JP5533348B2 - Method for producing grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP5533348B2
JP5533348B2 JP2010148703A JP2010148703A JP5533348B2 JP 5533348 B2 JP5533348 B2 JP 5533348B2 JP 2010148703 A JP2010148703 A JP 2010148703A JP 2010148703 A JP2010148703 A JP 2010148703A JP 5533348 B2 JP5533348 B2 JP 5533348B2
Authority
JP
Japan
Prior art keywords
steel sheet
oriented electrical
mass
electrical steel
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010148703A
Other languages
Japanese (ja)
Other versions
JP2012012646A (en
Inventor
山口  広
誠司 岡部
大村  健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010148703A priority Critical patent/JP5533348B2/en
Publication of JP2012012646A publication Critical patent/JP2012012646A/en
Application granted granted Critical
Publication of JP5533348B2 publication Critical patent/JP5533348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、トランスなどの鉄心材料に用いる方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet used for a core material such as a transformer.

方向性電磁鋼板は、主にトランスの鉄心として利用され、その磁化特性が優れていること、特に鉄損が低いことが求められている。
そのためには、鋼板中の二次再結晶粒を、(110)[001]方位(いわゆる、ゴス方位)に高度に揃えることや、製品鋼板中の不純物を低減することが重要である。しかしながら、結晶方位を制御することや、不純物を低減することは、製造コストとの兼ね合い等で限界がある。そこで、鋼板の表面に対して物理的な手法で不均一性(歪)を導入し、磁区の幅を細分化して鉄損を低減する技術、すなわち磁区細分化技術が開発されている。
The grain-oriented electrical steel sheet is mainly used as an iron core of a transformer and is required to have excellent magnetization characteristics, particularly low iron loss.
For this purpose, it is important to highly align the secondary recrystallized grains in the steel sheet in the (110) [001] orientation (so-called Goth orientation) and to reduce impurities in the product steel sheet. However, controlling the crystal orientation and reducing impurities are limited in view of the manufacturing cost. In view of this, a technique for reducing the iron loss by introducing non-uniformity (strain) to the surface of the steel sheet by a physical method and subdividing the width of the magnetic domain has been developed.

例えば、特許文献1には、最終製品板にレーザーを照射し、鋼板表層に線状の高転位密度領域を導入し、磁区幅を狭くすることによって、鋼板の鉄損を低減する技術が提案されている。レーザー照射を用いる磁区細分化技術は、その後改良され(特許文献2、特許文献3および特許文献4などを参照)鉄損特性が良好な方向性電磁鋼板が得られるようになってきている。   For example, Patent Document 1 proposes a technique for reducing the iron loss of a steel sheet by irradiating the final product plate with a laser, introducing a linear high dislocation density region into the steel sheet surface layer, and narrowing the magnetic domain width. ing. Magnetic domain fragmentation technology using laser irradiation has been improved thereafter (see Patent Document 2, Patent Document 3, and Patent Document 4), and grain oriented electrical steel sheets having good iron loss characteristics have been obtained.

また、レーザーや電子ビームを照射するに当り、点光源であるレーザーや電子ビームの焦点距離がなるべく一定になるように、幅方向に鋼板を湾曲させて該湾曲内側面にレーザーや電子ビームを照射する技術が、特許文献5および6に開示されている。   In addition, when irradiating a laser or electron beam, the steel plate is bent in the width direction so that the focal length of the point light source laser or electron beam is as constant as possible, and the laser or electron beam is irradiated on the curved inner surface. Techniques to do this are disclosed in Patent Documents 5 and 6.

以上の通り、電磁鋼板の鉄損低減に向けて、種々の技術的改善がなされてはいるものの、近年の省エネルギーや環境保護に対する意識の高まりから、方向性電磁鋼板に対して、更なる鉄損特性の改善が要求されている。   As described above, although various technical improvements have been made to reduce the iron loss of electrical steel sheets, due to the recent increase in awareness of energy saving and environmental protection, there is a further increase in iron loss for grain-oriented electrical steel sheets. Improvement of characteristics is required.

