JP5594240B2 - Oriented electrical steel sheet and manufacturing method thereof - Google Patents

Oriented electrical steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP5594240B2
JP5594240B2 JP2011144696A JP2011144696A JP5594240B2 JP 5594240 B2 JP5594240 B2 JP 5594240B2 JP 2011144696 A JP2011144696 A JP 2011144696A JP 2011144696 A JP2011144696 A JP 2011144696A JP 5594240 B2 JP5594240 B2 JP 5594240B2
Authority
JP
Japan
Prior art keywords
steel sheet
oriented electrical
grain
electrical steel
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011144696A
Other languages
Japanese (ja)
Other versions
JP2012031515A (en
Inventor
渡辺  誠
誠司 岡部
山口  広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011144696A priority Critical patent/JP5594240B2/en
Publication of JP2012031515A publication Critical patent/JP2012031515A/en
Application granted granted Critical
Publication of JP5594240B2 publication Critical patent/JP5594240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、方向性電磁鋼板およびその製造方法、特に方向性電磁鋼板に磁区細分化処理を施すことにより鉄損を改善する方法に関する。     The present invention relates to a grain-oriented electrical steel sheet and a method for producing the grain-oriented electrical steel sheet, and more particularly to a method for improving iron loss by subjecting a grain-oriented electrical steel sheet to a magnetic domain refinement process.

方向性電磁鋼板は、主にトランスの鉄心として利用され、その磁化特性が優れていること、特に鉄損が低いことが求められている。
そのためには、鋼板中の二次再結晶粒を、(110)[001]方位(いわゆる、ゴス方位)に高度に揃えることや、製品鋼板中の不純物を低減することが重要である。しかしながら、結晶方位を制御することや、不純物を低減することは、製造コストとの兼ね合い等で限界がある。そこで、鋼板の表面に対して物理的な手法で不均一性を導入し、磁区の幅を細分化して鉄損を低減する技術、すなわち磁区細分化技術が開発されている。
The grain-oriented electrical steel sheet is mainly used as an iron core of a transformer and is required to have excellent magnetization characteristics, particularly low iron loss.
For this purpose, it is important to highly align the secondary recrystallized grains in the steel sheet in the (110) [001] orientation (so-called Goth orientation) and to reduce impurities in the product steel sheet. However, controlling the crystal orientation and reducing impurities are limited in view of the manufacturing cost. Therefore, a technique for reducing the iron loss by introducing non-uniformity to the surface of the steel sheet by a physical method and subdividing the width of the magnetic domain, that is, a magnetic domain subdivision technique has been developed.

例えば、特許文献1には、最終製品板にレーザーを照射し、鋼板表層に線状の高転位密度領域を導入し、磁区幅を狭くすることで、鋼板の鉄損を低減する技術が提案されている。レーザー照射を用いる磁区細分化技術は、その後改良され(特許文献2、特許文献3および特許文献4などを参照)鉄損特性が良好な方向性電磁鋼板が得られるようになってきている。   For example, Patent Document 1 proposes a technique for reducing the iron loss of a steel sheet by irradiating the final product plate with a laser, introducing a linear high dislocation density region into the steel sheet surface layer, and narrowing the magnetic domain width. ing. Magnetic domain fragmentation technology using laser irradiation has been improved thereafter (see Patent Document 2, Patent Document 3, and Patent Document 4), and grain oriented electrical steel sheets having good iron loss characteristics have been obtained.

特公昭57−2252号公報Japanese Patent Publication No.57-2252 特開2006−117964号公報JP 2006-117964 A 特開平10−204553号公報JP-A-10-204553 特開平11−279645号公報Japanese Patent Laid-Open No. 11-279645

上記したレーザーによる磁区細分化処理は、仕上げ焼鈍後に、張力被膜の焼付けを兼ねた平坦化焼鈍の後に行われるのが定法であるが、このレーザーを照射した鋼板面が内側になる反りが圧延方向に生じることがある。これは、レーザー加熱された部分が熱膨張した際に周辺の温度上昇されていない部分に拘束されて圧縮変形するためと考えられている。このような変形は、変圧器に加工する際の妨げとなったり、鉄損や磁歪の劣化をもたらす原因となる。   The above-mentioned laser domain subdivision treatment is performed after the final annealing and after the flattening annealing that also serves as the baking of the tension film, but the warpage that the steel plate surface irradiated with this laser is on the inside is the rolling direction. May occur. This is considered to be due to compression deformation by being restrained by a peripheral portion where the temperature is not increased when the laser heated portion is thermally expanded. Such deformation becomes a hindrance when processing into a transformer or causes deterioration of iron loss and magnetostriction.

一方、レーザー照射に先立つ平坦化焼鈍では、鋼板を800℃以上の高温下で張力を加えて焼鈍し、仕上焼鈍におけるコイル状態に起因する鋼板の反り(湾曲)を矯正する。しかし、この際の矯正が強すぎる、特に炉内張力が強すぎると、フォルステライト被膜の部分的な破壊が生じ、フォルステライト被膜のヤング率が低下することに伴って、本来フォルステライト被膜が持っている張力付与効果が減少することが問題となる。   On the other hand, in flattening annealing prior to laser irradiation, the steel sheet is annealed by applying tension at a high temperature of 800 ° C. or higher, and the warpage (curvature) of the steel sheet due to the coil state in the finish annealing is corrected. However, if the correction at this time is too strong, especially the furnace tension is too strong, the forsterite film will be partially destroyed, and the Young's modulus of the forsterite film will decrease. The problem is that the tensioning effect is reduced.

