JP5998403B2 - Liquid crystalline polyaminourethane, production intermediate thereof, and production method thereof - Google Patents

Liquid crystalline polyaminourethane, production intermediate thereof, and production method thereof Download PDF

Info

Publication number
JP5998403B2
JP5998403B2 JP2012121366A JP2012121366A JP5998403B2 JP 5998403 B2 JP5998403 B2 JP 5998403B2 JP 2012121366 A JP2012121366 A JP 2012121366A JP 2012121366 A JP2012121366 A JP 2012121366A JP 5998403 B2 JP5998403 B2 JP 5998403B2
Authority
JP
Japan
Prior art keywords
group
integer
liquid crystalline
lcpu
polyaminourethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012121366A
Other languages
Japanese (ja)
Other versions
JP2013245321A (en
Inventor
氏家 誠司
誠司 氏家
雅則 那谷
雅則 那谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY
Original Assignee
NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY filed Critical NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY
Priority to JP2012121366A priority Critical patent/JP5998403B2/en
Publication of JP2013245321A publication Critical patent/JP2013245321A/en
Application granted granted Critical
Publication of JP5998403B2 publication Critical patent/JP5998403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

本発明は、液晶性ポリアミノウレタン、その製造中間体、およびそれらの製造方法に関する。   The present invention relates to a liquid crystalline polyaminourethane, a production intermediate thereof, and a production method thereof.

従来、液晶性高分子は、その高い配向性を利用して、高性能材料や高機能性材料への応用がなされてきた。特に、主鎖型サーモトロピック液晶性高分子の工業的な応用については数多くの提案(例えば、特許文献1)がなされている。   Conventionally, liquid crystalline polymers have been applied to high-performance materials and high-functional materials by utilizing their high orientation. In particular, many proposals (for example, Patent Document 1) have been made for industrial applications of main chain type thermotropic liquid crystalline polymers.

特開2002−363266JP 2002-363266 A

しかしながら、それら応用例のほとんどは液晶性ポリエステルを利用した耐熱性樹脂や、高強度・高弾性率繊維としての利用が主であり、応答性を考慮した材料の開発は行われておらず、100℃以下で応答できる液晶性高分子の提案はなされていない。   However, most of these applications are mainly used as heat-resistant resins using liquid crystalline polyester and high-strength and high-modulus fibers, and no materials have been developed in consideration of responsiveness. There has been no proposal of a liquid crystalline polymer capable of responding at a temperature below ℃.

側鎖型液晶性高分子であれば、比較的自由な運動が可能な側鎖に機能性官能基を導入することができる。また、側鎖型液晶性高分子は主鎖型液晶性高分子に比べ、相対的に重合度が小さくなる。従って、側鎖型液晶性高分子の場合は、応答性を有する液晶性高分子とすることは容易である。しかしながら主鎖型液晶性高分子の場合、機能性官能基を導入しても自由な運動が制限される上、重合度が高く固い樹脂となりやすいため、100℃以下における応答性を付与することは困難であった。   If it is a side chain type liquid crystalline polymer, a functional functional group can be introduced into a side chain capable of relatively free movement. Also, the degree of polymerization of the side chain type liquid crystalline polymer is relatively smaller than that of the main chain type liquid crystalline polymer. Therefore, in the case of the side chain type liquid crystalline polymer, it is easy to obtain a responsive liquid crystalline polymer. However, in the case of a main chain type liquid crystalline polymer, free movement is restricted even if a functional functional group is introduced, and a high degree of polymerization tends to be a hard resin. It was difficult.

本発明の目的は、100℃以下、更には室温においても応答可能な新規な液晶性高分子、特に、主鎖型サーモトロピック液晶性高分子である液晶性ポリアミノウレタンを提供することにある。また、当該液晶性ポリアミノウレタンを製造するために有効な製造中間体を提供する。更に、当該液晶性ポリアミノウレタン、およびその製造中間体を製造する方法を提供する。   An object of the present invention is to provide a novel liquid crystalline polymer capable of responding at 100 ° C. or lower, and even at room temperature, particularly a liquid crystalline polyaminourethane which is a main chain type thermotropic liquid crystalline polymer. In addition, an effective production intermediate for producing the liquid crystalline polyaminourethane is provided. Furthermore, the present invention provides a method for producing the liquid crystalline polyaminourethane and its production intermediate.

本発明は、下記式(1)
(式中、R

のいずれかの基を表し、R
のいずれかの基を表し、R
のいずれかの基を表し、R
のいずれかの基を表し、R
のいずれかの基を表す。xは2〜12の整数、yは2〜6の整数、zは2〜12の整数を表す。)
で示される繰り返し単位を有する液晶性ポリアミノウレタンを提供する。
The present invention provides the following formula (1)
(Wherein R 1 is

R 2 represents any group of
R 3 represents any group of
R 4 represents any group of
R 5 represents any group of
Represents any group of x represents an integer of 2 to 12, y represents an integer of 2 to 6, and z represents an integer of 2 to 12. )
A liquid crystalline polyaminourethane having a repeating unit represented by the formula:

本発明はさらに、本発明の液晶性ポリアミノウレタンの製造中間体として有用な、下記式(2)
(式中、R
のいずれかの基を表し、R
のいずれかの基を表し、R
のいずれかの基を表し、R
のいずれかの基を表す。xは2〜12の整数、yは2〜6の整数、zは2〜12の整数を表す。)
で示されるジオール化合物を提供する。
The present invention is further useful as an intermediate for producing the liquid crystalline polyaminourethane of the present invention.
(Wherein R 1 is
R 2 represents any group of
R 3 represents any group of
R 4 represents any group of
Represents any group of x represents an integer of 2 to 12, y represents an integer of 2 to 6, and z represents an integer of 2 to 12. )
The diol compound shown by these is provided.

本発明はさらに、2つの1,4−フェニレン基がアゾ基もしくはビニレン基で連結されるとともに、α−ヒドロキシアルキレンエーテル基、及びω−ハロゲン化アルキレンエーテル基を有するハロゲン基含有化合物と、片末端にアルコール性ヒドロキシル基を有する第2級アミンとを反応させて下記式(2)
(式中、R1は
のいずれかの基を表し、R2は
のいずれかの基を表し、R3は
のいずれかの基を表し、R4は
のいずれかの基を表す。xは2〜12の整数、yは2〜6の整数、zは2〜12の整数を表す。)
で示されるジオール化合物とし、ジイソシアナートと重合させることにより下記式(1)
で示される繰り返し単位を有する液晶性ポリアミノウレタンを製造する方法を提供する。
The present invention further includes a halogen group-containing compound having two 1,4-phenylene groups linked by an azo group or a vinylene group, an α-hydroxyalkylene ether group, and an ω-halogenated alkylene ether group, Is reacted with a secondary amine having an alcoholic hydroxyl group to give the following formula (2)
(Where R1 is
R2 is any one of the following groups:
R3 represents any group of
R4 represents any group of
Represents any group of x represents an integer of 2 to 12, y represents an integer of 2 to 6, and z represents an integer of 2 to 12. )
A diol compound represented by the following formula (1) is polymerized with diisocyanate.
A method for producing a liquid crystalline polyaminourethane having a repeating unit represented by the formula:

本発明はさらに、2つの1,4−フェニレン基がアゾ基もしくはビニレン基で連結されるとともに、α−ヒドロキシアルキレンエーテル基、及びω−ハロゲン化アルキレンエーテル基を有するハロゲン基含有化合物と、片末端にアルコール性ヒドロキシル基を有する第2級アミンとを反応させて下記式(2)
(式中、R1は
のいずれかの基を表し、R2は
のいずれかの基を表し、R3は
のいずれかの基を表し、R4は
のいずれかの基を表す。xは2〜12の整数、yは2〜6の整数、zは2〜12の整数を表す。)
で示されるジオール化合物を製造する方法を提供する。
The present invention further includes a halogen group-containing compound having two 1,4-phenylene groups linked by an azo group or a vinylene group, an α-hydroxyalkylene ether group, and an ω-halogenated alkylene ether group, Is reacted with a secondary amine having an alcoholic hydroxyl group to give the following formula (2)
(Where R1 is
R2 is any one of the following groups:
R3 represents any group of
R4 represents any group of
Represents any group of x represents an integer of 2 to 12, y represents an integer of 2 to 6, and z represents an integer of 2 to 12. )
A process for producing a diol compound represented by the formula:

本発明によれば、100℃以下、更には室温においても応答可能な主鎖型の液晶性ポリアミノウレタンとすることができる。また、本発明の製造中間体であるジオール化合物によれば、ジイソシアナートと重合させることにより、100℃以下、更には室温においても応答可能な主鎖型の液晶性ポリアミノウレタンとすることができる。   According to the present invention, a main-chain liquid crystalline polyaminourethane capable of responding at 100 ° C. or lower and even at room temperature can be obtained. Moreover, according to the diol compound which is the production intermediate of the present invention, it is possible to obtain a main-chain liquid crystalline polyaminourethane capable of responding at 100 ° C. or lower, and even at room temperature, by polymerizing with a diisocyanate. .