特公昭57−2252号公報Japanese Patent Publication No.57-2252 特開2006−117964号公報JP 2006-117964 A 特開平10−204533号公報JP-A-10-204533 特開平11−279645号公報Japanese Patent Laid-Open No. 11-279645 特開昭59−97789号公報JP 59-97789 A 特開平2−25567号公報JP-A-2-25567

しかしながら、上掲した特許文献1〜6に記載の方向性電磁鋼板に係る技術は、そのいずれもが上記した要求に応えられる鉄損値を得られるものではなかった。
そこで、本発明は、歪を付与して鉄損を低減させる方向性電磁鋼板の製造方法において、より効果的に鉄損を低減させる手法について提案することを目的とする。
However, none of the technologies related to the grain-oriented electrical steel sheets described in Patent Documents 1 to 6 described above can obtain an iron loss value that satisfies the above-described requirements.
Therefore, an object of the present invention is to propose a technique for more effectively reducing iron loss in a method of manufacturing a grain-oriented electrical steel sheet that imparts strain and reduces iron loss.

発明者らは、上記した課題を解決するために、歪の導入による磁区細分化を行うに際し、鉄損低減に影響を与える因子について種々調査した。その結果、歪の導入後の鋼板の変形が大きな影響を及ぼしていることを見出した。   In order to solve the above-mentioned problems, the inventors have investigated various factors affecting the iron loss reduction when performing magnetic domain subdivision by introducing strain. As a result, it was found that the deformation of the steel sheet after the introduction of strain has a great influence.

レーザーやプラズマジェットの照射においては、その照射により鋼板に導入される歪みにより鋼板はわずかに被処理面を内側に凹面形となる。これは、局所的な入熱により被処理部のごく近傍に圧縮応力が生じることによるものと、一般的に考えられている。一般に、鋼板は幅方向と比較して圧延方向に長いため、幅方向の形状変化はあまり着目されないが、歪み導入後は幅方向にも僅かに凹面形に反りを生じる傾向が認められる。そして、このような凹面形状はトランス等の鉄心に組み込まれた際に、平坦な形状に矯正されるため、歪み導入時の凹面形に沿った内面側は延ばされる結果、引張応力が生じることになる。かように、鋼板の幅方向へのほぼ連続的な歪みの導入は、幅方向への引張応力を生じるため、その分、圧延方向には圧縮応力を生じることになる。圧延方向に圧縮応力が加わると、絶縁被膜によって圧延方向に付与した張力効果が阻害されることになり、磁気特性が劣化される、おそれがある。従って、この幅方向に生じる引張応力を抑制するための方途を鋭意究明した結果、本発明を完成するに到った。   In laser or plasma jet irradiation, the steel sheet is slightly concave with the surface to be processed inward due to distortion introduced into the steel sheet by the irradiation. This is generally considered to be caused by a compressive stress in the vicinity of the portion to be processed due to local heat input. In general, since the steel sheet is longer in the rolling direction than in the width direction, the shape change in the width direction is not much noticed, but a tendency to slightly warp the concave shape in the width direction after strain is introduced. And since such a concave shape is corrected to a flat shape when incorporated in an iron core such as a transformer, the inner surface side along the concave shape when strain is introduced is extended, resulting in tensile stress. Become. Thus, since the introduction of the substantially continuous strain in the width direction of the steel sheet generates a tensile stress in the width direction, a corresponding amount of compressive stress is generated in the rolling direction. When compressive stress is applied in the rolling direction, the tension effect imparted in the rolling direction by the insulating coating is hindered, and the magnetic properties may be deteriorated. Therefore, the present invention has been completed as a result of earnestly studying a method for suppressing the tensile stress generated in the width direction.