そこで、本発明は、上記した2つの問題、すなわちレーザー照射面での反りの問題および平坦化焼鈍における張力付与膜の部分破壊の問題を同時に解消し、磁区細分化効果並びに張力付与効果を十二分に享受し得る方途について提供することを目的とする。   Therefore, the present invention simultaneously solves the above-mentioned two problems, namely, the problem of warping on the laser irradiation surface and the problem of partial fracture of the tension applying film in the flattening annealing, and the magnetic domain fragmentation effect and the tension applying effect are improved. The purpose is to provide ways that can be enjoyed in minutes.

発明者らは、上記した課題を解決するために、まず、平坦化焼鈍において張力付与膜の部分破壊が生じることのない範囲での矯正を行うこと、次に、レーザー照射後に反りを発生させないこと、の実現を目指して、その方途を鋭意究明したところ、平坦化焼鈍においてコイル起因の反りを若干残して、この残存反りを、次のレーザー照射に伴う鋼板変形と相殺することが極めて有効であることを知見し、本発明を完成するに到った。   In order to solve the above-described problems, the inventors first perform correction within a range in which partial fracture of the tension-imparting film does not occur in flattening annealing, and then do not generate warpage after laser irradiation. In order to achieve the above, the method has been intensively studied, and it is extremely effective to offset the remaining warpage with the deformation of the steel plate due to the next laser irradiation, leaving a slight warpage due to the coil in the flattening annealing. This has been found and the present invention has been completed.

すなわち、本発明の要旨構成は、次のとおりである。
1.表面側から順に下地被膜および張力被膜が形成された、鋼板の片面にレーザー照射が施されてなる方向性電磁鋼板であって、反り率が1%以下、かつ下地被膜におけるヤング率が9.5×1010 N/m2以上であることを特徴とする方向性電磁鋼板。
That is, the gist configuration of the present invention is as follows.
1. A grain-oriented electrical steel sheet in which a base coating and a tension coating are formed in order from the surface side and laser-irradiated on one side of the steel sheet, the warpage rate is 1% or less, and the Young's modulus in the base coating is 9.5 × 10 A grain-oriented electrical steel sheet characterized by being 10 N / m 2 or more.

2.前記1に記載される方向性電磁鋼板を製造する方法であって、コイル状に巻き取った方向性電磁鋼板に仕上げ焼鈍を施し、次いで平坦化焼鈍を施してから、該鋼板の圧延方向と交差する向きにレーザーを照射する、磁区細分化処理を施すに当り、前記平坦化焼鈍後の鋼板に前記コイル由来の反りを残存させ、該反りの凸面側にレーザーを照射して該鋼板を平坦に矯正することを特徴とする方向性電磁鋼板の製造方法。

2. A method for producing the grain-oriented electrical steel sheet described in 1 above, wherein the grain-oriented electrical steel sheet wound in a coil shape is subjected to finish annealing and then flattened annealing, and then intersects with the rolling direction of the steel sheet. In performing the magnetic domain subdivision treatment, irradiate the laser in the direction to leave the warp derived from the coil on the steel plate after the flattening annealing, and irradiate the laser on the convex surface side of the warp to flatten the steel plate. A method for producing a grain-oriented electrical steel sheet, characterized by correcting.

本発明の製造方法によれば、平坦化焼鈍における矯正を弱めて、下地被膜(フォルステライト被膜)に与えるダメージを軽減することにより該下地被膜(フォルステライト被膜)のヤング率が低下することを抑制するとともに、その結果残存させる反りを最終的にレーザー照射による変形を利用して矯正するため、最終製品の形状が平坦であり、しかも鉄損と磁歪特性に優れる方向性電磁鋼板を製造することができる。このように得られた方向性電磁鋼板は、反り率が1%以下、かつレーザー照射後の下地被膜におけるヤング率が9.5×1010 N/m2以上と、優れた特性を有するものとなる。 According to the manufacturing method of the present invention, it is possible to suppress a decrease in Young's modulus of the undercoat (forsterite film) by weakening correction in flattening annealing and reducing damage to the undercoat (forsterite film). As a result, the warp that remains as a result is finally corrected using deformation caused by laser irradiation, so that it is possible to produce a grain-oriented electrical steel sheet having a flat final product shape and excellent iron loss and magnetostriction characteristics. it can. The grain-oriented electrical steel sheet thus obtained has excellent properties such that the warpage rate is 1% or less and the Young's modulus in the undercoat after laser irradiation is 9.5 × 10 10 N / m 2 or more.

本発明に従うレーザー照射の要領を示す図である。It is a figure which shows the point of the laser irradiation according to this invention. 鋼板の反りの測定要領を示す図である。It is a figure which shows the measuring point of the curvature of a steel plate.

以下、本発明について、詳しく説明する。
まず、本発明は、表面側から順に下地被膜および張力被膜が形成された、鋼板の片面にレーザー照射が施されてなる方向性電磁鋼板であって、反り率が1%以下、かつ下地被膜におけるヤング率が9.5×1010 N/m2以上であることを特徴とする。
ここで、反り率(鋼板の平坦度を評価する尺度)とは、図2に示すように、鋼板1を圧延方向に平行に幅30mmで所定の長さL0(たとえば500mm)の試料に切断し、長手方向を水平方向に、かつ幅方向を鉛直方向にして、極力フリーな状態で立てた際の、鋼板の両端と中央との差L(図2における弧の中心から弦の中心までの長さ)の、前記試片の長さL0に対する比(L/L0×100(%))と規定する。
Hereinafter, the present invention will be described in detail.
First, the present invention is a grain-oriented electrical steel sheet in which a base film and a tension film are formed in order from the surface side, and laser irradiation is performed on one side of a steel sheet, the warpage rate is 1% or less, and the base film The Young's modulus is 9.5 × 10 10 N / m 2 or more.
Here, the warpage rate (a scale for evaluating the flatness of a steel plate) is, as shown in FIG. 2, obtained by cutting the steel plate 1 into a sample having a width 30 mm and a predetermined length L0 (for example, 500 mm) parallel to the rolling direction. The difference L between the both ends and the center of the steel sheet when standing in a state where the longitudinal direction is horizontal and the width direction is vertical as much as possible (the length from the center of the arc to the center of the string in FIG. 2) )) With respect to the length L0 of the specimen (L / L0 × 100 (%)).