LCPU−A、高分子Aおよび高分子BのDSC曲線。DSC curves for LCPU-A, Polymer A and Polymer B. LCPU−B、LCPU−Cおよび高分子CのDSC曲線。DSC curves for LCPU-B, LCPU-C and polymer C. 高分子DのDSC曲線。The DSC curve of polymer D. 分子量が異なるLCPU−AのDSC曲線。DSC curves for LCPU-A with different molecular weights. LCPU−Aの転位温度の分子量依存性を示す図。The figure which shows the molecular weight dependence of the dislocation temperature of LCPU-A. LCPU−Aの転位エンタルピーおよび転位エントロピーの分子量依存性を示す図。The figure which shows the molecular weight dependence of the dislocation enthalpy and dislocation entropy of LCPU-A. 実施例および比較例に係る化合物の偏光顕微鏡写真。The polarizing microscope photograph of the compound which concerns on an Example and a comparative example. 液晶紡糸したLCPU−BのX線回折チャート(昇温過程)。The X-ray-diffraction chart of LCPU-B which carried out liquid crystal spinning (temperature rising process). 直交ニコル下でのLCPU−Bの紡糸試料の偏光顕微鏡写真。Polarization micrograph of LCPU-B spun sample under crossed Nicols. 紫外線照射時間経過に対する紡糸試料(LCPU−B)の曲がり角度を示す図。The figure which shows the bending angle of the spinning sample (LCPU-B) with respect to ultraviolet irradiation time progress.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の液晶性ポリアミノウレタンは、主鎖にアミノ基およびベンゼン環を介した屈曲部、光応答性のメソゲンコア、ウレタン結合、柔軟性を有するメチレン鎖を有する主鎖型サーモトロピック液晶性高分子である。本発明の液晶性ポリアミノウレタンは、柔軟な性質を有するウレタンに液晶性を付与した高分子である。本発明の液晶性ポリアミノウレタンは、次の式(1)で表される繰り返し単位を有する。   The liquid crystalline polyaminourethane of the present invention is a main chain type thermotropic liquid crystalline polymer having a bent part via an amino group and a benzene ring in the main chain, a photoresponsive mesogenic core, a urethane bond, and a methylene chain having flexibility. is there. The liquid crystalline polyaminourethane of the present invention is a polymer that imparts liquid crystallinity to urethane having flexible properties. The liquid crystalline polyaminourethane of the present invention has a repeating unit represented by the following formula (1).

(式中、R
のいずれかの基を表し、R
のいずれかの基を表し、R
のいずれかの基を表し、R
のいずれかの基を表し、R
のいずれかの基を表す。xは2〜12の整数、yは2〜6の整数、zは2〜12の整数を表す。)
(Wherein R 1 is
R 2 represents any group of
R 3 represents any group of
R 4 represents any group of
R 5 represents any group of
Represents any group of x represents an integer of 2 to 12, y represents an integer of 2 to 6, and z represents an integer of 2 to 12. )

式(1)中、Rを柔軟性のある官能基とすることにより、液晶性ポリアミノウレタンの応答温度を低下させることができる。 In formula (1), the response temperature of liquid crystalline polyaminourethane can be lowered by making R 1 a flexible functional group.

式(1)中、Rをアミノ基を有する構造としたのは、イオン化や水素結合による他の分子との複合化や架橋化構造の導入を可能とするためである。更に、アミノ基による屈曲構造を導入することにより、液晶性ポリアミノウレタンの応答温度を低下させることができる。 In Formula (1), the reason why R 2 has a structure having an amino group is to enable complexing with other molecules or introduction of a crosslinked structure by ionization or hydrogen bonding. Furthermore, the response temperature of the liquid crystalline polyaminourethane can be lowered by introducing a bent structure by an amino group.

なお、式(1)中、Rをアルキルアミン構造をもつ第三級アミンあるいはそのイオン化物とすることもできる。 In formula (1), R 2 may be a tertiary amine having an alkylamine structure or an ionized product thereof.

式(1)中、Rがアルキル鎖の場合は、柔軟鎖としてアゾベンゼン(メソゲン基)の配向を容易にし、転移温度が低下する。式(1)中、Rが芳香環が導入されているキシリレンの場合は、アゾベンゼンと連結することによって擬メソゲン基的な役割をもち、クランクシャフト運動のため転移温度を適度に低下させる効果がある。 In the formula (1), when R 3 is an alkyl chain, the orientation of azobenzene (mesogenic group) as a flexible chain is facilitated, and the transition temperature is lowered. In the formula (1), when R 3 is xylylene into which an aromatic ring is introduced, it has a pseudo-mesogenic role by linking with azobenzene, and has an effect of appropriately lowering the transition temperature due to crankshaft motion. is there.

式(1)中、Rをアゾ基またはビニレン基とすることにより、光応答性を有する液晶性ポリアミノウレタンとすることができる。 In formula (1), when R 4 is an azo group or vinylene group, a liquid crystalline polyaminourethane having photoresponsiveness can be obtained.

式(1)中、Rに屈曲部を導入することにより、液晶性ポリアミノウレタンの応答温度を低下させることができる。また、Rに屈曲部を導入することにより、液晶性ポリアミノウレタンの再配向性を向上させ、液晶紡糸などの加工性をもたせることができる。 In the formula (1), by introducing a bend into R 5, it is possible to reduce the response temperature of the liquid crystalline polyamino urethane. Further, by introducing a bent portion into R 5 , the reorientation property of the liquid crystalline polyaminourethane can be improved and processability such as liquid crystal spinning can be provided.

以上のように、分子中に柔軟な構造、および屈曲構造を導入することにより、100℃以下での応答が可能な液晶性ポリアミノウレタンとすることができる。   As described above, a liquid crystalline polyaminourethane capable of responding at 100 ° C. or lower can be obtained by introducing a flexible structure and a bent structure into the molecule.

以上のような官能基を導入して柔軟性や屈曲部を有する高分子とすれば、高分子間の水素結合が減少するため、通常は結晶状態となる条件下においても部分的に非晶状態の箇所が増加し、主鎖型でありながら低温においても応答可能となるものと考えられる。   If a polymer having flexibility or a bent portion is introduced by introducing the functional group as described above, hydrogen bonds between the polymers are reduced, so that even in a crystalline state, a partially amorphous state It is considered that the number of locations increases, and it is possible to respond even at a low temperature while being a main chain type.

特に、上記式(1)におけるxおよびzを6以上の整数とすることにより、30℃以下でも応答可能な液晶性ポリアミノウレタンとすることができる。   In particular, by setting x and z in the above formula (1) to integers of 6 or more, a liquid crystalline polyaminourethane capable of responding even at 30 ° C. or less can be obtained.

なお、上記式(1)におけるxおよびzは6とするのが好ましい。xおよびzの数が少なくなると液晶性ポリアミノウレタンの重合度が上がらず、また、多くなると溶媒への溶解性が低下して収率が下がるためである。   In the above formula (1), x and z are preferably 6. This is because when the number of x and z decreases, the degree of polymerization of the liquid crystalline polyaminourethane does not increase, and when it increases, the solubility in a solvent decreases and the yield decreases.

本発明による液晶性ポリアミノウレタンは熱可塑性と液晶性を有しており、繊維化、樹脂化およびフィルム化等の成形加工を容易に行うことが可能である。さらに、一般的な主鎖型液晶性高分子と異なり溶媒に対する溶解性が高く、テトラヒドロフラン(THF)等の汎用溶媒に溶解するため、さまざまなものの表面に塗布することが可能である。   The liquid crystalline polyaminourethane according to the present invention has thermoplasticity and liquid crystallinity, and can be easily subjected to molding processing such as fiberization, resinization, and film formation. Further, unlike general main chain type liquid crystalline polymers, it has high solubility in a solvent and dissolves in a general-purpose solvent such as tetrahydrofuran (THF), so that it can be applied to various surfaces.

また、本発明による液晶性ポリアミノウレタンを紡糸することにより、光応答性を有する繊維構造体に加工することができる。すなわち、当該光応答性の繊維構造体は、室温で紫外可視光線照射によって可逆的に変形させることが可能である。   Further, by spinning the liquid crystalline polyaminourethane according to the present invention, it can be processed into a fiber structure having photoresponsiveness. That is, the photoresponsive fiber structure can be reversibly deformed by irradiation with ultraviolet and visible light at room temperature.

本発明による液晶性ポリアミノウレタンは、ω−ハロゲン化アルキル基を有する化合物とアミンとを反応させて下記式で表されるジオール化合物(2)とした後、ジイソシアナートと重合反応させることにより製造することができる。   The liquid crystalline polyaminourethane according to the present invention is produced by reacting a compound having an ω-halogenated alkyl group with an amine to obtain a diol compound (2) represented by the following formula, followed by polymerization reaction with diisocyanate. can do.


(式中、R
のいずれかの基を表し、R

のいずれかの基を表し、R
のいずれかの基を表し、R
のいずれかの基を表す。xは2〜12の整数、yは2〜6の整数、zは2〜12の整数を表す。)

(Wherein R 1 is
R 2 represents any group of

R 3 represents any group of
R 4 represents any group of
Represents any group of x represents an integer of 2 to 12, y represents an integer of 2 to 6, and z represents an integer of 2 to 12. )

また、この重合反応は室温にて非加熱で行うことが可能であるため、安く、簡単なプロセスで液晶性ポリアミノウレタンを合成できる。   Further, since this polymerization reaction can be performed without heating at room temperature, liquid crystalline polyaminourethane can be synthesized by a cheap and simple process.

[液晶性ポリアミノウレタンの製造]
以下、本発明による液晶性ポリアミノウレタンの具体例について説明する。なお、本発明はこれらの具体例に限定されるものではない。
[Production of liquid crystalline polyaminourethane]
Hereinafter, specific examples of the liquid crystalline polyaminourethane according to the present invention will be described. The present invention is not limited to these specific examples.

まず、本発明の液晶性ポリアミノウレタンを製造するための製造中間体となるジオール化合物の例について説明する。なお、下記ジオール化合物には、後述の比較例に記載の化合物の製造中間体も含まれている。   First, the example of the diol compound used as the manufacturing intermediate for manufacturing liquid crystalline polyamino urethane of this invention is demonstrated. The following diol compounds also include intermediates for the production of compounds described in Comparative Examples described later.

