JP5996380B2 - Carbon black for non-aqueous secondary battery, electrode and non-aqueous secondary battery - Google Patents

Carbon black for non-aqueous secondary battery, electrode and non-aqueous secondary battery Download PDF

Info

Publication number
JP5996380B2
JP5996380B2 JP2012243563A JP2012243563A JP5996380B2 JP 5996380 B2 JP5996380 B2 JP 5996380B2 JP 2012243563 A JP2012243563 A JP 2012243563A JP 2012243563 A JP2012243563 A JP 2012243563A JP 5996380 B2 JP5996380 B2 JP 5996380B2
Authority
JP
Japan
Prior art keywords
carbon black
secondary battery
boron
aqueous secondary
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012243563A
Other languages
Japanese (ja)
Other versions
JP2014093215A (en
Inventor
拓志 坂下
拓志 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2012243563A priority Critical patent/JP5996380B2/en
Publication of JP2014093215A publication Critical patent/JP2014093215A/en
Application granted granted Critical
Publication of JP5996380B2 publication Critical patent/JP5996380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電解液に非水系電解液を用い、負極及び正極にリチウムイオンを吸蔵放出可能な材料を用いた非水系二次電池において、これら負極及び/又は正極に導電性を付与するための導電剤と、それらを用いて構成された電極及び非水系二次電池に関する。 The present invention relates to a non-aqueous secondary battery using a non-aqueous electrolyte solution as an electrolyte solution and a material capable of occluding and releasing lithium ions as a negative electrode and a positive electrode, for imparting conductivity to these negative electrode and / or positive electrode. The present invention relates to a conductive agent, an electrode formed using the conductive agent, and a non-aqueous secondary battery.

従来、リチウムイオン二次電池の正極としては、コバルト酸リチウム、マンガン酸リチウム、等の複合酸化物からなる正極活物質と黒鉛やカーボンブラック等の導電剤とを含有してなる組成物を、アルミ箔等の金属箔からなる集電体に被着させてなるものが用いられている。一方、負極としては、黒鉛、ハードカーボン等の炭素質材料やスズ系アモルファス材料、チタン酸リチウム等の複合酸化物からなる負極活物質と黒鉛やカーボンブラック等の導電剤とを含有してなる組成物を、銅箔等の金属箔からなる集電体に被着させてなるものが用いられている。 Conventionally, as a positive electrode of a lithium ion secondary battery, a composition containing a positive electrode active material composed of a composite oxide such as lithium cobaltate and lithium manganate and a conductive agent such as graphite and carbon black is used. What is attached to the collector which consists of metal foils, such as foil, is used. On the other hand, as the negative electrode, a composition comprising a negative electrode active material composed of a carbonaceous material such as graphite or hard carbon, a tin-based amorphous material, or a composite oxide such as lithium titanate, and a conductive agent such as graphite or carbon black. The thing formed by making a thing adhere to the electrical power collector which consists of metal foils, such as copper foil, is used.

リチウムイオン二次電池は、携帯電話、ノートパソコンなどの小型民生用機器の電源として幅広く用いられている。また、近年は中・大型用途として車載用や据置用の電源として開発が進められ、一部は実用化されている。そして使用機器の高性能化、大型化に伴い、電池の高容量化、高出力化に対する取り組みが重要課題として挙げられ、その電極についても電極面積の大型化や電極の薄肉化の検討が進められている。 Lithium ion secondary batteries are widely used as power sources for small consumer devices such as mobile phones and laptop computers. In recent years, development has been promoted as a power source for in-vehicle use or stationary use for medium and large-sized applications, and a part of them has been put into practical use. As the equipment used increases in performance and size, efforts to increase the capacity and output of batteries are cited as important issues, and with regard to the electrodes, studies are underway to increase the electrode area and make the electrodes thinner. ing.

特許文献1には、ホウ素を含有させてなるカーボンブラックを導電剤とすることが提案されている。ホウ素の含有によって、カーボンブラックの本質的な導電性を改善させることが出来るが、そのままで使用して電極塗工時の塗工厚を薄くした場合、分散性が十分でないと期待される電池性能の改善効果を十分に発揮出来ず、凝集塊による塗工スジができ、極板が使用不可となる可能性があった。特許文献2には、可溶ホウ素量が0.05質量%以下のホウ素を含有するカーボンブラック製造方法が開示されているが、分散性や導電性が十分ではなかった。 Patent Document 1 proposes to use carbon black containing boron as a conductive agent. Although the intrinsic conductivity of carbon black can be improved by the inclusion of boron, the battery performance is expected to be insufficiently dispersible when used as it is and the coating thickness is reduced during electrode coating. In this case, the effect of improving the resistance could not be sufficiently exhibited, coating streaks due to agglomerates could occur, and the electrode plate could become unusable. Patent Document 2 discloses a method for producing carbon black containing boron having a soluble boron content of 0.05% by mass or less, but dispersibility and conductivity are not sufficient.

特開2000−323144号公報JP 2000-323144 A 特開2006−265374号公報JP 2006-265374 A

本発明の目的は、導電性及び分散性に優れたホウ素固溶カーボンブラックからなる非水系二次電池用導電剤とその電極、非水系二次電池を提供することである。 An object of the present invention is to provide a conductive agent for a non-aqueous secondary battery, an electrode thereof, and a non-aqueous secondary battery made of boron solid solution carbon black having excellent conductivity and dispersibility.

