JP5989569B2 - エンジンの油圧制御装置 - Google Patents

エンジンの油圧制御装置 Download PDF

Info

Publication number
JP5989569B2
JP5989569B2 JP2013030139A JP2013030139A JP5989569B2 JP 5989569 B2 JP5989569 B2 JP 5989569B2 JP 2013030139 A JP2013030139 A JP 2013030139A JP 2013030139 A JP2013030139 A JP 2013030139A JP 5989569 B2 JP5989569 B2 JP 5989569B2
Authority
JP
Japan
Prior art keywords
engine
turbo
hydraulic pressure
oil
time constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013030139A
Other languages
English (en)
Other versions
JP2014159758A (ja
Inventor
伊藤 慎一郎
慎一郎 伊藤
棚田 雅之
雅之 棚田
高木 登
登 高木
裕基 西田
裕基 西田
壽 小野
壽 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2013030139A priority Critical patent/JP5989569B2/ja
Publication of JP2014159758A publication Critical patent/JP2014159758A/ja
Application granted granted Critical
Publication of JP5989569B2 publication Critical patent/JP5989569B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lubrication Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)

Description

本発明はエンジンの油圧制御装置に関し、特にターボ過給機を備えたエンジンの油圧の制御に関連する。
従来より一般に、エンジンのクランクジャーナルやピストンなどに潤滑油を供給するためのオイル供給系統には、油圧の過度の上昇を抑制するためにリリーフバルブが配設されている。また、例えば特許文献1に記載のエンジンでは、前記のリリーフバルブとは別のバルブ(切替弁)を冷間始動時に開いて、比較的低い油圧でオイルをリリーフさせることにより、オイルポンプの駆動負荷を軽減して始動性を高めるようにしている。
ところで、近年では車両に一層の燃費低減が求められており、エンジンにおいても各部の機械損失を低減するのみならず、オイルポンプなどの補機の駆動負荷を軽減しようとする試みがある。この点について前記の文献には、エンジンの運転状態、具体的には回転数および負荷に応じて、前記オイル供給系統のバルブを開閉させて、「潤滑に必要となる必要油量を確保できる必要油圧の範囲内で」できるだけ低い油圧に制御することが開示されている。
特開2007−107485号公報
ところで、ターボ過給機を有するエンジンのオイル供給系統では、クランクジャーナルなどの他にターボ過給機にもオイルを供給することになるが、ターボ過給機の動作状態とエンジンの運転状態との間には時間的なズレがあるので、前記従来例のようにエンジンの回転数や負荷のみを考慮して、できるだけ低い油圧に制御すると、ターボ過給機の潤滑や冷却に必要なオイルを供給できないことがある。
すなわち、例えば高負荷での運転後にエンジンの回転数や負荷が低くなっても、ターボ過給機は暫くの間、或る程度の油量および油圧を必要とするが、このときに前記従来例のようにエンジンの回転数や負荷の低下に応じて油圧を低下させてしまうと、ターボ過給機に供給されるオイルの油量や油圧が不足して、軸受けなどにダメージを与える虞がある。