すなわち、本発明の要旨構成は次のとおりである。
(1)二次再結晶焼鈍後に張力絶縁被膜を形成した方向性電磁鋼板を、圧延方向が母線となる弧柱面における弧の曲率半径が6.0m以下である、弧柱面状に反らせたまま、該弧の凸側から鋼板の圧延方向と交差する向きに線状の歪を導入することを特徴とする方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
(1) A grain-oriented electrical steel sheet on which a tensile insulating film is formed after secondary recrystallization annealing is warped in an arc column surface shape in which the radius of curvature of the arc on the arc column surface whose rolling direction is a generating line is 6.0 m or less . A method for producing a grain-oriented electrical steel sheet, characterized in that linear strain is introduced in a direction intersecting the rolling direction of the steel sheet from the convex side of the arc.

(2)前記弧柱面の弧の曲率半径が20cm以上5m以下である前記(1)に記載の方向性電磁鋼板の製造方法。 (2) The manufacturing method of the grain-oriented electrical steel sheet according to (1), wherein an arc curvature radius of the arc column surface is 20 cm or more and 5 m or less.

本発明によれば、鋼板への歪導入時に幅方向に生じる引張応力を抑制し、かつ歪み導入処理後に平坦形状へ戻した際に幅方向に圧縮応力が生じる結果、圧延方向の引張応力が増長されてより大きな鉄損低減効果を得ることができる。   According to the present invention, the tensile stress generated in the width direction when strain is introduced into the steel sheet is suppressed, and the compressive stress is generated in the width direction when the plate is returned to the flat shape after the strain introduction treatment. As a result, the tensile stress in the rolling direction is increased. As a result, a greater iron loss reduction effect can be obtained.

本発明に従う歪導入処理の要領を示す図である。It is a figure which shows the point of the distortion | strain introduction process according to this invention. 本発明に従う鋼板への反りの付与方法を示す図である。It is a figure which shows the provision method of the curvature to the steel plate according to this invention.

以下、本発明の方法について具体的に説明する。
本発明は、二次再結晶焼鈍後に張力絶縁被膜を形成した方向性電磁鋼板に、連続または断続する線状に歪を導入して磁区細分化をはかるに当り、図1に示すように、鋼板を、圧延方向が母線となる弧柱面状に反らせたまま、該弧の凸側から鋼板の圧延方向と交差する向きに、例えばレーザービーム照射によって、線状の歪を導入する。
かように、予め鋼板を反らせておき、その凸側から鋼板の圧延方向と交差する向きに線状の歪を導入すれば、歪導入時に幅方向に生じる引張応力は抑制され、かつ歪み導入処理後に反りを平坦形状へ戻した際に、幅方向に圧縮応力が生じる結果、圧延方向の引張応力が増長されるのである。
Hereinafter, the method of the present invention will be specifically described.
As shown in FIG. 1, the present invention introduces a continuous or intermittent linear strain into a grain-oriented electrical steel sheet on which a tensile insulating film is formed after secondary recrystallization annealing, and as shown in FIG. In a direction that intersects with the rolling direction of the steel sheet from the convex side of the arc, a linear strain is introduced, for example, by laser beam irradiation, while the rolling direction is bent in the shape of an arc column surface in which the rolling direction is a generatrix.
Thus, if the steel plate is warped in advance and linear strain is introduced in the direction intersecting with the rolling direction of the steel plate from the convex side, the tensile stress generated in the width direction at the time of strain introduction is suppressed, and the strain introduction treatment When the warp is later returned to a flat shape, a compressive stress is generated in the width direction. As a result, the tensile stress in the rolling direction is increased.