本発明者らは、上記課題を解決すべく検討を進めた結果、ホウ素固溶カーボンブラックの物性を制御することで分散性、導電性に優れる非水系二次電池用導電剤、その電極、非水系二次電池を開発するに至った。以下にその手法を示す。
(1)可溶ホウ素量が0.05質量%以下、JIS K 1469による電気抵抗率が0.15Ωcm以下、20μm以上の凝集粒子が5ppm以下、硫黄分が50ppm以下、揮発成分が0.1%以下の非水系二次電池の導電剤用ホウ素固溶カーボンブラック。
(2)前記(1)に記載の非水系二次電池の導電剤用ホウ素固溶カーボンブラックを含有してなる非水系二次電池用導電剤。
(3)非水系二次電池の導電剤用ホウ素固溶カーボンブラックのツブゲージによる分散度が10μm以下である前記(2)に記載の非水系二次電池用導電剤。
(4)負極活物質又は正極活物質80〜99.9質量%と、前記(2)または(3)に記載の非水系二次電池用導電剤0.1〜20質量%とを含む組成物を集電体に被着させた非水系二次電池の電極。
(5)負極及び/又は正極が、前記(4)に記載の電極で構成されてなる非水系二次電池。
(6)炭化水素の熱分解反応時及び/又は燃焼反応時にホウ素源を添加し、ホウ素固溶カーボンブラックを生成させた後、窒素ガス気流中を通過させる前記(1)に記載の非水系二次電池の導電剤用ホウ素固溶カーボンブラックの製造方法。
As a result of investigations to solve the above problems, the present inventors have determined that the conductive agent for a non-aqueous secondary battery, which has excellent dispersibility and conductivity by controlling the physical properties of the boron solid solution carbon black, its electrode, A water secondary battery has been developed. The method is shown below.
(1) The amount of soluble boron is 0.05 mass% or less, the electrical resistivity according to JIS K 1469 is 0.15 Ωcm or less, the aggregated particles of 20 μm or more are 5 ppm or less, the sulfur content is 50 ppm or less, and the volatile component is 0.1%. Boron solid solution carbon black for conductive agents for the following non-aqueous secondary batteries.
(2) A conductive agent for a nonaqueous secondary battery comprising the boron solid solution carbon black for a conductive agent for a nonaqueous secondary battery according to (1).
(3) The conductive agent for a non-aqueous secondary battery according to (2), wherein the dispersity of the boron solid solution carbon black for a conductive agent of the non-aqueous secondary battery by a tube gauge is 10 μm or less.
(4) A composition comprising 80 to 99.9% by mass of a negative electrode active material or a positive electrode active material and 0.1 to 20% by mass of a conductive agent for a non-aqueous secondary battery according to (2) or (3). An electrode of a non-aqueous secondary battery in which is attached to a current collector.
(5) A non-aqueous secondary battery in which a negative electrode and / or a positive electrode is composed of the electrode according to (4).
(6) The boron source is added during the pyrolysis reaction and / or combustion reaction of hydrocarbons to form boron solid-solved carbon black, and then passed through a nitrogen gas stream. Manufacturing method of boron solid solution carbon black for conductive agent of secondary battery.

本発明のホウ素固溶カーボンブラックを用いることにより導電性及び分散性に優れた非水系二次電池用導電剤とその電極、非水系二次電池を提供することができる。 By using the boron solid solution carbon black of the present invention, it is possible to provide a conductive agent for a non-aqueous secondary battery excellent in conductivity and dispersibility, its electrode, and a non-aqueous secondary battery.

本発明で使用されるホウ素固溶カーボンブラックの可溶ホウ素量は、0.05質量%以下が好ましく、更には0.03質量%以下、特に0.01質量%以下であることが好ましい。可溶ホウ素とは、ホウ酸等のように水に溶けやすいホウ素のことであり、後述する方法で測定されたホウ素であると定義される。また、本発明で使用されるホウ素固溶カーボンブラックの固溶ホウ素量は、0.10〜2.00質量%であることが好ましい。固溶ホウ素とは、カーボンブラック中に取り込まれ安定化したホウ素のことであり、導電性の付与に寄与する。0.10質量%を下回るとホウ素による導電性向上効果が十分発現出来ない。また、2.00質量%を超えるとカーボンブラック表面に存在するホウ素の増大に伴いホウ素を基点とした結晶水が増える。結晶水はカーボンブラック同士の結着成分として働き、カーボンブラックの凝集につながる。 The soluble boron amount of the boron solid solution carbon black used in the present invention is preferably 0.05% by mass or less, more preferably 0.03% by mass or less, and particularly preferably 0.01% by mass or less. Soluble boron is boron that is easily soluble in water, such as boric acid, and is defined as boron measured by the method described below. Moreover, it is preferable that the amount of solid solution boron of the boron solid solution carbon black used by this invention is 0.10-2.00 mass%. Solid solution boron is boron that is taken into carbon black and stabilized, and contributes to imparting conductivity. When the content is less than 0.10% by mass, the effect of improving conductivity by boron cannot be sufficiently exhibited. Moreover, when it exceeds 2.00 mass%, the crystal water based on boron will increase with the increase in the boron which exists on the carbon black surface. Crystal water acts as a binding component between the carbon blacks, leading to agglomeration of the carbon black.

カーボンブラック中の固溶ホウ素量は、全ホウ素量から可溶ホウ素量を差し引くことによって求めることができる。全ホウ素量と可溶ホウ素量は、以下に従って測定することができる。   The amount of solid solution boron in carbon black can be determined by subtracting the amount of soluble boron from the total amount of boron. The total amount of boron and the amount of soluble boron can be measured according to the following.

全ホウ素量の測定は、試料0.5gを白金皿に取り、1.5質量%Ca(OH)溶液20ml、アセトン5mlを加え、超音波洗浄器で1時間分散させる。それをサンドバスで乾固させた後、電気炉を用い、酸素気流中、800℃で3時間かけて灰化させる。ついで、HCl(1+1)溶液10mlを加えサンドバス中で加熱して溶出させる。溶出液を100mlに定容し、ICP−AESでホウ素量を定量し、全ホウ素量とする。 To measure the total amount of boron, 0.5 g of a sample is placed in a platinum dish, 20 ml of a 1.5 mass% Ca (OH) 2 solution and 5 ml of acetone are added, and dispersed for 1 hour with an ultrasonic cleaner. After drying it in a sand bath, it is incinerated for 3 hours at 800 ° C. in an oxygen stream using an electric furnace. Next, 10 ml of HCl (1 + 1) solution is added and heated in a sand bath to elute. The eluate is made up to a volume of 100 ml, and the amount of boron is quantified by ICP-AES to obtain the total amount of boron.

