JP5990972B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5990972B2
JP5990972B2 JP2012075158A JP2012075158A JP5990972B2 JP 5990972 B2 JP5990972 B2 JP 5990972B2 JP 2012075158 A JP2012075158 A JP 2012075158A JP 2012075158 A JP2012075158 A JP 2012075158A JP 5990972 B2 JP5990972 B2 JP 5990972B2
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
gas
condenser
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012075158A
Other languages
Japanese (ja)
Other versions
JP2013204936A (en
Inventor
雅恵 笹野
雅恵 笹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2012075158A priority Critical patent/JP5990972B2/en
Publication of JP2013204936A publication Critical patent/JP2013204936A/en
Application granted granted Critical
Publication of JP5990972B2 publication Critical patent/JP5990972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、混合冷媒を用いた空気調和機に関するものである。   The present invention relates to an air conditioner using a mixed refrigerant.

現在、空気調和機には冷媒としてR410AやR407Cが主に使われている。これらの冷媒はオゾン破壊係数(ODP)が0であるが地球温暖化係数(=GWP)が高く(R410AのGWP=2090、R407CのGWP=1770)、地球温暖化防止の観点からGWPの低い冷媒への置き換えが検討されている。GWPの低い冷媒の候補として挙げられている冷媒としては、HFC系ではR32(GWP=675)やR1234yf(GWP=4)、自然系冷媒ではプロパン(GWP=3)などがある。   Currently, R410A and R407C are mainly used as refrigerants in air conditioners. These refrigerants have an ozone depletion potential (ODP) of 0 but a high global warming potential (= GWP) (GWP of R410A = 2090, GWP = 1770 of R407C) and low GWP from the viewpoint of preventing global warming. A replacement with is being considered. Refrigerants listed as candidates for low GWP refrigerants include R32 (GWP = 675) and R1234yf (GWP = 4) in the HFC system, and propane (GWP = 3) in the natural refrigerant.

このうちR1234yfは、圧力が低く定置用空調機用途では性能が悪いために製品の大型化が必要になり、従来機器と同仕様の製品設計は難しい。また、自然系冷媒は冷媒としての性能は良いが、強燃性のために製品に封入できる冷媒量がIEC規格により制限されており、一部の小型の空気調和機にしか適用できない。   Among these, R1234yf has a low pressure and has poor performance in stationary air conditioner applications, so it is necessary to increase the size of the product, and product design with the same specifications as conventional devices is difficult. Although natural refrigerants have good performance as refrigerants, the amount of refrigerant that can be enclosed in products is limited by the IEC standards due to their strong flammability, and can only be applied to some small air conditioners.

一方、R32は、R410Aの50wt%を占める成分で冷媒の性能としてはR410Aよりも良い。また微燃性冷媒だが、機器側で所定の防爆対応を行なえば適用できる可能性がある。しかし、R410Aに比べ同一凝縮温度での圧力が若干高く、また吐出温度が上がりやすい特性を持つ。そのため従来のR410A用機器に単独で適用しようとすると設計圧力の変更や吐出温度上昇への対応など、若干の設計変更が必要になる。   On the other hand, R32 is a component that occupies 50 wt% of R410A, and has a better refrigerant performance than R410A. Although it is a slightly flammable refrigerant, there is a possibility that it can be applied if a predetermined explosion-proof measure is taken on the device side. However, the pressure at the same condensation temperature is slightly higher than that of R410A, and the discharge temperature tends to rise. Therefore, if it is intended to be applied alone to the conventional R410A device, some design changes such as a change in the design pressure and a response to a rise in the discharge temperature are required.

このように、低GWP冷媒の候補のうち、単一の冷媒で従来のR410A機器の置き換えとなりうるものが存在しないことから、いくつかの冷媒を適当な割合で混合してそれぞれの問題を解決する方法が提案されている。例えば、性能は良いが同一凝縮温度での圧力の高いR32と性能は劣るが同一凝縮温度での圧力の低いR1234yf、または、これと圧力−温度特性の似たR134aの組み合わせなどが知られている。しかし、R32とR1234yfまたはR134aは沸点が大きく異なるため(R32:−51.7℃、R1234yf:−29.5℃、R134a:−26.1℃)、これらの冷媒を混合すると温度勾配が発生し、制御しづらい、性能が出にくいなどの問題がある。   Thus, there is no single low refrigerant candidate that can replace the conventional R410A device among the low GWP refrigerant candidates, so that several refrigerants are mixed at an appropriate ratio to solve each problem. A method has been proposed. For example, R32 having good performance but high pressure at the same condensation temperature and R1234yf having low performance but low pressure at the same condensation temperature, or a combination of this and R134a having similar pressure-temperature characteristics are known. . However, since the boiling points of R32 and R1234yf or R134a are greatly different (R32: −51.7 ° C., R1234yf: −29.5 ° C., R134a: −26.1 ° C.), a temperature gradient is generated when these refrigerants are mixed. There are problems such as difficulty in controlling and difficulty in performance.

こうした混合冷媒を用いた空気調和機に関して、本発明者は既に特願2011−105556および特願2011−105557に示される空気調和機を提案している。図3に示すように、この空気調和機の冷凍サイクル回路は、圧縮機12と、凝縮器(室外機)14と、減圧手段16と、蒸発器(室内機)18と、四方弁20とからなる。作動冷媒としては、R32とR134aのみ、または、R32とR1234yfのみからなる混合冷媒を用いる。   Regarding the air conditioner using such a mixed refrigerant, the present inventor has already proposed the air conditioners shown in Japanese Patent Application Nos. 2011-105556 and 2011-105557. As shown in FIG. 3, the refrigeration cycle circuit of the air conditioner includes a compressor 12, a condenser (outdoor unit) 14, a decompression unit 16, an evaporator (indoor unit) 18, and a four-way valve 20. Become. As the working refrigerant, a mixed refrigerant consisting of only R32 and R134a or only R32 and R1234yf is used.

圧縮機12からの混合冷媒は、配管26を通って第一凝縮器14aに入り、気液分離器22で気液に分離される。気液分離器22に溜まったR134a(またはR1234yf)リッチな液冷媒は、流量調整弁24を通って配管32で圧縮機12にインジェクションされる。一方、気液分離器22で分離された飽和蒸気冷媒は第二凝縮器14bから配管28および減圧手段16を通って蒸発器18に入る。この蒸発器18に入る冷媒としてはR32の割合が多くなる。蒸発器18からの冷媒は配管30を通じて圧縮機12に送られる。   The mixed refrigerant from the compressor 12 enters the first condenser 14 a through the pipe 26 and is separated into gas and liquid by the gas-liquid separator 22. The R134a (or R1234yf) rich liquid refrigerant accumulated in the gas-liquid separator 22 is injected into the compressor 12 through the flow rate adjustment valve 24 and through the pipe 32. On the other hand, the saturated vapor refrigerant separated by the gas-liquid separator 22 enters the evaporator 18 from the second condenser 14 b through the pipe 28 and the decompression means 16. The ratio of R32 as the refrigerant entering the evaporator 18 is increased. The refrigerant from the evaporator 18 is sent to the compressor 12 through the pipe 30.