かかる点を考慮して本発明の目的は、エンジンのターボ過給機の信頼性を十分に担保しながら、オイルポンプの駆動負荷はできるだけ軽減して、燃費の改善を図ることにある。
前記の目的を達成するために本発明は、少なくともターボ過給機の回転数に応じて、該ターボ過給機に必要なオイル供給を行い得るように、エンジンの油圧を制御するようにしている。すなわち、本発明は、ターボ過給機を備えたエンジンの油圧制御装置を対象として、該ターボ過給機の回転数(以下、ターボ回転数という)をエンジンの運転状態に基づいて推定して、このターボ回転数が高いほど高圧側の値になるようにエンジンの油圧の制御目標値を設定する目標油圧設定部を備えている。そして、この目標油圧設定部は、エンジンの運転状態の変化に対するターボ過給機の温度変化の応答遅れを表すターボ温度時定数を算出し、このターボ温度時定数を用いて油圧の制御目標値を補正するものである。
前記の発明特定事項により、エンジンの運転中には基本的に、その運転状態に基づいて推定されるターボ回転数に対応するように油圧が制御される。すなわち、ターボ回転数が低いときには、これに応じて油圧が低くされるので、オイルポンプの駆動負荷が小さくなって、燃費の低減が図られる。一方、ターボ回転数が高くなれば、これに応じて油圧も高くされるので、ターボ過給機には潤滑や冷却に十分なオイル供給を行うことができ、軸受けなどへのダメージを抑止できる。
また、前記目標油圧設定部は、エンジンの運転状態に基づいて推定されるターボ回転数に対応するように油圧の制御目標値を設定するだけでなく、エンジンの運転状態の変化に対するターボ過給機の温度変化の応答遅れを表す時定数を算出し、このターボ温度時定数を用いて前記油圧の制御目標値を補正するようにしている
すなわち、エンジンの運転状態が或る程度以上、急に変化する過渡時には、その運転状態の変化に対してターボ過給機の温度状態の変化が遅れることになるので、この温度状態に見合う好適な油圧の制御目標値を設定することも難しくなる。そこで、このような過渡時にはエンジンの運転状態に基づいて設定した油圧の制御目標値を、ターボ過給機の温度状態の変化の応答遅れを表す時定数を用いて補正することで、ターボ過給機の温度状態に見合う好適な油圧の制御目標値を設定するのである。
こうすれば、例えば減速の過渡時にエンジンの運転状態の変化に対してターボ過給機の温度状態の変化が遅れることに対応して、その遅れ分をターボ温度時定数を用いて補償することができる。つまり、減速の過渡時における油圧の制御目標値を、ターボ過給機の軸受けなどの実際の温度状態に対応する適切なものとして、軸受けなどへのダメージを抑止することができる。
また、このような過渡時にはエンジンの運転状態に基づいて設定した油圧の制御目標値を、ターボ過給機の回転数の変化の応答遅れを表す時定数(ターボ回転時定数)を用いて補正することで、ターボ過給機の実際の回転数に見合う好適な油圧の制御目標値を設定することができる。なお、ターボ温度時定数やターボ回転時定数は予め実験・シミュレーションなどによって適合した値を用いればよく、エンジンの運転状態に応じて変更することもできる。
すなわち、前記ターボ回転時定数について具体的には、前記目標油圧設定部は、エンジンの運転状態の変化に対するターボ回転数の変化の応答遅れを表すターボ回転時定数を算出し、このターボ回転時定数を用いて油圧の制御目標値を補正する構成とすればよい。こうすれば、エンジンの運転状態が所定以上、急に変化する過渡時においても、ターボ回転数の変化の遅れ分をターボ回転時定数を用いて補償して、実際のターボ回転数に対応する適切な油圧を制御目標値として設定することができる。
例えばターボ回転時定数は、少なくともエンジンの吸気量に基づいて算出するのが好ましい。すなわち、吸気量の多いときはターボ過給機に流入する排気の量も多くなるので、エンジンの運転状態の変化に対するターボ回転数の変化の応答遅れは比較的小さくなる。よって、この場合はターボ回転時定数は、比較的小さな値とすればよい。反対に吸気量の少ないときは、ターボ回転数の変化の応答遅れは比較的大きくなるので、この場合はターボ回転時定数を比較的大きな値とすればよい。