可溶ホウ素量は、試料1gを石英ガラス製三角フラスコに採り、水100mlとアセトン1mlを加える。それをウォーターバスで24時間還流させ、0.8μmメンブランフィルターで濾過する。濾液のホウ素量をICP−AESで定量し、可溶ホウ素量とする。   For the amount of soluble boron, 1 g of a sample is taken in an Erlenmeyer flask made of quartz glass, and 100 ml of water and 1 ml of acetone are added. It is refluxed for 24 hours in a water bath and filtered through a 0.8 μm membrane filter. The amount of boron in the filtrate is quantified by ICP-AES to obtain the amount of soluble boron.

本発明で使用されるホウ素固溶カーボンブラックは、JIS K 1469による電気抵抗率が0.15Ωcm以下のものである。電気抵抗率が0.15%を超えると、電極の極板抵抗が増加し、充放電時の電気エネルギーの熱拡散のため充放電容量の低下につながる。 The boron solid solution carbon black used in the present invention has an electrical resistivity according to JIS K 1469 of 0.15 Ωcm or less. When the electrical resistivity exceeds 0.15%, the electrode plate resistance of the electrode increases, leading to a decrease in charge / discharge capacity due to thermal diffusion of electrical energy during charge / discharge.

本発明で使用されるホウ素固溶カーボンブラックは、20μm以上の凝集粒子が5ppm以下である。5ppmを超えると、活物質と混合時に凝集塊が残り、導電パス形成効果が低減するばかりか、電極膜として例えばバーコーターやドクターブレード等で塗工した際に、凝集粒子のために塗工スジができる。塗工スジは、塗工ヘッド部に凝集塊が滞留して、塗布面の流れ方向に発生する欠陥のことであり、塗工面の均一性を損ない電極として使用出来ない。 The boron solid solution carbon black used in the present invention has 5 ppm or less of aggregated particles of 20 μm or more. If it exceeds 5 ppm, not only does the agglomerate remain when mixed with the active material, the effect of forming the conductive path is reduced, but also when the electrode film is applied with, for example, a bar coater or a doctor blade, the coating streaks for the agglomerated particles. Can do. A coating streak is a defect that occurs in the flow direction of the coating surface due to the accumulation of agglomerates in the coating head portion, which impairs the uniformity of the coating surface and cannot be used as an electrode.

本発明で使用されるカーボンブラックは、硫黄分が50ppm以下である。カーボンブラックが含有している硫黄分は、表面に硫酸基等の酸性官能基として存在しており、硫黄分が50ppmを超えると、カーボンブラックの導電性低下につながるばかりか、電極作製時の塗膜の乾燥工程でSOx等のガス発生により平滑な電極表面が得られず、電池内部で電気化学的な反応でもSOx等のガスを発生して電池性能を劣化させる可能性がある。より好ましくは硫黄分が10ppm以下であり、少ないほど好ましい。 The carbon black used in the present invention has a sulfur content of 50 ppm or less. The sulfur content of carbon black is present on the surface as acidic functional groups such as sulfuric acid groups. If the sulfur content exceeds 50 ppm, not only will the conductivity of carbon black be reduced, but also the coating during electrode preparation. In the film drying process, a smooth electrode surface cannot be obtained due to the generation of gas such as SOx, and there is a possibility that gas such as SOx is generated even in an electrochemical reaction inside the battery to deteriorate the battery performance. More preferably, the sulfur content is 10 ppm or less, and the smaller the better.

カーボンブラックに含まれる硫黄分の測定方法は、酸素気流中で燃焼させ発生する燃焼ガスを過酸化水素水に吸収させ、それをイオンクロマトグラフィーで測定することができる。操作方法の一例として、試料1gを磁性ボートに精密にはかり取り、1300℃に昇温した燃焼吸収装置の反応管に挿入する。吸収液(過酸化水素水3.5mlを純水で希釈し1Lとする)を入れた吸収瓶を接続し、酸素ガスを流す。吸収液をイオンクロマトグラフィー分析装置に導入し、硫酸イオンのピーク面積を測定し、予め硫酸イオン標準溶液から作製した検量線を元に、試料中の硫黄の含有率を算出できる。 As a method for measuring the sulfur content contained in carbon black, combustion gas generated by burning in an oxygen stream can be absorbed in hydrogen peroxide solution and measured by ion chromatography. As an example of the operation method, 1 g of a sample is accurately weighed on a magnetic boat and inserted into a reaction tube of a combustion absorber heated to 1300 ° C. An absorption bottle containing an absorbing solution (3.5 mL of hydrogen peroxide solution diluted with pure water to make 1 L) is connected, and oxygen gas is allowed to flow. The absorption solution is introduced into an ion chromatography analyzer, the peak area of sulfate ions is measured, and the sulfur content in the sample can be calculated based on a calibration curve prepared in advance from a sulfate ion standard solution.

本発明で使用されるカーボンブラックは、JIS K 6221(1982年)法で測定された揮発成分が0.1%以下のものである。カーボンブラックの揮発成分としては、原料由来の未分解品、カーボンブラックの表面官能基等がある。これら揮発成分も上記と同様、極板の平滑性や電池特性に悪影響を及ぼす。揮発成分が0.1%を超えるとその傾向が強く、0.1%以下が好ましい。 The carbon black used in the present invention has a volatile component measured by the JIS K 6221 (1982) method of 0.1% or less. Examples of the volatile component of carbon black include undecomposed products derived from raw materials and surface functional groups of carbon black. These volatile components also adversely affect the smoothness and battery characteristics of the electrode plate, as described above. When the volatile component exceeds 0.1%, the tendency is strong, and 0.1% or less is preferable.