ここで、気液分離器22が凝縮器14の容積比A%:(100−A)%となる位置に取り付けてあり、これにより凝縮器14は凝縮器全体に対する容積割合がA%の第一凝縮器14aと(100−A)%の第二凝縮器14bとで構成されることになる。気液分離器22の取り付け位置としては、想定される運転条件下で冷媒が二相域にある位置を選定する必要がある。R32とR134aのみからなる混合冷媒でR32の混合割合が80wt%の場合を例とする。凝縮温度68℃で運転するときに吐出温度が従来冷媒のR410Aを使った機器と同じ90℃になるように液インジェクションを制御し、また凝縮器出口での過冷却度が一般的な冷凍サイクルと同じ5degになるように冷凍サイクル全体を制御すると、図4に示すように、凝縮器で冷媒が放出するエネルギーの割合はガス域:24%、二相域:69%、過冷却域:7%となる。凝縮器の単位容積あたりの熱交換量は概ね一様とみなせるので、上述した熱交換器の容積割合よりAを決めるとAの値は24〜93%の範囲になる。   Here, the gas-liquid separator 22 is attached at a position where the volume ratio A% :( 100−A)% of the condenser 14 is obtained, whereby the condenser 14 has a first volume ratio of A% with respect to the whole condenser. The condenser 14a and the (100-A)% second condenser 14b are configured. As the attachment position of the gas-liquid separator 22, it is necessary to select a position where the refrigerant is in the two-phase region under the assumed operation conditions. An example is a case where a mixed refrigerant composed of only R32 and R134a and the mixing ratio of R32 is 80 wt%. When operating at a condensing temperature of 68 ° C, the liquid injection is controlled so that the discharge temperature is 90 ° C, which is the same as the equipment using the conventional refrigerant R410A, and the degree of supercooling at the condenser outlet is a general refrigeration cycle. When the entire refrigeration cycle is controlled so as to be the same 5 deg, as shown in FIG. 4, the proportion of energy released by the refrigerant in the condenser is as follows: gas region: 24%, two-phase region: 69%, supercooling region: 7% It becomes. Since the heat exchange amount per unit volume of the condenser can be regarded as substantially uniform, when A is determined from the volume ratio of the heat exchanger described above, the value of A is in the range of 24 to 93%.

なお凝縮器を通過する混合冷媒は、沸点の高い冷媒の方が先に液化する。ここで図5は、図4における二相域の冷媒内の液相冷媒の組成を示すものであり、二相域のうち凝縮器の入口側に近い方が、高沸点冷媒の割合が多くなることを示している。よって、二相域にあるB区間(図4参照)の液を取り出す際には、上記Aを凝縮器の入口側に配置することが望ましい。   In addition, the mixed refrigerant passing through the condenser is liquefied first in the refrigerant having a higher boiling point. Here, FIG. 5 shows the composition of the liquid-phase refrigerant in the refrigerant in the two-phase region in FIG. 4, and the proportion of the high-boiling refrigerant increases in the two-phase region closer to the inlet side of the condenser. It is shown that. Therefore, when taking out the liquid of B section (refer FIG. 4) in a two-phase area | region, it is desirable to arrange | position said A to the inlet side of a condenser.

このように、二相域から先に液化しやすいR134a(またはR1234yf)の液冷媒を予め分離することで、蒸発器18に回る冷媒のうちR32の割合がより大きくなり、蒸発器18での温度勾配を小さくすることができる。   Thus, by separating in advance the liquid refrigerant of R134a (or R1234yf) that is liable to liquefy first from the two-phase region, the ratio of R32 in the refrigerant that goes to the evaporator 18 becomes larger, and the temperature at the evaporator 18 The gradient can be reduced.

一方、圧縮機12にインジェクションされた冷媒は液状態のため、それが気化する熱により最終的に吐出される冷媒の温度を抑制することができる。さらにこの液冷媒はR32に比べて断熱圧縮指数の小さいR134a(またはR1234yf)の割合が大きいので、R134a(またはR1234yf)の割合が小さい液冷媒をインジェクションするよりも大きな吐出温度抑制効果を持つ。このため、非共沸混合冷媒の持つ短所の影響を小さくすると同時に、その主成分であるR32に起因する短所の影響も小さくすることができる。   On the other hand, since the refrigerant injected into the compressor 12 is in a liquid state, the temperature of the refrigerant finally discharged can be suppressed by the heat that it vaporizes. Furthermore, since this liquid refrigerant has a larger ratio of R134a (or R1234yf) having a smaller adiabatic compression index than R32, the liquid refrigerant has a larger discharge temperature suppression effect than injection of a liquid refrigerant having a smaller ratio of R134a (or R1234yf). For this reason, it is possible to reduce the influence of the disadvantages of the non-azeotropic refrigerant mixture and to reduce the influence of the disadvantages due to R32 as the main component.

ところで、上記の従来の混合冷媒を用いた空気調和機において、温度勾配による蒸発器の性能低下と運転中の吐出温度過昇とを防止するとともに、冷房・暖房ともに使用することが可能な運転温度範囲の広い空気調和機の開発が望まれていた。   By the way, in the above-described conventional air conditioner using a mixed refrigerant, an operating temperature that can be used for both cooling and heating as well as preventing deterioration in the performance of the evaporator due to a temperature gradient and excessive discharge temperature during operation. The development of a wide range of air conditioners has been desired.

本発明は、上記に鑑みてなされたものであって、混合冷媒を用いた空気調和機において、温度勾配による蒸発器の性能低下と運転中の吐出温度過昇とを防止するとともに、冷房・暖房ともに使用することが可能な運転温度範囲の広い空気調和機を提供することを目的とする。   The present invention has been made in view of the above, and in an air conditioner using a mixed refrigerant, prevents deterioration in the performance of the evaporator due to a temperature gradient and excessive discharge temperature during operation, and cooling and heating. An object is to provide an air conditioner with a wide operating temperature range that can be used together.

上記した課題を解決し、目的を達成するために、本発明の請求項1に係る空気調和機は、圧縮機、第一熱交換器、減圧手段、第二熱交換器を冷媒配管で接続して形成した冷媒回路に、第一の冷媒であるR32を第二の冷媒であるR134aまたはR1234yfより大きい混合比で混合した2種混合冷媒を流通させ、冷房運転と暖房運転とに切換可能な空気調和機であって、前記冷媒回路は、冷房運転時において、凝縮器として機能する前記第一熱交換器の前記第二の冷媒が液リッチである位置から分岐した前記2種混合冷媒から気液分離器を介して分離した液冷媒を、前記圧縮機の中間圧にインジェクションする一方、暖房運転時において、凝縮器として機能する前記第二熱交換器と前記減圧手段との間に前記気液分離器が接続配置されるように回路を切り換える切換え弁を有することを特徴とする。   In order to solve the above-described problems and achieve the object, an air conditioner according to claim 1 of the present invention includes a compressor, a first heat exchanger, a decompression unit, and a second heat exchanger connected by a refrigerant pipe. Air that can be switched between a cooling operation and a heating operation by circulating a two-type mixed refrigerant in which R32, which is the first refrigerant, is mixed at a mixing ratio larger than R134a or R1234yf, which is the second refrigerant. In the air conditioner, the refrigerant circuit includes a gas-liquid from the two-type mixed refrigerant branched from a position where the second refrigerant of the first heat exchanger functioning as a condenser is liquid-rich during cooling operation. While the liquid refrigerant separated through the separator is injected into the intermediate pressure of the compressor, the gas-liquid separation is performed between the second heat exchanger functioning as a condenser and the pressure reducing means during heating operation. Connected And having a switching valve for switching the sea urchin circuit.

また、本発明の請求項2に係る空気調和機は、上述した請求項1において、前記第一の冷媒の混合比は80〜90wt%であることを特徴とする。   The air conditioner according to claim 2 of the present invention is characterized in that, in the above-described claim 1, the mixing ratio of the first refrigerant is 80 to 90 wt%.

また、本発明の請求項3に係る空気調和機は、上述した請求項1または2において、冷房運転時において、凝縮器として機能する前記第一熱交換器内の冷媒が気液二相状態となる位置から前記液冷媒を分離することを特徴とする。   The air conditioner according to claim 3 of the present invention is the air conditioner according to claim 1 or 2, wherein the refrigerant in the first heat exchanger functioning as a condenser is in a gas-liquid two-phase state in the cooling operation. The liquid refrigerant is separated from the position.