[ジオール化合物Aの合成]
200mlビーカーに6−(4-アミノフェノキシ)ヘキサノール(4.6g,22.0mmol)および塩酸(10ml)を入れ、塩酸塩とした。別のビーカーでNaNO(1.61g,23.3mmol)を少量の水に溶かした溶液を用意した。それら二つの溶液を遮光しながら氷で5℃に冷却した。二つの溶液を混合し、ジアゾニウム塩とした。ポリ容器にフェノール(2.2g,23.5mmol)、水酸化ナトリウム(1.0g,23.4mmol)、および少量の水を入れ、均一にした後、氷を入れて冷却した。そこに合成したジアゾニウム塩を少しずつ加え、反応溶液のpHを8−9程度に保つように、水酸化ナトリウム水溶液を加えた。その後室温で1時間撹拌を行い、塩酸で酸性化し、沈殿した粗成生物をろ別した。粗生成物をデシケータで減圧乾燥し、2−プロパノールで再結晶し、下記化合物(3)を得た。化合物(3)の収量は2.4gであり、収率は35.0%であった。
[Synthesis of Diol Compound A]
6- (4-Aminophenoxy) hexanol (4.6 g, 22.0 mmol) and hydrochloric acid (10 ml) were placed in a 200 ml beaker to obtain a hydrochloride. In another beaker, a solution of NaNO 2 (1.61 g, 23.3 mmol) dissolved in a small amount of water was prepared. The two solutions were cooled to 5 ° C. with ice while protected from light. The two solutions were mixed to form a diazonium salt. Phenol (2.2 g, 23.5 mmol), sodium hydroxide (1.0 g, 23.4 mmol), and a small amount of water were placed in a plastic container, and the mixture was homogenized and then cooled with ice. The synthesized diazonium salt was added little by little, and an aqueous sodium hydroxide solution was added so as to keep the pH of the reaction solution at about 8-9. Thereafter, the mixture was stirred at room temperature for 1 hour, acidified with hydrochloric acid, and the precipitated crude product was filtered off. The crude product was dried under reduced pressure with a desiccator and recrystallized with 2-propanol to obtain the following compound (3). The yield of compound (3) was 2.4 g, and the yield was 35.0%.

次に、500mlナスフラスコに1,6−ジブロモヘキサン(4.9g,20.2mmol)、KCO(1.5g,10.9mmol)、およびアセトン(150ml)を入れた。それをオイルバスを用いて70℃で熱しながら、化合物(3)(4−[4−(6−ヒドロキシヘキシルオキシ)フェニルアゾ]フェノール)(2.4g,7.6mmol)のアセトン(150ml)溶液を滴下し、19時間還流した。還流後、ガラスフィルターにセライトを敷き詰め、その上から還流した反応溶液をそそぎ、塩の大半を取り除いた。留出した溶液からエバポレーターを用いてアセトンを留去した。残留した固形物をクロロホルムに溶かし、水洗し、硫酸マグネシウムで脱水した。再度エバポレーターで溶媒を減圧留去し、生成物をメタノールとアセトンの混合溶媒で再結晶した。析出した生成物をろ別し、化合物(4)を得た。化合物(4)の収量は2.4gであり、収率は67.0%であった。 Next, 1,6-dibromohexane (4.9 g, 20.2 mmol), K 2 CO 3 (1.5 g, 10.9 mmol), and acetone (150 ml) were placed in a 500 ml eggplant flask. While heating it at 70 ° C. using an oil bath, a solution of compound (3) (4- [4- (6-hydroxyhexyloxy) phenylazo] phenol) (2.4 g, 7.6 mmol) in acetone (150 ml) was added. The solution was added dropwise and refluxed for 19 hours. After refluxing, Celite was spread on a glass filter, and the reaction solution refluxed from the top was poured to remove most of the salt. Acetone was distilled off from the distilled solution using an evaporator. The remaining solid was dissolved in chloroform, washed with water, and dehydrated with magnesium sulfate. Again, the solvent was distilled off under reduced pressure using an evaporator, and the product was recrystallized with a mixed solvent of methanol and acetone. The precipitated product was filtered off to obtain compound (4). The yield of compound (4) was 2.4 g, and the yield was 67.0%.

次に、100mlナスフラスコに化合物(4)(6.4g,13.1mmol)、2−メチルアミノエタノール(2.7g,34.1mmol)、DIPEA[N,N−diisopropylamine](2.6g,19.7mmol)、およびアセトニトリル100mlを入れ、乾燥窒素で反応系を満たしながら、オイルバスを用いて、70℃で15時間還流した。還流後、薄層クロマトグラフィーにより反応が終結しているのを確認した。その後、エバポレーターを用いて、アセトニトリルを留去し、粗生成物を得た。この粗生成物をクロロホルムに溶解させ、分液ロートを用いて水洗した。クロロホルム溶液を硫酸マグネシウムで脱水し、ろ別後、ろ液からエバポレーターを用いてクロロホルムを留去した。得られた粗生成物を少量のクロロホルムに溶解し、冷却したヘキサンを加え生成物を再沈殿した。生成物をろ別し、次式(5)で示されるジオール化合物Aを得た。ジオール化合物Aの収量は4.5gであり、収率は70.6%であった。   Next, compound (4) (6.4 g, 13.1 mmol), 2-methylaminoethanol (2.7 g, 34.1 mmol), DIPEA [N, N-diisopropylamine] (2.6 g, 19) was placed in a 100 ml eggplant flask. 7 mmol), and 100 ml of acetonitrile, and the mixture was refluxed at 70 ° C. for 15 hours using an oil bath while filling the reaction system with dry nitrogen. After refluxing, it was confirmed by thin layer chromatography that the reaction was complete. Then, acetonitrile was distilled off using the evaporator and the crude product was obtained. This crude product was dissolved in chloroform and washed with a separatory funnel. The chloroform solution was dehydrated with magnesium sulfate, and after filtration, chloroform was distilled off from the filtrate using an evaporator. The obtained crude product was dissolved in a small amount of chloroform, and cooled hexane was added to reprecipitate the product. The product was filtered off to obtain a diol compound A represented by the following formula (5). The yield of diol compound A was 4.5 g, and the yield was 70.6%.

[ジオール化合物Bの合成]
500mlナスフラスコに化合物(3)(10.0g,31.8mmol)、α,α’−ジクロロキシレン(17.04,95.4mmol)、KCO(5.71g,41.3mmol)およびアセトン(300ml)を入れた。反応溶液を約23時間還流した後、エバポレーターでアセトンを留去した。固体をクロロホルムに溶解させ、水およびアルカリ水で洗浄した。クロロホルム溶液を硫酸マグネシウムで脱水した。硫酸マグネシウムをろ別し、ろ液をエバポレーターを用いてクロロホルムを留去した。粗生成物をアセトンを用いて再結晶した。析出した固体をろ別し、化合物(6)を得た。化合物(6)の収量は8.7gであり、収率は60.1%であった。
[Synthesis of Diol Compound B]
In a 500 ml eggplant flask, compound (3) (10.0 g, 31.8 mmol), α, α′-dichloroxylene (17.04, 95.4 mmol), K 2 CO 3 (5.71 g, 41.3 mmol) and acetone (300 ml) was added. After the reaction solution was refluxed for about 23 hours, acetone was distilled off with an evaporator. The solid was dissolved in chloroform and washed with water and alkaline water. The chloroform solution was dehydrated with magnesium sulfate. Magnesium sulfate was removed by filtration, and chloroform was distilled off from the filtrate using an evaporator. The crude product was recrystallized using acetone. The precipitated solid was filtered off to obtain compound (6). The yield of compound (6) was 8.7 g, and the yield was 60.1%.

次に、100mlナスフラスコに化合物(6)(1.3g,2.9mmol)、2−メチルアミノエタノール(0.6g,7.5mmol)、DIPEA[N,N−diisopropylamine](0.6g,4.3mmol)、およびアセトニトリル75.0mlを入れ、乾燥窒素で反応系を満たし、オイルバスを用いて、70℃で15時間還流した。還流後、薄層クロマトグラフィーにより反応が終結しているのを確認した。その後、エバポレーターを用いて、アセトニトリルを留去した。クロロホルムに溶解させ、有機相を蒸留水で洗浄した。有機相を抽出し、硫酸マグネシウムで有機相を脱水した。硫酸マグネシウムをろ別し、ろ液からエバポレーターを用いてクロロホルムを留去した。粗結晶を少量のクロロホルムに溶かし、冷却したヘキサンを加え生成物を再沈殿した。溶液を吸引ろ過し、得られた生成物をデシケータで乾燥させた。乾燥させた生成物をカラムクロマトグラフィーによって精製し、次式(7)で示されるジオール化合物Bを得た。ジオール化合物Bの収量は1.2gであり、収率は79.4%であった。   Next, compound (6) (1.3 g, 2.9 mmol), 2-methylaminoethanol (0.6 g, 7.5 mmol), DIPEA [N, N-diisopropylamine] (0.6 g, 4) was placed in a 100 ml eggplant flask. 3 mmol), and 75.0 ml of acetonitrile were added, the reaction system was filled with dry nitrogen, and the mixture was refluxed at 70 ° C. for 15 hours using an oil bath. After refluxing, it was confirmed by thin layer chromatography that the reaction was complete. Thereafter, acetonitrile was distilled off using an evaporator. It was dissolved in chloroform and the organic phase was washed with distilled water. The organic phase was extracted and the organic phase was dehydrated with magnesium sulfate. Magnesium sulfate was filtered off, and chloroform was distilled off from the filtrate using an evaporator. The crude crystals were dissolved in a small amount of chloroform, and cooled hexane was added to reprecipitate the product. The solution was suction filtered, and the resulting product was dried with a desiccator. The dried product was purified by column chromatography to obtain a diol compound B represented by the following formula (7). The yield of diol compound B was 1.2 g, and the yield was 79.4%.