ここで、鋼板に強制する弧柱面状の反りの程度は、該弧の曲率半径で表され、この曲率半径を5m以下にすれば上記した効果が発現するが、2m以下とすることが好適である。一方、曲率半径が5mより大きい場合には、湾曲の度合いが小さくなり、上記した鉄損低減効果を得ることが難しくなる。また、曲率半径が20cmより小さい場合には、例えば連続処理する鋼板の幅が1.2mの場合、弧状に湾曲させることができずにコイル状になってしまう。また、円柱面への歪導入処理となるため、コイル状にならなくとも曲率半径が小さくなるとレーザービーム等の照射が困難となり、幅方向に均一に歪みを導入することが困難となる。従って、曲率半径は50cm以上がより望ましい。
また、反りの形状は完全に円弧とならなくてもよく、鋼板幅方向(圧延直角方向)で曲率が変化してもよい。その場合も、曲率半径が20cm以上5m以下の範囲となることが好ましい。
Here, the degree of arc columnar warpage forced on the steel sheet is expressed by the radius of curvature of the arc. If the radius of curvature is 5 m or less, the above-described effect is exhibited, but it is preferably 2 m or less. It is. On the other hand, when the radius of curvature is larger than 5 m, the degree of bending becomes small, and it becomes difficult to obtain the above-described iron loss reduction effect. When the radius of curvature is smaller than 20 cm, for example, when the width of the steel sheet to be continuously processed is 1.2 m, it cannot be curved in an arc shape and becomes a coil shape. In addition, since the distortion is introduced into the cylindrical surface, irradiation with a laser beam or the like becomes difficult when the radius of curvature is small even if the shape is not coiled, and it is difficult to introduce distortion uniformly in the width direction. Accordingly, the radius of curvature is more preferably 50 cm or more.
Further, the shape of the warp may not be a complete arc, and the curvature may change in the steel plate width direction (the direction perpendicular to the rolling direction). Also in that case, it is preferable that the radius of curvature is in the range of 20 cm to 5 m.

さらに、鋼板に反りを与えるには、ロール状の架台に沿うように鋼板を固定する方法が好ましいが、工業的には、例えば図2に示すように、母線が弧状となっている樽状のバックアップロールに沿わせるように、押しつけロールによって鋼板を押し付けながら通板することによっても反りを与えることができる。   Furthermore, in order to give warpage to the steel plate, a method of fixing the steel plate along the roll-shaped mount is preferable, but industrially, for example, as shown in FIG. Warpage can also be imparted by passing the steel sheet while pressing it with the pressing roll so as to follow the backup roll.

なお、図示例において、線状の歪は、光学的手段であるレーザービームを照射して導入しているが、その他、電子ビームやプラズマ炎を照射する熱的手段等、歪みを局所的に導入することが可能であれば、いずれの方法も利用できる。歪みを導入する方向は、圧延方向と交差する方向であり、具体的には鋼板の圧延方向に対して、90°から60°をなす方向であることが好ましい。   In the illustrated example, the linear distortion is introduced by irradiating a laser beam, which is an optical means, but other distortions are locally introduced, such as a thermal means for irradiating an electron beam or a plasma flame. Any method can be used if it is possible. The direction in which the strain is introduced is a direction that intersects the rolling direction, and specifically, a direction that forms 90 ° to 60 ° with respect to the rolling direction of the steel sheet.

そして、本発明で照射するレーザーの光源としては、連続波レーザー、パルスレーザーのいずれでもよく、YAGレーザーやCOレーザー等の種類も選ぶ必要はない。ここで、最近使用されるようになってきたグリーンレーザーマーカーは、照***度の面で特に好適である。その際、グリーンレーザーマーカーにおけるレーザーの出力は、単位長さ当たりの熱量として、5〜100J/m程度の範囲が好ましい。
また、レーザービームのスポット径は0.1〜0.5mm程度の範囲とし、圧延方向の繰返し間隔は1〜20mm程度の範囲とすることが好ましい。
The laser light source used in the present invention may be either a continuous wave laser or a pulse laser, and it is not necessary to select a type such as a YAG laser or a CO 2 laser. Here, the green laser marker that has recently been used is particularly suitable in terms of irradiation accuracy. At that time, the laser output of the green laser marker is preferably in the range of about 5 to 100 J / m as the amount of heat per unit length.
The spot diameter of the laser beam is preferably in the range of about 0.1 to 0.5 mm, and the repetition interval in the rolling direction is preferably in the range of about 1 to 20 mm.