また、ターボ回転時定数は、エンジン回転数の上昇する加速の過渡時には、エンジン回転数の低下する減速の過渡時に比べて小さな値に算出するのが好ましい。こうすると、加速の過渡時にはターボ回転時定数が小さめの値になって、ターボ回転数が高めに推定される一方、減速の過渡時にはターボ回転時定数が大きめの値になって、ターボ回転数が高めに推定される。よって、油圧の制御目標値を高めに設定し、オイルの供給不足をより確実に防止することができる。
また、前記ターボ温度時定数について具体的には、ターボ過給機のタービンシャフトのラジアル軸受けおよびスラスト軸受けのダメージを考慮し、これらの軸受けの熱容量による温度変化の応答遅れに着目して、前記目標油圧設定部は、前記ラジアル軸受けおよびスラスト軸受けのいずれか一方について、その温度変化の応答遅れを表すようにターボ温度時定数を算出する構成としてもよい。
その際、二つの軸受けのうち熱容量の小さな方の温度変化の応答遅れが比較的小さくなり、反対に熱容量の大きい方の温度変化の応答遅れが比較的大きくなることを考慮して、エンジン回転数の上昇する加速の過渡時には、熱容量の小さな方の軸受けについてターボ温度時定数を算出する一方、エンジン回転数の低下する減速の過渡時には、熱容量の大きな方の軸受けについてターボ温度時定数を算出すればよい。
こうして算出したターボ温度時定数を用いて油圧の制御目標値を補正すれば、加速の過渡時には、ラジアル軸受けおよびスラスト軸受けのうち、温度の早く上昇する方の軸受けの温度に基づいて、油圧の制御目標値が高めに設定されるようになる。一方、減速の過渡時には温度が低下し難い方の軸受けの温度に基づいて、油圧の制御目標値がやはり高めに設定されるようになる。よって、オイルの供給不足をより確実に防止することができる。
ところで、前記の如くターボ回転時定数やターボ温度時定数を用いて油圧の制御目標値を補正する場合には、それぞれの補正に重み付けをすることも考えられるが、ターボ過給機へのオイルの供給不足を防止することを優先するのであれば、油圧の制御目標値がやや高めに設定されるように時定数を算出するのが好ましい。
そのために前記目標油圧設定部は、エンジン回転数の上昇する加速の過渡時には、前記ターボ回転時定数およびターボ温度時定数のうち、数値の小さな方の時定数を用いて油圧の制御目標値を補正する一方、エンジン回転数の低下する減速の過渡時には、数値の大きな方の時定数を用いて油圧の制御目標値を補正するようにしてもよい。
なお、ターボ温度時定数の算出については、前記したようにラジアル軸受けやスラスト軸受けの熱容量を考慮して、予め実験・シミュレーションなどによって適合した値を用いればよく、エンジンの運転状態に応じて変更するようにしてもよい。
さらに、好ましくは前記目標油圧設定部は、エンジンの運転状態だけでなく、大気圧も加味してターボ回転数をより正確に推定するようにしてもよい。また、エンジンの油温が高いときほど、油圧の制御目標値を高めに設定するようにしてもよい。これは、エンジンの油温が高いほど、これによるターボ過給機の軸受けなどの冷却性能が低下するからである。
ところで、前記のように目標油圧設定部により設定された制御目標値になるように、エンジンの油圧を制御するために、好ましいのは、いわゆる容量可変形のオイルポンプなど、吐出圧を変更可能なオイルポンプをエンジンに装備して、そのオイルポンプの吐出圧を前記油圧の制御目標値に基づいて制御することである。但し、そのような可変形のオイルポンプは装備せずに、開度を連続的に調整可能な流量制御バルブなどを用いることもできる。
