US10174975B2 - Two-phase refrigeration system - Google Patents

Two-phase refrigeration system Download PDF

Info

Publication number
US10174975B2
US10174975B2 US15/029,743 US201415029743A US10174975B2 US 10174975 B2 US10174975 B2 US 10174975B2 US 201415029743 A US201415029743 A US 201415029743A US 10174975 B2 US10174975 B2 US 10174975B2
Authority
US
United States
Prior art keywords
heat transfer
heat
heat exchanger
fluid
circulation loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/029,743
Other versions
US20160245558A1 (en
Inventor
Yinshan Feng
Jinliang Wang
Futao Zhao
Thomas D. Radcliff
Parmesh Verma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Priority to US15/029,743 priority Critical patent/US10174975B2/en
Assigned to CARRIER CORPORATION reassignment CARRIER CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RADCLIFF, THOMAS D., FENG, YINSHAN, VERMA, PARMESH, WANG, JINLIANG, ZHAO, FUTAO
Publication of US20160245558A1 publication Critical patent/US20160245558A1/en
Application granted granted Critical
Publication of US10174975B2 publication Critical patent/US10174975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/03Cavitations

Definitions

  • the subject invention relates to refrigeration systems. More particularly, the subject invention relates to cascade air conditioning systems with a two-phase refrigerant loop.
  • Refrigerant systems are known in the HVAC&R (heating, ventilation, air conditioning and refrigeration) art, and operate to compress and circulate a heat transfer fluid throughout a closed-loop heat transfer fluid circuit connecting a plurality of components, to transfer heat away from a secondary fluid to be delivered to a climate-controlled space.
  • HVAC&R heating, ventilation, air conditioning and refrigeration
  • heat transfer fluid is compressed in a compressor from a lower to a higher pressure and delivered to a downstream heat rejection heat exchanger, commonly referred to as a condenser for applications where the fluid is sub-critical and the heat rejection heat exchanger also serves to condense heat transfer fluid from a gas state to a liquid state.
  • heat transfer fluid flows to an expansion device where it is expanded to a lower pressure and temperature and then is routed to an evaporator, where heat transfer fluid cools a secondary fluid to be delivered to the conditioned environment. From the evaporator, heat transfer fluid is returned to the compressor.
  • refrigerant systems is an air conditioning system, which operates to condition (cool and often dehumidify) air to be delivered into a climate-controlled zone or space.
  • Other examples may include heat pumps and refrigeration systems for various applications requiring refrigerated environments.
  • CO 2 as a heat transfer fluid
  • many proposed systems having CO 2 as a heat transfer fluid require the CO 2 to be maintained in a supercritical fluid state, which can add to equipment and operating complexity and cost.
  • the CO 2 is subcooled, or cooled below its saturation temperature, upstream of a pump inlet between about 1.5 and 3 degrees Fahrenheit to force complete phase change of the CO 2 to liquid.
  • subcooling at the pump inlet can be eliminated, but vapor entrained in the CO 2 fluid stream causes cavitation in the pump and therefore instability of the pump operation.
  • a heat transfer system includes a first two-phase heat transfer fluid vapor/compression circulation loop including a compressor, a heat exchanger condenser, an expansion device, and a heat absorption side of a heat exchanger evaporator/condenser.
  • a first conduit in a closed fluid circulation loop circulates a first heat transfer fluid therethrough.
  • the system further includes second two-phase heat transfer fluid circulation loop that transfers heat to the first heat transfer fluid circulation loop through the heat exchanger evaporator/condenser, including a heat rejection side of the heat exchanger evaporator/condenser, a liquid pump, a liquid refrigerant reservoir located upstream of the liquid pump and downstream of the heat exchanger evaporator/condenser, and a heat exchanger evaporator.
  • a second conduit in a closed fluid circulation loop circulates a second heat transfer fluid therethrough.
  • the second heat transfer fluid has an ASHRAE Class A toxicity rating and an ASHRAE Class 1 or 2L flammability rating, and a liquid pump inlet subcooling is between 0° C. and 10° C.
  • the FIGURE is a block schematic diagram depicting an embodiment of a heat transfer system having primary and secondary heat transfer fluid circulation loops.
  • FIG. 1 An exemplary heat transfer system with first and second heat transfer fluid circulation loop is shown in block diagram form in the FIGURE.
  • a fluid pumping device such as a compressor 110
  • first fluid circulation loop 100 pressurizes a first heat transfer fluid in its gaseous state, which both heats the fluid and provides pressure to circulate it throughout the system.
  • the hot pressurized gaseous heat transfer fluid exiting from the compressor 110 flows through conduit 115 to heat exchanger condenser 120 , which functions as a heat exchanger to transfer heat from the heat transfer fluid to the surrounding environment, such as to air blown by fan 122 through conduit 124 across the heat exchanger condenser 120 .
  • the hot heat transfer fluid condenses in the condenser 120 to a pressurized moderate temperature liquid.
  • the liquid heat transfer fluid exiting from the condenser 120 flows through conduit 125 to a flow metering device, such as expansion device 130 , where the pressure is reduced.
  • the reduced pressure liquid heat transfer fluid exiting the expansion device 130 flows through conduit 135 to the heat absorption side of heat exchanger evaporator/condenser 140 , which functions as a heat exchanger to absorb heat from a second heat transfer fluid in secondary fluid circulation loop 200 , and vaporize the first heat transfer fluid to produce heat transfer fluid in its gas state to feed the compressor 110 through conduit 105 , thus completing the first fluid circulation loop.
  • a second heat transfer fluid in second fluid circulation loop 200 transfers heat from the heat rejection side of heat exchanger evaporator/condenser 140 to the first heat transfer fluid on the heat absorption side of the heat exchanger 140 , and the second heat transfer fluid vapor is condensed in the process to form second heat transfer fluid in its liquid state.
  • the liquid second heat transfer fluid exits the heat exchanger evaporator/condenser 140 and flows through conduit 205 as a feed stream for liquid pump 210 .
  • the liquid second heat transfer fluid exits pump 210 at a higher pressure than the pump inlet pressure and flows through conduit 215 to heat exchanger evaporator 220 , where heat is transferred to air blown by fan 225 through conduit 230 .
  • Liquid second heat transfer fluid vaporizes in heat exchanger evaporator 220 , and gaseous second heat transfer fluid exits the heat exchanger evaporator 220 and flows through conduit 235 to the heat rejection side of heat exchanger evaporator/condenser 140 , where it condenses and transfers heat to the first heat transfer fluid in the primary fluid circulation loop 100 , thus completing the second fluid circulation loop 200 .
  • a liquid second heat transfer fluid reservoir for example, a receiver 232 , is located along conduit 215 between the heat exchanger evaporator/condenser 140 and the liquid pump 210 .
  • the second heat transfer fluid is condensed to liquid state without subcooling, or in some embodiments minimal subcooling, defined as subcooling between 0-10 degrees Celsius, the volume of the receiver 232 prevents vapor entrance into the liquid pump 210 thus eliminating cavitation of the liquid pump 210 .
  • the amount of subcooling is between 0-5 degrees Celsius, 0-3 degrees Celsius or between 0-2 degrees Celsius. In yet other embodiments, the amount of subcooling is zero.
  • Control of the liquid pump 210 speed is based on a heat exchanger evaporator 220 outlet superheat level.
  • Using receiver 232 as an alternative to subcooling the second heat transfer fluid reduces power consumption of the system, in some embodiments by between 1% and 2% annually.