すなわち、反り率が1%を超えると、トランス等に加工したときに鋼板が弾性変形し、歪が入って騒音や鉄損を劣化させる原因となる。このように平坦にした上で下地被膜のヤング率を9.5×1010 N/m2以上に高めることが、本発明の特徴である。これにより、張力効果が働いて騒音や鉄損を改善することができる。 That is, when the warpage rate exceeds 1%, the steel sheet is elastically deformed when processed into a transformer or the like, and distortion is generated, causing noise and iron loss to deteriorate. It is a feature of the present invention to increase the Young's modulus of the undercoat to 9.5 × 10 10 N / m 2 or more after flattening in this way. Thereby, the tension effect works and noise and iron loss can be improved.

ここで、レーザー照射後の下地被膜のヤング率を9.5×1010 N/m2以上としたのは、この値以上とすることにより張力効果が有効に働き、鉄損の改善が顕著に認められるようになるためである。 Here, the Young's modulus of the undercoat after laser irradiation was set to 9.5 × 10 10 N / m 2 or more. By setting this value or more, the tension effect worked effectively, and iron loss was significantly improved. This is because

次に、以上の鋼板を得るためには、コイル状に巻き取った方向性電磁鋼板に仕上げ焼鈍を施したのち、平坦化焼鈍にてコイルの巻き癖を取り除いて鋼板を平坦化する際に、この平坦化焼鈍における焼鈍条件の調整などにより、鋼板の圧延方向に発生した反り(湾曲)を、該平坦化焼鈍後のレーザー照射によって矯正できる程度の範囲内の反りとして残す、矯正を行う。すなわち、平坦化焼鈍は鋼板が完全に平坦になるまでは行わず、つまり緩い条件下で反りの矯正を行って被膜のダメージを回避し、残る反りの矯正代を、続くレーザー照射に伴って発生する鋼板の前記反りと逆側の反りによって相殺し、このレーザー照射後に最終的に鋼板の平坦化を完成するところに特徴がある。
なお、本発明において、レーザー照射は、図1(a)に示すように、反りが残った鋼板1の外側の面(凸面側)に照射するが、必ずしも反った状態で照射しなくともよく、工業的には、図1(b)に示すように、鋼板1の圧延方向に張力を掛けた状態にて、張力付与前での凸面側に照射することが好ましい。
Next, in order to obtain the above steel sheet, after performing finish annealing on the directional electromagnetic steel sheet wound in a coil shape, when removing the coil curl by flattening annealing and flattening the steel sheet, Correction is performed by leaving the warp (curvature) generated in the rolling direction of the steel sheet as a warp within a range that can be corrected by laser irradiation after the flattening annealing by adjusting the annealing conditions in the flattening annealing. In other words, the flattening annealing is not performed until the steel plate is completely flat, that is, the warp is corrected under a loose condition to avoid damage to the coating, and the remaining warp correction is generated along with the subsequent laser irradiation. The steel sheet is offset by the warpage on the opposite side to the warpage of the steel sheet to be finished, and finally flattening of the steel sheet is completed after this laser irradiation.
In the present invention, as shown in FIG. 1 (a), the laser irradiation is performed on the outer surface (convex surface side) of the steel plate 1 where the warp remains, but it is not always necessary to irradiate in a warped state. Industrially, as shown in FIG. 1 (b), it is preferable to irradiate the convex surface side before applying tension in a state where tension is applied in the rolling direction of the steel sheet 1.

ここで、平坦化焼鈍において、レーザー照射によって矯正できる程度の範囲内の反りを残すには、焼鈍条件、すなわち、通板張力、焼鈍温度、板厚、下地被膜の厚さ、張力被膜の厚さ、鋼中のSi量及び焼鈍時間等のいずれか1または2以上を調整すればよいが、特に、焼鈍温度を810℃以下にするか、通板張力を4.9MPa(0.5kgf/mm)以下に低減することが、フォルステライト被膜のダメージを抑制するのに好ましい。
すなわち、焼鈍温度を810℃以下にすることによって、鋼板の伸びが抑制されるため、平坦化焼鈍中に、フォルステライト被膜が鋼板の伸びに追随できずにその粒界において部分的に割れが生じることが抑制され、張力効果が減少するのを防ぐことができる。
なお、下限は、レーザー照射によって矯正できる範囲に反りを低減するため、700℃程度とすることが好ましい。
同様に、通板張力を4.9MPa(0.5kgf/mm)以下に低減することによって、鋼板の伸びが抑制されるため、やはり、フォルステライト被膜の割れによる張力効果の減少を防ぐことができる。なお、下限は、同様に、レーザーで矯正できる範囲に反りを低減するため、1. 96MPa(0.2kgf/mm)程度とすることが好ましい。
Here, in the flattening annealing, in order to leave the warp within a range that can be corrected by laser irradiation, the annealing conditions, that is, the plate tension, the annealing temperature, the plate thickness, the thickness of the undercoat, the thickness of the tension coat Any one or more of the Si amount and annealing time in the steel may be adjusted. In particular, the annealing temperature is set to 810 ° C or less, or the plate tension is set to 4.9MPa (0.5kgf / mm 2 ) or less. It is preferable to reduce the forsterite film damage.
That is, since the elongation of the steel sheet is suppressed by setting the annealing temperature to 810 ° C. or less, the forsterite film cannot follow the elongation of the steel sheet during the flattening annealing, and cracks are partially generated at the grain boundaries. It is possible to prevent the tension effect from decreasing.
The lower limit is preferably set to about 700 ° C. in order to reduce warpage within a range that can be corrected by laser irradiation.
Similarly, by reducing the sheet passing tension to 4.9 MPa (0.5 kgf / mm 2 ) or less, the elongation of the steel sheet is suppressed, so that the decrease in the tension effect due to the crack of the forsterite film can be prevented. Similarly, the lower limit is preferably set to about 1.96 MPa (0.2 kgf / mm 2 ) in order to reduce warpage within a range that can be corrected by a laser.