本発明に係るエンジンの油圧制御装置によると、ターボ過給機の回転数(ターボ回転数)を検出または推定し、この検出値または推定値に応じて、ターボ回転数が高いほどエンジンの油圧も高くなるように制御することにより、該ターボ過給機に必要なオイル供給を実現し、その信頼性を十分に担保しながら、オイルポンプの駆動負荷はできるだけ軽減して、燃費を改善することができる。また、過渡時には、エンジンの運転状態の変化に対してターボ過給機の温度状態の変化が遅れることになるが、この遅れを表す時定数を用いて補正することで、ターボ過給機の温度状態に見合う好適な油圧の制御目標値を設定することができる。
本発明の実施の形態に係るエンジンの概略構成例を示す図である。 エンジンのターボチャージャの構造を示す縦断面図である。 ベアリングなどの潤滑構造を示す拡大断面図である。 エンジンのオイル供給系統の概略を示す説明図である。 エンジンのオイルポンプの構造を示す断面図であって、ポンプ容量が最大の状態を示す。 オイルポンプの容量が最小の状態を示す図5相当図である。 OCVへの電流指令値とポンプ吐出圧との関係を示すグラフ図である。 (a)は、ターボ回転数と適正な油圧との関係を示す特性図であり、(b)は、ターボ回転数とエンジンの吸気量との関係を示す特性図である。 ターボチャージャの回転数の上昇遅れ、および温度上昇の遅れの一例を示すグラフ図である。 (a)は、エンジンの油圧制御の全体的な制御動作を示すフローチャートであり、(b)は、目標油圧の設定について示すフローチャートである。 (a)は、吸気量に対応づけてターボ回転時定数を設定したマップの一例を示す図であり、(b)は、吸気量に対応づけてターボ時定数を設定したマップの一例を示す。
以下、本発明の実施の形態を図面に基づいて説明する。本実施形態では一例として自動車用のディーゼルエンジンに本発明を適用した場合について説明するが、これに限ることはない。本実施形態の記載はあくまで例示に過ぎず、本発明の構成や用途などについても限定するものではない。
−エンジン−
まず、エンジン1の概略構成について説明すると、図1に模式的に示すように本実施形態では一例として直列4気筒エンジン1であって、4つの気筒のそれぞれに空気(吸気)を供給するための吸気通路2がシリンダヘッド1aの一側(図の上側)に配設され、反対の他側(図の下側)には、4つの気筒のそれぞれから既燃ガス(排気)を排出させるための排気通路3が配設されている。
前記の吸気通路2の下流側(吸気流の下流側)は、各気筒に吸気を分配するためのインテークマニホールド2aとされる一方、吸気通路2の上流側には、空気を濾過するエアクリーナ6、後述するターボチャージャ20のコンプレッサインペラ24、このコンプレッサインペラ24により圧縮されて昇温した空気を冷却するためのインタークーラ7、スロットルバルブ8などが配設されている。
他方、排気通路3の上流側(排気流の上流側)は、各気筒からの排気の流れが合流するエキゾーストマニホールド3aとされ、その下流側には後述するターボチャージャ20のタービンホイール12、排気浄化装置9などが配設されている。排気浄化装置9は一例として、NOx吸蔵触媒(NSR触媒:NOx Storage Reduction触媒)9aおよびDPNR触媒(Diesel Particulate-NOx Reduction触媒)9bを備えている。
さらに、本実施形態のエンジン1には、エンジン回転数Neを算出するためにクランクシャフト(図示省略)の回転角を検出するクランク角センサ101、吸気通路2を流れる吸気の流量(吸気量Ga)を検出するエアフローメータ102などの各種センサ、スイッチ等が配設され、それぞれから出力される信号がECU(Electronic Control Unit)100に入力される。
ECU100は、詳しい説明は省略するが、CPU、ROM、RAMおよびバックアップRAM等を含んだ一般的な構成のものであり、例えばスロットルバルブ8のアクチュエータに指令信号を出力してその開度を制御するとともに、図示しないインジェクタにも指令信号を出力して、燃料噴射量などを制御する。また、ECU100は、以下に説明するターボチャージャ20の電動アクチュエータ19にも指令信号を出力する。
−ターボチャージャ−
