnetic properties by improving the structure of the hot-rolled sheet. However, if it is less than 0.03 mass%, the effect of improving the magnetic properties is small, while 1.5 mass% is reduced. If it exceeds, secondary recrystallization will become unstable and the magnetic properties will deteriorate, so it is preferable to make it in the range of 0.03 to 1.5%.
Sn, Sb, Cu, P, Mo, and Cr are all useful elements for improving the magnetic properties. However, when the addition amount is less than the above lower limit, the effect of improving the magnetic properties is small. Addition exceeding the above upper limit inhibits the development of secondary recrystallized grains. Therefore, each of the above elements is preferably contained in the above range.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
本発明の方向性電磁鋼板の製造方法は、上述した成分組成に調整した鋼を溶製し、鋼素材(スラブ)とした後、熱間圧延して熱延板とし、必要に応じて熱延板焼鈍を施し、冷間圧延して最終板厚の冷延板とし、一次再結晶焼鈍または脱炭を兼ねた一次再結晶焼鈍し、鋼板表面に焼鈍分離剤を塗布し、その後、二次再結晶焼鈍と純化焼鈍を兼ねた仕上焼鈍を施した後、鋼板表面に張力絶縁被膜を被成する従来公知の方法で製造した方向性電磁鋼板に対して磁区細分化処理を施す一連の工程からなる。以下、具体的に説明する。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
The method for producing a grain-oriented electrical steel sheet according to the present invention involves melting steel adjusted to the above-described component composition to obtain a steel material (slab), then hot rolling to obtain a hot rolled sheet, and hot rolling as necessary. It is subjected to sheet annealing, cold rolled to a cold-rolled sheet with the final thickness, primary recrystallization annealing that also serves as primary recrystallization annealing or decarburization, an annealing separator is applied to the steel sheet surface, and then secondary recrystallization is performed. It consists of a series of steps to perform magnetic domain refinement treatment on grain-oriented electrical steel sheets manufactured by a conventionally known method of applying a tension insulating coating on the steel sheet surface after finishing annealing that combines crystal annealing and purification annealing. . This will be specifically described below.

上記製造方法において、鋼素材(スラブ)を製造する方法は、連続鋳造法、造塊−分塊圧延法のいずれの方法を用いてもよく、また、薄スラブ鋳造法を用いてもよい。
また、インヒビター形成成分を含有しない鋼素材を熱間圧延する場合には、加熱炉で再加熱することなく、連続鋳造後、直ちに熱間圧延に供してもよい。また、鋼素材が薄スラブである場合には、熱間圧延を省略してもよい。
In the above manufacturing method, as a method for manufacturing a steel material (slab), either a continuous casting method or an ingot-bundling method may be used, or a thin slab casting method may be used.
Moreover, when hot-rolling the steel raw material which does not contain an inhibitor formation component, you may use for hot rolling immediately after continuous casting, without reheating with a heating furnace. Further, when the steel material is a thin slab, hot rolling may be omitted.

次いで、上記鋼素材を常法で熱間圧延して熱延板とした後、必要に応じて熱延板焼鈍を施す。この熱延板焼鈍の焼鈍温度は、800〜1200℃の範囲とするのが好ましい。焼鈍温度が800℃未満では、熱間圧延でのバンド組織が残留し、一次再結晶組織を整粒化するのが難しくなり、二次再結晶粒の成長が阻害されて、製品板のゴス組織を高度に発達させることができなくなる。一方、焼鈍温度が1200℃を超えると、結晶粒が粗大化し過ぎ、却って一次再結晶組織を整粒化することが困難となるからである。   Subsequently, after hot-rolling the said steel raw material by a conventional method to make a hot-rolled sheet, hot-rolled sheet annealing is performed as needed. The annealing temperature of this hot-rolled sheet annealing is preferably in the range of 800 to 1200 ° C. If the annealing temperature is less than 800 ° C., the band structure in the hot rolling remains, it becomes difficult to adjust the primary recrystallized structure, the growth of the secondary recrystallized grains is inhibited, and the goth structure of the product plate Can no longer be developed. On the other hand, if the annealing temperature exceeds 1200 ° C., the crystal grains are excessively coarsened, and on the contrary, it is difficult to adjust the primary recrystallized structure.