次いで、上記した適宜の反りを残した鋼板に対して、その反りの凸面側からレーザー照射を行う。該レーザーを照射する凸面側は、コイルに巻き取って仕上げ焼鈍する際にコイル外側となる面に相当する。該レーザー照射にて与える歪は鋼板の圧延方向と交差する向きに連続または断続(点線状)した線状に導入する。この線状の歪み導入領域は圧延方向に1mm以上20mm以下の間隔を置いて反復して形成する。   Next, laser irradiation is performed from the convex surface side of the warp on the steel sheet that has left the appropriate warp. The convex surface side irradiated with the laser corresponds to a surface that becomes the outside of the coil when it is wound on the coil and subjected to finish annealing. The strain applied by the laser irradiation is introduced into a continuous or intermittent (dotted line) linear shape in a direction crossing the rolling direction of the steel sheet. This linear strain introduction region is formed repeatedly at intervals of 1 mm to 20 mm in the rolling direction.

本発明では、レーザー照射のエネルギーを、従来好適とされていた領域よりも高くすることが可能である。すなわち、従来は、平坦な鋼板にレーザーを照射した場合の、鋼板の反り変形によって生じる、形状不良、鉄損劣化および騒音増大等が、レーザー照射の高エネルギー化の制約となっていたが、この制約が緩和されるからである。
従って、従来は適用が難しかった、例えば、Qスイッチパルス型YAGレーザーの出力を1パルス当たり6mJとし、焦点径0.3mmに集光し、圧延方向に直行する方向に点線状に0.4mm間隔で照射したラインを圧延方向に5mm間隔で繰り返す、レーザー照射が可能となり、より低鉄損化に寄与するものである。
In the present invention, it is possible to make the energy of laser irradiation higher than that of a conventionally suitable region. That is, in the past, when a flat steel plate was irradiated with a laser, the shape defect, iron loss deterioration, noise increase, etc. caused by the warp deformation of the steel plate were the constraints for increasing the energy of laser irradiation. This is because the restrictions are relaxed.
Therefore, it was difficult to apply in the past, for example, the output of a Q-switched pulse YAG laser was 6 mJ per pulse, focused at a focal diameter of 0.3 mm, and irradiated at intervals of 0.4 mm in the direction perpendicular to the rolling direction. Repeated lines are repeated at intervals of 5 mm in the rolling direction, enabling laser irradiation, which contributes to lower iron loss.

かように、このレーザー照射の際に不可避的に生じる鋼板の変形と、先の平坦化焼鈍で残留させた鋼板の反りとを相殺させれば、レーザー照射後の鋼板における前記反り率が1%以下となるように、確実に平坦化できる。   Thus, if the deformation of the steel plate inevitably generated during the laser irradiation and the warpage of the steel plate left by the previous flattening annealing are offset, the warpage rate in the steel plate after the laser irradiation is 1%. It can be surely flattened so that

ここに、レーザーの照射は、仕上げ焼鈍と張力被膜の形成後である必要がある。方向性電磁鋼板の特徴であるゴス方位の二次再結晶を成長させるための仕上げ焼鈍、および張力被膜の形成と張力効果の発現のためには、いずれも高温での熱処理が必要である。しかし、このような高温処理は鋼板に導入された歪みを除去または減少させるため、例えばレーザーの照射後に張力被膜の焼付けを行うと、レーザー照射に起因した歪による圧縮応力が解消され、鋼板が平坦化焼鈍直後の湾曲した状態に戻ってしまう。したがって、張力被膜の形成等の高温処理は、本発明のレーザー処理前に実施する必要がある。   Here, the laser irradiation needs to be after the finish annealing and the formation of the tension coating. Heat treatment at a high temperature is necessary for finish annealing for growing goss-oriented secondary recrystallization, which is a characteristic of grain-oriented electrical steel sheets, and for the formation of a tensile film and the expression of the tension effect. However, since such high-temperature treatment removes or reduces the strain introduced into the steel sheet, for example, when the tension coating is baked after laser irradiation, the compressive stress due to the distortion caused by laser irradiation is eliminated and the steel sheet is flattened. It returns to the curved state immediately after chemical annealing. Therefore, high-temperature treatment such as formation of a tension coating must be performed before the laser treatment of the present invention.