また、本発明の請求項4に係る空気調和機は、上述した請求項1〜3のいずれか一つにおいて、冷房運転時において、前記気液分離器の使用/不使用を切り換える切換え弁を有することを特徴とする。   Moreover, the air conditioner which concerns on Claim 4 of this invention has the switching valve which switches use / non-use of the said gas-liquid separator in the cooling operation in any one of Claims 1-3 mentioned above. It is characterized by that.

また、本発明の請求項5に係る空気調和機は、上述した請求項1〜4のいずれか一つにおいて、暖房運転時において、前記気液分離器の容器内の圧力を凝縮圧と蒸発圧の間の任意の値に制御するための絞り機構を、前記気液分離器の容器と凝縮器として機能する前記第二熱交換器との間に設けたことを特徴とする。   An air conditioner according to a fifth aspect of the present invention is the air conditioner according to any one of the first to fourth aspects, wherein during the heating operation, the pressure in the container of the gas-liquid separator is reduced to a condensation pressure and an evaporation pressure. A throttling mechanism for controlling to an arbitrary value between is provided between the container of the gas-liquid separator and the second heat exchanger functioning as a condenser.

本発明によれば、圧縮機、第一熱交換器、減圧手段、第二熱交換器を冷媒配管で接続して形成した冷媒回路に、第一の冷媒であるR32を第二の冷媒であるR134aまたはR1234yfより大きい混合比で混合した2種混合冷媒を流通させ、冷房運転と暖房運転とに切換可能な空気調和機であって、前記冷媒回路は、冷房運転時において、凝縮器として機能する前記第一熱交換器の前記第二の冷媒が液リッチである位置から分岐した前記2種混合冷媒から気液分離器を介して分離した液冷媒を、前記圧縮機の中間圧にインジェクションする一方、暖房運転時において、凝縮器として機能する前記第二熱交換器と前記減圧手段との間に前記気液分離器が接続配置されるように回路を切り換える切換え弁を有する。   According to the present invention, R32 which is the first refrigerant is the second refrigerant in the refrigerant circuit formed by connecting the compressor, the first heat exchanger, the pressure reducing means, and the second heat exchanger with the refrigerant pipe. The air conditioner is capable of switching between a cooling operation and a heating operation by circulating a two-type mixed refrigerant mixed at a mixing ratio larger than R134a or R1234yf, and the refrigerant circuit functions as a condenser during the cooling operation. While the liquid refrigerant separated from the two-type mixed refrigerant branched from the position where the second refrigerant of the first heat exchanger is liquid-rich through a gas-liquid separator is injected into the intermediate pressure of the compressor And a switching valve for switching the circuit so that the gas-liquid separator is connected between the second heat exchanger functioning as a condenser and the pressure reducing means during heating operation.

このため、冷房運転時においては、二相域から先に液化しやすいR134a(またはR1234yf)リッチの液冷媒を予め分離することで、蒸発器として機能する第二熱交換器に回る冷媒のうちR32の割合が大きくなり、蒸発器での温度勾配を小さくすることができる。また、圧縮機にインジェクションされた冷媒は液状態のため、それが気化する熱により最終的に吐出される冷媒の温度を抑制することができる。さらにこの液冷媒はR32に比べて吐出温度が低い物性を持つR134a(またはR1234yf)を多く含むので、封入時の組成割合の液冷媒をインジェクションするよりも大きな吐出温度抑制効果を持つ。   For this reason, during the cooling operation, R32a (or R1234yf) rich liquid refrigerant, which is liable to be liquefied first from the two-phase region, is separated in advance, so that R32 out of the refrigerant circulating to the second heat exchanger functioning as an evaporator. And the temperature gradient in the evaporator can be reduced. Further, since the refrigerant injected into the compressor is in a liquid state, the temperature of the refrigerant finally discharged can be suppressed by the heat that it vaporizes. Further, since this liquid refrigerant contains a larger amount of R134a (or R1234yf) having a lower discharge temperature than R32, it has a larger discharge temperature suppression effect than injection of liquid refrigerant having a composition ratio at the time of encapsulation.

また、切換え弁の切り換えにより、第二熱交換器と減圧手段との間に気液分離器を接続配置することで、この空気調和機は暖房運転も行うことができる。したがって、温度勾配による蒸発器の性能低下と運転中の吐出温度過昇とを防止するとともに、冷房・暖房ともに使用することが可能な運転温度範囲の広い空気調和機を提供することができるという効果を奏する。   Moreover, this air conditioner can also perform heating operation by connecting and disposing a gas-liquid separator between the second heat exchanger and the pressure reducing means by switching the switching valve. Therefore, it is possible to provide an air conditioner with a wide operating temperature range that can be used for both cooling and heating, while preventing a decrease in the performance of the evaporator due to a temperature gradient and an excessive increase in the discharge temperature during operation. Play.

図1は、本発明に係る空気調和機の冷房運転時の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram during cooling operation of the air conditioner according to the present invention. 図2は、本発明に係る空気調和機の暖房運転時の冷媒回路図である。FIG. 2 is a refrigerant circuit diagram during heating operation of the air conditioner according to the present invention. 図3は、従来の空気調和機の冷房運転時の冷媒回路図である。FIG. 3 is a refrigerant circuit diagram during cooling operation of a conventional air conditioner. 図4は、図1および図3の回路に関するp−h線図である。FIG. 4 is a ph diagram for the circuits of FIGS. 図5は、凝縮温度68℃を想定した場合の、凝縮器内の二相域における液冷媒(液相)の組成を示す図である。FIG. 5 is a diagram showing the composition of the liquid refrigerant (liquid phase) in the two-phase region in the condenser when a condensation temperature of 68 ° C. is assumed.

以下に、本発明に係る空気調和機の実施の形態を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Embodiments of an air conditioner according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

本発明に係る空気調和機では、R32にR134a、または、R32にR1234yfを混合した二成分の混合冷媒を用いる。このとき、R32の混合割合は熱帯地域での冷房運転を想定し、凝縮温度65〜68℃での圧力がR410Aの設計圧力(4.15MPaG)未満となるように80〜90wt%とする。以下の説明では、例としてR32とR134aをそれぞれ80wt%、20wt%の割合で混合した冷媒を、蒸発温度15℃/凝縮温度68℃の条件で運転した場合を想定する。ここで、混合冷媒の二つの成分は沸点が異なるために凝縮および蒸発過程において温度勾配が発生する。蒸発器における温度勾配は2.5度となる。   In the air conditioner according to the present invention, a two-component mixed refrigerant obtained by mixing R134a with R32 or R1234yf with R32 is used. At this time, the mixing ratio of R32 is assumed to be cooling operation in the tropical region, and is set to 80 to 90 wt% so that the pressure at the condensation temperature of 65 to 68 ° C. is less than the design pressure (4.15 MPaG) of R410A. In the following description, as an example, it is assumed that a refrigerant in which R32 and R134a are mixed at a ratio of 80 wt% and 20 wt%, respectively, is operated under the conditions of an evaporation temperature of 15 ° C./condensation temperature of 68 ° C. Here, since the two components of the mixed refrigerant have different boiling points, a temperature gradient is generated in the condensation and evaporation processes. The temperature gradient in the evaporator is 2.5 degrees.

また、R32の混合割合が80wt%以上の場合、温度勾配はR134aの混合比が少なくなると小さくなるため、蒸発器に流入する冷媒はR134aの割合が少ない方が望ましい。一方で、凝縮器での冷媒が凝縮する際には沸点の高いR134aの方が先に凝縮する。すなわち、混合冷媒が凝縮している間(全体の乾き度が0〜1の間)の液冷媒成分には冷媒サイクル回路に封入時の冷媒組成の組成比より多い割合のR134a成分が含まれる(図5を参照)。凝縮器の途中から液冷媒の一部を分離することにより、蒸発器に流入する冷媒R134aの割合を少なくできる。   In addition, when the mixing ratio of R32 is 80 wt% or more, the temperature gradient becomes smaller when the mixing ratio of R134a decreases, so that the refrigerant flowing into the evaporator preferably has a smaller ratio of R134a. On the other hand, when the refrigerant in the condenser condenses, R134a having a higher boiling point condenses first. That is, the liquid refrigerant component while the mixed refrigerant is condensed (the entire dryness is between 0 and 1) includes the R134a component in a proportion larger than the composition ratio of the refrigerant composition when sealed in the refrigerant cycle circuit ( (See FIG. 5). By separating a part of the liquid refrigerant from the middle of the condenser, the ratio of the refrigerant R134a flowing into the evaporator can be reduced.