次いで、上記熱延板は、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とした後、一次再結晶焼鈍あるいは脱炭焼鈍を兼ねた一次再結晶焼鈍を施してから、例えば、MgOを主成分とする焼鈍分離剤を鋼板表面に塗布、乾燥した後、二次再結晶させるとともに、フォルステライト被膜の形成および純化を図ること目的とした仕上焼鈍を施す。なお、上記一次再結晶焼鈍中あるいは一次再結晶焼鈍後から二次再結晶開始までの間に、インヒビターを強化する目的で、鋼板に窒化処理を施してもよい。   Next, the hot-rolled sheet is made into a cold-rolled sheet having a final thickness by one or more cold rollings with intermediate annealing, and then subjected to primary recrystallization annealing also serving as primary recrystallization annealing or decarburization annealing. After the application, for example, an annealing separator mainly composed of MgO is applied to the steel sheet surface, dried, and then subjected to secondary recrystallization and finish annealing for the purpose of forming and purifying the forsterite film. Note that the steel sheet may be subjected to nitriding treatment for the purpose of strengthening the inhibitor during the primary recrystallization annealing or after the primary recrystallization annealing until the start of the secondary recrystallization.

上記最終仕上焼鈍を施した冷延板は、その後、形状矯正を目的とした平坦化焼鈍の前または後に、鋼板表面に被膜処理液を塗布し、焼き付けて張力絶縁被膜を被成する。なお、張力被膜の焼き付けは、平坦化焼鈍と兼ねて、同時に行ってもよい。   The cold-rolled sheet subjected to the final finish annealing is then coated with a coating treatment liquid on the surface of the steel sheet and baked to form a tensile insulating coating before or after flattening annealing for the purpose of shape correction. Note that the tension coating may be baked simultaneously with the planarization annealing.

上記張力絶縁被膜は、前述したように、下地のフォルステライト質の被膜と合わせた被膜張力が5MPa以上の絶縁被膜であることが必要である。被膜の種類としては、従来公知のシリカおよびリン酸塩を主成分とするものや、ホウ酸塩とアルミナゾルを用いたコーティング、複合水酸化物を用いたものでもよいが、リン酸アルミニウムまたはリン酸マグネシウム等のリン酸塩とシリカを主成分とするガラス質の張力絶縁被膜を用いるのが好ましい。   As described above, the tension insulating coating is required to be an insulating coating having a coating tension of 5 MPa or more combined with the underlying forsterite coating. As the kind of the coating, a conventionally known silica and phosphate as a main component, a coating using borate and alumina sol, or a composite hydroxide may be used, but aluminum phosphate or phosphoric acid may be used. It is preferable to use a vitreous tension insulating coating mainly composed of a phosphate such as magnesium and silica.

なお、絶縁被膜により付与される張力は、本発明では、以下の方法で測定する。
まず、張力を測定する鋼板の片表面(測定面)に保護テープを貼り付けてシールした後、アルカリ水溶液に浸漬して非測定面の絶縁被膜を剥離する。すると、鋼板は、測定面側に残存した絶縁被膜による引張応力の大きさに応じて、図2に示したような反りを発生する。ここで、上記鋼板の反りが円弧であると仮定すると、図2中に示した鋼板の反りの大きさを表すLおよびXは、下記(2)式および(3)式で表される。