  • the second fluid circulation loop 200 may include multiple heat exchanger evaporators (and accompanying fans) disposed in parallel in the fluid circulation loop. This may be accomplished by including a header (not shown) in conduit 215 to distribute the second heat transfer fluid output from pump 210 in parallel to a plurality of conduits, each leading to a different heat exchanger evaporator (not shown). The output of each heat exchanger evaporator would feed into another header (not shown), which would feed into conduit 235 .
  • Such a system with multiple parallel heat exchanger evaporators can provide heat transfer from a number of locations throughout an indoor environment without requiring a separate outdoor fluid distribution loop for each indoor unit, which cannot be readily achieved using indoor loops based on conventional 2-phase variable refrigerant flow systems that require an expansion device for each evaporator.
  • a similar configuration can optionally be employed in the first fluid circulation loop 100 to include multiple heat exchanger condensers (and accompanying fans and expansion devices) disposed in parallel in the fluid circulation loop, with a header (not shown) in conduit 115 distributing the first heat transfer fluid in parallel to a plurality of conduits each leading to a different heat exchanger condenser and expansion device (not shown), and a header (not shown) in conduit 135 to recombine the parallel fluid flow paths.
  • the number of heat exchanger condensers and expansion devices would generally be fewer than the number of heat exchanger evaporators.
  • the first heat transfer fluid circulation loop utilizes heat transfer fluids that are not restricted in terms of flammability and/or toxicity, and this loop is a substantially outdoor loop.
  • the second heat transfer fluid circulation loop utilizes heat transfer fluids that meet certain flammability and toxicity requirements, and this loop is substantially an indoor loop.
  • substantially outdoor it is understood that a majority if not all of the loop is outdoors, but that portions of the substantially outdoor first loop may be indoors and that portions of the substantially indoor second loop may be outdoors.
  • any indoor portion of the outdoor loop is isolated in a sealed fashion from other protected portions of the indoors so that any leak of the first heat transfer fluid will not escape to protected portions of the indoor structure.
  • all of the substantially outdoor loop and components thereof is located outdoors. By at least partially indoor, it is understood that at least a portion of the loop and components thereof is indoors, although some components such as the liquid pump 210 and/or the heat exchanger evaporator condenser 140 may be located outdoors.
  • the at least partially indoor loop can be used to exchange heat from an indoor location that is remote from exterior walls of a building and has more stringent requirements for flammability and toxicity of the heat transfer fluid.
  • the substantially outdoor loop can be used to exchange heat between the indoor loop and the outside environment, and can utilize a heat transfer fluid chosen to provide the outdoor loop with thermodynamic that work efficiently while meeting targets for global warming potential and ozone depleting potential.
  • the placement of portions of the substantially outdoor loop indoors, or portions of the indoor loop outdoors will depend in part on the placement and configuration of the heat exchanger evaporator/condenser, where the two loops come into thermal contact.
  • portions of conduits 205 and/or 235 of the second loop will extend through an exterior building wall to connect with the outdoor heat exchanger evaporator/condenser 140 .
  • portions of conduits 105 and/or 135 of the first substantially outdoor loop will extend through an exterior building wall to connect with the indoor heat exchanger evaporator/condenser 140 .
  • an enclosure vented to the outside may be provided for the heat exchanger evaporator/condenser 140 and the indoor-extending portions of conduits 105 and/or 135 .
  • the heat exchanger evaporator/condenser 140 may be integrated with an exterior wall so that neither of the fluid circulation loops will cross outside of their primary (indoor or outdoor) areas.
  • the heat transfer fluid used in the first fluid circulation loop has a critical temperature of greater than or equal to 31.2° C., more specifically greater than or equal to 35° C., which helps enable it to maintain two phases under normal operating conditions.
  • Exemplary heat transfer fluids for use in the first fluid circulation loop include but are not limited to saturated hydrocarbons (e.g., propane, isobutane), unsaturated hydrocarbons (e.g., propene), R32, R152a, ammonia, an R1234 isomer (e.g., R1234yf, R1234ze, R1234zf), R410a, and mixtures comprising one or more of the foregoing.
  • the heat transfer fluid used in the second fluid circulation loop has an ASHRAE Class A toxicity rating and an ASHRAE Class 1 or 2L flammability rating, or their ISO 817 equivalents.
  • Exemplary heat transfer fluids for use in the second fluid circulation loop include but are not limited to sub-critical fluid CO 2 , a mixture comprising an R1234 isomer (e.g., R1234yf, R1234ze) and an R134 isomer (e.g., R134a, R134) or R32, 2-phase water, or mixtures comprising one or more of the foregoing.
  • the second heat transfer fluid comprises at least 25 wt %, and more specifically at least 50 wt % sub-critical fluid CO 2 .
  • the second heat transfer fluid comprises nanoparticles to provide enhanced thermal conductivity.
  • Exemplary nanoparticles include, but are not limited to, particles having a particle size less than 500 nm (more specifically less than 200 nm).
  • the nanoparticles have a specific heat greater than that of the second fluid.
  • the nanoparticles have a thermal conductivity greater than that of the second fluid.
  • the nanoparticles have a specific heat greater than at least 5 J/mol ⁇ K (more specifically at least 20 J/mol ⁇ K), and/or a thermal conductivity of at least 0.5 W/m ⁇ K (more specifically at least 1 W/m ⁇ K).
  • the second heat transfer fluid comprises greater than 0 wt % and less than or equal to 10 wt % nanoparticles, more specifically from 0.01 to 5 wt % nanoparticles.
  • Exemplary nanoparticles include but are not limited to carbon nanotubes and metal or metalloid oxides such as Si 2 O 3 , CuO, or Al 2 O 3 .
  • the expansion device used in the first heat transfer fluid circulation loop may be any sort of known thermal expansion device, including a simple orifice or a thermal expansion valve (TXV) or an electronically controllable expansion valve (EXV). Expansion valves can be controlled to control superheating at the outlet of the heat absorption side of the heat exchanger evaporator/condenser and optimize system performance. Such devices and their operation are well-known in the art and do not require additional detailed explanation herein.
  • the heat exchangers used as the heat exchanger condenser 120 , the heat exchanger evaporator/condenser 140 , and the heat exchanger evaporator 220 may be any sort of conventional heat exchanger such as a shell and tube heat exchanger. Such heat exchangers are well-known in the art and do not require detailed explanation herein.
  • one or more of the heat exchanger condenser 120 and/or the heat exchanger evaporator 220 is a compact heat exchanger such as a microchannel heat exchanger.
  • Microchannel heat exchangers can provide high heat transfer levels with reduced required quantities of heat transfer fluid.
  • Exemplary useful microchannel heat exchangers can have individual tube diameters of less than 2 mm, more specifically less than 1.5 mm.
  • the heat exchanger evaporator/condenser 140 is a brazed plate heat exchanger.
  • Such heat exchangers are well-known in the art, and represent a variant on the traditional shell and tube heat exchanger where the plates are disposed inside the shell. Plates are assembled together with brazing (or alternatively welding) along the periphery thereof, creating fluid flow channels between adjacent plates, with heat transfer occurring across the plate(s). Raised corrugations on interior surfaces of adjacent plates may also be brazed together to provide a circuitous pathway for fluid flow within the fluid channel.
  • the plates have holes therein to provide fluid inlets and outlets, configured to direct fluid flow into the appropriate flow channels.