R32はR410Aに比べて吐出温度が高い傾向を持つ。例えば、R32だけを冷媒とする冷凍サイクルで蒸発温度15℃/凝縮温度68℃の条件で運転した場合を想定すると、吐出温度は104℃を越える(R410Aの場合は約90℃)。R134aを20wt%含んだ混合冷媒でも同じ条件での吐出温度は100℃を越えるため、R410Aを用いる空気調和機と同じ設計の冷媒サイクルでこの混合冷媒を使用するためには吐出温度を10度ほど下げる必要がある。   R32 tends to have a higher discharge temperature than R410A. For example, assuming a case where the operation is performed under conditions of an evaporation temperature of 15 ° C./condensation temperature of 68 ° C. in a refrigeration cycle using only R32 as a refrigerant, the discharge temperature exceeds 104 ° C. (in the case of R410A, about 90 ° C.). Even in a mixed refrigerant containing 20 wt% of R134a, the discharge temperature under the same conditions exceeds 100 ° C. Therefore, in order to use this mixed refrigerant in the refrigerant cycle of the same design as the air conditioner using R410A, the discharge temperature is about 10 degrees. Need to lower.

次に、同じ冷媒で暖房運転も行う場合を考える。寒冷地での暖房運転を想定して蒸発温度−25℃/凝縮温度37℃とすると、R32とR134aのみからなる混合冷媒でR32の混合割合が80wt%の場合、理論上の吐出温度は約86℃となる(R410Aの場合は約67℃)。但し、これは圧縮機内での損失を無視した値であり、実際の運転状態では吐出温度が100℃を超える可能性もある。したがって、この冷媒を暖房運転に使う場合も、冷房と同様に吐出温度を下げる工夫が必要になる。   Next, consider a case where the heating operation is performed with the same refrigerant. Assuming a heating operation in a cold region and assuming an evaporation temperature of −25 ° C./condensation temperature of 37 ° C., when the mixing ratio of R32 is 80 wt% with a mixed refrigerant consisting only of R32 and R134a, the theoretical discharge temperature is about 86 (In the case of R410A, about 67 ° C.). However, this is a value ignoring the loss in the compressor, and the discharge temperature may exceed 100 ° C. in an actual operation state. Therefore, even when this refrigerant is used for heating operation, it is necessary to devise a technique for lowering the discharge temperature as in the case of cooling.

そこで、本発明に係る空気調和機の冷凍サイクル回路を、図1の冷房運転時の回路と、図2の暖房運転時の回路とに切り換え可能に構成する。以下、本発明の空気調和機を冷房運転時、暖房運転時とに分けて説明する。   Therefore, the refrigeration cycle circuit of the air conditioner according to the present invention is configured to be switchable between the circuit during the cooling operation of FIG. 1 and the circuit during the heating operation of FIG. Hereinafter, the air conditioner of the present invention will be described separately for cooling operation and heating operation.

[冷房運転時]
図1の冷媒回路図および図4のp−h線図に示すように、本発明に係る空気調和機10は、圧縮機12と、第一熱交換器14と、減圧手段16と、第二熱交換器18と、四方弁20と、気液分離器22と、切換え弁44、46、36、38とからなる。冷房運転時においては、第一熱交換器14は凝縮器(室外機)として機能し、第二熱交換器18は蒸発器(室内機)として機能する。
[During cooling operation]
As shown in the refrigerant circuit diagram of FIG. 1 and the ph diagram of FIG. 4, the air conditioner 10 according to the present invention includes a compressor 12, a first heat exchanger 14, a decompression means 16, a second The heat exchanger 18, the four-way valve 20, the gas-liquid separator 22, and the switching valves 44, 46, 36, and 38 are included. During the cooling operation, the first heat exchanger 14 functions as a condenser (outdoor unit), and the second heat exchanger 18 functions as an evaporator (indoor unit).

ここで、吐出温度の抑制のために、凝縮器(第一熱交換器14)から分離した液冷媒を用いる。具体的には圧縮機12の中間圧力部分に液冷媒を注入する。R134aはR410Aに比べて吐出温度が低い傾向を持つ。したがって、R134aを多く含むR134aリッチな液冷媒を圧縮機12の中間圧に注入することにより、最終的な吐出温度を抑制することができる。   Here, the liquid refrigerant separated from the condenser (first heat exchanger 14) is used to suppress the discharge temperature. Specifically, liquid refrigerant is injected into the intermediate pressure portion of the compressor 12. R134a tends to have a lower discharge temperature than R410A. Therefore, the final discharge temperature can be suppressed by injecting the liquid refrigerant rich in R134a containing a large amount of R134a into the intermediate pressure of the compressor 12.

なお、従来技術として液冷媒を圧縮機に注入することが知られているが、それらの技術では冷媒の凝縮が完了し過冷却のとれた状態(凝縮器(第一熱交換器14)出口〜減圧手段16の手前)の冷媒を分離して注入している。しかし、本発明では、混合冷媒の成分が全て凝縮(全体の乾き度が0以下)してしまうとR32とR134aの組成比は冷媒サイクル回路に封入時の冷媒組成の組成比と同じになり、蒸発器(第二熱交換器18)へ流入する冷媒の組成比を変えられない。したがって、圧縮機12に注入するための液冷媒の分離は凝縮器(第一熱交換器14)の二相域から行なう。気液分離器22を用いて飽和液冷媒を取り出すことにより沸点の高い冷媒(R134a)をより多く液インジェクションにまわすことができる。   In addition, it is known as a prior art that liquid refrigerant is injected into a compressor. However, in those techniques, the refrigerant is completely condensed and supercooled (from the outlet of the condenser (first heat exchanger 14)). The refrigerant in front of the decompression means 16 is separated and injected. However, in the present invention, when all the components of the mixed refrigerant are condensed (the overall dryness is 0 or less), the composition ratio of R32 and R134a becomes the same as the composition ratio of the refrigerant composition when sealed in the refrigerant cycle circuit, The composition ratio of the refrigerant flowing into the evaporator (second heat exchanger 18) cannot be changed. Therefore, the liquid refrigerant for injection into the compressor 12 is separated from the two-phase region of the condenser (first heat exchanger 14). By taking out the saturated liquid refrigerant using the gas-liquid separator 22, a larger amount of refrigerant having a high boiling point (R134a) can be used for liquid injection.

より具体的には、気液分離器22が凝縮器(第一熱交換器14)の容積比A%:(100−A)%となる位置に配管40、42を介して取り付けてあり、これにより凝縮器(第一熱交換器14)は凝縮器全体に対する容積割合がA%の第一凝縮器14aと(100−A)%の第二凝縮器14bとで構成されることになる。気液分離器22の取り付け位置としては、想定される運転条件下で冷媒が二相域にある位置を選定する必要がある。   More specifically, the gas-liquid separator 22 is attached via piping 40 and 42 at a position where the volume ratio A% :( 100-A)% of the condenser (first heat exchanger 14) is obtained. Thus, the condenser (first heat exchanger 14) is composed of a first condenser 14a having a volume ratio of A% with respect to the whole condenser and a second condenser 14b having (100-A)%. As the attachment position of the gas-liquid separator 22, it is necessary to select a position where the refrigerant is in the two-phase region under the assumed operation conditions.