歪み導入処理は、圧延方向(母線)に対して概ね垂直方向に線状に歪み導入領域が形成されるように施し、その後、弧柱面状に反らせた鋼板をその母線方向に走行させて送りながら、圧延方向に所定の間隔をもって繰返し歪導入することが、工業的規模の生産には好適である。   The strain introduction treatment is performed so that a strain introduction region is formed in a line in a direction substantially perpendicular to the rolling direction (busbar), and then a steel plate bent in the shape of an arc column is run in the busbar direction and sent. However, it is preferable for industrial scale production to repeatedly introduce strain at a predetermined interval in the rolling direction.

以上述べたように、本発明に従う方法は、圧延方向が母線となる弧柱面状に反らせたまま、該弧の凸側から鋼板の圧延方向と交差する向きに線状の歪を導入するものである。対して、上述の特許文献5および6は、鋼板の幅方向に湾曲させてその内側にレーザー照射や電子ビーム照射を行う技術であり、点光源であるレーザーや電子ビームの焦点距離がなるべく一定になるように意図された技術であり、本発明の技術思想とは全く異なるものである。   As described above, the method according to the present invention introduces linear strain from the convex side of the arc to the direction intersecting with the rolling direction of the steel sheet while the rolling direction is warped in the shape of the arc column surface that serves as a generating line. It is. On the other hand, Patent Documents 5 and 6 described above are techniques for curving in the width direction of a steel plate and performing laser irradiation or electron beam irradiation on the inside thereof, and the focal length of a laser or electron beam as a point light source is made as constant as possible. This is a technique intended to be different from the technical idea of the present invention.

本発明の方法では、二次再結晶焼鈍後に張力絶縁被膜を形成した方向性電磁鋼板に施す歪導入処理に特徴があり、従って、素材については方向性電磁鋼板の一般に従えばよい。例えば、Si:2.0〜8.0質量%を含む電磁鋼素材を用いればよい。
Si:2.0〜8.0質量%
Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、含有量が2.0質量%に満たないと十分な鉄損低減効果が達成できず、一方、8.0質量%を超えると加工性が著しく低下し、また磁束密度も低下するため、Si量は2.0〜8.0質量%の範囲とすることが好ましい。
The method of the present invention is characterized by the strain introduction treatment applied to the grain-oriented electrical steel sheet on which the tension insulating coating is formed after the secondary recrystallization annealing. Therefore, the material may generally follow the grain-oriented electrical steel sheet. For example, an electromagnetic steel material containing Si: 2.0 to 8.0% by mass may be used.
Si: 2.0 to 8.0 mass%
Si is an element effective in increasing the electrical resistance of steel and improving iron loss. However, if the content is less than 2.0% by mass, a sufficient iron loss reduction effect cannot be achieved, while 8.0% by mass. If it exceeds 1, the workability is remarkably lowered and the magnetic flux density is also lowered. Therefore, the Si content is preferably in the range of 2.0 to 8.0% by mass.

ここで、Siの他の基本成分および任意添加成分について述べると次のとおりである。
C:0.08質量%以下
Cは、熱延板組織の改善のために添加をするが、0.08質量%を超えると製造工程中に磁気時効の起こらない50質量ppm以下までCを低減することが困難になるため、0.08質量%以下とすることが好ましい。なお、下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特に設ける必要はない。
Here, other basic components and optional addition components of Si will be described as follows.
C: 0.08 mass% or less C is added to improve the hot-rolled sheet structure, but if it exceeds 0.08 mass%, it is difficult to reduce C to 50 mass ppm or less where no magnetic aging occurs during the manufacturing process. Therefore, the content is preferably 0.08% by mass or less. In addition, regarding the lower limit, since a secondary recrystallization is possible even for a material not containing C, it is not particularly necessary to provide it.

Mn:0.005〜1.0質量%
Mnは、熱間加工性を良好にする上で必要な元素であるが、含有量が0.005質量%未満ではその添加効果に乏しく、一方1.0質量%を超えると製品板の磁束密度が低下するため、Mn量は0.005〜1.0質量%の範囲とすることが好ましい。
Mn: 0.005 to 1.0 mass%
Mn is an element necessary for improving the hot workability. However, if the content is less than 0.005% by mass, the effect of addition is poor, whereas if it exceeds 1.0% by mass, the magnetic flux density of the product plate decreases. The amount of Mn is preferably in the range of 0.005 to 1.0 mass%.