本発明で使用されるホウ素固溶カーボンブラックの製造方法に特に制約はないが、その一例を示せば、原料中の硫黄分を除去する工程、カーボンブラックを製造する工程、得られたカーボンブラックから硫黄分を除去する工程からなる。原料中の硫黄分を除去する工程では、吸収塔の塔底から原料ガスを吹き込み、塔頂から1.25〜5N(5〜20wt%)の水酸化ナトリウム水溶液を流下させて原料中の硫黄分を水溶液に吸収させる。カーボンブラックを製造する工程では、硫黄分を除去した原料ガスの熱分解反応時及び/又は燃焼反応時にホウ素源を存在させてホウ素固溶カーボンブラックを生成させた後、気流中で凝集塊を解砕させることによって製造することができる。得られたカーボンブラックから硫黄分を除去する工程では、マッフル炉等の焼成炉を使用し、不活性雰囲気中、又は不活性気流中、1000〜1500℃で1時間以上、加熱処理を行うことで、硫黄分を除去することが出来る。 There are no particular restrictions on the method for producing the boron solid solution carbon black used in the present invention. For example, a process for removing sulfur in the raw material, a process for producing carbon black, and the obtained carbon black are used. The process consists of removing sulfur. In the step of removing the sulfur content in the raw material, the raw material gas is blown from the bottom of the absorption tower, and a 1.25 to 5 N (5 to 20 wt%) aqueous sodium hydroxide solution is allowed to flow down from the top of the tower, thereby causing the sulfur content in the raw material to flow. Is absorbed in an aqueous solution. In the process of producing carbon black, a boron source is present during the pyrolysis reaction and / or combustion reaction of the raw material gas from which sulfur has been removed to produce boron solid solution carbon black, and then the aggregates are dissolved in an air stream. It can be produced by crushing. In the step of removing sulfur from the obtained carbon black, by using a baking furnace such as a muffle furnace, heat treatment is performed at 1000 to 1500 ° C. for 1 hour or more in an inert atmosphere or in an inert airflow. , Sulfur content can be removed.

特に、熱分解反応及び/又は燃焼反応させる工程では、特開2006−265374号公報の実施例に記載されているように、存在させるホウ素源の量、水分の存在量によって可溶ホウ素量を制御することができる。可溶ホウ素量を低減した状態で得られたホウ素固溶カーボンブラックは結着力が弱い状態で凝集しているが、反応炉を出て大気にさらされると空気中の水分で凝集が増す。そのため、大気に出る前に高速の気流中で粒子同士を衝突させ凝集をほぐすことで高分散性のホウ素固溶カーボンブラックを得ることができる。 In particular, in the process of thermal decomposition reaction and / or combustion reaction, the amount of soluble boron is controlled by the amount of boron source to be present and the amount of moisture present, as described in the examples of JP-A-2006-265374. can do. Boron solid solution carbon black obtained in a state where the amount of soluble boron is reduced is agglomerated in a state where the binding force is weak, but when exposed to the atmosphere after leaving the reaction furnace, the agglomeration increases due to moisture in the air. Therefore, highly dispersible boron solid solution carbon black can be obtained by colliding particles in a high-speed air stream to release aggregation before entering the atmosphere.

本発明では、ガス状の炭化水素原料として、アセチレン、メタン、エタン、プロパン、エチレン、プロピレン、ブタジエン等のガスを使用することができる。オイル状の炭化水素原料として、ベンゼン、トルエン、キシレン、ガソリン、灯油、軽油、重油等のオイル状炭化水素をガス化したものを使用することができる。特に好ましくは、アセチレンを使用することであり、生成する熱量が大きく、反応温度が高くすることができ、ホウ素の含有に適している。 In the present invention, gases such as acetylene, methane, ethane, propane, ethylene, propylene, and butadiene can be used as the gaseous hydrocarbon raw material. As the oily hydrocarbon raw material, gasified oily hydrocarbons such as benzene, toluene, xylene, gasoline, kerosene, light oil and heavy oil can be used. Particularly preferred is the use of acetylene, which generates a large amount of heat, can increase the reaction temperature, and is suitable for containing boron.

また、本発明に用いるホウ素源は、ホウ素、また、ホウ素源としては、例えば三塩化ホウ素、ジボラン、トリエチルボロン、ホウ酸トリメチル、ホウ酸トリエチル等が用いられる。ホウ素源についても酸素含有化合物酸素を除去又は軽減しておくことが好ましい。これらの中でも、取り扱いの容易さの点から、ホウ酸トリメチル、ホウ酸トリエチルが好ましい。 The boron source used in the present invention is boron, and as the boron source, for example, boron trichloride, diborane, triethyl boron, trimethyl borate, triethyl borate and the like are used. It is preferable to remove or reduce the oxygen-containing compound oxygen also for the boron source. Among these, trimethyl borate and triethyl borate are preferable from the viewpoint of easy handling.

本発明の導電剤は、本発明で使用するホウ素固溶カーボンブラックの分散性、導電性を阻害しない範囲でその他の導電付与剤、例えばカーボンブラック、黒鉛、カーボンナノファイバー、カーボンファイバー等を添加してもよい。導電剤におけるホウ素固溶カーボンブラックの好ましい配合組成は、20質量%から100質量%である。 The conductive agent of the present invention is added with other conductivity-imparting agents such as carbon black, graphite, carbon nanofibers, carbon fibers and the like within a range not inhibiting the dispersibility and conductivity of the boron solid solution carbon black used in the present invention. May be. A preferable blending composition of boron solid solution carbon black in the conductive agent is 20% by mass to 100% by mass.