Abstract

A heat transfer system includes a first two-phase heat transfer fluid vapor/compression circulation loop including a compressor, a heat exchanger condenser, an expansion device, and a heat absorption side of a heat exchanger evaporator/condenser. A first conduit in a closed fluid circulation loop circulates a first heat transfer fluid therethrough. A second two-phase heat transfer fluid circulation loop transfers heat to the first heat transfer fluid circulation loop through the heat exchanger evaporator/condenser, including a heat rejection side of the heat exchanger evaporator/condenser, a liquid pump, a liquid refrigerant reservoir located upstream of the liquid pump and downstream of the heat exchanger evaporator/condenser, and a heat exchanger evaporator. A second conduit in a closed fluid circulation loop circulates a second heat transfer fluid therethrough having an ASHRAE Class A toxicity and a Class 1 or 2L flammability rating.

Description

FEDERAL RESEARCH STATEMENT
This invention was made with government support under contract number DE-EE0003955 awarded by the Department of Energy. The government has certain rights in the invention.
BACKGROUND OF THE INVENTION
The subject invention relates to refrigeration systems. More particularly, the subject invention relates to cascade air conditioning systems with a two-phase refrigerant loop.
Refrigerant systems are known in the HVAC&R (heating, ventilation, air conditioning and refrigeration) art, and operate to compress and circulate a heat transfer fluid throughout a closed-loop heat transfer fluid circuit connecting a plurality of components, to transfer heat away from a secondary fluid to be delivered to a climate-controlled space. In a basic refrigerant system, heat transfer fluid is compressed in a compressor from a lower to a higher pressure and delivered to a downstream heat rejection heat exchanger, commonly referred to as a condenser for applications where the fluid is sub-critical and the heat rejection heat exchanger also serves to condense heat transfer fluid from a gas state to a liquid state. From the heat rejection heat exchanger, where heat is typically transferred from the heat transfer fluid to ambient environment, high-pressure heat transfer fluid flows to an expansion device where it is expanded to a lower pressure and temperature and then is routed to an evaporator, where heat transfer fluid cools a secondary fluid to be delivered to the conditioned environment. From the evaporator, heat transfer fluid is returned to the compressor. One common example of refrigerant systems is an air conditioning system, which operates to condition (cool and often dehumidify) air to be delivered into a climate-controlled zone or space. Other examples may include heat pumps and refrigeration systems for various applications requiring refrigerated environments.
Historically, conventional HFC and HCFC heat transfer fluids such as R22, R123, R407C, R134a, R410A and R404A, have been utilized in heating, air conditioning, and refrigeration applications. Recently, however, concerns about global warming and, in some cases, ozone depletion, have created a need for alternative heat transfer fluids. In some cases, the use of natural heat transfer fluids such as R744 (CO2), R718 (water), or R717 (ammonia) has been proposed. The various known and proposed heat transfer fluids each have their own advantages and disadvantages. For example, CO2 as a heat transfer fluid offers zero ozone depletion potential and low global warming potential compared to many hydrocarbon-based heat transfer fluids. However, many proposed systems having CO2 as a heat transfer fluid require the CO2 to be maintained in a supercritical fluid state, which can add to equipment and operating complexity and cost. For example, in many systems, the CO2 is subcooled, or cooled below its saturation temperature, upstream of a pump inlet between about 1.5 and 3 degrees Fahrenheit to force complete phase change of the CO2 to liquid. To reduce power consumption of the system, subcooling at the pump inlet can be eliminated, but vapor entrained in the CO2 fluid stream causes cavitation in the pump and therefore instability of the pump operation.
BRIEF DESCRIPTION
In one embodiment, a heat transfer system includes a first two-phase heat transfer fluid vapor/compression circulation loop including a compressor, a heat exchanger condenser, an expansion device, and a heat absorption side of a heat exchanger evaporator/condenser. A first conduit in a closed fluid circulation loop circulates a first heat transfer fluid therethrough. The system further includes second two-phase heat transfer fluid circulation loop that transfers heat to the first heat transfer fluid circulation loop through the heat exchanger evaporator/condenser, including a heat rejection side of the heat exchanger evaporator/condenser, a liquid pump, a liquid refrigerant reservoir located upstream of the liquid pump and downstream of the heat exchanger evaporator/condenser, and a heat exchanger evaporator. A second conduit in a closed fluid circulation loop circulates a second heat transfer fluid therethrough. The second heat transfer fluid has an ASHRAE Class A toxicity rating and an ASHRAE Class 1 or 2L flammability rating, and a liquid pump inlet subcooling is between 0° C. and 10° C.
BRIEF DESCRIPTION OF THE DRAWING
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawing in which:
The FIGURE is a block schematic diagram depicting an embodiment of a heat transfer system having primary and secondary heat transfer fluid circulation loops.
DETAILED DESCRIPTION