本実施形態のエンジン1には、排気ガスのエネルギを利用して吸気を過給するターボチャージャ20(ターボ過給機)が装備されている。すなわち、前記の如く排気通路3において排気浄化装置9よりも上流側にはタービンハウジング21が設けられ、その内部に収容されたタービンホイール22が排気ガスの流れを受けて回転される。一方、前記吸気通路2においてエアクリーナ6の下流側にはコンプレッサハウジング23が設けられ、その内部にコンプレッサインペラ24が収納されている。
図2に拡大して示すように、コンプレッサインペラ24は、その中心部をタービンシャフト25の一端側が貫通し、このタービンシャフト25の一端部に螺合するナット25aによって締結されている。一方、タービンシャフト25の他端部は溶接などによってタービンホイール22に固定されており、このタービンホイール22が回転するとコンプレッサインペラ24も回転して、吸気を圧縮しながら送り出すようになっている(過給)。
すなわち、タービンハウジング21には、タービンホイール22の収容室21aの外周を囲んで排気ガスの導入路21b(スクロール21b)が形成されており、排気通路3からの排気の流れをタービンホイール22に導入する。この排気の流れを受けてタービンホイール22が回転し、そのブレードの間を通過する際に膨張した排気の流れは、収容室21aに連通する排気ガスの排出口21cから排出される。
一方、コンプレッサハウジング23には、収容室23aに収容されたコンプレッサインペラ24と対向するように吸気の吸入口23bが形成され、ここから吸い込まれた空気がコンプレッサインペラ24の回転によってその外周側に送り出される。コンプレッサハウジング23の外周側には導出路23c(スクロール23c)が形成されており、前記のようにコンプレッサインペラ24から送り出される空気が圧縮されて、スクロール23cに沿って吸気通路2へ送り出される。
それらタービンハウジング21およびコンプレッサハウジング23の間にはベアリングハウジング30が配設されて、両者を連結一体化するとともに、2つのラジアルベアリング31,32(ラジアル軸受けであり、以下、単にベアリングともいう)によってタービンシャフト25を回転自在に支持している。ベアリングハウジング30には、エンジン1の冷却水が流れる水路30aやベアリング31,32などへのオイル供給通路30bが形成されている。
−ベアリングの潤滑構造−
次に、前記のベアリングハウジング30におけるベアリング31,32などの潤滑構造について、図3も参照しながら詳細に説明する。図3には、ベアリングハウジング30の下部を拡大してオイルの流れなどを示している。
前記ベアリング31,32は円筒形状のすべり軸受けからなり、ベアリングハウジング30の概略中央に形成された2つのベアリング保持部33,34に保持されて、タービンシャフト25をその軸方向に離間した2箇所で支持している。タービンシャフト25は極めて高い速度で回転するため、その外周面とベアリング31,32の内周面との間に形成した油膜に浮かせたような状態で支持している。
また、コンプレッサインペラ24に近い方のベアリング31に隣接してスラストカラー35が配設されており、その外周の溝部にスラストベアリング36(スラスト軸受けであり、以下、単にベアリングともいう)を挟みこんで、ターボチャージャ20の動作中にタービンシャフト25に作用するスラスト荷重を支持するようになっている。なお、ベアリング36は、例えば自己潤滑性を有する合成樹脂材あるいは金属材などで形成されている。
前記ベアリング31は、前記のスラストカラー35と、ベアリング保持部33に係止されるスナップリング33aとによって、タービンシャフト25の軸方向への変位が規制されている。一方、タービンホイール22に近い方のベアリング32は、ベアリング保持部34に係止される2つのスナップリング34aによってタービンシャフト25の軸方向への変位が規制されている。
そして、それらのベアリング31,32を冷却し、またその内外周の油膜を保持するためにエンジンオイル(以下、単にオイルともいう)が供給される。詳しくは図4を参照して後述するように、オイルパン1cからオイルポンプ5によって吸い上げられ、オイルフィルタ45によって濾過されたオイルが、エンジン1のオイル供給系統4を介して、ベアリングハウジング30の内部に形成されたオイル供給通路30b(図2、3に仮想線で示す)に送り込まれる。