L=2Rsin(θ/2) ・・・(2)
X=R{1−cos(θ/2)} ・・・(3)
また、曲率半径Rは、上記(2)式および(3)式から、下記(4)で表される。

R=(L+4X)/8X ・・・(4)
そこで、上記図2に示したLとXを測定し、その値を(4)式に代入することで、曲率半径Rを求めることができる。
一方、曲率半径Rと鋼板表面の応力σとは、前述したように、(1)式に示した関係があるから、上記のようにして求めたRを(1)式に代入することで、絶縁被膜によって鋼板表面に付与される応力σを求めることができる。
In addition, the tension | tensile_strength provided with an insulating film is measured with the following method in this invention.
First, after affixing a protective tape to one surface (measurement surface) of a steel sheet whose tension is to be measured and sealing it, the insulating coating on the non-measurement surface is peeled off by dipping in an alkaline aqueous solution. Then, the steel plate generates warp as shown in FIG. 2 according to the magnitude of the tensile stress due to the insulating coating remaining on the measurement surface side. Here, assuming that the warpage of the steel plate is an arc, L and X representing the magnitude of warpage of the steel plate shown in FIG. 2 are expressed by the following formulas (2) and (3).
L = 2Rsin (θ / 2) (2)
X = R {1-cos (θ / 2)} (3)
Moreover, the curvature radius R is represented by the following (4) from the above formulas (2) and (3).
R = (L 2 + 4X 2 ) / 8X (4)
Therefore, the radius of curvature R can be obtained by measuring L and X shown in FIG. 2 and substituting the values into equation (4).
On the other hand, since the curvature radius R and the stress σ on the steel sheet surface have the relationship shown in the equation (1) as described above, by substituting R obtained as described above into the equation (1), The stress σ applied to the steel sheet surface by the insulating coating can be determined.

上記のようにして張力絶縁被膜を被成した方向性電磁鋼板は、その後、本発明の磁区細分化処理を施して製品とする。
ここで、本発明において熱歪導入のために照射する高エネルギービームとしては、通常公知の電子ビームやレーザビームなどを用いることができるが、中でも電子ビームは、レーザビームと比べて、照射による被膜温度の上昇が小さく、被膜の溶融が生じ難いため、好ましく用いることができる。なお、レーザビームを用いる場合には、YAGレーザ、COレーザ、ファイバーレーザ等のパルス発振や連続発振等、公知のものを用いることができる。
The grain-oriented electrical steel sheet coated with the tension insulating coating as described above is then subjected to the magnetic domain refinement treatment of the present invention to obtain a product.
Here, as the high energy beam irradiated for introducing thermal strain in the present invention, a generally known electron beam, laser beam, or the like can be used. Among them, the electron beam is a film formed by irradiation as compared with the laser beam. Since the rise in temperature is small and melting of the film hardly occurs, it can be preferably used. In the case of using a laser beam, a known one such as pulse oscillation or continuous oscillation of YAG laser, CO 2 laser, fiber laser or the like can be used.

また、高エネルギービームは、鋼板の圧延方向と交差する向き、好ましくは鋼板の圧延方向に対して45°以上、最も好ましくは直交する90°の向きに走査して照射し、鋼板表面に直線状または点線状に熱歪を導入する。鋼板の圧延方向と交差する向きに走査する高エネルギービームの照射間隔は、磁区細分化による鉄損低減効果を効果的に発現させる観点から、2〜20mmの範囲とし、鋼板に導入する熱歪の深さは5〜30μm程度とするのが好ましい。   Further, the high energy beam is scanned and irradiated in a direction intersecting with the rolling direction of the steel sheet, preferably 45 ° or more with respect to the rolling direction of the steel sheet, and most preferably 90 ° perpendicular to the rolling direction. Alternatively, thermal strain is introduced in a dotted line shape. The irradiation interval of the high energy beam that scans in the direction crossing the rolling direction of the steel sheet is in the range of 2 to 20 mm from the viewpoint of effectively expressing the iron loss reduction effect by magnetic domain subdivision, and the thermal strain introduced into the steel sheet The depth is preferably about 5 to 30 μm.