ここで、二次再結晶を生じさせるために、インヒビターを利用する場合、例えばAlN系インヒビターを利用する場合であればAlおよびNを、またMnS・MnSe系インヒビターを利用する場合であればMnとSeおよび/またはSを適量含有させればよい。勿論、両インヒビターを併用してもよい。この場合におけるAl、N、SおよびSeの好適含有量はそれぞれ、Al:0.01〜0.065質量%、N:0.005〜0.012質量%、S:0.005〜0.03質量%、Se:0.005〜0.03質量%である。
さらに、本発明は、Al、N、S、Seの含有量を制限した、インヒビターを使用しない方向性電磁鋼板にも適用することができる。
この場合には、Al、N、SおよびSe量はそれぞれ、Al:100 質量ppm以下、N:50 質量ppm以下、S:50 質量ppm以下、Se:50 質量ppm以下に抑制することが好ましい。
Here, when an inhibitor is used to cause secondary recrystallization, for example, Al and N are used when an AlN inhibitor is used, and Mn is used when an MnS / MnSe inhibitor is used. An appropriate amount of Se and / or S may be contained. Of course, both inhibitors may be used in combination. The preferred contents of Al, N, S and Se in this case are Al: 0.01 to 0.065 mass%, N: 0.005 to 0.012 mass%, S: 0.005 to 0.03 mass%, and Se: 0.005 to 0.03 mass%, respectively. .
Furthermore, the present invention can also be applied to grain-oriented electrical steel sheets in which the contents of Al, N, S, and Se are limited and no inhibitor is used.
In this case, the amounts of Al, N, S and Se are preferably suppressed to Al: 100 mass ppm or less, N: 50 mass ppm or less, S: 50 mass ppm or less, and Se: 50 mass ppm or less.

上記の基本成分以外に、磁気特性改善成分として、次に述べる元素を適宜含有させることができる。
Ni:0.03〜1.50質量%、Sn:0.01〜1.50質量%、Sb:0.005〜1.50質量%、Cu:0.03〜3.0質量%、P:0.03〜0.50質量%、Mo:0.005〜0.10質量%およびCr:0.03〜1.50質量%のうちから選んだ少なくとも1種
Niは、熱延板組織を改善して磁気特性を向上させるために有用な元素である。しかしながら、含有量が0.03質量%未満では磁気特性の向上効果が小さく、一方1.5質量%を超えると二次再結晶が不安定になり磁気特性が劣化する。そのため、Ni量は0.03〜1.5質量%の範囲とするのが好ましい。
In addition to the above basic components, the following elements can be appropriately contained as magnetic property improving components.
Ni: 0.03-1.50% by mass, Sn: 0.01-1.50% by mass, Sb: 0.005-1.50% by mass, Cu: 0.03-3.0% by mass, P: 0.03-0.50% by mass, Mo: 0.005-0.10% by mass and Cr: At least one selected from 0.03 to 1.50 mass%
Ni is an element useful for improving the magnetic properties by improving the hot-rolled sheet structure. However, if the content is less than 0.03% by mass, the effect of improving the magnetic properties is small. On the other hand, if the content exceeds 1.5% by mass, the secondary recrystallization becomes unstable and the magnetic properties deteriorate. Therefore, the amount of Ni is preferably in the range of 0.03 to 1.5 mass%.

また、Sn、Sb、Cu、P、MoおよびCrはそれぞれ磁気特性の向上に有用な元素であるが、いずれも上記した各成分の下限に満たないと、磁気特性の向上効果が小さく、一方、上記した各成分の上限量を超えると、二次再結晶粒の発達が阻害されるため、それぞれ上記の範囲で含有させることが好ましい。
なお、上記成分以外の残部は、製造工程において混入する不可避的不純物およびFeである。
Sn, Sb, Cu, P, Mo and Cr are elements useful for improving the magnetic properties, respectively, but if any of them is less than the lower limit of each component described above, the effect of improving the magnetic properties is small, If the upper limit amount of each component described above is exceeded, the development of secondary recrystallized grains is hindered.
The balance other than the above components is inevitable impurities and Fe mixed in the manufacturing process.