次に、非水系二次電池電極について説明する。電極が負極である場合、その負極活物質としては、各種の炭素質材料が使用される。例えば天然黒鉛、人造黒鉛、グラファイト、活性炭、コークス、ニードルコークス、フリュードコークス、メソフェーズマイクロビーズ、炭素繊維、熱分解炭素などである。一方、電極が正極である場合、正極活物質としては、TiS、MoS、NbSe、V等のリチウムを含有しない金属硫化物、金属酸化物、あるいはLixMO(ただし、式中Mは、一種類以上の遷移金属であり、通常0.05≦x≦1.0である)を主体とするリチウム複合酸化物を使用することができる。具体的には、コバルト酸リチウム、マンガン酸リチウム等である。 Next, the nonaqueous secondary battery electrode will be described. When the electrode is a negative electrode, various carbonaceous materials are used as the negative electrode active material. For example, natural graphite, artificial graphite, graphite, activated carbon, coke, needle coke, fluid coke, mesophase microbead, carbon fiber, pyrolytic carbon and the like. On the other hand, if the electrode is a positive electrode, a positive electrode active material, TiS 2, MoS 2, NbSe 2, V 2 O metal sulfide not containing lithium, such as 5, metal oxides, or LixMO 2 (where in the formula M is one or more kinds of transition metals, and a lithium composite oxide mainly composed of 0.05 ≦ x ≦ 1.0 can be used. Specifically, lithium cobaltate, lithium manganate and the like.

本発明の電極は、例えば、負極活物質又は正極活物質と本発明の導電剤との混合物を結着剤を含む液体に分散してスラリーを調製し、それを金属箔からなる集電体に塗布・乾燥により被着させることによって製造することができる。この場合において、本発明のカーボンブラックの使用量は、本発明のカーボンブラックと負極活物質又は正極活物質との合計に対して、本発明のカーボンブラックが0.1〜20質量%の含有率であることが好ましい。0.1質量%未満では電極の導電性が不十分となり、導電経路の保持が十分に確保できなくなる。本発明のカーボンブラックの割合が増えるに従って、非水系二次電池の寿命が長くなるが、逆に充放電容量が小さくなるので、両特性のバランスから、その上限は20質量%であることが好ましい。 In the electrode of the present invention, for example, a negative electrode active material or a mixture of the positive electrode active material and the conductive agent of the present invention is dispersed in a liquid containing a binder to prepare a slurry, which is then used as a current collector made of a metal foil. It can be produced by applying and drying. In this case, the carbon black of the present invention is used in an amount of 0.1 to 20% by mass of the carbon black of the present invention based on the total of the carbon black of the present invention and the negative electrode active material or the positive electrode active material. It is preferable that If it is less than 0.1% by mass, the conductivity of the electrode becomes insufficient, and it is impossible to sufficiently secure the conductive path. As the proportion of the carbon black of the present invention increases, the life of the non-aqueous secondary battery becomes longer, but conversely the charge / discharge capacity decreases, so that the upper limit is preferably 20% by mass from the balance of both characteristics. .

結着剤としては、ポリエチレン、ニトリルゴム、ポリブタジエン、ブチルゴム、ポリスチレン、スチレン・ブタジエンゴム、多硫化ゴム、ニトロセルロース、セチルメチルセルロース、ポリビニルアルコール、四フッ化エチレン樹脂、ポリフッ化ビニリデン、ポリフッ化クロロプレン等が用いられる。 Examples of the binder include polyethylene, nitrile rubber, polybutadiene, butyl rubber, polystyrene, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cetylmethylcellulose, polyvinyl alcohol, tetrafluoroethylene resin, polyvinylidene fluoride, and polychlorochloroprene. Used.

集電体としては、特に限定されるものではないが、金、銀、銅、白金、アルミニウム、鉄、ニッケル、クロム、マンガン、鉛、タングステン、チタン等、ないしこれらを主成分とする合金の金属箔が使用される。金属箔の厚みは、薄い方が好ましい。取り扱いの容易さより、正極にはアルミニウムが、負極には銅が好適である。 The current collector is not particularly limited, but gold, silver, copper, platinum, aluminum, iron, nickel, chromium, manganese, lead, tungsten, titanium, or an alloy metal containing these as a main component A foil is used. The metal foil is preferably thinner. From the viewpoint of ease of handling, aluminum is preferable for the positive electrode and copper is preferable for the negative electrode.

本発明の負極及び正極の少なくとも一方を用いて、本発明の非水系二次電池を作製するには、従来の負極、正極の代わりに、本発明の負極、正極を用いれば良く、特別な配慮は必要としない。 In order to produce the non-aqueous secondary battery of the present invention using at least one of the negative electrode and the positive electrode of the present invention, the negative electrode and the positive electrode of the present invention may be used instead of the conventional negative electrode and positive electrode, and special considerations are given. Is not necessary.

電解液としては、プロピレンカーボネート、エチレンカーボネート、γ−ブチルラクトン、N−メチルピロリドン、アセトニトリル、N,N−ジメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラン、1,3−ジオキソラン、ギ酸メチル、スルホラン、オキソゾリドン、塩化チオニル、1,2−ジメトキシエタン、ジエチレンカーボネートやこれらの誘導体等が用いられる。また、電解質としてはリチウムのハロゲン化物、リチウムの過酸化水素塩、リチウムのチオシアン塩、リチウムのホウフッ化塩、リチウムのリンフッ化塩、リチウムのヒ素フッ化塩、リチウムのアルミニウムフッ化塩、リチウムのトリフルオロメチル硫酸塩等が使用される。必要に応じて、セパレーター、端子、絶縁板等の部品が取り付けられる。 Examples of the electrolytic solution include propylene carbonate, ethylene carbonate, γ-butyllactone, N-methylpyrrolidone, acetonitrile, N, N-dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, 1,3-dioxolane, methyl formate, sulfolane, oxozolidone, and thionyl chloride. 1,2-dimethoxyethane, diethylene carbonate and derivatives thereof are used. The electrolytes include lithium halides, lithium hydrogen peroxide, lithium thiocyanate, lithium borofluoride, lithium phosphofluoride, lithium arsenic fluoride, lithium aluminum fluoride, lithium Trifluoromethyl sulfate and the like are used. Components such as a separator, a terminal, and an insulating plate are attached as necessary.