そして、本発明で照射するレーザーの光源としては、連続波レーザー、パルスレーザーのいずれでもよく、YAGレーザーやCO2レーザー等の種類も選ぶ必要はない。ここで、最近使用されるようになってきたグリーンレーザーマーカーは、照***度の面で特に好適である。その際、グリーンレーザーマーカーにおけるレーザーの出力は、単位長さ当たりの熱量として、5〜100J/m程度の範囲が好ましい。
また、レーザービームのスポット径は0.1〜0.5mm程度の範囲とし、圧延方向の繰返し間隔は1〜20mm程度の範囲とすることが好ましい。
なお、鋼板にレーザー照射にて付与される歪の深さは、5〜30μm程度とするのが好適である。
The laser light source used in the present invention may be either a continuous wave laser or a pulsed laser, and it is not necessary to select a type such as a YAG laser or a CO2 laser. Here, the green laser marker that has recently been used is particularly suitable in terms of irradiation accuracy. At that time, the laser output of the green laser marker is preferably in the range of about 5 to 100 J / m as the amount of heat per unit length.
The spot diameter of the laser beam is preferably in the range of about 0.1 to 0.5 mm, and the repetition interval in the rolling direction is preferably in the range of about 1 to 20 mm.
In addition, it is suitable for the depth of the distortion provided to a steel plate by laser irradiation to be about 5-30 micrometers.

また、磁区細分化処理を施した方向性電磁鋼板の鉄損は、二次再結晶の方位集積が高い方がより小さいことが知られている。方位集積の目安としてB(800A/mで磁化した際の磁束密度)がよく用いられるが、本発明に用いる方向性電磁鋼板はBが1.88T以上、より好ましくは1.92T以上のものが好適である。 Further, it is known that the iron loss of the grain-oriented electrical steel sheet subjected to the magnetic domain refinement treatment is smaller when the orientation accumulation of secondary recrystallization is higher. B 8 (magnetic flux density when magnetized at 800 A / m) is often used as a measure of orientation accumulation, but the grain-oriented electrical steel sheet used in the present invention has a B 8 of 1.88 T or more, more preferably 1.92 T or more. Is preferred.

電磁鋼板の表面に形成された張力被膜は、従来公知の張力絶縁被膜で構わないが、リン酸アルミニウムまたはリン酸マグネシウム等のリン酸塩とシリカを主成分とするガラス質の張力絶縁被膜であることが好ましい。
なお、張力被膜の焼付けと平坦化焼鈍とは同時であっても、別々の焼鈍に分かれていてもかまわない。また、レーザー照射後、被膜に局所的なピンホールが入る場合があるが、これを保護するために低温で焼き付けるコーティングを施すことも出来る。
The tension coating formed on the surface of the electrical steel sheet may be a conventionally known tension insulating coating, but is a glassy tension insulating coating mainly composed of a phosphate such as aluminum phosphate or magnesium phosphate and silica. It is preferable.
The tension coating baking and the planarization annealing may be performed simultaneously or separately. In addition, local pinholes may enter the coating after laser irradiation, and a coating that is baked at a low temperature can be applied to protect this.

本発明に係る方向性電磁鋼板は、従来公知の方向性電磁鋼板であればよい。例えば、Si:2.0〜8.0質量%を含む電磁鋼素材を用いればよい。
Si:2.0〜8.0質量%
Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、含有量が2.0質量%に満たないと十分な鉄損低減効果が達成できず、一方、8.0質量%を超えると加工性が著しく低下し、また磁束密度も低下するため、Si量は2.0〜8.0質量%の範囲とすることが好ましい。
The grain-oriented electrical steel sheet according to the present invention may be a conventionally known grain-oriented electrical steel sheet. For example, an electromagnetic steel material containing Si: 2.0 to 8.0% by mass may be used.
Si: 2.0 to 8.0 mass%
Si is an element effective in increasing the electrical resistance of steel and improving iron loss. However, if the content is less than 2.0% by mass, a sufficient iron loss reduction effect cannot be achieved, while 8.0% by mass. If it exceeds 1, the workability is remarkably lowered and the magnetic flux density is also lowered. Therefore, the Si content is preferably in the range of 2.0 to 8.0% by mass.

ここで、Siの他の基本成分および任意添加成分について述べると次のとおりである。
C:0.08質量%以下
Cは、集合組織の改善のために添加をするが、0.08質量%を超えると製造工程中に磁気時効の起こらない50質量ppm以下までCを低減することが困難になるため、0.08質量%以下とすることが好ましい。なお、下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特に設ける必要はない。
Here, other basic components and optional addition components of Si will be described as follows.
C: 0.08% by mass or less C is added to improve the texture. However, if it exceeds 0.08% by mass, it is difficult to reduce C to 50 ppm by mass or less at which no magnetic aging occurs during the manufacturing process. Therefore, the content is preferably 0.08% by mass or less. In addition, regarding the lower limit, since a secondary recrystallization is possible even for a material not containing C, it is not particularly necessary to provide it.

Mn:0.005〜1.0質量%
Mnは、熱間加工性を良好にする上で必要な元素であるが、含有量が0.005質量%未満ではその添加効果に乏しく、一方1.0質量%を超えると製品板の磁束密度が低下するため、Mn量は0.005〜1.0質量%の範囲とすることが好ましい。
Mn: 0.005 to 1.0 mass%
Mn is an element necessary for improving the hot workability. However, if the content is less than 0.005% by mass, the effect of addition is poor, whereas if it exceeds 1.0% by mass, the magnetic flux density of the product plate decreases. The amount of Mn is preferably in the range of 0.005 to 1.0 mass%.