[ジオール化合物Cの合成]
200mlナスフラスコに化合物(6)(1.0g,2.2mmol)、1−(2−(2−(ヒドロキシ)エトキシ)エチル)ピペラジン(1.0g,5.7mmol)、DIPEA[N,N−diisopropylamine](0.4g,1.3mmol)、アセトニトリル70mlを入れた。その溶液を窒素条件下、70℃で6時間還流した。反応終了後、アセトニトリルをエバポレーターを用いて留去した。粗結晶をクロロホルムに溶解させ蒸留水で洗浄し、クロロホルム溶液に硫酸マグネシウムを加え、乾燥した。硫酸マグネシウムをろ別し、ろ液からクロロホルムをエバポレーターを用いて留去し、次式(8)で示されるジオール化合物Cを得た。ジオール化合物Cの収量は0.8gであり、収率は63.4%であった。
[Synthesis of Diol Compound C]
In a 200 ml eggplant flask, compound (6) (1.0 g, 2.2 mmol), 1- (2- (2- (hydroxy) ethoxy) ethyl) piperazine (1.0 g, 5.7 mmol), DIPEA [N, N- diisopropylamine] (0.4 g, 1.3 mmol) and 70 ml of acetonitrile were added. The solution was refluxed at 70 ° C. for 6 hours under nitrogen. After completion of the reaction, acetonitrile was distilled off using an evaporator. The crude crystals were dissolved in chloroform and washed with distilled water. Magnesium sulfate was added to the chloroform solution and dried. Magnesium sulfate was removed by filtration, and chloroform was distilled off from the filtrate using an evaporator to obtain a diol compound C represented by the following formula (8). The yield of diol compound C was 0.8 g, and the yield was 63.4%.

[ジオール化合物Dの合成]
ナス型フラスコに、6−(4−(4−(6−ブロモヘキシルオキシ)フェニルアゾ)フェノキシ)ヘキサノール(2.06g,4.9mmol)、1,2−メチルアミノエタノール(0.98g,13mmol)、N,N’−ジイソプロピルエチルアミン(0.97g,7.4mmol)、およびアセトニトリル45mlを入れ、オイルバスで加熱しながら10時間撹拌還流した。溶媒をエバポレーターを用いて留去し、粗結晶をクロロホルムに溶解させ、分液ロートを用いて食塩水および蒸留水で洗浄した。クロロホルム溶液を硫酸マグネシウムで乾燥後、クロロホルムをエバポレーターを用いて留去し、粗結晶を2−プロパノールで再結晶し、析出した生成物をろ別し、次式(9)で示されるジオール化合物Dを得た。ジオール化合物Dの収量は1.38gであり、収率は68.2%であった。
[Synthesis of Diol Compound D]
In an eggplant-shaped flask, 6- (4- (4- (6-bromohexyloxy) phenylazo) phenoxy) hexanol (2.06 g, 4.9 mmol), 1,2-methylaminoethanol (0.98 g, 13 mmol), N, N′-diisopropylethylamine (0.97 g, 7.4 mmol) and 45 ml of acetonitrile were added and stirred and refluxed for 10 hours while heating in an oil bath. The solvent was distilled off using an evaporator, the crude crystals were dissolved in chloroform, and washed with brine and distilled water using a separatory funnel. After the chloroform solution is dried over magnesium sulfate, the chloroform is distilled off using an evaporator, the crude crystals are recrystallized from 2-propanol, the precipitated product is filtered off, and the diol compound D represented by the following formula (9) Got. The yield of the diol compound D was 1.38 g, and the yield was 68.2%.

[ジオール化合物Eの合成]
ナス型フラスコに、化合物(4)(2.41g,5.7mmol)、1−[2−(2−ヒドロキシ)エチル]ピペラジン(2.65g,15mmol)、N,N’−ジイソプロピルエチルアミン(1.14g,8.6mmol)、およびアセトニトリル45mlを入れ、オイルバスで加熱しながら10時間撹拌還流した。アセトニトリルをエバポレーターを用いて留去し、次式(10)で示されるジオール化合物Eを得た。ジオール化合物Eの収量は1.85gであり、収率は63.2%であった。
[Synthesis of Diol Compound E]
In an eggplant-shaped flask, compound (4) (2.41 g, 5.7 mmol), 1- [2- (2-hydroxy) ethyl] piperazine (2.65 g, 15 mmol), N, N′-diisopropylethylamine (1. 14 g, 8.6 mmol) and 45 ml of acetonitrile were added and stirred and refluxed for 10 hours while heating in an oil bath. Acetonitrile was distilled off using an evaporator to obtain a diol compound E represented by the following formula (10). The yield of the diol compound E was 1.85 g, and the yield was 63.2%.

[ジオール化合物Fの合成]
500mlナスフラスコに化合物(3)(9.6g,19.0mmol)、α,α’−ジクロロキシレン(10.0,57.1mmol)、KCO(7.9g,28.6mmol)、およびアセトン(170ml)を入れ、70℃で約23時間還流した。還流後、エバポレーターでアセトンを留去した。粗生成物をクロロホルムに溶解させ、水およびアルカリ水で洗浄した。硫酸マグネシウムでクロロホルム溶液を脱水した。硫酸マグネシウムをろ別し、ろ液からクロロホルムをエバポレーターを用いて留去した。残留した固体をアセトンを用いて再結晶した。析出した生成物をろ別し、化合物(11)を得た。化合物(11)の収量は4.3gであり、収率は47.9%であった。
[Synthesis of Diol Compound F]
In a 500 ml eggplant flask, compound (3) (9.6 g, 19.0 mmol), α, α′-dichloroxylene (10.0, 57.1 mmol), K 2 CO 3 (7.9 g, 28.6 mmol), and Acetone (170 ml) was added and refluxed at 70 ° C. for about 23 hours. After the reflux, acetone was distilled off with an evaporator. The crude product was dissolved in chloroform and washed with water and alkaline water. The chloroform solution was dehydrated with magnesium sulfate. Magnesium sulfate was removed by filtration, and chloroform was distilled off from the filtrate using an evaporator. The remaining solid was recrystallized using acetone. The precipitated product was filtered off to obtain compound (11). The yield of compound (11) was 4.3 g, and the yield was 47.9%.

次に、100mlナスフラスコに化合物(11)(3.0g,6.6mmol)、2−メチルアミノエタノール(1.2g,17.2mmol)、DIPEA[N,N’−diisopropylamine](1.3g,9.9mmol)、およびアセトニトリル100mlを入れ、乾燥窒素下70℃で15時間還流した。溶媒をエバポレーターを用いて留去し、粗結晶をクロロホルムに溶解させ蒸留水で洗浄した。クロロホルム相を硫酸マグネシウムを加え乾燥した。硫酸マグネシウムをろ別し、ろ液からクロロホルムをエバポレーターを用いて留去し、次式(12)で示されるジオール化合物Fを得た。ジオール化合物Fの収量は2.2gであり、収率は64.6%であった。   Next, compound (11) (3.0 g, 6.6 mmol), 2-methylaminoethanol (1.2 g, 17.2 mmol), DIPEA [N, N′-diisopropylamine] (1.3 g, 9.9 mmol), and 100 ml of acetonitrile, and refluxed at 70 ° C. for 15 hours under dry nitrogen. The solvent was distilled off using an evaporator, and the crude crystals were dissolved in chloroform and washed with distilled water. The chloroform phase was dried by adding magnesium sulfate. Magnesium sulfate was filtered off, and chloroform was distilled off from the filtrate using an evaporator to obtain a diol compound F represented by the following formula (12). The yield of diol compound F was 2.2 g, and the yield was 64.6%.

[ジオール化合物Gの合成]
300mlナスフラスコに化合物(3)(8.0g,25.4mmol)、6−クロロ−1−ヘキサノール(4.3g,30.5mmol)、NaH(1.1g,25.4mmol)、およびDMF(80ml)を入れた。還流塔にナスフラスコを装着し、系内を窒素置換して還流した。約24時間還流し、反応溶液をクロロホルムに溶解し、水およびアルカリ水で洗浄した。有機相を硫酸マグネシウムによって脱水し、硫酸マグネシウムをろ過して取り除いた。有機相を減圧留去し、次式(13)で示されるジオール化合物Gを得た。ジオール化合物Gの収量は1.1gであり、収率は10.0%であった。
[Synthesis of Diol Compound G]
In a 300 ml eggplant flask, compound (3) (8.0 g, 25.4 mmol), 6-chloro-1-hexanol (4.3 g, 30.5 mmol), NaH (1.1 g, 25.4 mmol), and DMF (80 ml) ) An eggplant flask was attached to the reflux tower, and the inside of the system was purged with nitrogen. The mixture was refluxed for about 24 hours, and the reaction solution was dissolved in chloroform and washed with water and alkaline water. The organic phase was dehydrated with magnesium sulfate and the magnesium sulfate was filtered off. The organic phase was distilled off under reduced pressure to obtain a diol compound G represented by the following formula (13). The yield of diol compound G was 1.1 g, and the yield was 10.0%.

[ジオール化合物とジイソシアナートとの共重合]
得られたジオール化合物とジイソシアナートとを共重合し、下記実施例で示される液晶性ポリアミノウレタン、および比較例で示される高分子を得た。
[Copolymerization of diol compound and diisocyanate]
The obtained diol compound and diisocyanate were copolymerized to obtain liquid crystalline polyaminourethanes shown in the following Examples and polymers shown in Comparative Examples.