実施例1〜3及び比較例1〜4は、アセチレンガス(炭化水素)とホウ酸トリメチルガスとを表1の条件で混合し、カーボンブラック製造炉(炉全長6m、炉直径1m)の炉頂に設置されたノズルから、噴霧し、アセチレンの熱分解反応を利用してホウ素固溶カーボンブラックを製造した。ホウ酸トリメチルのガス化は140℃のスチームエバポレーターにて実施し、アセチレンガス及びホウ酸トリメチルガスの脱水は塩化カルシウム(1kg)を充填した脱水ラインを通過させて実施した。ここで、原料であるアセチレンガスの精製(脱硫)は、アセチレンガスを120〜150℃に保ったまま吸収塔の塔底から原料ガスを吹き込み、塔頂から5Nの水酸化ナトリウム水溶液(関東化学社製)を流下させて、原料中の硫黄分を水溶液に吸収させた。また、比較例5は、1/2Nの水酸化ナトリウムを使用した以外は実施例2と同様の操作を行った。 In Examples 1 to 3 and Comparative Examples 1 to 4, acetylene gas (hydrocarbon) and trimethyl borate gas were mixed under the conditions shown in Table 1, and the top of a carbon black production furnace (furnace length 6 m, furnace diameter 1 m). Sprayed from a nozzle installed on the surface, boron solid solution carbon black was produced using the thermal decomposition reaction of acetylene. Gasification of trimethyl borate was carried out with a steam evaporator at 140 ° C., and dehydration of acetylene gas and trimethyl borate gas was carried out through a dehydration line filled with calcium chloride (1 kg). Here, the purification (desulfurization) of the acetylene gas as the raw material is performed by blowing the raw material gas from the bottom of the absorption tower while maintaining the acetylene gas at 120 to 150 ° C., and 5N sodium hydroxide aqueous solution (Kanto Chemical Co., Ltd.). Product) was allowed to flow down, and the sulfur content in the raw material was absorbed into the aqueous solution. In Comparative Example 5, the same operation as in Example 2 was performed except that 1 / 2N sodium hydroxide was used.

生成したホウ素固溶カーボンブラックは、炉の真下に直結された搬送ラインに導入され、搬送ライン後方から窒素ガスを表1の流量で流し、45μmの金網に衝突及び通過させ、直結されたバグフィルターから捕集した。また、生成したカーボンブラックの精製(脱硫及び揮発成分の除去)作業は、マッフル炉を使用し、窒素雰囲気中、1300℃で5時間処理を行った。また、比較例6は、1300℃で0.5時間処理を行った以外は、実施例2と同様の処理を行った。 The produced boron solid solution carbon black is introduced into a conveyance line directly connected to the bottom of the furnace, and nitrogen gas is allowed to flow from the rear of the conveyance line at the flow rate shown in Table 1 to collide with and pass through a 45 μm wire mesh. Collected from. Moreover, the refinement | purification (desulfurization and removal of a volatile component) of produced | generated carbon black performed the process for 5 hours at 1300 degreeC in nitrogen atmosphere using the muffle furnace. Moreover, the comparative example 6 performed the process similar to Example 2 except having processed at 1300 degreeC for 0.5 hour.

得られたホウ素固溶カーボンブラックについて、以下の物性を測定した。それらの結果を表1に示す。
(1)可溶ホウ素量、固溶ホウ素量:上記の方法により測定した。
(2)電気抵抗率:JIS K 1469に従い測定した。
(3)ふるい残分:ふるいを635mesh(目開き:20μm)とした以外は、JIS K 6218−3に従い測定した。
(4)硫黄分:試料1gを磁性ボートに精密にはかり取り、1300℃に昇温した燃焼吸収装置の反応管に挿入した。吸収液(過酸化水素水3.5mlを純水で希釈し1Lとする)を入れた吸収瓶を接続し、酸素ガスを流し、燃焼ガスを吸収瓶に通した。得られた吸収液をイオンクロマトグラフィー分析装置に導入し、硫酸イオンのピーク面積を測定し、予め硫酸イオン標準溶液から作製した検量線を元に、試料中の硫黄の含有率を算出した。
(5)揮発成分:JIS K 6221(1982年)に従い測定した。
(6)分散度:前処理として、アセチレンブラックを0.1g、ジブチルフタレートを30g、遠心沈降管に入れ、ホモジナイザー(日本精機製BM−2)で2000rpm×1minの条件で混合し、JIS K 5600−2−5に従いグラインドゲージ(25μm溝)でツブの粒径を測定した。5回測定し、その平均を分散度とした。
The following physical properties of the obtained boron solid solution carbon black were measured. The results are shown in Table 1.
(1) Soluble boron content, solid solution boron content: measured by the above method.
(2) Electrical resistivity: measured in accordance with JIS K 1469.
(3) Sieve residue: Measured according to JIS K 6218-3 except that the sieve was changed to 635 mesh (opening: 20 μm).
(4) Sulfur content: 1 g of sample was precisely weighed on a magnetic boat and inserted into a reaction tube of a combustion absorber heated to 1300 ° C. An absorption bottle containing an absorption liquid (3.5 ml of hydrogen peroxide solution diluted with pure water to 1 L) was connected, oxygen gas was allowed to flow, and combustion gas was passed through the absorption bottle. The obtained absorbing solution was introduced into an ion chromatography analyzer, the peak area of sulfate ion was measured, and the sulfur content in the sample was calculated based on a calibration curve prepared in advance from a sulfate ion standard solution.
(5) Volatile component: Measured according to JIS K 6221 (1982).
(6) Dispersion: As pretreatment, 0.1 g of acetylene black and 30 g of dibutyl phthalate are placed in a centrifugal sedimentation tube, and mixed under a condition of 2000 rpm × 1 min with a homogenizer (Nippon Seiki BM-2), and JIS K 5600 In accordance with -2-5, the particle diameter of the tube was measured with a grind gauge (25 μm groove). The measurement was made 5 times, and the average was taken as the degree of dispersion.