このオイル供給通路30bは、タービンシャフト25の軸方向に分岐した後に、ベアリング保持部33,34の内周面に開口して、ベアリング31,32の外周面との間にオイルを供給する。また、ベアリング31,32には、その径方向に貫通するオイル孔31a,32aが設けられており、これらのオイル孔31a,32aを経てベアリング31,32の内周面とタービンシャフト25の外周面との間にもオイルが供給される。
こうして供給されるオイルによってベアリング31,32を効果的に潤滑および冷却することができるとともに、これらベアリング31,32の内周面および外周面の油膜が保持されて、タービンシャフト25の径方向および軸方向での振れを抑制するダンパとして機能する。また、ベアリング31に供給されたオイルの一部は隣接するスラストカラー35やスラストベアリング36にも供給され、それらを効果的に潤滑および冷却することができる。
そのようにしてベアリング31,32,36などを潤滑および冷却したオイルは、タービンシャフト25の軸方向の両端側およびそれらの中間部位の3カ所から下方のドレン空間Dへと落下する。このオイルは、図3に矢印O〜Oとして示すように概略3つに分かれてドレン空間Dを流下し、そのドレン空間Dに臨んでベアリングハウジング30の下壁部に開口するオイル排出孔30cから排出される。
−エンジンのオイル供給系統−
図4には、エンジン1のオイル供給系統4の概略を示す。同図には外形を仮想線で示すようにエンジン1の本体部分は、一例としてディープスカート型のシリンダブロック1bの上部にシリンダヘッド1aが組み付けられてなる。シリンダブロック1bの下部にはオイルパン1cが取り付けられて、ピストンやクランクジャーナル、動弁系などの被潤滑部から還流されたオイルが貯留されている。
そうして貯留されているオイルに浸かるようにしてオイルストレーナ41が配設され、その吸入管41aがオイルポンプ5の吸入ポート50dに接続されている。オイルポンプ5は、詳しくは後述するが、互いに噛み合う外歯車のドライブロータ51と内歯車のドリブンロータ52とを備えた内接式ギヤポンプであって、ドライブロータ51の中央を貫通する入力軸5aがクランクシャフトの回転によって駆動され、オイルストレーナ41を介してオイルパン1c内のオイルを吸い上げる。
一方、オイルポンプ5の吐出ポート50eには、シリンダブロック1b内に形成された第1オイル通路42の上流端が連通し、この第1オイル通路42の下流端がオイルフィルタ45に連通している。オイルフィルタ45はフィルタエレメントによってオイル内の異物や不純物などを濾過する。こうして濾過されたオイルは第2オイル通路46を流通してメインギャラリ47に送られる。メインギャラリ47は、シリンダブロック1bの内部に例えばシリンダ列方向に延びるように形成されており、前記のように送られてくるオイルを所定の圧力に維持して、ここから分岐する複数のオイル通路(図示せず)によって前記の被潤滑部などに分配する。
そのようにエンジン1の被潤滑部へ分配するオイルの流量や油圧を適正なものとするために、メインギャラリ47の油圧は所定の状態に維持される。すなわち、メインギャラリ47には油圧センサ103が配設され、その出力する信号がECU100に入力されて、以下に説明するようにオイルポンプ5の容量が可変制御される。また、オイルパン1cには油温センサ104が配設され、その出力する信号もECU100に入力される。
−オイルポンプ−
次に、オイルポンプ5の構造について図5を参照して詳細に説明する。図示の例ではオイルポンプ5は、入力軸5aにより回転される外歯車のドライブロータ51と、これに噛み合って回転される内歯車のドリブンロータ52と、そのドリブンロータ52を外周から回転自在に保持する調整リング53と、をハウジング50内に収容してなる。調整リング53は、後述するようにドライブロータ51およびドリブンロータ52を変位させることにより、ポンプ容量を変更するものである。