[実施例1]
100mlナスフラスコをガスバーナーで加熱しながらオイルポンプで減圧してナスフラスコ内の水分を除去し、乾燥した。ナスフラスコを室温になるまで静置した後、モル比1:1のジオール化合物Aおよび2,4−ジイソシアン酸トリレンと、撹拌子を入れた。ナスフラスコに3方コックを取り付け、減圧して30分ほど原料を乾燥させた。窒素を充填し、ナスフラスコ内を常圧に戻した。シリンジでN−メチルピロリドン(10ml)を加え、試料をすべて溶解させた。シリンジでDBTDL(ジブチルスズジラウラート)を2滴加え、70℃で10時間撹拌した後、反応溶液を室温まで冷却した。三方コックを取り外し、撹拌しながらメタノールで再沈殿した。沈殿物をブフナーロートを用いてろ別し、次式(14)で示される液晶性ポリアミノウレタンA(LCPU−A)を得た。
[Example 1]
While heating the 100-ml eggplant flask with a gas burner, the oil pump was depressurized to remove the moisture in the eggplant flask and dried. The eggplant flask was allowed to stand until it reached room temperature, and then a diol compound A having a molar ratio of 1: 1, tolylene 2,4-diisocyanate, and a stirring bar were added. A three-way cock was attached to the eggplant flask and the raw material was dried for about 30 minutes under reduced pressure. The inside of the eggplant flask was returned to normal pressure by filling with nitrogen. N-methylpyrrolidone (10 ml) was added with a syringe to dissolve all samples. Two drops of DBTDL (dibutyltin dilaurate) was added with a syringe and stirred at 70 ° C. for 10 hours, and then the reaction solution was cooled to room temperature. The three-way cock was removed and reprecipitated with methanol while stirring. The precipitate was filtered using a Buchner funnel to obtain liquid crystalline polyaminourethane A (LCPU-A) represented by the following formula (14).

[実施例2]
100mlナスフラスコをガスバーナーで加熱しながらオイルポンプで減圧してナスフラスコ内の水分を除去し、乾燥した。ナスフラスコが室温まで静置し、モル比1:1のジオール化合物Bおよび2,4−ジイソシアン酸トリレンと、撹拌子をナスフラスコに入れた。ナスフラスコに3方コックを取り付け、減圧して30分ほど原料を乾燥させた。窒素を充填し、ナスフラスコ内を常圧に戻した。シリンジでN−メチルピロリドン(10ml)を加え,試料をすべて溶解させた。シリンジでDBTDL(ジブチルスズジラウラート)を2滴加え、70℃で10時間撹拌した後、反応溶液を室温まで冷却した。三方コックを取り外し、撹拌しながらメタノールで再沈殿した。沈殿物をブフナーロートを用いてろ別し、次式(15)で示される液晶性ポリアミノウレタンB(LCPU−B)を得た。
[Example 2]
While heating the 100-ml eggplant flask with a gas burner, the oil pump was depressurized to remove the moisture in the eggplant flask and dried. The eggplant flask was allowed to stand to room temperature, and the diol compound B and 2,4-diisocyanate tolylene having a molar ratio of 1: 1 and a stirring bar were placed in the eggplant flask. A three-way cock was attached to the eggplant flask, and the pressure was reduced to dry the raw material for about 30 minutes. The inside of the eggplant flask was returned to normal pressure by filling with nitrogen. N-methylpyrrolidone (10 ml) was added with a syringe to dissolve all samples. Two drops of DBTDL (dibutyltin dilaurate) was added with a syringe and stirred at 70 ° C. for 10 hours, and then the reaction solution was cooled to room temperature. The three-way cock was removed and reprecipitated with methanol while stirring. The precipitate was filtered off using a Buchner funnel to obtain liquid crystalline polyaminourethane B (LCPU-B) represented by the following formula (15).

[実施例3]
100mlナスフラスコをガスバーナーで加熱しながらオイルポンプで減圧してナスフラスコ内の水分を除去し、乾燥した。ナスフラスコが室温まで静置し、モル比1:1のジオール化合物Cおよび2,4−ジイソシアン酸トリレンと、撹拌子をナスフラスコに入れた。ナスフラスコに3方コックを取り付け、減圧して30分ほど原料を乾燥させた。窒素を充填し、ナスフラスコ内を常圧に戻した。シリンジでN−メチルピロリドン(10ml)を加え、試料をすべて溶解させた。シリンジでDBTDL(ジブチルスズジラウラート)を2滴加え、70℃で10時間撹拌した後、反応溶液を室温まで冷却した。三方コックを取り外し、撹拌しながらメタノールで再沈殿した。沈殿物をブフナーロートを用いてろ別し、次式(16)で示される液晶性ポリアミノウレタンC(LCPU−C)を得た。
[Example 3]
While heating the 100-ml eggplant flask with a gas burner, the oil pump was depressurized to remove the moisture in the eggplant flask and dried. The eggplant flask was allowed to stand to room temperature, and the diol compound C and tolylene 2,4-diisocyanate having a molar ratio of 1: 1 and a stirring bar were placed in the eggplant flask. A three-way cock was attached to the eggplant flask and the raw material was dried for about 30 minutes under reduced pressure. The inside of the eggplant flask was returned to normal pressure by filling with nitrogen. N-methylpyrrolidone (10 ml) was added with a syringe to dissolve all samples. Two drops of DBTDL (dibutyltin dilaurate) was added with a syringe and stirred at 70 ° C. for 10 hours, and then the reaction solution was cooled to room temperature. The three-way cock was removed and reprecipitated with methanol while stirring. The precipitate was filtered using a Buchner funnel to obtain liquid crystalline polyaminourethane C (LCPU-C) represented by the following formula (16).

[実施例4]
ナス型フラスコに、ジオール化合物D(0.50g,1.20mmol)、2,4−ジイソシアン酸トリレン(0.21g,1.20mmol)、DBTDL2滴、および1−メチル−2−ピロリドン(6ml)を入れ、オイルバスで加熱しながら10時間撹拌還流した。撹拌後、メタノールに滴下して沈殿させ、次式(17)で示される液晶性ポリアミノウレタンD(LCPU−D)を得た。
[Example 4]
In an eggplant-shaped flask, diol compound D (0.50 g, 1.20 mmol), tolylene 2,4-diisocyanate (0.21 g, 1.20 mmol), 2 drops of DBTDL, and 1-methyl-2-pyrrolidone (6 ml) were added. The mixture was stirred and refluxed for 10 hours while heating in an oil bath. After stirring, it was dropped into methanol and precipitated to obtain liquid crystalline polyaminourethane D (LCPU-D) represented by the following formula (17).

[実施例5]
ナス型フラスコに、ジオール化合物E(0.30g,0.584mmol)、2,4−ジイソシアン酸トリレン(0.104g,0.584mmol)、DBTDL2滴、および1−メチル−2−ピロリドン(1.5ml)を入れ、オイルバスで加熱しながら8時間撹拌還流し、その後10時間室温で撹拌した。撹拌後、メタノールに滴下して沈殿させ、次式(18)で示される液晶性ポリアミノウレタンE(LCPU−E)を得た。
[Example 5]
In an eggplant-shaped flask, diol compound E (0.30 g, 0.584 mmol), tolylene 2,4-diisocyanate (0.104 g, 0.584 mmol), 2 drops of DBTDL, and 1-methyl-2-pyrrolidone (1.5 ml) The mixture was stirred and refluxed for 8 hours while heating in an oil bath, and then stirred at room temperature for 10 hours. After stirring, it was dropped into methanol and precipitated to obtain liquid crystalline polyaminourethane E (LCPU-E) represented by the following formula (18).

[比較例1]
100mlナスフラスコをガスバーナーで加熱しながらオイルポンプで減圧してナスフラスコ内の水分を除去し、乾燥した。ナスフラスコが室温になるまで静置し、ジオール化合物A(1.0g,2.12mmol)、3,3’−ジメチル-4,4’−ジイソシアナートビフェニル(0.56g,2.12mmol)、および撹拌子をナスフラスコに入れた。ナスフラスコに3方コックを取り付け、減圧して30分ほど原料を乾燥させた。窒素を充填し、ナスフラスコ内を常圧に戻した。シリンジでN−メチルピロリドン(10ml)を加え,試料をすべて溶解させた。シリンジでDBTDL(ジブチルスズジラウラート)を2滴加え、70℃で10時間撹拌した後,反応溶液を室温まで冷却した。三方コックを取り外し、撹拌しながらメタノールで再沈殿した。沈殿物をブフナーロートを用いてろ別し、次式(19)で示される高分子Aを得た。
[Comparative Example 1]
While heating the 100-ml eggplant flask with a gas burner, the oil pump was depressurized to remove the moisture in the eggplant flask and dried. The eggplant flask was allowed to stand until it reached room temperature, diol compound A (1.0 g, 2.12 mmol), 3,3′-dimethyl-4,4′-diisocyanatobiphenyl (0.56 g, 2.12 mmol), And a stirring bar were placed in the eggplant flask. A three-way cock was attached to the eggplant flask, and the pressure was reduced to dry the raw material for about 30 minutes. The inside of the eggplant flask was returned to normal pressure by filling with nitrogen. N-methylpyrrolidone (10 ml) was added with a syringe to dissolve all samples. Two drops of DBTDL (dibutyltin dilaurate) were added with a syringe and stirred at 70 ° C. for 10 hours, and then the reaction solution was cooled to room temperature. The three-way cock was removed and reprecipitated with methanol while stirring. The precipitate was filtered using a Buchner funnel to obtain a polymer A represented by the following formula (19).