また、鋼板を捩じり変形して湾曲させる場合、圧縮応力を与えることが可能であれば少なからず効果は得られるが、高エネルギービームの走査方向は、圧縮応力の方向、すなわち、曲率半径がもっとも小さくなる湾曲面の母線と垂直な方向とするのが好ましい。   In addition, when the steel sheet is torsionally deformed and curved, it is possible to obtain a considerable effect if compressive stress can be applied. However, the scanning direction of the high energy beam is the direction of the compressive stress, that is, the radius of curvature. A direction perpendicular to the generatrix of the curved surface that is the smallest is preferable.

なお、磁区細分化処理の効果は、方向性電磁鋼板の二次再結晶のゴス方位への集積度が高いほど大きいことが知られている。方向性電磁鋼板における方位集積度の目安としては、一般に磁束密度B(800A/mで磁化した際の磁束密度)がよく用いられるが、本発明を適用する方向性電磁鋼板としては、Bが1.88T以上であることが好ましく、1.92T以上であることがより好ましい。また、磁区細分化による鉄損低減効果は、被膜直下の地鉄の表面粗さが小さいほど大きいことが知られており、算術平均粗さRaで0.5μm以下とするのが好ましい。 In addition, it is known that the effect of the magnetic domain refinement treatment increases as the degree of integration in the goth orientation of secondary recrystallization of the grain-oriented electrical steel sheet increases. As a guide for the degree of orientation integration in a grain-oriented electrical steel sheet, a magnetic flux density B 8 (magnetic flux density when magnetized at 800 A / m) is generally used, but as a grain-oriented electrical steel sheet to which the present invention is applied, B 8 Is preferably 1.88T or more, and more preferably 1.92T or more. Moreover, it is known that the iron loss reduction effect by magnetic domain fragmentation is so large that the surface roughness of the base iron directly under a film is small, and it is preferable that arithmetic mean roughness Ra shall be 0.5 micrometer or less.

C:0.05mass%、Si:3.3mass%、Mn:0.06mass%、Al:0.0250mass%、N:0.0080mass%、S:0.0015mass%およびSe:0.02mass%を含有する板厚が0.23mmの最終冷延板に、脱炭を兼ねた一次再結晶焼鈍を施し、MgOを主成分とする焼鈍分離剤を鋼板表面に塗布した後、二次再結晶焼鈍と純化処理を兼ねた仕上焼鈍を施し、その後、50mass%のコロイダルシリカとリン酸マグネシウムからなる絶縁コーティング液を塗布し、形状矯正を兼ねた800℃の平坦化焼鈍を施して焼き付けて方向性電磁鋼板とした。斯くして得た方向性電磁鋼板の磁気特性について、JIS C2556に適合する単板磁気測定装置(SST)で測定したところ、励磁条件1.7Tおよび50Hzにおける鉄損W17/50が0.89W/kg、磁化力800A/mにおける磁束密度Bが1.93Tであった。なお、絶縁被膜の張力を、前述した図2に示した方法で測定したところ15MPaであった。また、この方向性電磁鋼板の降伏応力は348MPaであった。 Contains C: 0.05 mass%, Si: 3.3 mass%, Mn: 0.06 mass%, Al: 0.0250 mass%, N: 0.0080 mass%, S: 0.0015 mass% and Se: 0.02 mass% The final cold-rolled sheet with a thickness of 0.23 mm is subjected to primary recrystallization annealing that also serves as decarburization, and after applying an annealing separator mainly composed of MgO to the steel sheet surface, secondary recrystallization annealing and purification Applying a finish annealing that also serves as a treatment, and then applying an insulating coating solution composed of 50 mass% colloidal silica and magnesium phosphate, performing a flattening annealing at 800 ° C. that also serves as a shape correction, and baking it. did. When the magnetic properties of the grain-oriented electrical steel sheet thus obtained were measured with a single-plate magnetic measuring device (SST) conforming to JIS C2556, the iron loss W 17/50 at an excitation condition of 1.7 T and 50 Hz was 0.89 W. / Kg, the magnetic flux density B 8 at a magnetizing force of 800 A / m was 1.93 T. The tensile strength of the insulating coating was measured by the method shown in FIG. Moreover, the yield stress of this grain-oriented electrical steel sheet was 348 MPa.