An exemplary heat transfer system with first and second heat transfer fluid circulation loop is shown in block diagram form in the FIGURE. As shown, a fluid pumping device, such as a compressor 110, in first fluid circulation loop 100 pressurizes a first heat transfer fluid in its gaseous state, which both heats the fluid and provides pressure to circulate it throughout the system. The hot pressurized gaseous heat transfer fluid exiting from the compressor 110 flows through conduit 115 to heat exchanger condenser 120, which functions as a heat exchanger to transfer heat from the heat transfer fluid to the surrounding environment, such as to air blown by fan 122 through conduit 124 across the heat exchanger condenser 120. The hot heat transfer fluid condenses in the condenser 120 to a pressurized moderate temperature liquid. The liquid heat transfer fluid exiting from the condenser 120 flows through conduit 125 to a flow metering device, such as expansion device 130, where the pressure is reduced. The reduced pressure liquid heat transfer fluid exiting the expansion device 130 flows through conduit 135 to the heat absorption side of heat exchanger evaporator/condenser 140, which functions as a heat exchanger to absorb heat from a second heat transfer fluid in secondary fluid circulation loop 200, and vaporize the first heat transfer fluid to produce heat transfer fluid in its gas state to feed the compressor 110 through conduit 105, thus completing the first fluid circulation loop.
A second heat transfer fluid in second fluid circulation loop 200 transfers heat from the heat rejection side of heat exchanger evaporator/condenser 140 to the first heat transfer fluid on the heat absorption side of the heat exchanger 140, and the second heat transfer fluid vapor is condensed in the process to form second heat transfer fluid in its liquid state. The liquid second heat transfer fluid exits the heat exchanger evaporator/condenser 140 and flows through conduit 205 as a feed stream for liquid pump 210. The liquid second heat transfer fluid exits pump 210 at a higher pressure than the pump inlet pressure and flows through conduit 215 to heat exchanger evaporator 220, where heat is transferred to air blown by fan 225 through conduit 230. Liquid second heat transfer fluid vaporizes in heat exchanger evaporator 220, and gaseous second heat transfer fluid exits the heat exchanger evaporator 220 and flows through conduit 235 to the heat rejection side of heat exchanger evaporator/condenser 140, where it condenses and transfers heat to the first heat transfer fluid in the primary fluid circulation loop 100, thus completing the second fluid circulation loop 200.
To prevent cavitation and operational instability at the liquid pump 210, a liquid second heat transfer fluid reservoir, for example, a receiver 232, is located along conduit 215 between the heat exchanger evaporator/condenser 140 and the liquid pump 210. At the receiver 232, the second heat transfer fluid is condensed to liquid state without subcooling, or in some embodiments minimal subcooling, defined as subcooling between 0-10 degrees Celsius, the volume of the receiver 232 prevents vapor entrance into the liquid pump 210 thus eliminating cavitation of the liquid pump 210. In other embodiments, the amount of subcooling is between 0-5 degrees Celsius, 0-3 degrees Celsius or between 0-2 degrees Celsius. In yet other embodiments, the amount of subcooling is zero. Control of the liquid pump 210 speed is based on a heat exchanger evaporator 220 outlet superheat level. Using receiver 232 as an alternative to subcooling the second heat transfer fluid reduces power consumption of the system, in some embodiments by between 1% and 2% annually.
In an additional exemplary embodiment, the second fluid circulation loop 200 may include multiple heat exchanger evaporators (and accompanying fans) disposed in parallel in the fluid circulation loop. This may be accomplished by including a header (not shown) in conduit 215 to distribute the second heat transfer fluid output from pump 210 in parallel to a plurality of conduits, each leading to a different heat exchanger evaporator (not shown). The output of each heat exchanger evaporator would feed into another header (not shown), which would feed into conduit 235. Such a system with multiple parallel heat exchanger evaporators can provide heat transfer from a number of locations throughout an indoor environment without requiring a separate outdoor fluid distribution loop for each indoor unit, which cannot be readily achieved using indoor loops based on conventional 2-phase variable refrigerant flow systems that require an expansion device for each evaporator. A similar configuration can optionally be employed in the first fluid circulation loop 100 to include multiple heat exchanger condensers (and accompanying fans and expansion devices) disposed in parallel in the fluid circulation loop, with a header (not shown) in conduit 115 distributing the first heat transfer fluid in parallel to a plurality of conduits each leading to a different heat exchanger condenser and expansion device (not shown), and a header (not shown) in conduit 135 to recombine the parallel fluid flow paths. When multiple heat exchanger condensers are used, the number of heat exchanger condensers and expansion devices would generally be fewer than the number of heat exchanger evaporators.
The first heat transfer fluid circulation loop utilizes heat transfer fluids that are not restricted in terms of flammability and/or toxicity, and this loop is a substantially outdoor loop. The second heat transfer fluid circulation loop utilizes heat transfer fluids that meet certain flammability and toxicity requirements, and this loop is substantially an indoor loop. By substantially outdoor, it is understood that a majority if not all of the loop is outdoors, but that portions of the substantially outdoor first loop may be indoors and that portions of the substantially indoor second loop may be outdoors. In an exemplary embodiment, any indoor portion of the outdoor loop is isolated in a sealed fashion from other protected portions of the indoors so that any leak of the first heat transfer fluid will not escape to protected portions of the indoor structure. In another exemplary embodiment, all of the substantially outdoor loop and components thereof is located outdoors. By at least partially indoor, it is understood that at least a portion of the loop and components thereof is indoors, although some components such as the liquid pump 210 and/or the heat exchanger evaporator condenser 140 may be located outdoors.