[比較例2]
100mlナスフラスコをガスバーナーで加熱しながらオイルポンプで減圧してナスフラスコ内の水分を除去し、乾燥した。ナスフラスコが室温まで静置し、モル比1:1のジオール化合物Aおよびヘキサメチレンジイソシアナートと、撹拌子をナスフラスコに入れた。ナスフラスコに3方コックを取り付け、減圧して30分ほど原料を乾燥させた。窒素を充填し、ナスフラスコ内を常圧に戻した。シリンジでN−メチルピロリドン(10ml)を加え,試料をすべて溶解させた。シリンジでDBTDL(ジブチルスズジラウラート)を2滴加え、70℃で10時間撹拌した後、反応溶液を室温まで冷却した。三方コックを取り外し、撹拌しながらメタノールで再沈殿した。沈殿物をブフナーロートを用いてろ別し、次式(20)で示される高分子Bを得た。
[Comparative Example 2]
While heating the 100-ml eggplant flask with a gas burner, the oil pump was depressurized to remove the moisture in the eggplant flask and dried. The eggplant flask was allowed to stand to room temperature, and the diol compound A and hexamethylene diisocyanate having a molar ratio of 1: 1 and a stirring bar were placed in the eggplant flask. A three-way cock was attached to the eggplant flask, and the pressure was reduced to dry the raw material for about 30 minutes. The inside of the eggplant flask was returned to normal pressure by filling with nitrogen. N-methylpyrrolidone (10 ml) was added with a syringe to dissolve all samples. Two drops of DBTDL (dibutyltin dilaurate) was added with a syringe and stirred at 70 ° C. for 10 hours, and then the reaction solution was cooled to room temperature. The three-way cock was removed and reprecipitated with methanol while stirring. The precipitate was filtered using a Buchner funnel to obtain a polymer B represented by the following formula (20).

[比較例3]
100mlナスフラスコをガスバーナーで加熱しながらオイルポンプで減圧してナスフラスコ内の水分を除去し、乾燥した。ナスフラスコが室温まで静置し、モル比1:1のジオール化合物Fおよび2,4−ジイソシアン酸トリレンと、撹拌子をナスフラスコに入れた。ナスフラスコに3方コックを取り付け、減圧して30分ほど原料を乾燥させた。窒素を充填し、ナスフラスコ内を常圧に戻した。シリンジでN−メチルピロリドン(10ml)を加え、試料をすべて溶解させた。シリンジでDBTDL(ジブチルスズジラウラート)を2滴加え、70℃で10時間撹拌した後、反応溶液を室温まで冷却した。三方コックを取り外し、撹拌しながらメタノールで再沈殿した。沈殿物をブフナーロートを用いてろ別し、次式(21)で示される高分子Cを得た。
[Comparative Example 3]
While heating the 100-ml eggplant flask with a gas burner, the oil pump was depressurized to remove the moisture in the eggplant flask and dried. The eggplant flask was allowed to stand to room temperature, and the diol compound F and 2,4-diisocyanate tolylene having a molar ratio of 1: 1 and a stirring bar were placed in the eggplant flask. A three-way cock was attached to the eggplant flask and the raw material was dried for about 30 minutes under reduced pressure. The inside of the eggplant flask was returned to normal pressure by filling with nitrogen. N-methylpyrrolidone (10 ml) was added with a syringe to dissolve all samples. Two drops of DBTDL (dibutyltin dilaurate) was added with a syringe and stirred at 70 ° C. for 10 hours, and then the reaction solution was cooled to room temperature. The three-way cock was removed and reprecipitated with methanol while stirring. The precipitate was filtered using a Buchner funnel to obtain polymer C represented by the following formula (21).

[比較例4]
100mlナスフラスコをガスバーナーで加熱しながらオイルポンプで減圧してナスフラスコ内の水分を除去し、乾燥した。ナスフラスコが室温まで静置し、モル比1:1のジオール化合物Gおよび2,4−ジイソシアン酸トリエンと、撹拌子をナスフラスコに入れた。ナスフラスコに3方コックを取り付け、減圧して30分ほど原料を乾燥させた。窒素を充填し、ナスフラスコ内を常圧に戻した。シリンジでN−メチルピロリドン(10ml)を加え,試料をすべて溶解させた。シリンジでDBTDL(ジブチルスズジラウラート)を2滴加え、70℃で10時間撹拌した後、反応溶液を室温まで冷却した。三方コックを取り外し、撹拌しながらメタノールで再沈殿した。沈殿物をブフナーロートを用いてろ別し、次式(22)で示される高分子Dを得た。
[Comparative Example 4]
While heating the 100-ml eggplant flask with a gas burner, the oil pump was depressurized to remove the moisture in the eggplant flask and dried. The eggplant flask was allowed to stand to room temperature, and the diol compound G and 2,4-diisocyanate triene having a molar ratio of 1: 1 and a stirring bar were placed in the eggplant flask. A three-way cock was attached to the eggplant flask and the raw material was dried for about 30 minutes under reduced pressure. The inside of the eggplant flask was returned to normal pressure by filling with nitrogen. N-methylpyrrolidone (10 ml) was added with a syringe to dissolve all samples. Two drops of DBTDL (dibutyltin dilaurate) was added with a syringe and stirred at 70 ° C. for 10 hours, and then the reaction solution was cooled to room temperature. The three-way cock was removed and reprecipitated with methanol while stirring. The precipitate was filtered using a Buchner funnel to obtain a polymer D represented by the following formula (22).

[キャラクタリゼーション]
以上の方法により得られたLCPU−A〜E、および高分子A〜Dのキャラクタリゼーションを行った。
[characterization]
Characterization of LCPU-A to E and polymers A to D obtained by the above method was performed.

DSC測定は、(株)島津製作所製の示差操作熱量計(DSC−60Qi)を用いて測定した。測定条件として、加熱炉内を窒素条件にし、10℃/minで昇降温して測定を行った。   The DSC measurement was performed using a differential operation calorimeter (DSC-60Qi) manufactured by Shimadzu Corporation. As measurement conditions, the inside of the heating furnace was placed under nitrogen conditions, and the temperature was raised and lowered at 10 ° C./min.

偏光顕微鏡観察は、ホットステージシステム(メトラートレドFP90−FP82HT)を装備した(株)ニコン製の偏光顕微鏡(エクリプスLV100POL)を用いた。   For the polarization microscope observation, a polarizing microscope (Eclipse LV100POL) manufactured by Nikon Corporation equipped with a hot stage system (Mettler Toledo FP90-FP82HT) was used.

化合物の分子量は、ゲル浸透クロマトグラフィー(GPC)によって求めた。GPC測定装置は、カラムオーブン(CTO−20A)、示差屈折率検出器(RID−10A)、送液ユニット(LC−20AD)から構成される。測定条件は、溶液濃度1mg/ml、流量1.0mlおよび温度40℃とした。   The molecular weight of the compound was determined by gel permeation chromatography (GPC). The GPC measurement apparatus is composed of a column oven (CTO-20A), a differential refractive index detector (RID-10A), and a liquid feeding unit (LC-20AD). The measurement conditions were a solution concentration of 1 mg / ml, a flow rate of 1.0 ml, and a temperature of 40 ° C.

液晶性ポリアミノウレタンをネマチック相の温度域までホットステージで加熱してネマチック相の状態とし、ピンセットでつまみ上方へ引きのばして紡糸試料を作製した。   The liquid crystalline polyaminourethane was heated on the hot stage to the temperature range of the nematic phase to be in the nematic phase state, and was drawn upward with the tweezers to produce a spun sample.

X線回折測定は、(株)島津製作所製のXRD−6100を用いた。X線回折測定の走査速度は4.0°/minで、加熱および冷却しながら測定した。   For the X-ray diffraction measurement, XRD-6100 manufactured by Shimadzu Corporation was used. The scanning speed of the X-ray diffraction measurement was 4.0 ° / min, and measurement was performed while heating and cooling.

紡糸試料への紫外線照射は、HAYASHI製のLA−V300UVを用いた。紫外線照射強度は300〜450nmとした。紫外線照射は室温(18℃)で行った。   LA-V300 UV manufactured by HAYASHI was used for ultraviolet irradiation of the spun sample. The ultraviolet irradiation intensity was 300 to 450 nm. Ultraviolet irradiation was performed at room temperature (18 ° C.).

[熱的性質]
DSC測定の結果を図1〜4、および表1,2に示す。LCPU−Aの転位温度の分子量依存性を図5に示す。LCPU−Aの転位エンタルピーおよび転位エントロピーの分子量依存性を図6に示す。なお、図中、kは固体、Nはネマチック相、Iは等方相、Tgはガラス転位点を示す。
[Thermal properties]
The results of DSC measurement are shown in FIGS. FIG. 5 shows the molecular weight dependence of the dislocation temperature of LCPU-A. FIG. 6 shows the molecular weight dependence of dislocation enthalpy and dislocation entropy of LCPU-A. In the figure, k represents a solid, N represents a nematic phase, I represents an isotropic phase, and Tg represents a glass transition point.

また、実施例および比較例に係る化合物の偏光顕微鏡写真を図7に示す。図7(a)は高分子Aの昇温時161.0℃、図7(b)は高分子Aの昇温時167.0℃、図7(c)はLCPU−Aの昇温時81.6℃、図7(d)はLCPU−Aの降温時50.0℃、図7(e)はLCPU−Bの降温時140.0℃、図7(f)はLCPU−Cの降温時162.0℃、図7(g)は高分子Dの昇温時120.0℃の偏光顕微鏡写真である。   Moreover, the polarizing microscope photograph of the compound which concerns on an Example and a comparative example is shown in FIG. 7A is 161.0 ° C. when the temperature of polymer A is increased, FIG. 7B is 167.0 ° C. when the temperature of polymer A is increased, and FIG. 7C is 81 when the temperature of LCPU-A is increased. 7 ° C., FIG. 7 (d) is 50.0 ° C. when the temperature of LCPU-A is lowered, FIG. 7 (e) is 140.0 ° C. when the temperature of LCPU-B is lowered, and FIG. FIG. 7G is a polarizing microscope photograph at 122.0 ° C. when the polymer D is heated.