ここで、二次再結晶を生じさせるために、インヒビターを利用する場合、例えばAlN系インヒビターを利用する場合であればAlおよびNを、またMnS・MnSe系インヒビターを利用する場合であればMnとSeおよび/またはSを適量含有させればよい。勿論、両インヒビターを併用してもよい。この場合におけるAl、N、SおよびSeの好適含有量はそれぞれ、Al:0.01〜0.065質量%、N:0.005〜0.012質量%、S:0.005〜0.03質量%、Se:0.005〜0.03質量%である。
さらに、本発明は、Al、N、S、Seの含有量を制限した、インヒビターを使用しない方向性電磁鋼板にも適用することができる。
この場合には、Al、N、SおよびSe量はそれぞれ、Al:100 質量ppm以下、N:50 質量ppm以下、S:50 質量ppm以下、Se:50 質量ppm以下に抑制することが好ましい。
Here, when an inhibitor is used to cause secondary recrystallization, for example, Al and N are used when an AlN inhibitor is used, and Mn is used when an MnS / MnSe inhibitor is used. An appropriate amount of Se and / or S may be contained. Of course, both inhibitors may be used in combination. The preferred contents of Al, N, S and Se in this case are Al: 0.01 to 0.065 mass%, N: 0.005 to 0.012 mass%, S: 0.005 to 0.03 mass%, and Se: 0.005 to 0.03 mass%, respectively. .
Furthermore, the present invention can also be applied to grain-oriented electrical steel sheets in which the contents of Al, N, S, and Se are limited and no inhibitor is used.
In this case, the amounts of Al, N, S and Se are preferably suppressed to Al: 100 mass ppm or less, N: 50 mass ppm or less, S: 50 mass ppm or less, and Se: 50 mass ppm or less.

上記の基本成分以外に、磁気特性改善成分として、次に述べる元素を適宜含有させることができる。
Ni:0.03〜1.50質量%、Sn:0.01〜1.50質量%、Sb:0.005〜1.50質量%、Cu:0.03〜3.0質量%、P:0.03〜0.50質量%、Mo:0.005〜0.10質量%およびCr:0.03〜1.50質量%のうちから選んだ少なくとも1種
Niは、熱延板組織を改善して磁気特性を向上させるために有用な元素である。しかしながら、含有量が0.03質量%未満では磁気特性の向上効果が小さく、一方1.5質量%を超えると二次再結晶が不安定になり磁気特性が劣化する。そのため、Ni量は0.03〜1.5質量%の範囲とするのが好ましい。
In addition to the above basic components, the following elements can be appropriately contained as magnetic property improving components.
Ni: 0.03-1.50% by mass, Sn: 0.01-1.50% by mass, Sb: 0.005-1.50% by mass, Cu: 0.03-3.0% by mass, P: 0.03-0.50% by mass, Mo: 0.005-0.10% by mass and Cr: At least one selected from 0.03 to 1.50 mass%
Ni is an element useful for improving the magnetic properties by improving the hot-rolled sheet structure. However, if the content is less than 0.03% by mass, the effect of improving the magnetic properties is small. On the other hand, if the content exceeds 1.5% by mass, the secondary recrystallization becomes unstable and the magnetic properties deteriorate. Therefore, the amount of Ni is preferably in the range of 0.03 to 1.5 mass%.

また、Sn、Sb、Cu、P、CrおよびMoはそれぞれ磁気特性の向上に有用な元素であるが、いずれも上記した各成分の下限に満たないと、磁気特性の向上効果が小さく、一方、上記した各成分の上限量を超えると、二次再結晶粒の発達が阻害されるため、それぞれ上記の範囲で含有させることが好ましい。
なお、上記成分以外の残部は、製造工程において混入する不可避的不純物およびFeである。また、上記のC、N、SおよびSeは、最終仕上げ焼鈍の純化過程で除去され、方向性電磁鋼板の製品では、不可避的不純物程度に低減される。
Sn, Sb, Cu, P, Cr and Mo are elements useful for improving the magnetic properties, respectively, but if any of them is less than the lower limit of each component described above, the effect of improving the magnetic properties is small. If the upper limit amount of each component described above is exceeded, the development of secondary recrystallized grains is hindered.
The balance other than the above components is inevitable impurities and Fe mixed in the manufacturing process. Moreover, said C, N, S, and Se are removed in the refinement | purification process of final finish annealing, and are reduced to an unavoidable impurity grade in the product of a grain-oriented electrical steel sheet.

上記した成分組成になる鋼スラブは、やはり方向性電磁鋼板の一般に従う工程を経て、二次再結晶焼鈍後に張力絶縁被膜を形成した方向性電磁鋼板とする。すなわち、スラブ加熱後に熱間圧延を施し、1回又は中間焼鈍を挟む2回以上の冷間圧延にて最終板厚とし、その後、脱炭、一次再結晶焼鈍した後、例えばMgOを主成分とした焼鈍分離剤を塗布し、二次再結晶過程と純化過程を含む最終仕上げ焼鈍を施し、上述の操作を行った上、例えばコロイダルシリカとリン酸マグネシウムからなる絶縁コートを塗布して焼付ければよい。   The steel slab having the component composition described above is a grain oriented electrical steel sheet in which a tensile insulating coating is formed after secondary recrystallization annealing through a process generally following that of grain oriented electrical steel sheets. That is, hot rolling is performed after slab heating, and the final sheet thickness is obtained by one or more cold rolling sandwiching intermediate annealing, followed by decarburization and primary recrystallization annealing. After applying the above-mentioned annealing separation agent, applying the final finish annealing including the secondary recrystallization process and the purification process, performing the above-described operation, for example, applying and baking an insulating coat made of colloidal silica and magnesium phosphate Good.

方向性電磁鋼板の最終仕上焼鈍後の鋼板コイルに、平坦化焼鈍を行うと同時に張力被膜を塗布そして焼付けした。かくして得られた、板厚0.23mm、幅1.2mおよび重量12トンの方向性電磁鋼板コイルを連続的に送りながら、レーザーを連続的に照射する磁区細分化処理を行った。   The steel sheet coil after final finish annealing of the grain-oriented electrical steel sheet was flattened and annealed, and at the same time, a tension coating was applied and baked. The magnetic domain refinement treatment was performed by continuously irradiating a laser while continuously feeding the directional electrical steel sheet coil having a thickness of 0.23 mm, a width of 1.2 m and a weight of 12 tons thus obtained.