次いで、上記方向性電磁鋼板から、圧延方向をL、板幅方向をC方向としたとき、L:500mm×C:300mmおよびL:500mm×C:150mmの2種類の試験片を切り出した後、所定の曲率半径を付与することができるステンレス製治具を用いて試験片を種々の曲率半径で湾曲させ、その湾曲した試験片の内面側に、高エネルギービームを、圧延方向と湾曲面の母線とがなす角度と、ビームの走査方向と鋼板の圧延方向とがなす角度、およびビームの走査方向と湾曲部の母線とがなす角度を表1のように変化させて照射し、磁区細分化処理を施した。なお、L:500mm×C:300mmの試験片は、曲率半径が100mm以上の場合に、また、L:500mm×C:150mmの試験片は、曲率半径が100mm未満に場合に使用した。
また、一部の試験片は、比較例として、平板のまま(曲率=0)の状態で高エネルギービームを、ビームの走査方向をC方向とし、走査線の間隔を5mmとして照射した。
Next, from the grain-oriented electrical steel sheet, when the rolling direction is L and the sheet width direction is the C direction, L: 500 mm × C: 300 mm and L: 500 mm × C: 150 mm, after cutting out two types of test pieces, A test piece is bent with various radii of curvature using a stainless steel jig that can give a predetermined radius of curvature, and a high energy beam is applied to the inner surface side of the bent test piece, and the generatrix of the rolling direction and the curved surface. The magnetic domain refinement treatment is performed by changing the angle formed between the beam scanning direction and the rolling direction of the steel sheet, and the angle formed between the beam scanning direction and the generating line of the curved portion as shown in Table 1. Was given. The L: 500 mm × C: 300 mm test piece was used when the curvature radius was 100 mm or more, and the L: 500 mm × C: 150 mm test piece was used when the curvature radius was less than 100 mm.
Further, as a comparative example, some test pieces were irradiated with a high energy beam in a flat state (curvature = 0) with the beam scanning direction set to the C direction and the scanning line interval set to 5 mm.

なお、上記試験では、高エネルギービームとして、電子ビーム、パルスレーザおよび連続レーザの3種類を用い、電子ビームは、加速電圧:150kV、ビーム径:0.1mmφ、走査速度:10m/secの条件で、パルスレーザは、QスイッチYAGレーザを用いてビーム径:0.3mmφ、照射点間隔:0.4mmの条件で、また、連続レーザは、ファイバーレーザを用いて、ビーム径:0.2mmφの条件で照射した。参考として、各ビームの出力値を、鋼板表面1cm当たりの熱量に換算して表1に示した。 In the above test, three types of electron beams, pulse lasers and continuous lasers are used as high energy beams. The electron beams are under the conditions of acceleration voltage: 150 kV, beam diameter: 0.1 mmφ, and scanning speed: 10 m / sec. The pulse laser uses a Q-switched YAG laser and the beam diameter is 0.3 mmφ and the irradiation point interval is 0.4 mm. The continuous laser uses a fiber laser and the beam diameter is 0.2 mmφ. Irradiated with. For reference, the output value of each beam is shown in Table 1 in terms of the amount of heat per 1 cm 2 of the steel sheet surface.