LCPU−A〜Eおよび高分子A,Dは液晶を形成した。高分子Bは測定溶媒のテトラヒドロフランに溶解せず、分子量を測定できなかった。LCPU−Aおよび高分子Aはネマチック相を形成した。しかし、高分子Aは、昇温過程でネマチック相から直接分解した。一方、LCPU−Aはエナンチオトロピックのネマチック相を形成した。高分子Bは、加熱しても分解温度まで流動性を示さなかった。LCPU−Aはガラス転移を示し、高分子Aは固体からネマチック相へ転移した。高分子Aは、昇温過程において再結晶化した。高分子Bは120℃付近でブロードな吸熱ピークが観測された。高分子A、高分子BおよびLCPU−Aは全て200℃付近で分解した。アミン構造やウレタン結合は200℃付近で不安定になり分解することがあるため、この分解もアミン部位およびウレタン結合の分解であると考えられる。それらの化合物の中で、LCPU−Aは転移温度が低く、エナンチオトロピックな液晶を示した。これは、高分子Aと比べると、LCPU−Aはイソシアナート部位の芳香環が一つ少なく、折れ曲がった構造をもつためであると考えられる。また、LCPU−Aのネマチック−等方相転移エンタルピーおよび転移エンタルピーは、高分子Aの値とほぼ変わらない値であった。LCPU−Aのネマチック相は、比較的高い秩序をもつと示唆される。   LCPU-A to E and polymers A and D formed liquid crystals. Polymer B was not dissolved in tetrahydrofuran as a measurement solvent, and the molecular weight could not be measured. LCPU-A and polymer A formed a nematic phase. However, the polymer A decomposed directly from the nematic phase during the temperature rising process. On the other hand, LCPU-A formed an enantiotropic nematic phase. The polymer B did not exhibit fluidity up to the decomposition temperature even when heated. LCPU-A exhibited a glass transition, and polymer A transitioned from a solid to a nematic phase. Polymer A was recrystallized during the temperature rising process. In the polymer B, a broad endothermic peak was observed at around 120 ° C. Polymer A, polymer B and LCPU-A all decomposed at around 200 ° C. Since the amine structure and the urethane bond may become unstable and decompose at around 200 ° C., this decomposition is also considered to be the decomposition of the amine moiety and the urethane bond. Among these compounds, LCPU-A exhibited a low transition temperature and showed an enantiomeric liquid crystal. This is presumably because LCPU-A has one aromatic ring at the isocyanate site and a bent structure as compared with polymer A. Further, the nematic-isotropic phase transition enthalpy and the transition enthalpy of LCPU-A were values almost unchanged from those of the polymer A. It is suggested that the nematic phase of LCPU-A has a relatively high order.

高分子Dにアミノ基を加えた構造のLCPU−Aは高分子Dよりも転移温度が低い。すなわち、構造中にアミノ基を加えて屈曲部を導入することにより、より低温域での液晶形成が可能となる。   LCPU-A having a structure in which an amino group is added to polymer D has a lower transition temperature than polymer D. That is, liquid crystal can be formed in a lower temperature region by adding an amino group to the structure and introducing a bent portion.

高分子Aは昇温過程で再結晶化し、更に加熱するとシュリーレン組織を形成した。LCPU−Aも同様に、シュリーレン組織を形成し、ネマチック配向はガラス化することにより保持された。   The polymer A recrystallized during the heating process and formed a schlieren structure when further heated. Similarly, LCPU-A formed a schlieren structure, and the nematic orientation was maintained by vitrification.

LCPU−Aについて分子量依存性を確かめた。LCPU−Aは全てネマチック相を形成した。分子量が21000のLCPU−Aは、するどいネマチック−等方相の吸熱ピークを示した。しかし、それよりも低い分子量のLCPU−Aは、明確なネマチック−等方相転移ピークを示さなかった。LCPU−Aのガラス転移温度は、分子量の増加とともにわずかに上昇した。一方、ネマチック−等方相転移温度は分子量に依存して大きく上昇した。LCPU−Aのネマチック−等方相転移エンタルピー、およびネマチック−等方相転移エントロピーは、分子量が増加するにつれ上昇した。また、高い分子量をもつLCPU−Aは、分子量が5000のLCPU−Aよりもに比べ、異方性配向にもとづく強い複屈折を示した。これらは、分子量増加に伴い、液晶配向が安定化することを示す。   The molecular weight dependency of LCPU-A was confirmed. All LCPU-A formed a nematic phase. LCPU-A having a molecular weight of 21,000 showed a deep nematic-isotropic endothermic peak. However, lower molecular weight LCPU-A did not show a clear nematic-isotropic phase transition peak. The glass transition temperature of LCPU-A increased slightly with increasing molecular weight. On the other hand, the nematic-isotropic phase transition temperature increased greatly depending on the molecular weight. The nematic-isotropic phase transition enthalpy and the nematic-isotropic phase transition entropy of LCPU-A increased with increasing molecular weight. Further, LCPU-A having a high molecular weight showed stronger birefringence based on anisotropic orientation than LCPU-A having a molecular weight of 5000. These indicate that the liquid crystal alignment is stabilized as the molecular weight increases.

LCPU−BおよびLCPU−Cはネマチック相を形成した。高分子Cは液晶相を形成しなかった。これは、高分子Cの2か所の折れ曲がり構造が、分子配向を阻害していると考えられる。LCPU−Bは結晶からネマチック相へ転移する吸熱ピークを示した。高分子Cは、固体−等方相の一つの吸熱ピークのみ示した。LCPU−BおよびLCPU−Cの固体−ネマチック相転移は、ほぼ同じ値であった。LCPU−BおよびLCPU−Cのネマチック相は、類似の熱的安定性を示すと考えられる。   LCPU-B and LCPU-C formed a nematic phase. Polymer C did not form a liquid crystal phase. This is considered that the two bent structures of the polymer C inhibit the molecular orientation. LCPU-B showed an endothermic peak transitioning from the crystal to the nematic phase. Polymer C showed only one endothermic peak in the solid-isotropic phase. The solid-nematic phase transitions of LCPU-B and LCPU-C were almost the same value. The nematic phases of LCPU-B and LCPU-C are believed to exhibit similar thermal stability.

[液晶紡糸]
液晶紡糸したLCPU−BのX線回折チャートを図8に示す。紡糸試料は等方相へ転移する温度付近まで小角にするどいピークを示した。これらのピークは、
[Liquid crystal spinning]
An X-ray diffraction chart of LCPU-B subjected to liquid crystal spinning is shown in FIG. The spun sample showed a gradual peak down to near the temperature at which it transitions to the isotropic phase. These peaks are

の関係になっているため、液晶紡糸試料において、高分子鎖はヘキサゴナルな配向構造を形成していると考えられる。LCPU−Bは、液晶状態で紡糸するという比較的簡単な手法で、配向体を形成した。 Therefore, in the liquid crystal spinning sample, it is considered that the polymer chain forms a hexagonal alignment structure. LCPU-B formed an alignment body by a relatively simple method of spinning in a liquid crystal state.

直交ニコル下でのLCPU−Bの紡糸試料の偏光顕微鏡写真を図9に示す。LCPU−Bの紡糸試料は、偏光顕微鏡下で消光状態を示した。その状態からステージを反時計方向に回転させると試料は徐々に明るくなり、45度回転させたときに最も明るくなった。さらにステージを回転させて初期状態から90度回転したとき、試料は再び消光した。試料が消光したのは、繊維軸がポラライザーまたはアナライザーと平行または垂直になった位置であった。このことから、LCPU−Bの紡糸試料は繊維軸方向に配向ベクトルをもつと考えられる。   FIG. 9 shows a polarization micrograph of a spun sample of LCPU-B under crossed Nicols. The spun sample of LCPU-B showed a quenching state under a polarizing microscope. When the stage was rotated counterclockwise from that state, the sample gradually became brighter and became brightest when rotated 45 degrees. When the stage was further rotated and rotated 90 degrees from the initial state, the sample was quenched again. The sample was quenched at a position where the fiber axis was parallel or perpendicular to the polarizer or analyzer. From this, it is considered that the LCPU-B spun sample has an orientation vector in the fiber axis direction.

[液晶紡糸試料への紫外線照射]
紫外線照射時間経過に対する紡糸試料(LCPU−B)の曲がり角度を図10に示す。紡糸試料は、室温で光応答可能で、紫外線を照射によって変形した。紡糸試料に紫外線を照射してから3分程までは急激に曲がり、紫外線照射から8分程で繊維の曲がり角度は最大値をとった。紡糸試料のこのような光応答性を利用し、マイクロレベルの光応答用モーターベルトやアクチュエータへの応用が期待される。
[Ultraviolet irradiation of liquid crystal spinning sample]
FIG. 10 shows the bending angle of the spun sample (LCPU-B) with respect to the time of ultraviolet irradiation. The spun sample was photoresponsive at room temperature and deformed by irradiation with ultraviolet light. The spinning sample was bent sharply for about 3 minutes after being irradiated with ultraviolet rays, and the bending angle of the fiber reached a maximum value after about 8 minutes from the irradiation of ultraviolet rays. Utilizing such photoresponsiveness of the spun sample, application to microlevel photoresponsive motor belts and actuators is expected.

[液晶フィルムの作製と光照射]
テトラヒドロフランなどの溶媒にLCPU−Bを溶解させた溶液をガラス基板などにキャストすることで容易にフィルムを作製することができる。このフィルムへの光照射によっても紡糸試料と同様に、紫外線照射方向に折りたたまれるように変形した。このようなフィルムの形状では、光応答を利用したマイクロシャッターや弁などへの応用が期待できる。
[Preparation of liquid crystal film and light irradiation]
A film can be easily produced by casting a solution obtained by dissolving LCPU-B in a solvent such as tetrahydrofuran onto a glass substrate. The film was also deformed so that it was folded in the ultraviolet irradiation direction by light irradiation on the film, as in the case of the spun sample. Such a film shape can be expected to be applied to a micro shutter or a valve using a light response.