The at least partially indoor loop can be used to exchange heat from an indoor location that is remote from exterior walls of a building and has more stringent requirements for flammability and toxicity of the heat transfer fluid. The substantially outdoor loop can be used to exchange heat between the indoor loop and the outside environment, and can utilize a heat transfer fluid chosen to provide the outdoor loop with thermodynamic that work efficiently while meeting targets for global warming potential and ozone depleting potential. The placement of portions of the substantially outdoor loop indoors, or portions of the indoor loop outdoors will depend in part on the placement and configuration of the heat exchanger evaporator/condenser, where the two loops come into thermal contact. In an exemplary embodiment where the heat exchanger evaporator/condenser is outdoors, then portions of conduits 205 and/or 235 of the second loop will extend through an exterior building wall to connect with the outdoor heat exchanger evaporator/condenser 140. In an exemplary embodiment where the heat exchanger evaporator/condenser 140 is indoors, then portions of conduits 105 and/or 135 of the first substantially outdoor loop will extend through an exterior building wall to connect with the indoor heat exchanger evaporator/condenser 140. In such an embodiment where portions of the first loop extend indoors, then an enclosure vented to the outside may be provided for the heat exchanger evaporator/condenser 140 and the indoor-extending portions of conduits 105 and/or 135. In another exemplary embodiment, the heat exchanger evaporator/condenser 140 may be integrated with an exterior wall so that neither of the fluid circulation loops will cross outside of their primary (indoor or outdoor) areas.
The heat transfer fluid used in the first fluid circulation loop has a critical temperature of greater than or equal to 31.2° C., more specifically greater than or equal to 35° C., which helps enable it to maintain two phases under normal operating conditions. Exemplary heat transfer fluids for use in the first fluid circulation loop include but are not limited to saturated hydrocarbons (e.g., propane, isobutane), unsaturated hydrocarbons (e.g., propene), R32, R152a, ammonia, an R1234 isomer (e.g., R1234yf, R1234ze, R1234zf), R410a, and mixtures comprising one or more of the foregoing.
The heat transfer fluid used in the second fluid circulation loop has an ASHRAE Class A toxicity rating and an ASHRAE Class 1 or 2L flammability rating, or their ISO 817 equivalents. Exemplary heat transfer fluids for use in the second fluid circulation loop include but are not limited to sub-critical fluid CO2, a mixture comprising an R1234 isomer (e.g., R1234yf, R1234ze) and an R134 isomer (e.g., R134a, R134) or R32, 2-phase water, or mixtures comprising one or more of the foregoing. In another exemplary embodiment, the second heat transfer fluid comprises at least 25 wt %, and more specifically at least 50 wt % sub-critical fluid CO2. In yet another exemplary embodiment, the second heat transfer fluid comprises nanoparticles to provide enhanced thermal conductivity. Exemplary nanoparticles include, but are not limited to, particles having a particle size less than 500 nm (more specifically less than 200 nm). In an exemplary embodiment, the nanoparticles have a specific heat greater than that of the second fluid. In yet another exemplary embodiment, the nanoparticles have a thermal conductivity greater than that of the second fluid. In further exemplary embodiments, the nanoparticles have a specific heat greater than at least 5 J/mol·K (more specifically at least 20 J/mol·K), and/or a thermal conductivity of at least 0.5 W/m·K (more specifically at least 1 W/m·K). In another exemplary embodiment, the second heat transfer fluid comprises greater than 0 wt % and less than or equal to 10 wt % nanoparticles, more specifically from 0.01 to 5 wt % nanoparticles. Exemplary nanoparticles include but are not limited to carbon nanotubes and metal or metalloid oxides such as Si2O3, CuO, or Al2O3.
The expansion device used in the first heat transfer fluid circulation loop may be any sort of known thermal expansion device, including a simple orifice or a thermal expansion valve (TXV) or an electronically controllable expansion valve (EXV). Expansion valves can be controlled to control superheating at the outlet of the heat absorption side of the heat exchanger evaporator/condenser and optimize system performance. Such devices and their operation are well-known in the art and do not require additional detailed explanation herein.
The heat exchangers used as the heat exchanger condenser 120, the heat exchanger evaporator/condenser 140, and the heat exchanger evaporator 220 may be any sort of conventional heat exchanger such as a shell and tube heat exchanger. Such heat exchangers are well-known in the art and do not require detailed explanation herein. In an exemplary embodiment, one or more of the heat exchanger condenser 120 and/or the heat exchanger evaporator 220 is a compact heat exchanger such as a microchannel heat exchanger. Microchannel heat exchangers can provide high heat transfer levels with reduced required quantities of heat transfer fluid. Exemplary useful microchannel heat exchangers can have individual tube diameters of less than 2 mm, more specifically less than 1.5 mm. In another exemplary embodiment, the heat exchanger evaporator/condenser 140 is a brazed plate heat exchanger. Such heat exchangers are well-known in the art, and represent a variant on the traditional shell and tube heat exchanger where the plates are disposed inside the shell. Plates are assembled together with brazing (or alternatively welding) along the periphery thereof, creating fluid flow channels between adjacent plates, with heat transfer occurring across the plate(s). Raised corrugations on interior surfaces of adjacent plates may also be brazed together to provide a circuitous pathway for fluid flow within the fluid channel. The plates have holes therein to provide fluid inlets and outlets, configured to direct fluid flow into the appropriate flow channels.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.