R32とR134aのみからなる混合冷媒でR32の混合割合が80wt%の場合、凝縮温度68℃で運転するときに吐出温度が従来冷媒のR410Aを使った機器と同じ90℃になるように液インジェクションを制御し、また、凝縮器出口での過冷却度が一般的な冷凍サイクルと同じ5度になるように冷凍サイクル全体を制御すると、図4に示すように、凝縮器で冷媒が放出するエネルギーの割合はガス域:24%、二相域:69%、過冷却域:7%となる。凝縮器の単位容積あたりの熱交換量は概ね一様とみなせるので、上記放熱量の割合よりAを決めるとAの値は24〜93%の範囲になる。なお混合比によって冷媒の物性(上記放熱量の割合)が変わるため混合比に応じた位置を選定することが望ましい。   When the mixed ratio of R32 and R134a is Rwt and the mixing ratio of R32 is 80 wt%, liquid injection is performed so that the discharge temperature is 90 ° C, which is the same as the equipment using the conventional refrigerant R410A when operating at a condensation temperature of 68 ° C. If the overall refrigeration cycle is controlled so that the degree of supercooling at the outlet of the condenser is 5 degrees, which is the same as that of a typical refrigeration cycle, as shown in FIG. The ratio is 24% for the gas region, 69% for the two-phase region, and 7% for the supercooling region. Since the heat exchange amount per unit volume of the condenser can be regarded as almost uniform, if A is determined from the ratio of the heat radiation amount, the value of A is in the range of 24 to 93%. In addition, since the physical property of the refrigerant (the ratio of the heat release amount) varies depending on the mixing ratio, it is desirable to select a position corresponding to the mixing ratio.

なお、凝縮器(第一熱交換器14)を通過する混合冷媒は、沸点の高い冷媒の方が先に液化する。ここで図5は、図4における二相域の冷媒内の液相冷媒の組成を示すものであり、二相域のうち凝縮器の入口側に近い方が、高沸点冷媒の割合が多くなることを示している。よって、二相域にあるB区間(図4参照)の液を取り出す際には、上記Aを凝縮器の入口側に配置することが望ましい。   As for the mixed refrigerant passing through the condenser (first heat exchanger 14), the refrigerant having a higher boiling point is liquefied first. Here, FIG. 5 shows the composition of the liquid-phase refrigerant in the refrigerant in the two-phase region in FIG. 4, and the proportion of the high-boiling refrigerant increases in the two-phase region closer to the inlet side of the condenser. It is shown that. Therefore, when taking out the liquid of B section (refer FIG. 4) in a two-phase area | region, it is desirable to arrange | position said A to the inlet side of a condenser.

上記構成の動作を説明する。
圧縮機12からの混合冷媒は、配管26を通って第一凝縮器14aに入り、気液分離器22で気液に分離される。気液分離器22に溜まったR134aリッチな液冷媒は、流量調整弁24を通って配管32で圧縮機12にインジェクションされる。この流量調整弁24は、前述したとおり、圧縮機12より吐出される冷媒の温度に応じて制御され、これにより液インジェクション制御される。一方、気液分離器22で分離された飽和蒸気冷媒は第二凝縮器14bから減圧手段16および配管54、28を通って蒸発器(第二熱交換器18)に入る。この蒸発器に入る冷媒としてはR32の割合が多くなる。蒸発器からの冷媒は配管30を通じて圧縮機12に送られる。
The operation of the above configuration will be described.
The mixed refrigerant from the compressor 12 enters the first condenser 14 a through the pipe 26 and is separated into gas and liquid by the gas-liquid separator 22. The R134a rich liquid refrigerant accumulated in the gas-liquid separator 22 is injected into the compressor 12 through the flow rate adjusting valve 24 and through the pipe 32. As described above, the flow rate adjusting valve 24 is controlled in accordance with the temperature of the refrigerant discharged from the compressor 12, and thereby liquid injection is controlled. On the other hand, the saturated vapor refrigerant separated by the gas-liquid separator 22 enters the evaporator (second heat exchanger 18) from the second condenser 14b through the decompression means 16 and the pipes 54 and 28. As a refrigerant entering this evaporator, the ratio of R32 increases. The refrigerant from the evaporator is sent to the compressor 12 through the pipe 30.

このように、二相域から先に液化しやすいR134aの液冷媒を予め分離することで、蒸発器(第二熱交換器18)に回る冷媒のうちR32の割合がより大きくなり、蒸発器での温度勾配を小さくすることができる。   In this way, by separating the R134a liquid refrigerant that is liable to be liquefied first from the two-phase region in advance, the ratio of R32 in the refrigerant that goes to the evaporator (second heat exchanger 18) becomes larger. The temperature gradient can be reduced.

一方、圧縮機12にインジェクションされた冷媒は液状態のため、それが気化する熱により最終的に吐出される冷媒の温度を抑制することができる。さらにこの液冷媒はR32に比べて断熱圧縮指数の小さいR134aを多く含むので、R134aを多く含まない液冷媒をインジェクションするよりも大きな吐出温度抑制効果を持つ。このため、本発明の空気調和機10によれば、非共沸混合冷媒の持つ短所の影響を小さくすると同時に、その主成分であるR32に起因する短所の影響も小さくすることができる。   On the other hand, since the refrigerant injected into the compressor 12 is in a liquid state, the temperature of the refrigerant finally discharged can be suppressed by the heat that it vaporizes. Further, since this liquid refrigerant contains a larger amount of R134a having a smaller adiabatic compression index than R32, it has a greater discharge temperature suppression effect than injection of a liquid refrigerant that does not contain much R134a. For this reason, according to the air conditioner 10 of the present invention, the influence of the disadvantages of the non-azeotropic refrigerant mixture can be reduced, and at the same time, the influence of the disadvantages caused by the main component R32 can be reduced.

ここで、気液分離器22に流入する冷媒(二相)のうち、飽和蒸気冷媒は気液分離器から流出していくが、飽和液冷媒は外気温度が冷媒温度より低いためにガス化しない。したがって冷媒循環量が一定の状態では時間とともに気液分離器22内に飽和液冷媒が蓄積されていくことになる。この場合、気液分離器22の容器22a内の液面の高さが増し、飽和蒸気状態の冷媒が取り出せなくなると凝縮性能が低下してしまうため、この液面高さは容器22a内に挿入された出口管の下端部より低い位置を保つように制御する必要がある。   Here, of the refrigerant (two phases) flowing into the gas-liquid separator 22, the saturated vapor refrigerant flows out of the gas-liquid separator, but the saturated liquid refrigerant is not gasified because the outside air temperature is lower than the refrigerant temperature. . Therefore, when the refrigerant circulation amount is constant, the saturated liquid refrigerant is accumulated in the gas-liquid separator 22 with time. In this case, the liquid level in the container 22a of the gas-liquid separator 22 increases, and if the saturated vapor state refrigerant cannot be taken out, the condensing performance deteriorates. Therefore, the liquid level is inserted into the container 22a. It is necessary to control so as to keep the position lower than the lower end of the outlet pipe.

そこで、図1に示すように、凝縮器14と気液分離器22を接続する冷媒回路上にバイパス34と切換え弁36、38を設けるとともに、容器22a内に長さの異なる配管40、42を挿入し、空気調和機の運転中に必要に応じて気液分離器22の使用/不使用を切換えられるようにしておく。この切換えの条件としては、例えば短い配管42の下端の連通口42aより低い位置に図示しない液面検知センサを設け、このセンサで検知される容器22a内の液面が所定の高さを上回るか否かによって定めてもよい。   Therefore, as shown in FIG. 1, a bypass 34 and switching valves 36 and 38 are provided on the refrigerant circuit connecting the condenser 14 and the gas-liquid separator 22, and pipes 40 and 42 having different lengths are provided in the container 22a. It is inserted so that the use / nonuse of the gas-liquid separator 22 can be switched as necessary during operation of the air conditioner. As a condition for this switching, for example, a liquid level detection sensor (not shown) is provided at a position lower than the communication port 42a at the lower end of the short pipe 42, and whether the liquid level in the container 22a detected by this sensor exceeds a predetermined height. It may be determined depending on whether or not.