ここで、方向性電磁鋼板は、3.4質量%のSiを含有し、800A/mでの磁束密度Bが1.93Tおよび1.7T、50Hzでの鉄損W17/50が0.90W/kgと、一般的な高配向性の方向性電磁鋼板であり、張力被膜は下地被膜(フォルステライト被膜)の上に形成されたコロイド状シリカ、リン酸マグネシウム、クロム酸からなる薬液を焼き付けた一般的な張力被膜である。 Here, the grain-oriented electrical steel sheet contains 3.4% by mass of Si, the magnetic flux density B 8 at 800 A / m is 1.93 T and 1.7 T, and the iron loss W 17/50 at 50 Hz is 0.90 W / kg. This is a general high-oriented grain-oriented electrical steel sheet, and the tension film is a general tension that is baked with a chemical solution made of colloidal silica, magnesium phosphate, and chromic acid formed on the base film (forsterite film). It is a film.

上記において、平坦化焼鈍の条件を、表1に示すように、平坦化焼鈍後の鋼板の形状を反りが残存する諸条件並びに反りが矯正される諸条件に、種々変動させた。なお、平坦化焼鈍の保持時間は60秒である。   In the above, as shown in Table 1, the conditions for the flattening annealing were varied in various ways, such as various conditions for remaining warpage and various conditions for correcting the warpage. Note that the holding time for the flattening annealing is 60 seconds.

また、コイルに施したレーザー照射処理は、次のとおりである。すなわち、レーザー発信器は、Qスイッチパルス型YAGレーザであり、ビーム径は0.3mm、パルス繰り返し周波数25kHzで、幅200mm毎に1台の発振器を並べ、ガルバノスキャナによって圧延方向と直交する方向に照射線を圧延方向へ5mm間隔で描くように照射した。レーザーは、鋼板を拘束しない状態で圧延方向に凸となる面に照射し、この照射時の出力を調整して、照射後の反りが変わるようにした。   The laser irradiation treatment applied to the coil is as follows. In other words, the laser transmitter is a Q-switched pulse YAG laser, the beam diameter is 0.3 mm, the pulse repetition frequency is 25 kHz, one oscillator is arranged for every 200 mm width, and irradiation is performed in a direction perpendicular to the rolling direction by a galvano scanner. Irradiation was performed so that the line was drawn at intervals of 5 mm in the rolling direction. The laser was applied to the surface that was convex in the rolling direction without restraining the steel sheet, and the output during this irradiation was adjusted so that the warp after irradiation changed.

なお、鋼板の反り量および反り率は、図2に示すように、鋼板を圧延方向に平行に長さL0=500mmおよび幅30mmに切断し、長手方向を水平方向に、かつ幅方向を鉛直方向にして、極力フリーな状態で立てた際の、鋼板の両端と中央との差L(図2における弧の中心から弦の中心までの長さ)を反り量とし、反り率は、L/L0×100(%)で評価した。ただし、反り量が3mm以下(反り率0.6%以下)では立てることが困難であり、実質的な品質に影響しないため平坦と評価した。ここで、反り量および反り率の評価結果は、平坦化焼鈍前に反っていた側をプラスとし、この逆側への反りをマイナスとして表示した。   As shown in FIG. 2, the amount of warpage and the warpage rate of the steel sheet were cut into a length L0 = 500 mm and a width of 30 mm parallel to the rolling direction, the longitudinal direction was horizontal, and the width direction was vertical. Then, the difference L (the length from the center of the arc to the center of the chord in FIG. 2) between the both ends and the center of the steel sheet when standing in a free state as much as possible is the amount of warpage, and the warpage rate is L / L0. X100 (%) evaluated. However, it was difficult to stand when the amount of warpage was 3 mm or less (a warpage rate of 0.6% or less), and it was evaluated as flat because it did not affect the substantial quality. Here, the evaluation results of the amount of warpage and the warpage rate are shown as positive on the side warped before flattening annealing and negative on the opposite side.

被膜張力の評価は、鋼板の磁歪測定で行った。すなわち、1.7Tおよび50Hzにおける磁歪をレーザードップラー式振動計にて測定する際、圧延方向の圧縮応力を0MPa(0kgf/mm)から9.8 MPa(1.0kgf/mm)まで徐々に増加させた。磁歪の最小値と最大値との差(Peak to Peak値)が応力0MPaでの測定値の3倍以上になったとき、その圧縮応力が拮抗する被膜張力を上回ったものとして、被膜張力の評価値とした。
また、下地皮膜のヤング率は、一旦張力被膜をアルカリ洗浄などによって除去した後、供試材にパルスレーザーを照射して励起された表面弾性波の音速を測定し、これを解析することによって求めた。
The film tension was evaluated by measuring the magnetostriction of the steel sheet. That is, when the magnetostriction at 1.7 T and 50 Hz was measured with a laser Doppler vibrometer, the compressive stress in the rolling direction was gradually increased from 0 MPa (0 kgf / mm 2 ) to 9.8 MPa (1.0 kgf / mm 2 ). When the difference between the minimum value and the maximum value of magnetostriction (Peak to Peak value) is more than 3 times the measured value at a stress of 0 MPa, the film tension is evaluated as exceeding the film tension that the compressive stress antagonizes. Value.
In addition, the Young's modulus of the undercoat is obtained by removing the tension coating by alkali cleaning, etc., measuring the sound velocity of the surface acoustic wave excited by irradiating the specimen with a pulsed laser, and analyzing it. It was.