Claims (14)

The invention claimed is:
1. A heat transfer system, comprising:
a first heat transfer fluid circulation loop including:
a fluid pumping device;
a heat exchanger condenser configured to reject heat from a first heat transfer fluid flowing therethrough;
a flow metering device; and
a heat exchanger evaporator/condenser configured to absorb thermal energy into the first heat transfer fluid;
wherein a first conduit in a closed fluid circulation loop circulates the first heat transfer fluid therethrough; and
a second two-phase heat transfer fluid circulation loop configured to exchange heat with the first heat transfer fluid circulation loop through the heat exchanger evaporator/condenser, including:
a liquid pump;
a heat exchanger evaporator configured to evaporate a second heat transfer fluid via a thermal energy exchange with an airflow urged across the heat exchanger evaporator; and
a receiver disposed between the heat exchanger evaporator/condenser and the liquid pump, the receiver configured to condense the second heat transfer fluid to a liquid state without subcooling;
wherein a second conduit in a closed fluid circulation loop circulates the second heat transfer fluid through the heat exchanger evaporator/condenser, the receiver, the liquid pump, and the heat exchanger evaporator, the second heat transfer fluid having an ASHRAE Class A toxicity rating and an ASHRAE Class 1 or 2L flammability rating or their ISO 817 equivalents.
2. The heat transfer system of claim 1, wherein the first fluid circulation loop is disposed at least partially outdoors.
3. The heat transfer system of claim 1, wherein the second fluid circulation loop is disposed at least partially indoors.
4. The heat transfer system of claim 1, wherein the first heat transfer fluid has a critical temperature of greater than or equal to 31.2° C.
5. The heat transfer system of claim 1, wherein the fluid pumping device in the first fluid circulation loop is variable-speed.
6. The heat transfer system of claim 1, wherein the liquid pump in the second fluid circulation loop is a variable speed pump.
7. The heat transfer system of claim 6, wherein a speed of the liquid pump is determined by a heat exchanger evaporator superheat level of the second circulation loop.
8. The heat transfer system of claim 1, wherein the first fluid circulation loop further comprises an expansion device.
9. The heat transfer system of claim 1, wherein the first heat transfer fluid comprises a saturated hydrocarbon.
10. The heat transfer system of claim 1, wherein the first heat transfer fluid comprises propane, propene, isobutane, R32, R152a, ammonia, an R1234 isomer, or R410a.
11. The heat transfer system of claim 1, wherein the second heat transfer fluid comprises a mixture comprising an R1234 isomer and an R134 isomer or R32, or 2-phase water.
12. The heat transfer system of claim 1, wherein the second heat transfer fluid comprises sub-critical fluid CO2.
13. The heat transfer system of claim 3, wherein the liquid pump is disposed outdoors.
14. The heat transfer system of claim 2, wherein the heat exchanger evaporator/condenser is disposed outdoors.
US15/029,743 2013-10-17 2014-08-14 Two-phase refrigeration system Active US10174975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/029,743 US10174975B2 (en) 2013-10-17 2014-08-14 Two-phase refrigeration system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361892157P 2013-10-17 2013-10-17
PCT/US2014/051031 WO2015057299A1 (en) 2013-10-17 2014-08-14 Two-phase refrigeration system
US15/029,743 US10174975B2 (en) 2013-10-17 2014-08-14 Two-phase refrigeration system

Publications (2)

Publication Number Publication Date
US20160245558A1 US20160245558A1 (en) 2016-08-25
US10174975B2 true US10174975B2 (en) 2019-01-08

Family

ID=51398943

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/029,743 Active US10174975B2 (en) 2013-10-17 2014-08-14 Two-phase refrigeration system

Country Status (4)

Country Link
US (1) US10174975B2 (en)
EP (1) EP3058288A1 (en)
CN (1) CN105960567A (en)
WO (1) WO2015057299A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11655896B2 (en) 2021-03-24 2023-05-23 Emerson Climate Technologies, Inc. Sealing egress for fluid heat exchange in the wall of a structure

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108351129A (en) 2015-11-09 2018-07-31 开利公司 Series loop intermodal container
WO2017083333A1 (en) 2015-11-09 2017-05-18 Carrier Corporation Parallel loop intermodal container
US10429102B2 (en) 2016-01-05 2019-10-01 Carrier Corporation Two phase loop distributed HVACandR system
US11598536B2 (en) * 2017-05-26 2023-03-07 Alliance For Sustainable Energy, Llc Systems with multi-circuited, phase-change composite heat exchangers
WO2018218238A1 (en) * 2017-05-26 2018-11-29 Alliance For Sustainable Energy, Llc Systems with multi-circuited, phase-change composite heat exchangers
US10746447B2 (en) * 2017-11-29 2020-08-18 Lennox Industries Inc. Cooling system
US20190316818A1 (en) * 2018-04-12 2019-10-17 Rolls-Royce Corporation Thermal energy storage and heat rejection system
CN114687178A (en) * 2020-12-30 2022-07-01 广东美的白色家电技术创新中心有限公司 Clothes treating device