この場合、検知液面が所定の高さを下回る通常時においては、液冷媒の貯留量は許容範囲内であるので、切換え弁36、38の状態を、第一凝縮器14aと配管40、第二凝縮器14bと配管42をそれぞれ連通し、バイパス34を遮断するようにしておく。これにより、気液分離器22は使用状態となり、第一凝縮器14aからの二相冷媒は配管40を介して気液分離器22に流入し、容器22aに溜まった冷媒は配管32を通じて液インジェクションに使われる。   In this case, at a normal time when the detected liquid level is lower than a predetermined height, the amount of liquid refrigerant stored is within an allowable range, so that the state of the switching valves 36 and 38 is changed to the first condenser 14a, the piping 40, the first The two condensers 14b and the pipe 42 are communicated with each other so that the bypass 34 is shut off. As a result, the gas-liquid separator 22 is in use, the two-phase refrigerant from the first condenser 14a flows into the gas-liquid separator 22 via the pipe 40, and the refrigerant accumulated in the container 22a is liquid-injected through the pipe 32. Used for.

一方、検知液面が所定の高さを上回った時には、液冷媒の貯留量は過剰であることから、第一凝縮器14aとバイパス34と第二凝縮器14bとを連通し、第一凝縮器14aと配管40、第二凝縮器14bと配管42の連通をそれぞれ遮断するように切換え弁36、38を切り換える。これにより、気液分離器22は不使用状態とされ、第一凝縮器14aからの二相冷媒は気液分離器22に流入しないでそのままバイパスを通り第二凝縮器14bへ流入する。これにより、第二凝縮器14bに液冷媒のみが流通することがなくなるので、この場合に比べ凝縮器14全体としての凝縮能力の低下を避けることができる。なお、上記の液面検知センサの検知に基づく切換え弁36、38の切り換え制御は、図示しない制御手段により行うことができる。   On the other hand, when the detected liquid level exceeds a predetermined height, the storage amount of the liquid refrigerant is excessive, so that the first condenser 14a, the bypass 34, and the second condenser 14b are communicated with each other. The switching valves 36 and 38 are switched so that the communication between the pipe 14a and the pipe 40, and the communication between the second condenser 14b and the pipe 42 are cut off. As a result, the gas-liquid separator 22 is not used, and the two-phase refrigerant from the first condenser 14a does not flow into the gas-liquid separator 22 but flows directly into the second condenser 14b through the bypass. Thereby, since only a liquid refrigerant does not distribute | circulate through the 2nd condenser 14b, compared with this case, the fall of the condensing capability as the whole condenser 14 can be avoided. The switching control of the switching valves 36 and 38 based on the detection by the liquid level detection sensor can be performed by a control means (not shown).

[暖房運転時]
図2に示すように、同じ空気調和機10で暖房運転を行う場合、第一熱交換器14は蒸発器(室外機)として機能し、第二熱交換器18は凝縮器(室内機)として機能する。蒸発過程の途中に気液分離器が存在すると、冷房時と同様に気液分離が行なわれるが、容器内の冷媒温度が周囲温度よりも低いために、分離された液の一部は容器内で蒸発する。一方、気液分離されてガスだけが蒸発器を流れる状態になると、性能が著しく低下するために容器から液冷媒を取り出したいが、冷媒循環量一定の条件で液冷媒だけを下流の蒸発器に流そうとすると時間と共に気液分離器内の飽和液冷媒は減少してしまう。したがって、暖房運転中は蒸発器(第一熱交換器14)と気液分離器22の間を前述の切換え弁36、38により遮断し、冷媒は常にバイパス34を通るようにする。
[During heating operation]
As shown in FIG. 2, when heating operation is performed with the same air conditioner 10, the first heat exchanger 14 functions as an evaporator (outdoor unit), and the second heat exchanger 18 serves as a condenser (indoor unit). Function. If a gas-liquid separator is present during the evaporation process, gas-liquid separation is performed in the same way as during cooling. However, since the refrigerant temperature in the container is lower than the ambient temperature, a part of the separated liquid is contained in the container. Evaporate at. On the other hand, when gas and liquid are separated and only the gas flows through the evaporator, the performance is significantly reduced, so it is desired to take out the liquid refrigerant from the container, but only the liquid refrigerant is sent to the downstream evaporator under the condition that the refrigerant circulation amount is constant. If it tries to flow, the saturated liquid refrigerant in a gas-liquid separator will decrease with time. Therefore, during the heating operation, the gap between the evaporator (first heat exchanger 14) and the gas-liquid separator 22 is blocked by the aforementioned switching valves 36 and 38 so that the refrigerant always passes the bypass 34.

ここで、この気液分離器22が暖房運転時の過冷却域(第二熱交換器18出口と減圧手段16の間)に挿入されるように冷凍サイクル回路を構成しておく。これにより、凝縮器(第二熱交換器18)を出た液冷媒を従来と同様にして気液分離器22の容器22aに溜めて液インジェクションに使うことができる。但し、この部分を接続する回路(凝縮器(第二熱交換器18)〜気液分離器22〜減圧手段16)は冷房運転時には冷媒が通らないようにする必要があるため、切換え弁44、46により冷房運転時と暖房運転時とで冷媒回路を切り換える。   Here, the refrigeration cycle circuit is configured so that the gas-liquid separator 22 is inserted into a supercooling region (between the outlet of the second heat exchanger 18 and the decompression means 16) during heating operation. As a result, the liquid refrigerant exiting the condenser (second heat exchanger 18) can be stored in the container 22a of the gas-liquid separator 22 and used for liquid injection in the same manner as before. However, since the circuit (condenser (second heat exchanger 18) to gas-liquid separator 22 to decompression means 16) connecting these portions needs to prevent refrigerant from passing during the cooling operation, the switching valve 44, 46, the refrigerant circuit is switched between the cooling operation and the heating operation.

このとき、冷凍サイクル全体の減圧手段16の他に凝縮器(第二熱交換器18)と気液分離器22の間に開度可変の絞り機構48を設けておく。これら二つの減圧手段16、絞り機構48の組み合わせにより気液分離器22の容器22a内の圧力を蒸発圧〜凝縮圧の間で調節することができる。容器22a内の液冷媒の割合は気液分離器22内の圧力が高い時に多く、圧力が低い時に少なくなる。したがって、気液分離器22内の圧力を調節することにより、結果として冷凍サイクル全体の冷媒分布を制御できる。   At this time, in addition to the decompression means 16 for the entire refrigeration cycle, a throttle mechanism 48 having a variable opening is provided between the condenser (second heat exchanger 18) and the gas-liquid separator 22. By the combination of these two decompression means 16 and the throttle mechanism 48, the pressure in the container 22a of the gas-liquid separator 22 can be adjusted between the evaporation pressure and the condensation pressure. The ratio of the liquid refrigerant in the container 22a increases when the pressure in the gas-liquid separator 22 is high, and decreases when the pressure is low. Therefore, adjusting the pressure in the gas-liquid separator 22 can control the refrigerant distribution of the entire refrigeration cycle as a result.

上記構成の動作を説明する。
圧縮機12からの混合冷媒は、配管30を通って凝縮器(第二熱交換器18)に入り、配管28、50、絞り機構48を介して配管42から気液分離器22に入って気液に分離される。気液分離器22に溜まった液冷媒は、流量調整弁24を通って配管32で圧縮機12にインジェクションされる一方で、配管40、52、減圧手段16を通って蒸発器(第一熱交換器14)に入り、その内部のバイパス34を通過して配管26を介して圧縮機12に送られる。
The operation of the above configuration will be described.
The mixed refrigerant from the compressor 12 enters the condenser (second heat exchanger 18) through the pipe 30 and enters the gas-liquid separator 22 from the pipe 42 through the pipes 28 and 50 and the throttle mechanism 48. Separated into liquid. The liquid refrigerant accumulated in the gas-liquid separator 22 is injected into the compressor 12 through the flow rate adjusting valve 24 and through the pipe 32, while passing through the pipes 40 and 52 and the decompression means 16 to the evaporator (first heat exchange). 14), passes through the bypass 34 inside thereof, and is sent to the compressor 12 via the pipe 26.