上記のようにして磁区細分化処理を施した各試験片について、下記の試験に供した。
<鉄損W17/50の測定>
磁区細分化処理を施した各試験片の長さ方向および幅方向中央部から、L:300mm×C:100mmの磁気測定用試験片を採取し、単板磁気測定装置SSTで鉄損W17/50を測定した。
<層間抵抗の測定>
磁区細分化処理を施した各試験片の全幅から、L:400mm×C:150mmの試料を採取し、JIS C2550に記載のA法に準拠して層間抵抗を測定した。
<耐錆性>
磁区細分化処理を施した各試験片の全幅から、L:100mm×C:50mmの試料を採取し、温度:50℃、露点:50℃で大気中に50時間保持した後、試料表面に発生した錆の発生率を目視で測定した。
Each test piece subjected to the magnetic domain fragmentation treatment as described above was subjected to the following test.
<Measurement of iron loss W 17/50 >
A magnetic measurement test piece of L: 300 mm × C: 100 mm was taken from the center in the length direction and the width direction of each test piece subjected to the magnetic domain subdivision treatment, and the iron loss W 17 / was measured with the single plate magnetic measurement device SST. 50 was measured.
<Measurement of interlayer resistance>
A sample of L: 400 mm × C: 150 mm was taken from the full width of each test piece subjected to the magnetic domain fragmentation treatment, and the interlayer resistance was measured in accordance with the A method described in JIS C2550.
<Rust resistance>
A sample of L: 100 mm x C: 50 mm was taken from the full width of each test piece subjected to magnetic domain subdivision treatment, and kept on the air at a temperature of 50 ° C and a dew point of 50 ° C for 50 hours. The occurrence rate of rust was measured visually.

上記測定結果を表1に併記した。この結果から、本発明に従い、湾曲させて磁区細分化処理を施した鋼板は、従来のように平坦の状態で磁区細分化処理をした鋼板と比較して、鉄損特性に優れるだけでなく、絶縁性や耐錆性にも優れていることがわかる。   The measurement results are shown in Table 1. From this result, according to the present invention, the steel plate that has been curved and subjected to magnetic domain refinement treatment is not only excellent in iron loss characteristics, but compared with a steel plate that has been subjected to magnetic domain refinement treatment in a flat state as in the past, It turns out that it is excellent also in insulation and rust resistance.

Figure 0006003197
Figure 0006003197

本発明の技術は、方向性電磁鋼板のみならず、冷延鋼板や表面処理鋼板、ステンレス鋼板、銅板、アルミニウム板等への電子ビーム、レーザビーム等の照射にも適用することができる。   The technology of the present invention can be applied not only to grain-oriented electrical steel sheets, but also to cold-rolled steel sheets, surface-treated steel sheets, stainless steel sheets, copper plates, aluminum plates and the like with electron beams and laser beams.

Claims (4)

仕上焼鈍後、被膜張力が5MPa以上の絶縁被膜を形成してなる方向性電磁鋼板の表面に、高エネルギービームを圧延方向と交差する方向に走査して照射し、熱歪領域を導入して磁区細分化処理する方法において、
前記鋼板を捩じり変形して湾曲させて、被照射面に圧縮応力を付与した状態で高エネルギービームを照射することを特徴とする磁区細分化処理方法。
After finish annealing, the surface of the grain-oriented electrical steel sheet formed with an insulating coating having a coating tension of 5 MPa or more is irradiated with a high-energy beam scanned in a direction crossing the rolling direction to introduce a thermal strain region. In the method of subdividing,
A method of subdividing a magnetic domain, wherein the steel plate is twisted and deformed to be bent, and a high energy beam is irradiated in a state where compressive stress is applied to an irradiated surface.
前記鋼板を板厚の10000倍以下の曲率半径で湾曲させることにより、被照射面に降伏応力の90%以下の圧縮応力を付与することを特徴とする請求項1に記載の磁区細分化処理方法。 2. The magnetic domain subdivision processing method according to claim 1, wherein a compressive stress of 90% or less of a yield stress is applied to an irradiated surface by curving the steel plate with a curvature radius of 10,000 times or less of a plate thickness. . 前記湾曲面の母線と鋼板の圧延方向とがなす角度が5°以上であることを特徴とする請求項1または2に記載の磁区細分化処理方法。 The magnetic domain subdivision processing method according to claim 1 or 2 , wherein an angle formed between a generatrix of the curved surface and a rolling direction of the steel sheet is 5 ° or more. 前記高エネルギービームの走査方向と鋼板の圧延方向とがなす角度が45°以上であることを特徴とする請求項1〜のいずれか1項に記載の磁区細分化処理方法。 The magnetic domain subdivision processing method according to any one of claims 1 to 3 , wherein an angle formed by the scanning direction of the high energy beam and the rolling direction of the steel sheet is 45 ° or more.
JP2012105811A 2012-05-07 2012-05-07 Magnetic domain subdivision processing method Active JP6003197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012105811A JP6003197B2 (en) 2012-05-07 2012-05-07 Magnetic domain subdivision processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012105811A JP6003197B2 (en) 2012-05-07 2012-05-07 Magnetic domain subdivision processing method