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096706A (en) 1977-03-09 1978-06-27 Sterling Beckwith Free condensing liquid retro-pumping refrigerator system and method
US4419865A (en) 1981-12-31 1983-12-13 Vilter Manufacturing Company Oil cooling apparatus for refrigeration screw compressor
US4599873A (en) 1984-01-31 1986-07-15 Hyde Robert E Apparatus for maximizing refrigeration capacity
US5692387A (en) 1995-04-28 1997-12-02 Altech Controls Corporation Liquid cooling of discharge gas
US5752390A (en) 1996-10-25 1998-05-19 Hyde; Robert Improvements in vapor-compression refrigeration
US6058719A (en) * 1995-07-28 2000-05-09 Ecr Technologies, Inc. Heat pump apparatus having refrigerant level indication and associated methods
US6076367A (en) 1993-09-28 2000-06-20 Jdm, Ltd. Variable speed liquid refrigerant pump
US6145332A (en) 1999-06-16 2000-11-14 Dte Energy Technologies, Inc. Apparatus for protecting pumps against cavitation
US6370893B1 (en) 2000-12-22 2002-04-16 Carrier Corporation Absorption cooling system with refrigerant management for dilution and part load operation
US20050120737A1 (en) 2003-12-05 2005-06-09 Borror Steven A. Cooling system for high density heat load
CN1732365A (en) 2002-11-11 2006-02-08 沃特克斯·埃尔康公司 Refrigeration system with bypass subcooling and component size de-optimization
CN1774605A (en) 2003-04-17 2006-05-17 Ep技术股份公司 Evaporator and heat exchanger with external loop, as well as heat pump system and air conditioning system comprising said evaporator or heat exchanger
US7178358B2 (en) 2003-01-27 2007-02-20 Denso Corporation Vapor-compression refrigerant cycle system with refrigeration cycle and Rankine cycle
JP2007155315A (en) 2005-11-08 2007-06-21 Toyo Eng Works Ltd Natural refrigerant cooling system
US20070234753A1 (en) * 2004-09-30 2007-10-11 Mayekawa Mfg. Co., Ltd. Ammonia/co2 refrigeration system
US20090013716A1 (en) * 2007-07-11 2009-01-15 Liebert Corporation Method and apparatus for equalizing a pumped refrigerant system
US20100031697A1 (en) * 2008-08-07 2010-02-11 Dover Systems, Inc. Modular co2 refrigeration system
US20100326129A1 (en) * 2008-02-29 2010-12-30 Michio Moriwaki Refrigeration apparatus
WO2011014784A2 (en) 2009-07-31 2011-02-03 Carrier Corporation Cooling system
US7992397B2 (en) 2003-11-21 2011-08-09 Mayekawa Mfg. Co., Ltd. Ammonia/CO2 refrigeration system, CO2 brine production system for use therein, and ammonia cooling unit incorporating that production system
US20110289953A1 (en) * 2010-05-27 2011-12-01 Gerald Allen Alston Thermally Enhanced Cascade Cooling System
WO2012096078A1 (en) 2011-01-11 2012-07-19 株式会社日立プラントテクノロジー Cooling system and method for operating same
CN102679638A (en) 2011-03-15 2012-09-19 能原科技股份有限公司 Heat exchange channel, heat pump system and heat pump system capable of improving temperature difference of working fluid
WO2013049344A2 (en) 2011-09-30 2013-04-04 Carrier Corporation High efficiency refrigeration system
US20130098088A1 (en) 2011-04-19 2013-04-25 Liebert Corporation Multi-stage cooling system with tandem compressors and optimized control of sensible cooling and dehumidification
US20130186126A1 (en) * 2010-11-19 2013-07-25 Mitsubishi Electric Corporation Air-conditioning apparatus
US20140047855A1 (en) * 2012-08-14 2014-02-20 Robert Kolarich Apparatus for Improving Refrigeration Capacity
US20140137582A1 (en) * 2011-06-30 2014-05-22 Parker-Hannifin Corporation Pumped liquid cooling system using a phase change fluid with additional subambient cooling

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172416A (en) * 2003-11-21 2005-06-30 Mayekawa Mfg Co Ltd Ammonia/co2 refrigeration system