以上の評価結果を表1に示すように、平坦化焼鈍を低温、または低張力にして、レーザー照射の後が平坦になるようにした場合に、鉄損の減少と平坦化焼鈍での被膜損傷の抑制効果、すなわち被膜張力の向上の効果が得られた。この効果は、変圧器として方向性電磁鋼板を使用した際に、鉄損および騒音の低減、および加工による品質劣化の抑制に寄与するところ大である。   As shown in Table 1, when the flattening annealing is performed at a low temperature or low tension so that the surface after laser irradiation becomes flat, the iron loss is reduced and the film is damaged by the flattening annealing. In other words, an effect of improving the film tension was obtained. This effect greatly contributes to reduction of iron loss and noise and suppression of quality deterioration due to processing when a grain-oriented electrical steel sheet is used as a transformer.

Claims (2)

表面側から順に下地被膜および張力被膜が形成された、鋼板の片面にレーザー照射が施されてなる方向性電磁鋼板であって、反り率が1%以下、かつ下地被膜におけるヤング率が9.5×1010 N/m2以上であることを特徴とする方向性電磁鋼板。 A grain-oriented electrical steel sheet in which a base coating and a tension coating are formed in order from the surface side and laser-irradiated on one side of the steel sheet, the warpage rate is 1% or less, and the Young's modulus in the base coating is 9.5 × 10 A grain-oriented electrical steel sheet characterized by being 10 N / m 2 or more. 請求項1に記載される方向性電磁鋼板を製造する方法であって、コイル状に巻き取った方向性電磁鋼板に仕上げ焼鈍を施し、次いで平坦化焼鈍を施してから、該鋼板の圧延方向と交差する向きにレーザーを照射する、磁区細分化処理を施すに当り、前記平坦化焼鈍後の鋼板に前記コイル由来の反りを残存させ、該反りの凸面側にレーザーを照射して該鋼板を平坦に矯正することを特徴とする方向性電磁鋼板の製造方法。 A method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the grain-oriented electrical steel sheet wound in a coil shape is subjected to finish annealing, and then subjected to planarization annealing, and then the rolling direction of the steel sheet In performing the magnetic domain subdivision treatment, irradiating laser in the intersecting direction, the warp derived from the coil remains in the steel plate after the flattening annealing, and the steel plate is flattened by irradiating the convex surface side of the warp with laser. A method for producing a grain-oriented electrical steel sheet, wherein the grain-oriented electrical steel sheet is straightened.
JP2011144696A 2010-06-30 2011-06-29 Oriented electrical steel sheet and manufacturing method thereof Active JP5594240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011144696A JP5594240B2 (en) 2010-06-30 2011-06-29 Oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010150379 2010-06-30
JP2010150379 2010-06-30
JP2011144696A JP5594240B2 (en) 2010-06-30 2011-06-29 Oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012031515A JP2012031515A (en) 2012-02-16
JP5594240B2 true JP5594240B2 (en) 2014-09-24

Family

ID=45845259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011144696A Active JP5594240B2 (en) 2010-06-30 2011-06-29 Oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5594240B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012172624A1 (en) * 2011-06-13 2015-02-23 新日鐵住金株式会社 Manufacturing method of unidirectional electrical steel sheet
JP5447738B2 (en) 2011-12-26 2014-03-19 Jfeスチール株式会社 Oriented electrical steel sheet
KR102538120B1 (en) * 2020-12-21 2023-05-26 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing the same
KR102597512B1 (en) * 2020-12-22 2023-11-01 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing the same
EP4296382A1 (en) * 2021-03-15 2023-12-27 JFE Steel Corporation Oriented electromagnetic steel sheet and manufacturing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287765A (en) * 1993-04-02 1994-10-11 Nippon Steel Corp Formation of tension coating film of grain oriented silicon steel sheet
JP3531996B2 (en) * 1995-03-28 2004-05-31 新日本製鐵株式会社 Method of manufacturing unidirectional electromagnetic steel strip
JP3846064B2 (en) * 1998-10-09 2006-11-15 Jfeスチール株式会社 Oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2012031515A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5760504B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6157360B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5594252B2 (en) Method for producing grain-oriented electrical steel sheet
JP5593942B2 (en) Oriented electrical steel sheet and manufacturing method thereof
EP2878687A1 (en) Method for producing oriented electromagnetic steel sheet
JP6084351B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5594240B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2012031498A (en) Grain-oriented electromagnetic steel plate and production method for the same
JP5953690B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5906654B2 (en) Method for producing grain-oriented electrical steel sheet
JP2021046592A (en) Grain-oriented electromagnetic steel sheet
JP2012052232A (en) Grain-oriented electrical steel sheet, and method for producing the same
JP5760506B2 (en) Method for producing grain-oriented electrical steel sheet
JP5729014B2 (en) Method for producing grain-oriented electrical steel sheet
CN113710822B (en) Method for producing oriented electrical steel sheet
JP6369626B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP6003321B2 (en) Method for producing grain-oriented electrical steel sheet
JP2015140470A (en) Grain oriented silicon steel plate and production method thereof
JP5565307B2 (en) Method for producing grain-oriented electrical steel sheet
JP6003197B2 (en) Magnetic domain subdivision processing method
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
JP4943175B2 (en) Method for producing grain-oriented electrical steel sheet with high magnetic flux density
JP5691265B2 (en) Method for producing grain-oriented electrical steel sheet
JP7099648B1 (en) Directional electrical steel sheet and its manufacturing method
JP7264112B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131218

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R150 Certificate of patent or registration of utility model

Ref document number: 5594240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250