Claims (4)

下記式(1)
(式中、R1は
のいずれかの基を表し、R2は
のいずれかの基を表し、R3は
のいずれかの基を表し、R4は
のいずれかの基を表し、R5は
のいずれかの基を表す。xは2〜12の整数、yは2〜6の整数、zは2〜12の整数を表す。)
で示される繰り返し単位を有する液晶性ポリアミノウレタン。
Following formula (1)
(Where R1 is
R2 is any one of the following groups:
R3 represents any group of
R4 represents any group of
R5 represents any group of
Represents any group of x represents an integer of 2 to 12, y represents an integer of 2 to 6, and z represents an integer of 2 to 12. )
A liquid crystalline polyaminourethane having a repeating unit represented by:
下記式(2)
(式中、R1は
のいずれかの基を表し、R2は
のいずれかの基を表し、R3は
のいずれかの基を表し、R4は
のいずれかの基を表す。xは2〜12の整数、yは2〜6の整数、zは2〜12の整数を表す。)
で示されるジオール化合物。
Following formula (2)
(Where R1 is
R2 is any one of the following groups:
R3 represents any group of
R4 represents any group of
Represents any group of x represents an integer of 2 to 12, y represents an integer of 2 to 6, and z represents an integer of 2 to 12. )
A diol compound represented by:
2つの1,4−フェニレン基がアゾ基もしくはビニレン基で連結されるとともに、α−ヒドロキシアルキレンエーテル基、及びω−ハロゲン化アルキレンエーテル基を有するハロゲン基含有化合物と、
片末端にアルコール性ヒドロキシル基を有する第2級アミンと
を反応させて下記式(2)
(式中、R1は
のいずれかの基を表し、R2は
のいずれかの基を表し、R3は
のいずれかの基を表し、R4は
のいずれかの基を表す。xは2〜12の整数、yは2〜6の整数、zは2〜12の整数を表す。)
で示されるジオール化合物とし、ジイソシアナートと重合させることにより下記式(1)
で示される繰り返し単位を有する液晶性ポリアミノウレタンを製造する方法。
A halogen group-containing compound having two 1,4-phenylene groups linked by an azo group or a vinylene group, and having an α-hydroxyalkylene ether group and an ω-halogenated alkylene ether group;
A secondary amine having an alcoholic hydroxyl group at one end ;
To make the following formula (2)
(Where R1 is
R2 is any one of the following groups:
R3 represents any group of
R4 represents any group of
Represents any group of x represents an integer of 2 to 12, y represents an integer of 2 to 6, and z represents an integer of 2 to 12. )
A diol compound represented by the following formula (1) is polymerized with diisocyanate.
A method for producing a liquid crystalline polyaminourethane having a repeating unit represented by the formula:
2つの1,4−フェニレン基がアゾ基もしくはビニレン基で連結されるとともに、α−ヒドロキシアルキレンエーテル基、及びω−ハロゲン化アルキレンエーテル基を有するハロゲン基含有化合物と、
片末端にアルコール性ヒドロキシル基を有する第2級アミンと
を反応させて下記式(2)
(式中、R1は
のいずれかの基を表し、R2は
のいずれかの基を表し、R3は
のいずれかの基を表し、R4は
のいずれかの基を表す。xは2〜12の整数、yは2〜6の整数、zは2〜12の整数を表す。)
で示されるジオール化合物を製造する方法。
A halogen group-containing compound having two 1,4-phenylene groups linked by an azo group or a vinylene group, and having an α-hydroxyalkylene ether group and an ω-halogenated alkylene ether group;
A secondary amine having an alcoholic hydroxyl group at one end ;
To make the following formula (2)
(Where R1 is
R2 is any one of the following groups:
R3 represents any group of
R4 represents any group of
Represents any group of x represents an integer of 2 to 12, y represents an integer of 2 to 6, and z represents an integer of 2 to 12. )
A process for producing a diol compound represented by the formula:
JP2012121366A 2012-05-28 2012-05-28 Liquid crystalline polyaminourethane, production intermediate thereof, and production method thereof Active JP5998403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012121366A JP5998403B2 (en) 2012-05-28 2012-05-28 Liquid crystalline polyaminourethane, production intermediate thereof, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012121366A JP5998403B2 (en) 2012-05-28 2012-05-28 Liquid crystalline polyaminourethane, production intermediate thereof, and production method thereof

Publications (2)

Publication Number Publication Date
JP2013245321A JP2013245321A (en) 2013-12-09
JP5998403B2 true JP5998403B2 (en) 2016-09-28

Family

ID=49845354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012121366A Active JP5998403B2 (en) 2012-05-28 2012-05-28 Liquid crystalline polyaminourethane, production intermediate thereof, and production method thereof

Country Status (1)

Country Link
JP (1) JP5998403B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6270201B2 (en) * 2013-12-11 2018-01-31 国立大学法人 大分大学 Polymer metal complex having liquid crystallinity and method for producing polymer metal complex having liquid crystallinity
JP6396130B2 (en) * 2014-09-05 2018-09-26 東洋ゴム工業株式会社 Liquid crystalline compound, thermoresponsive material and method for producing the same
JP6761611B2 (en) * 2015-03-12 2020-09-30 国立大学法人 大分大学 Polymer ligands and liquid crystal polymer complexes
JP2017014393A (en) * 2015-07-01 2017-01-19 東洋ゴム工業株式会社 Liquid crystal urethane compound, thermal responsive liquid crystal polyurethane elastomer and manufacturing method therefor
EP3425024A1 (en) 2016-03-01 2019-01-09 Toyo Tire&Rubber Co., Ltd. Liquid crystalline compound, thermally responsive material and method for producing same
JP6771766B2 (en) * 2017-01-24 2020-10-21 国立大学法人 大分大学 A method for producing a liquid crystal polyaminourethane raw material compound, a method for producing the same liquid crystal polyaminourethane raw material compound, and a method for producing a liquid crystal polyaminourethane and the same liquid crystal polyaminourethane.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3170909A (en) * 1962-06-22 1965-02-23 West Laboratories Inc Cationic azo compounds
US3743580A (en) * 1970-04-28 1973-07-03 Microbial Chem Res Found Antibiotic,negamycin,and processes for the preparation thereof
JPS62286036A (en) * 1986-06-04 1987-12-11 Daicel Chem Ind Ltd Optical storage material
JP2553133B2 (en) * 1988-03-18 1996-11-13 沖電気工業株式会社 Polymer thermotropic liquid crystal
JPH03218338A (en) * 1989-06-21 1991-09-25 Showa Denko Kk Tranexamic acid derivative
EP0550105A3 (en) * 1991-12-30 1993-11-18 Akzo Nv Liquid-crystalline polyurethanes, compositions of said liquid-crystalline polyurethanes, and a device for optical data storage comprising a liquid-crystalline polyurethane
JPH07258369A (en) * 1994-03-18 1995-10-09 Nitta Ind Corp High-molecular liquid-crystal polyurethane

Also Published As

Publication number Publication date
JP2013245321A (en) 2013-12-09

Similar Documents

Publication Publication Date Title
JP5998403B2 (en) Liquid crystalline polyaminourethane, production intermediate thereof, and production method thereof
US7799243B2 (en) Shape memory main-chain smectic-C elastomers
US9850339B2 (en) Liquid crystalline polyurethane elastomer and method for producing same
CN108976387B (en) Azo side chain liquid crystal polyurethane urea material and preparation method thereof
JP2017014393A (en) Liquid crystal urethane compound, thermal responsive liquid crystal polyurethane elastomer and manufacturing method therefor
JP5556991B2 (en) Polymerizable compound and production intermediate of the compound
JPH07258369A (en) High-molecular liquid-crystal polyurethane
KR101563574B1 (en) Polymerizable biphenyl compound
Xie et al. Design, synthesis, and characterization of a combined main‐chain/side‐chain liquid crystalline polymer based on mesogen‐jacketed liquid crystal polymer via atom transfer radical polymerization
JP7029738B2 (en) Self-healing functional polyvinyl-based compound and its manufacturing method
Al-Muaikel et al. Liquid crystalline polymers xiii main chain thermotropic copoly (arylidene-ether) s containing 4-teriary butyl-cyclohexanone moiety linked with polymethylene spacers
Karim et al. Synthesis, Crystal Structure, Mesophase Behaviour and Optical Property of Azo-ester Bridged Compounds.
Liu et al. Biodegradable and crosslinkable poly (propylene fumarate) liquid crystal polymers
Guan et al. Structure–property relationship of thermotropic liquid-crystalline vinyl polymers containing no traditional mesogen
KR20140107975A (en) Bent-core reactive mesogenic compounds and low birefringence liquid crystalline orientation film of their mixture
Navarro Thermotropic functionalized polyesters with main-chain aromatic ortho-linked units
Tang et al. A novel pentaerythritol‐based carbosilane liquid crystalline dendrimer containing 12 nitroazobenzene groups on the periphery
KR101388393B1 (en) Polysilsesquioxane-dendron liquid crystals and method for preparing the same
Lee et al. Effect of diisocyanate structures on the properties of liquid crystalline polyurethanes
JPH05170860A (en) High-molecular liquid-crystal polyurethane and its manufacture
JP3073256B2 (en) Polymer liquid crystal polyurethane
CN117304450B (en) Blending type light response benzoxazine material and preparation method thereof
Mohammed et al. New liquid crystalline polyurethane elastomers containing thiazolo [5, 4-d] thiazole moiety: Synthesis and properties
JP2006282579A (en) Liquid crystalline (meth)acrylic compound having alkoxynaphthyl group and polymer thereof
Jia et al. A novel side chain liquid crystalline polyurethane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160810

R150 Certificate of patent or registration of utility model

Ref document number: 5998403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250