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096706A (en) 1977-03-09 1978-06-27 Sterling Beckwith Free condensing liquid retro-pumping refrigerator system and method
US4419865A (en) 1981-12-31 1983-12-13 Vilter Manufacturing Company Oil cooling apparatus for refrigeration screw compressor
US4599873A (en) 1984-01-31 1986-07-15 Hyde Robert E Apparatus for maximizing refrigeration capacity
US6076367A (en) 1993-09-28 2000-06-20 Jdm, Ltd. Variable speed liquid refrigerant pump
US5692387A (en) 1995-04-28 1997-12-02 Altech Controls Corporation Liquid cooling of discharge gas
US6058719A (en) * 1995-07-28 2000-05-09 Ecr Technologies, Inc. Heat pump apparatus having refrigerant level indication and associated methods
US5752390A (en) 1996-10-25 1998-05-19 Hyde; Robert Improvements in vapor-compression refrigeration
US6145332A (en) 1999-06-16 2000-11-14 Dte Energy Technologies, Inc. Apparatus for protecting pumps against cavitation
US6370893B1 (en) 2000-12-22 2002-04-16 Carrier Corporation Absorption cooling system with refrigerant management for dilution and part load operation
CN1732365A (en) 2002-11-11 2006-02-08 沃特克斯·埃尔康公司 Refrigeration system with bypass subcooling and component size de-optimization
US7178358B2 (en) 2003-01-27 2007-02-20 Denso Corporation Vapor-compression refrigerant cycle system with refrigeration cycle and Rankine cycle
CN1774605A (en) 2003-04-17 2006-05-17 Ep技术股份公司 Evaporator and heat exchanger with external loop, as well as heat pump system and air conditioning system comprising said evaporator or heat exchanger
US7992397B2 (en) 2003-11-21 2011-08-09 Mayekawa Mfg. Co., Ltd. Ammonia/CO2 refrigeration system, CO2 brine production system for use therein, and ammonia cooling unit incorporating that production system
US20050120737A1 (en) 2003-12-05 2005-06-09 Borror Steven A. Cooling system for high density heat load
US8261565B2 (en) 2003-12-05 2012-09-11 Liebert Corporation Cooling system for high density heat load
US20070234753A1 (en) * 2004-09-30 2007-10-11 Mayekawa Mfg. Co., Ltd. Ammonia/co2 refrigeration system
JP2007155315A (en) 2005-11-08 2007-06-21 Toyo Eng Works Ltd Natural refrigerant cooling system
WO2009009164A1 (en) 2007-07-11 2009-01-15 Liebert Corporation Method and apparatus for equalizing a pumped refrigerant system
US20090013716A1 (en) * 2007-07-11 2009-01-15 Liebert Corporation Method and apparatus for equalizing a pumped refrigerant system
US8484984B2 (en) 2007-07-11 2013-07-16 Liebert Corporation Method and apparatus for equalizing a pumped refrigerant system
US20100326129A1 (en) * 2008-02-29 2010-12-30 Michio Moriwaki Refrigeration apparatus
US20100031697A1 (en) * 2008-08-07 2010-02-11 Dover Systems, Inc. Modular co2 refrigeration system
WO2011014784A2 (en) 2009-07-31 2011-02-03 Carrier Corporation Cooling system
US20110289953A1 (en) * 2010-05-27 2011-12-01 Gerald Allen Alston Thermally Enhanced Cascade Cooling System
US20130186126A1 (en) * 2010-11-19 2013-07-25 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2012096078A1 (en) 2011-01-11 2012-07-19 株式会社日立プラントテクノロジー Cooling system and method for operating same
CN102679638A (en) 2011-03-15 2012-09-19 能原科技股份有限公司 Heat exchange channel, heat pump system and heat pump system capable of improving temperature difference of working fluid
US20130098088A1 (en) 2011-04-19 2013-04-25 Liebert Corporation Multi-stage cooling system with tandem compressors and optimized control of sensible cooling and dehumidification
US20140137582A1 (en) * 2011-06-30 2014-05-22 Parker-Hannifin Corporation Pumped liquid cooling system using a phase change fluid with additional subambient cooling
WO2013049344A2 (en) 2011-09-30 2013-04-04 Carrier Corporation High efficiency refrigeration system
US20140260404A1 (en) * 2011-09-30 2014-09-18 Carrier Corporation High efficiency refrigeration system
US20140047855A1 (en) * 2012-08-14 2014-02-20 Robert Kolarich Apparatus for Improving Refrigeration Capacity

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Chinese Office Action Issued in CN Application No. 201480069383.6, dated Jan. 19, 2018, 7 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration; Appplication No. PCT/US2014/051031; dated Nov. 19, 2014; 11 pages.
Refrigeration System Performance using Liquid-Suction Heat Exchangers; S. A. Klein, D. T. Reindl, and K. Brownell College of Engineering University of Wisconsin-Madison; Published in the International Journal of Refrigeration, vol. 23, Part 8, pp. 588-596 (2000). *
Refrigeration System Performance using Liquid-Suction Heat Exchangers; S. A. Klein, D. T. Reindl, and K. Brownell College of Engineering University of Wisconsin—Madison; Published in the International Journal of Refrigeration, vol. 23, Part 8, pp. 588-596 (2000). *
White Paper: Revisiting Flammable Refrigerants; Thomas Blewitt, Director of Primary Designated Engineers, Underwriters Laboratories at [email protected]. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11655896B2 (en) 2021-03-24 2023-05-23 Emerson Climate Technologies, Inc. Sealing egress for fluid heat exchange in the wall of a structure

Also Published As

Publication number Publication date
CN105960567A (en) 2016-09-21
WO2015057299A1 (en) 2015-04-23
EP3058288A1 (en) 2016-08-24
US20160245558A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
US10174975B2 (en) Two-phase refrigeration system
JP5318099B2 (en) Refrigeration cycle apparatus and control method thereof
CN103958986B (en) Refrigerating air-conditioning
WO2011105270A1 (en) Refrigeration cycle device
JP2011512509A (en) Refrigerant vapor compression system
EP3343129B1 (en) Refrigeration cycle apparatus
JP4118254B2 (en) Refrigeration equipment
US20160258657A1 (en) Operation of a cascade air conditioning system with two-phase loop
JP2013204936A (en) Air conditioner
US20190264957A1 (en) Refrigeration systems and methods
CN113339909B (en) Heat pump air conditioning system
JP5506638B2 (en) Refrigeration equipment
US20190137147A1 (en) Refrigeration systems and methods
US10782048B2 (en) Deep freezer
JP2006003023A (en) Refrigerating unit
WO2007040031A1 (en) Liquid gas heat exchanger for air conditioner
KR102185416B1 (en) Cooling system
WO2021106084A1 (en) Refrigeration cycle device
US20210123637A1 (en) Refrigeration systems and methods
KR102636893B1 (en) Refrigeration systems and methods
KR20200122112A (en) Multi-purpose heat exchanger with multi-tube shape and water purification device having the same
KR100606277B1 (en) heat-pump air-conditioner
KR102618118B1 (en) Liquid refrigerant mild method for supplying low temperature refrigerant to the suction side of the refrigerant liquid pump that circulates the refrigerant in the refrigeration system under increased pressure
WO2023218612A1 (en) Refrigeration cycle device
US20220252311A1 (en) Heat exchanger for mixed refrigerant systems

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARRIER CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FENG, YINSHAN;WANG, JINLIANG;ZHAO, FUTAO;AND OTHERS;SIGNING DATES FROM 20131114 TO 20131209;REEL/FRAME:038291/0955

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4