(7)NMPへの分散性
マイクロトラック(日機装社製、MT3300)を使用して、溶媒にNMP(=N−メチルピロリドン、Aldrich製)を用いて、カーボンブラックの粒度分布を測定し、粒度(D50)を求めた。測定条件は、測定範囲=0.02〜2000μm、粒子透過性=吸収、粒子形状=非球形とした。また、サンプル投入量はサンプル投入時に表示される最適濃度範囲になるように調整した。
(7) Dispersibility to NMP Using a microtrack (manufactured by Nikkiso Co., Ltd., MT3300), using NMP (= N-methylpyrrolidone, manufactured by Aldrich) as a solvent, the particle size distribution of carbon black was measured, and the particle size ( D50) was determined. The measurement conditions were: measurement range = 0.02 to 2000 μm, particle permeability = absorption, particle shape = non-spherical. Further, the amount of sample input was adjusted so as to be within the optimum concentration range displayed at the time of sample input.

正極活物質のLiFePO4(Phostech社製、一次粒子径500nm)81質量%と、カーボンブラック9質量%、結着剤のPVDF(クレハ社製、KFポリマー)10質量%とを混合し混合物(=合剤)とした。溶媒としてNMPを添加し、プラネタリーミキサー(2000rpm×15min)で混合し、合剤スラリーとした。この合剤スラリーがB型粘度計での粘度測定値が10000mPa・sとなる様にNMP量を調整した。 A mixture of the positive electrode active material LiFePO4 (manufactured by Phostech, primary particle size 500 nm), 9% by mass of carbon black, and 10% by mass of PVDF (manufactured by Kureha Co., Ltd., KF polymer). Agent). NMP was added as a solvent and mixed with a planetary mixer (2000 rpm × 15 min) to obtain a mixture slurry. The amount of NMP was adjusted so that the mixture slurry had a viscosity measurement value of 10,000 mPa · s with a B-type viscometer.

この合剤スラリーを、厚さ20μmのアルミニウム箔(集電体)に50μmの厚みで塗布・乾燥、その後、プレス、裁断して正極を作製した。正極の塗膜の状態を目視観察し、◎:平滑で良好、○:普通、△:剥離有りまたは塗工スジ有り不良、にて判断した。正極の表面抵抗はJIS K 7194に従い、ダイアインスツルメンツ社製「ロレスタGP」でTFPプローブを用いて測定した。表面抵抗は1サンプルについて9カ所測定し、その平均値を求めると同時に、最大値、最小値からバラツキの割合を算出した。 This mixture slurry was applied to an aluminum foil (current collector) with a thickness of 20 μm and dried at a thickness of 50 μm, and then pressed and cut to produce a positive electrode. The state of the coating film on the positive electrode was visually observed, and judged as ◎: smooth and good, ◯: normal, △: peeling or defective coating lines. The surface resistance of the positive electrode was measured according to JIS K 7194 using “Loresta GP” manufactured by Dia Instruments Co., Ltd. using a TFP probe. The surface resistance was measured at nine locations for one sample, and the average value was obtained, and at the same time, the variation ratio was calculated from the maximum value and the minimum value.

対極として金属リチウムを用い、エチレンカーボネート/ジメチルカーボネートを1/1の容積比で混合した溶液に、過塩素酸リチウム1モル濃度を溶解させたものを電解液としてコイン形電池(CR2032)を作製した。 Using lithium metal as a counter electrode, a coin-type battery (CR2032) was prepared using a solution in which 1 mol of lithium perchlorate was dissolved in a mixed solution of ethylene carbonate / dimethyl carbonate at a volume ratio of 1/1. .

電池の放電試験として、電池を初充電後、充放電効率が100%近傍になるのを確認後、0.7mA/cm2の電流密度にて定電流放電を2.1Vまで行った際の放電容量を測定し、正極活物質で除した容量密度(mAh/g)を算出した。この容量(mAh/g)を1時間で充放電可能な電流値を「1C」とした。レート特性は、4.1V(0.2C定電流)で充電し、0.2C、3Cで放電した際の放電容量を求め、0.2Cの放電容量に対する3Cの放電容量の比(%)をレート特性(容量維持率)とした。サイクル特性は、3Cで充放電を繰り返し、1サイクル目における放電容量に対する150サイクル目の放電容量の比(%)をサイクル特性(容量維持率)とした。 As the battery discharge test, after confirming that the charge / discharge efficiency is close to 100% after the initial charge of the battery, the discharge capacity when performing constant current discharge to 2.1 V at a current density of 0.7 mA / cm 2. Was measured, and the capacity density (mAh / g) divided by the positive electrode active material was calculated. The current value that can charge and discharge the capacity (mAh / g) in 1 hour was defined as “1C”. The rate characteristics are obtained by charging at 4.1 V (0.2 C constant current), discharging at 0.2 C and 3 C, and calculating the ratio (%) of 3 C discharge capacity to 0.2 C discharge capacity. Rate characteristics (capacity maintenance rate) were used. For the cycle characteristics, charge / discharge was repeated at 3C, and the ratio (%) of the discharge capacity at the 150th cycle to the discharge capacity at the first cycle was defined as the cycle characteristic (capacity maintenance ratio).

Figure 0005996380
Figure 0005996380

表1から、本発明の実施例によって得られたカーボンブラックは、比較例に比べてふるい残分、分散度の数値が低くなっており、NMPへの分散性、電池評価結果も良好であった。 From Table 1, the carbon black obtained by the example of the present invention has a lower sieve residue and dispersibility than the comparative example, and the dispersibility in NMP and the battery evaluation result were also good. .

本発明の導電剤は導電性及び分散性に優れた非水系二次電池用導電剤であり、電池性能の優れた電極、非水系二次電池を得ることができる。
The conductive agent of the present invention is a non-aqueous secondary battery conductive agent excellent in conductivity and dispersibility, and an electrode and a non-aqueous secondary battery excellent in battery performance can be obtained.