ここで、気液分離器22内の圧力の調節は、凝縮器(第二熱交換器18)出口での過冷却度、および蒸発器(第一熱交換器14)出口での過熱度を所定の値に保つことを目指すものである。最適な過冷却度および過熱度は、運転条件(空気温度や出そうとする能力)によって異なるために、運転条件に応じた目標過冷却度となるように上記絞り機構48の開度を調節し、また、運転条件に応じた目標過熱度になるように減圧手段16の開度を調節する。   Here, the pressure in the gas-liquid separator 22 is adjusted by setting the degree of supercooling at the outlet of the condenser (second heat exchanger 18) and the degree of superheating at the outlet of the evaporator (first heat exchanger 14). It aims to keep the value of. Since the optimum degree of supercooling and superheat varies depending on the operating conditions (air temperature and ability to output), the opening degree of the throttle mechanism 48 is adjusted so that the target supercooling degree according to the operating conditions is obtained. Moreover, the opening degree of the decompression means 16 is adjusted so that the target superheat degree according to the operating conditions is obtained.

また、容器22a内で気液分離させることにより液相の冷媒は沸点の高い冷媒(R134a)が若干多い組成となるため、吐出温度を抑制する効果の高い冷媒が圧縮機12にインジェクションされることになる。なお、気液分離器22から蒸発器(第一熱交換器14)に入る冷媒も液相から取り出されることになりR134aが若干多い組成となるが、液インジェクションで冷媒循環量を増やすことにより暖房能力(凝縮熱量)の低下を抑えることができる。このように、本発明によれば、同じ気液分離器22を冷房運転だけでなく暖房運転にも使用することで、運転温度範囲の広い空気調和機を提供することができる。   In addition, since the liquid-phase refrigerant has a composition with a little higher boiling point refrigerant (R134a) by gas-liquid separation in the container 22a, the refrigerant having a high effect of suppressing the discharge temperature is injected into the compressor 12. become. Note that the refrigerant entering the evaporator (first heat exchanger 14) from the gas-liquid separator 22 is also taken out of the liquid phase and has a slightly larger composition of R134a. However, heating is performed by increasing the refrigerant circulation rate by liquid injection. A decrease in ability (heat of condensation) can be suppressed. Thus, according to the present invention, an air conditioner having a wide operating temperature range can be provided by using the same gas-liquid separator 22 not only for cooling operation but also for heating operation.

以上説明したように、本発明に係る空気調和機によれば、圧縮機、第一熱交換器、減圧手段、第二熱交換器を冷媒配管で接続して形成した冷媒回路に、第一の冷媒であるR32を第二の冷媒であるR134aまたはR1234yfより大きい混合比で混合した2種混合冷媒を流通させ、冷房運転と暖房運転とに切換可能な空気調和機であって、前記冷媒回路は、冷房運転時において、凝縮器として機能する前記第一熱交換器の前記第二の冷媒が液リッチである位置から分岐した前記2種混合冷媒から気液分離器を介して分離した液冷媒を、前記圧縮機の中間圧にインジェクションする一方、暖房運転時において、凝縮器として機能する前記第二熱交換器と前記減圧手段との間に前記気液分離器が接続配置されるように回路を切り換える切換え弁を有する。   As described above, according to the air conditioner according to the present invention, the refrigerant circuit formed by connecting the compressor, the first heat exchanger, the pressure reducing means, and the second heat exchanger with the refrigerant pipes has the first An air conditioner capable of switching between a cooling operation and a heating operation by circulating a two-type mixed refrigerant obtained by mixing R32 as a refrigerant at a mixing ratio larger than R134a or R1234yf as a second refrigerant, wherein the refrigerant circuit includes: In the cooling operation, the liquid refrigerant separated from the two-type mixed refrigerant branched from the position where the second refrigerant of the first heat exchanger functioning as a condenser is liquid-rich through a gas-liquid separator. The circuit is arranged such that the gas-liquid separator is connected between the second heat exchanger functioning as a condenser and the pressure reducing means during the heating operation while injecting the intermediate pressure of the compressor. Switching to switch Having.

このため、冷房運転時においては、二相域から先に液化しやすいR134a(またはR1234yf)リッチの液冷媒を予め分離することで、蒸発器として機能する第二熱交換器に循環する冷媒に含まれるR32の割合が大きくなり、蒸発器での温度勾配を小さくすることができる。また、圧縮機にインジェクションされた冷媒は液状態のため、それが気化する熱により最終的に吐出される冷媒の温度を抑制することができる。さらにこの液冷媒はR32に比べて断熱圧縮指数の小さい物性を持つR134a(またはR1234yf)を多く含むので、封入時の組成割合の液冷媒をインジェクションするよりも大きな吐出温度抑制効果を持つ。このため、非共沸混合冷媒の持つ短所の影響を小さくすることができると同時に、その主成分であるR32に起因する短所の影響も小さくすることができる。   For this reason, during cooling operation, the R134a (or R1234yf) rich liquid refrigerant that is liable to liquefy first from the two-phase region is included in the refrigerant circulating in the second heat exchanger that functions as an evaporator by separating in advance. The ratio of R32 to be increased increases, and the temperature gradient in the evaporator can be reduced. Further, since the refrigerant injected into the compressor is in a liquid state, the temperature of the refrigerant finally discharged can be suppressed by the heat that it vaporizes. Further, since this liquid refrigerant contains a larger amount of R134a (or R1234yf) having a physical property with a smaller adiabatic compression index than R32, it has a larger discharge temperature suppression effect than injection of liquid refrigerant having a composition ratio at the time of encapsulation. For this reason, the influence of the disadvantages of the non-azeotropic refrigerant mixture can be reduced, and at the same time, the influence of the disadvantages caused by R32 as the main component can be reduced.

また、切換え弁の切り換えにより、第二熱交換器と減圧手段との間に気液分離器を接続配置することで、この空気調和機は暖房運転も行うことができる。したがって、温度勾配による蒸発器の性能低下と運転中の吐出温度過昇とを防止するとともに、冷房・暖房ともに使用することが可能な運転温度範囲の広い空気調和機を提供することができるという効果を奏する。   Moreover, this air conditioner can also perform heating operation by connecting and disposing a gas-liquid separator between the second heat exchanger and the pressure reducing means by switching the switching valve. Therefore, it is possible to provide an air conditioner with a wide operating temperature range that can be used for both cooling and heating, while preventing a decrease in the performance of the evaporator due to a temperature gradient and an excessive increase in the discharge temperature during operation. Play.

以上のように、本発明に係る空気調和機は、混合冷媒を用いた空気調和機に有用であり、特に、温度勾配による蒸発器の性能低下と運転中の吐出温度過昇とを防止するとともに、冷房・暖房ともに使用することが可能な運転温度範囲の広い空気調和機を提供するのに適している。   As described above, the air conditioner according to the present invention is useful for an air conditioner using a mixed refrigerant, and in particular, prevents deterioration in the performance of the evaporator due to a temperature gradient and excessive discharge temperature during operation. It is suitable for providing an air conditioner with a wide operating temperature range that can be used for both cooling and heating.