Publications (2)

Publication Number Publication Date
JP2013234342A JP2013234342A (en) 2013-11-21
JP6003197B2 true JP6003197B2 (en) 2016-10-05

Family

ID=49760685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012105811A Active JP6003197B2 (en) 2012-05-07 2012-05-07 Magnetic domain subdivision processing method

Country Status (1)

Country Link
JP (1) JP6003197B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101961175B1 (en) 2014-10-23 2019-03-22 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and process for producing same
JP6245296B2 (en) * 2016-03-22 2017-12-13 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157631A (en) * 1984-12-28 1986-07-17 Nippon Steel Corp Introducing method of strain for improving iron loss of directional electromagnetic steel strip
JPH0768580B2 (en) * 1988-02-16 1995-07-26 新日本製鐵株式会社 High magnetic flux density grain-oriented electrical steel sheet with excellent iron loss
JPH01298118A (en) * 1988-05-27 1989-12-01 Kawasaki Steel Corp Continuous iron loss reducing treatment apparatus for grain-oriented silicon steel sheet
JPH0459930A (en) * 1990-06-29 1992-02-26 Kawasaki Steel Corp Continuous irradiation method for high-energy beam
JPH062042A (en) * 1992-06-16 1994-01-11 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet with low iron loss for laminated iron core
JP5927754B2 (en) * 2010-06-29 2016-06-01 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP5998424B2 (en) * 2010-08-06 2016-09-28 Jfeスチール株式会社 Oriented electrical steel sheet
JP5527094B2 (en) * 2010-08-06 2014-06-18 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2013234342A (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP5115641B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6157360B2 (en) Oriented electrical steel sheet and manufacturing method thereof
US10395807B2 (en) Grain-oriented electrical steel sheet having excellent magnetic characteristics and coating adhesion
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JP5760504B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5754097B2 (en) Oriented electrical steel sheet and manufacturing method thereof
US10294543B2 (en) Method for producing grain-oriented electrical steel sheet
JP6084351B2 (en) Oriented electrical steel sheet and manufacturing method thereof
US10294544B2 (en) Method for producing grain-oriented electrical steel sheet
JP5594252B2 (en) Method for producing grain-oriented electrical steel sheet
WO2012001952A1 (en) Oriented electromagnetic steel plate and production method for same
JP5906654B2 (en) Method for producing grain-oriented electrical steel sheet
JP5712667B2 (en) Method for producing grain-oriented electrical steel sheet
JP5594240B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5760506B2 (en) Method for producing grain-oriented electrical steel sheet
JP6003321B2 (en) Method for producing grain-oriented electrical steel sheet
JP5729014B2 (en) Method for producing grain-oriented electrical steel sheet
JP6003197B2 (en) Magnetic domain subdivision processing method
JP5565307B2 (en) Method for producing grain-oriented electrical steel sheet
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
JP5712626B2 (en) Method for producing grain-oriented electrical steel sheet
JP5533348B2 (en) Method for producing grain-oriented electrical steel sheet
KR20230109739A (en) Grain-oriented electrical steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 6003197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250