Claims (6)

可溶ホウ素量が0.05質量%以下、JIS K 1469による電気抵抗率が0.15Ωcm以下、20μm以上の凝集粒子が5ppm以下、硫黄分が50ppm以下、揮発成分が0.1%以下の非水系二次電池の導電剤用ホウ素固溶カーボンブラック。 The amount of soluble boron is 0.05 mass% or less, the electrical resistivity according to JIS K 1469 is 0.15 Ωcm or less, the aggregated particles of 20 μm or more are 5 ppm or less, the sulfur content is 50 ppm or less, and the volatile components are 0.1% or less. Boron solid solution carbon black for conductive agents of water-based secondary batteries. 請求項1に記載の非水系二次電池の導電剤用ホウ素固溶カーボンブラックを含有してなる非水系二次電池用導電剤。 The electrically conductive agent for non-aqueous secondary batteries containing the boron solid solution carbon black for electrically conductive agents of the non-aqueous secondary battery of Claim 1. 非水系二次電池の導電剤用ホウ素固溶カーボンブラックのツブゲージによる分散度が10μm以下である請求項2に記載の非水系二次電池用導電剤。 The conductive agent for a non-aqueous secondary battery according to claim 2, wherein the dispersity of the boron solid solution carbon black for a conductive agent of the non-aqueous secondary battery by a tube gauge is 10 µm or less. 負極活物質又は正極活物質80〜99.9質量%と、請求項2または3に記載の非水系二次電池用導電剤0.1〜20質量%とを含む組成物を集電体に被着させた非水系二次電池の電極。 A composition comprising a negative electrode active material or a positive electrode active material in an amount of 80 to 99.9% by mass and a conductive agent for a nonaqueous secondary battery according to claim 2 or 3 in an amount of 0.1 to 20% by mass is applied to a current collector. The electrode of the nonaqueous secondary battery put on. 負極及び/又は正極が、請求項4記載の電極で構成されてなる非水系二次電池。 A non-aqueous secondary battery in which the negative electrode and / or the positive electrode is composed of the electrode according to claim 4. 炭化水素の熱分解反応時及び/又は燃焼反応時にホウ素源を添加し、ホウ素固溶カーボンブラックを生成させた後、窒素ガス気流中を通過させる請求項1に記載の非水系二次電池の導電剤用ホウ素固溶カーボンブラックの製造方法。 The conductivity of the non-aqueous secondary battery according to claim 1, wherein a boron source is added during a pyrolysis reaction and / or a combustion reaction of a hydrocarbon to generate boron solid solution carbon black, and then passed through a nitrogen gas stream. Method for producing boron solid solution carbon black for use in chemicals.
JP2012243563A 2012-11-05 2012-11-05 Carbon black for non-aqueous secondary battery, electrode and non-aqueous secondary battery Active JP5996380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012243563A JP5996380B2 (en) 2012-11-05 2012-11-05 Carbon black for non-aqueous secondary battery, electrode and non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012243563A JP5996380B2 (en) 2012-11-05 2012-11-05 Carbon black for non-aqueous secondary battery, electrode and non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2014093215A JP2014093215A (en) 2014-05-19
JP5996380B2 true JP5996380B2 (en) 2016-09-21

Family

ID=50937152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012243563A Active JP5996380B2 (en) 2012-11-05 2012-11-05 Carbon black for non-aqueous secondary battery, electrode and non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP5996380B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017216090A (en) * 2016-05-30 2017-12-07 ダイニック株式会社 Coating material for underlying layer and electrode for electrochemical device
JP6616278B2 (en) 2016-12-27 2019-12-04 株式会社エンビジョンAescジャパン Electrode for lithium ion secondary battery
JP6998155B2 (en) * 2017-08-30 2022-01-18 旭化成株式会社 Inorganic particle binder for secondary battery, separator for secondary battery and secondary battery using this
JP6472567B1 (en) * 2018-10-15 2019-02-20 ダイニック株式会社 Underlayer paint

Also Published As

Publication number Publication date
JP2014093215A (en) 2014-05-19

Similar Documents

Publication Publication Date Title
JP5215978B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and lithium ion secondary battery
WO2016080539A1 (en) Carbon black and rechargeable battery using same
JP6864250B2 (en) Carbon material and non-aqueous secondary battery
JP5675546B2 (en) Silicon oxide for non-aqueous electrolyte secondary battery negative electrode material, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP2010031214A (en) Carbon black composite and application thereof
JP2018500742A (en) Composite powder for use in an anode of a lithium ion battery, method for preparing such composite powder, and method for analyzing such composite powder
JP2018163868A (en) Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP5996380B2 (en) Carbon black for non-aqueous secondary battery, electrode and non-aqueous secondary battery
JP2016186912A (en) Composite carbon material for nonaqueous secondary battery, and nonaqueous secondary battery
WO2018221632A1 (en) Carbon black for electrode and electrode slurry
JP6609960B2 (en) Carbon material and non-aqueous secondary battery
JP6020331B2 (en) Silicon oxide particles, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP6801171B2 (en) Carbon material and non-aqueous secondary battery
JP6859593B2 (en) Carbon material for non-aqueous secondary batteries and lithium-ion secondary batteries
JP2012221684A (en) Carbon black for nonaqueous secondary battery, electrode and nonaqueous secondary battery
JP2018062545A (en) Carbon black composition and lithium secondary battery using the same
JP2017126426A (en) Method for producing negative electrode material for nonaqueous secondary battery and nonaqueous secondary battery using negative electrode material for nonaqueous secondary battery
JP6759586B2 (en) Carbon material and non-aqueous secondary battery
JP6672755B2 (en) Carbon materials and non-aqueous secondary batteries
JP6794614B2 (en) Carbon material and non-aqueous secondary battery
JP2021185582A (en) Carbon material and non-aqueous secondary battery
WO2013190624A1 (en) Carbon black for nonaqueous secondary batteries, electrode, and nonaqueous secondary battery
JP6657671B2 (en) Stabilized lithium powder, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6045860B2 (en) Carbon material and non-aqueous secondary battery using the same
WO2022118924A1 (en) Carbon black, slurry, and lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160824

R150 Certificate of patent or registration of utility model

Ref document number: 5996380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250