ハウジング50は全体としては厚肉の板状であり、図5に示すようにエンジン後方から見た平面視では左右に長い楕円形状とされ、図の右上部から右側に向かって突出部50aが、また、図の左下部からは下方に向かって突出部50bが、それぞれ形成されている。また、ハウジング50の全体に後方、即ちエンジン1の内方(図の手前側)に向かって開放された凹部50cが形成されている。
この凹部50cは前記ドライブロータ51、ドリブンロータ52、調整リング53等を収容するものであり(以下、収容凹部50cという)、ハウジング50に後方から重ね合わされるカバー(図示せず)によって閉止される。また、収容凹部50cの中央よりもやや右側位置には円形断面の貫通孔(図には示さず)が形成され、ここに挿通された入力軸5aを回転自在に支持している。
入力軸5aは、エンジン1のクランクシャフトの前端部に一体に設けてもよいし、クランクシャフトとは別体としてチェーンなどにより駆動される構成としてもよい。この入力軸5aがドライブロータ51の中央部を貫通し、例えばスプラインによって嵌合されている。ドライブロータ51には、外周にトロコイド曲線またはトロコイド曲線に近似した曲線(例えばインボリュート、サイクロイドなど)を有する外歯51aが複数(図示の例では11個)、形成されている。
一方、ドリブンロータ52は円環状に形成され、その内周には前記ドライブロータ51の外歯51aと噛み合うよう、これより歯数が1歯大きい(図示の例では12個の)内歯52aが形成されている。ドリブンロータ52の中心は、ドライブロータ51の中心に対して所定量、偏心しており、その偏心している側(図5の左上側)でドライブロータ51の外歯51aとドリブンロータ52の内歯52aとが噛み合っている。
また、ドリブンロータ52は、調整リング53の円環状の本体部53aによって摺動自在に嵌合支持されている。この例では調整リング53には、その本体部53aの外周から周方向に所定の角度範囲(図示の例では約50°)に亘って径方向外方に張り出す2つの張出部53b,53cと、径方向外方に大きく延びるアーム部53dと、小さな突起部53eとが一体に形成されている。
そのようにして調整リング53に保持されたドライブロータ51およびドリブンロータ52によって、本実施形態では11葉12節のトロコイドポンプが構成されており、2つのロータ51,52の間の環状の空間には、互いに噛合する歯と歯の間に円周方向に並んだ複数の作動室Rが形成される。これらの各作動室Rは2つのロータ51,52の回転に連れてドライブロータ51の外周に沿うように移動しながら、その容積が増減する。
すなわち、2つのロータ51,52の歯が互いに噛み合う位置から、図に矢印で示すロータ回転方向に約180度に亘る範囲(図5では左下側の範囲)では、2つのロータ51,52の回転に連れて徐々に作動室Rの容積が増大してゆき、オイルを吸入する吸入範囲となる。一方、残りの約180度に亘る範囲(図5では右上側の範囲)では、ロータ51,52の回転に連れて徐々に作動室Rの容積が減少してゆき、オイルを加圧しながら吐出する吐出範囲となる。
そして、それらの吸入範囲および吐出範囲にそれぞれ対応するように、ハウジング50およびカバーに吸入ポートおよび吐出ポートが形成されている。図5にはハウジング50の吸入ポート50dおよび吐出ポート50eのみを示すが、この吸入ポート50dは、ハウジング50の収容凹部50cの底面において前記の吸入領域に対応するように開口し、同じく吐出領域に対応するように吐出ポート50eが開口している。
吸入ポート50dは、図ではハウジング50の左下側に位置して、図示しないカバーの吸入ポートと連通しており、これを介してオイルストレーナの吸入管路に連通している。一方、吐出ポート50eはハウジング50の右上側に位置して、図示しないカバーの吐出ポートと連通するとともに、ハウジング50の突出部50aに対応するように図の右側に向かって延びていて、オイルフィルタ6に向かう連通路6aに至る。