上記した成分組成になる鋼スラブは、やはり方向性電磁鋼板の一般に従う工程を経て、二次再結晶焼鈍後に張力絶縁被膜を形成した方向性電磁鋼板とする。すなわち、スラブ加熱後に熱間圧延を施し、1回又は中間焼鈍を挟む2回の冷間圧延にて最終板厚とし、その後、脱炭、一次再結晶焼鈍した後、例えばMgOを主成分とした焼鈍分離剤を塗布し、二次再結晶過程と純化過程を含む最終焼鈍を施し、例えばコロイダルシリカとリン酸マグネシウムからなる絶縁コートを塗布して焼付ければよい。   The steel slab having the component composition described above is a grain oriented electrical steel sheet in which a tensile insulating coating is formed after secondary recrystallization annealing through a process generally following that of grain oriented electrical steel sheets. That is, hot rolling is performed after slab heating, and the final sheet thickness is obtained by one or two cold rollings with intermediate annealing, followed by decarburization and primary recrystallization annealing, and then, for example, MgO as a main component. An annealing separator may be applied, a final annealing process including a secondary recrystallization process and a purification process may be performed, and an insulating coat made of, for example, colloidal silica and magnesium phosphate may be applied and baked.

Si:3質量%を含有する、最終板厚0.20mmに圧延された冷延板を、脱炭、一次再結晶焼鈍した後、MgOを主成分とした焼鈍分離剤を塗布し、二次再結晶過程と純化過程を含む最終焼鈍を施し、50%のコロイダルシリカとリン酸マグネシウムからなる絶縁コートを塗布して800℃にて焼付けた。次いで、30cm角の試料を切り出し、種々の半径を有するロール状の架台(半円柱状の台座)へ沿うように、圧延方向が母線となる弧柱面状に反らせて、その形状に試料を両端部で固定した。歪み導入は、圧延方向と直角に5mm間隔でパルスレーザー照射により行った。
なお、凸面への1点からのレーザー照射となるため、曲率半径が小さくなると1回での導入が難しくなるから、30cm幅方向への点線状の歪み導入処理は必要に応じて処理を鋼板の処理領域を幅方向で分割しながら行った。
その後、10cm幅3枚に剪断し、磁気特性として鉄損W17/50値を測定した。各反り条件に対する鉄損値は3枚の平均値として算出した。
Si: Cold-rolled sheet containing 3% by mass and rolled to a final thickness of 0.20 mm is decarburized and subjected to primary recrystallization annealing, followed by application of an annealing separator mainly composed of MgO and secondary recrystallization. A final annealing process including a process and a purification process was performed, and an insulating coat composed of 50% colloidal silica and magnesium phosphate was applied and baked at 800 ° C. Next, a 30 cm square sample is cut out, curved along the shape of an arc column with the rolling direction serving as a generating line, along the roll base (semi-cylindrical pedestal) having various radii. Fixed in part. Strain was introduced by pulse laser irradiation at intervals of 5 mm perpendicular to the rolling direction.
In addition, since it becomes laser irradiation from one point to the convex surface, if the radius of curvature becomes small, it becomes difficult to introduce at one time. The treatment area was divided in the width direction.
Thereafter, the sheet was sheared into three pieces having a width of 10 cm, and the iron loss W 17/50 value was measured as a magnetic characteristic. The iron loss value for each warpage condition was calculated as an average value of three sheets.