10 空気調和機
12 圧縮機
14 第一熱交換器(室外機)
16 減圧手段
18 第二熱交換器(室内機)
20 四方弁
22 気液分離器
22a 容器
24 流量調整弁
26,28,30,32,40,42,50,52,54 配管
34 バイパス
36,38,44,46 切換え弁
48 絞り機構
10 Air Conditioner 12 Compressor 14 First Heat Exchanger (Outdoor Unit)
16 Pressure reducing means 18 Second heat exchanger (indoor unit)
20 Four-way valve 22 Gas-liquid separator 22a Container 24 Flow rate adjustment valve 26, 28, 30, 32, 40, 42, 50, 52, 54 Piping 34 Bypass 36, 38, 44, 46 Switching valve 48 Throttle mechanism

Claims (5)

圧縮機、第一熱交換器、減圧手段、第二熱交換器を冷媒配管で接続して形成した冷媒回路に、第一の冷媒であるR32を第二の冷媒であるR134aまたはR1234yfより大きい混合比で混合した2種混合冷媒を流通させ、冷房運転と暖房運転とに切換可能な空気調和機であって、
前記冷媒回路は、
冷房運転時において、凝縮器として機能する前記第一熱交換器の前記第二の冷媒が液リッチである位置から分岐した前記2種混合冷媒から気液分離器を介して分離した液冷媒を、前記圧縮機の中間圧にインジェクションする一方、
暖房運転時において、凝縮器として機能する前記第二熱交換器と前記減圧手段との間に前記気液分離器が接続配置されるように回路を切り換える切換え弁を有することを特徴とする空気調和機。
In the refrigerant circuit formed by connecting the compressor, the first heat exchanger, the decompression means, and the second heat exchanger with the refrigerant pipe, the first refrigerant R32 is mixed with the second refrigerant R134a or R1234yf. An air conditioner capable of switching between a cooling operation and a heating operation by circulating a two-type mixed refrigerant mixed at a ratio,
The refrigerant circuit is
During the cooling operation, the liquid refrigerant separated from the two-type mixed refrigerant branched from the position where the second refrigerant of the first heat exchanger functioning as a condenser is liquid rich via a gas-liquid separator, While injecting into the intermediate pressure of the compressor,
An air conditioner comprising a switching valve for switching a circuit so that the gas-liquid separator is connected and disposed between the second heat exchanger functioning as a condenser and the pressure reducing means during heating operation. Machine.
前記第一の冷媒の混合比は80〜90wt%であることを特徴とする請求項1に記載の空気調和機。   The air conditioner according to claim 1, wherein a mixing ratio of the first refrigerant is 80 to 90 wt%. 冷房運転時において、凝縮器として機能する前記第一熱交換器内の冷媒が気液二相状態となる位置から前記液冷媒を分離することを特徴とする請求項1または2に記載の空気調和機。   3. The air conditioning according to claim 1, wherein during the cooling operation, the liquid refrigerant is separated from a position where the refrigerant in the first heat exchanger functioning as a condenser is in a gas-liquid two-phase state. Machine. 冷房運転時において、前記気液分離器の使用/不使用を切り換える切換え弁を有することを特徴とする請求項1〜3のいずれか一つに記載の空気調和機。   The air conditioner according to any one of claims 1 to 3, further comprising a switching valve that switches use / nonuse of the gas-liquid separator during cooling operation. 暖房運転時において、前記気液分離器の容器内の圧力を凝縮圧と蒸発圧の間の任意の値に制御するための絞り機構を、前記気液分離器の容器と凝縮器として機能する前記第二熱交換器との間に設けたことを特徴とする請求項1〜4のいずれか一つに記載の空気調和機。   In the heating operation, the throttle mechanism for controlling the pressure in the gas-liquid separator container to an arbitrary value between the condensing pressure and the evaporation pressure functions as the gas-liquid separator container and the condenser. It provided between 2nd heat exchangers, The air conditioner as described in any one of Claims 1-4 characterized by the above-mentioned.
JP2012075158A 2012-03-28 2012-03-28 Air conditioner Active JP5990972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012075158A JP5990972B2 (en) 2012-03-28 2012-03-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012075158A JP5990972B2 (en) 2012-03-28 2012-03-28 Air conditioner

Publications (2)

Publication Number Publication Date
JP2013204936A JP2013204936A (en) 2013-10-07
JP5990972B2 true JP5990972B2 (en) 2016-09-14

Family

ID=49524214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012075158A Active JP5990972B2 (en) 2012-03-28 2012-03-28 Air conditioner

Country Status (1)

Country Link
JP (1) JP5990972B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003124A (en) * 2018-06-27 2020-01-09 三菱重工サーマルシステムズ株式会社 Refrigeration cycle and hot water heat pump
CN112178845A (en) * 2020-09-23 2021-01-05 珠海格力电器股份有限公司 Double-evaporation-temperature heat pump air conditioning equipment and control method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5842733B2 (en) * 2012-05-23 2016-01-13 ダイキン工業株式会社 Refrigeration equipment
JP6511376B2 (en) * 2015-09-25 2019-05-15 東芝キヤリア株式会社 Air conditioner
JP6692715B2 (en) * 2016-08-04 2020-05-13 三菱重工サーマルシステムズ株式会社 Refrigeration apparatus and control method thereof
JP7309044B2 (en) * 2020-04-07 2023-07-14 三菱電機株式会社 refrigeration cycle equipment
CN114739026B (en) * 2022-03-22 2023-10-13 澳柯玛股份有限公司 Mixed refrigerant refrigerating system for display cabinet
CN114877395A (en) * 2022-05-16 2022-08-09 中山市爱美泰电器有限公司 Low-temperature heat pump heating system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3805168B2 (en) * 2000-04-28 2006-08-02 ダイキン工業株式会社 Refrigeration equipment
JP4287677B2 (en) * 2003-03-11 2009-07-01 日立アプライアンス株式会社 Refrigeration cycle equipment
JP4905018B2 (en) * 2006-09-25 2012-03-28 ダイキン工業株式会社 Refrigeration equipment
JP5371363B2 (en) * 2008-10-20 2013-12-18 東芝キヤリア株式会社 Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003124A (en) * 2018-06-27 2020-01-09 三菱重工サーマルシステムズ株式会社 Refrigeration cycle and hot water heat pump
CN112178845A (en) * 2020-09-23 2021-01-05 珠海格力电器股份有限公司 Double-evaporation-temperature heat pump air conditioning equipment and control method thereof

Also Published As

Publication number Publication date
JP2013204936A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP5990972B2 (en) Air conditioner
JP5409715B2 (en) Air conditioner
JP4906894B2 (en) Heat pump device and outdoor unit of heat pump device
EP3121532B1 (en) Refrigeration cycle apparatus
US11175080B2 (en) Refrigeration cycle apparatus having heat exchanger switchable between parallel and series connection
WO2009150761A1 (en) Refrigeration cycle device and control method therefor
US20170082333A1 (en) Refrigeration cycle device
EP3462108A1 (en) Refrigeration device and control method therefor
JP6774769B2 (en) Refrigeration cycle equipment
US10174975B2 (en) Two-phase refrigeration system
JP2008134031A (en) Refrigerating device using zeotropic refrigerant mixture
WO2014049673A1 (en) Combined air-conditioning and hot-water supply system
JP4841288B2 (en) Refrigeration equipment
JP2008164288A (en) Refrigerating device
CA3068016A1 (en) Refrigeration systems and methods
WO2015063837A1 (en) Refrigeration cycle device
JP4841287B2 (en) Refrigeration equipment
JP5990973B2 (en) Air conditioner
US10782048B2 (en) Deep freezer
KR102341074B1 (en) Cryocooler
JP2009293887A (en) Refrigerating device
KR102636893B1 (en) Refrigeration systems and methods
JP2012122637A (en) Refrigeration cycle apparatus
JP2012236884A (en) Mixed refrigerant and air conditioner using the same
JP4042064B2 (en) Refrigeration cycle equipment using non-azeotropic refrigerant mixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160801

R151 Written notification of patent or utility model registration

Ref document number: 5990972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151