試料に与えた弧柱面状の弧の曲率半径と得られた鉄損値とを表1にまとめて示した。同表において、No.1は平坦のままレーザー照射処理した比較例であり、これらと他の条件との鉄損値を比較することによって、本発明の効果を確認することができた。
No.2〜9は、本発明を満足する適合例であり、処理後の鉄損値がNo.1と比較して改善していることがわかる。そして、曲率半径が0.5mから5.0mの範囲で磁区細分化処理の鉄損改善効果がより高くなっていることがわかる。
Table 1 summarizes the radius of curvature of the arc columnar arc applied to the sample and the obtained iron loss value. In the table, No. 1 is a comparative example in which the laser irradiation treatment was performed while being flat, and the effect of the present invention could be confirmed by comparing the iron loss values of these with other conditions.
Nos. 2 to 9 are examples satisfying the present invention, and it can be seen that the iron loss value after the treatment is improved as compared with No. 1. And it turns out that the iron loss improvement effect of a magnetic domain refinement | purification process becomes higher in the curvature radius range of 0.5m to 5.0m.

Figure 0005533348
Figure 0005533348

Claims (2)

二次再結晶焼鈍後に張力絶縁被膜を形成した方向性電磁鋼板を、圧延方向が母線となる弧柱面における弧の曲率半径が6.0m以下である、弧柱面状に反らせたまま、該弧の凸側から鋼板の圧延方向と交差する向きに線状の歪を導入することを特徴とする方向性電磁鋼板の製造方法。 The grain-oriented electrical steel sheet on which a tensile insulating film is formed after secondary recrystallization annealing, while the curvature radius of the arc in the arc column surface in which the rolling direction is a generating line is 6.0 m or less, is warped in the arc column surface shape, A method for producing a grain-oriented electrical steel sheet, wherein linear strain is introduced in a direction intersecting with a rolling direction of the steel sheet from a convex side of the arc. 前記弧柱面の弧の曲率半径が20cm以上5m以下である請求項1に記載の方向性電磁鋼板の製造方法。   The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein an arc curvature radius of the arc column surface is 20 cm or more and 5 m or less.
JP2010148703A 2010-06-30 2010-06-30 Method for producing grain-oriented electrical steel sheet Active JP5533348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010148703A JP5533348B2 (en) 2010-06-30 2010-06-30 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010148703A JP5533348B2 (en) 2010-06-30 2010-06-30 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2012012646A JP2012012646A (en) 2012-01-19
JP5533348B2 true JP5533348B2 (en) 2014-06-25

Family

ID=45599424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010148703A Active JP5533348B2 (en) 2010-06-30 2010-06-30 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5533348B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535218A (en) * 1982-10-20 1985-08-13 Westinghouse Electric Corp. Laser scribing apparatus and process for using
JPH0459930A (en) * 1990-06-29 1992-02-26 Kawasaki Steel Corp Continuous irradiation method for high-energy beam

Also Published As

Publication number Publication date
JP2012012646A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5115641B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6157360B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5593942B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5760504B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5742294B2 (en) Method for producing grain-oriented electrical steel sheet
JP5954421B2 (en) Oriented electrical steel sheet for iron core and method for producing the same
KR101593346B1 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
WO2012032792A1 (en) Grain-oriented magnetic steel sheet and process for producing same
JP5953690B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2012031498A (en) Grain-oriented electromagnetic steel plate and production method for the same
JP5740854B2 (en) Oriented electrical steel sheet
JP5906654B2 (en) Method for producing grain-oriented electrical steel sheet
JP2006274405A (en) Method for manufacturing grain-oriented electromagnetic steel sheet causing high magnetic-flux density
JP5729014B2 (en) Method for producing grain-oriented electrical steel sheet
JP2015140470A (en) Grain oriented silicon steel plate and production method thereof
JP6003321B2 (en) Method for producing grain-oriented electrical steel sheet
JP5565307B2 (en) Method for producing grain-oriented electrical steel sheet
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
JP6003197B2 (en) Magnetic domain subdivision processing method
JP5533348B2 (en) Method for producing grain-oriented electrical steel sheet
JP5845848B2 (en) Method for producing grain-oriented electrical steel sheet
JP5691265B2 (en) Method for producing grain-oriented electrical steel sheet
JP6116793B2 (en) Method for producing grain-oriented electrical steel sheet
JP2023121125A (en) Grain-oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5533348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250