かかる構成によりオイルポンプ5は、その入力軸5aの回転によってドライブロータ51およびドリブンロータ52が互いに噛み合いながら回転し、それらの間に形成される作動室Rに吸入ポート50dからオイルが吸入され、加圧されて吐出ポート50eから吐出される。このオイルの流量は、基本的にはオイルポンプ5の回転数(入力軸5aの回転数)、即ちエンジン回転数Neが高くなるほど多くなる。
−容量可変機構−
本実施形態のオイルポンプ5は、ドライブロータ51の1回転につき吐出するオイルの量、即ちポンプ容量を変更可能な容量可変機構を備えている。本実施形態では、主に吐出ポート50eから導入する油圧(吐出圧P)によって前記の調整リング53を変位させて、ドライブロータ51およびドリブンロータ52の吸入ポート50dおよび吐出ポート50eに対する相対的な位置を変更することにより、1回転あたりに吸入および吐出するオイルの流量を変更する。
詳しくは図5に表れているように、調整リング53の本体部53aから径方向外方に延びるアーム部53dには、圧縮コイルスプリング54からの押圧力が作用しており、これによって調整リング53が図の時計回りに回動しながら、少し上方に変位するように付勢されている。なお、このように変位する際の調整リング53の軌跡は、その張出部53b,53cと、これに係合されたガイドピン55,56とによって規定される。
そうして変位する調整リング53が、収容凹部50c内を図の右上側の高圧空間THと、左側から下側にかけての低圧空間TLとに仕切っており、高圧空間THの油圧を受けて動作される。すなわち、高圧空間THは、ハウジング50の収容凹部50c内において、調整リング53の張出部53cの外周とハウジング50の壁部とによって囲まれ、かつ、第1および第2のシール材57,58によってオイルの流れが制限される領域に形成される。
そして、この高圧空間THには吐出ポート50eの開口の一部が臨み、オイルポンプ5の吐出圧Pが高圧空間THに導かれて調整リング53外周面に作用するようになる。これに対して、吸入ポート50dの連通する低圧空間TLには概ね大気圧が作用しているので、調整リング53は、高圧空間THからの油圧によって図の反時計回りに回動するように付勢される。
一方で調整リング53は、前記したようにアーム部53dに作用するコイルスプリング54の弾発力を受けて時計回りに付勢されている。このため、例えばアイドリングのようにエンジン回転数Neが低いときに調整リング53は、コイルスプリング54の弾発力によって図5の最大容量位置に付勢される。このとき、ドライブロータ51およびドリブンロータ52の1回転当たりに、吸入ポート50dから吸い込んで吐出ポート50eから吐出するオイルの量、即ちポンプ容量が最大になる。
この状態からエンジン回転数Neが上昇すると、オイルの吐出量の増大によって吐出圧Pも増大傾向となるので、高圧空間THの油圧を受けて調整リング53は、コイルスプリング54の弾発力に抗して反時計回りに変位するようになる。これによりポンプ容量は減少するので、回転数が上昇しても吐出量および吐出圧Pの増大は抑制される。そして、図6に示すように調整リング53が最小容量位置に位置づけられると、1回転当たりの吐出量は最小になる。
さらに、本実施形態では、図5、6にそれぞれ示すように、ハウジング50内において高圧空間THに隣接するように制御空間TCを設けて、ここに電子制御式の制御弁60(Oil Control Vale:以下、OCVという)からの制御油圧を供給するようにしている。制御空間TCの油圧は調整リング53を、前記のようにオイルポンプ5の容量が減少する向きに変位させるような力を発生させる。
具体的には、前記調整リング53の2つの張出部53b,53cのほぼ中間において、その外周には第2のシール材58が配設され、収容凹部50cを取り囲むハウジング50の壁部の内面と摺接するようになっている。この第2のシール材58は、高圧空間THと制御空間TCとの間のシール部であって、前記のような調整リング53の変位に伴いハウジング50の壁部の内面に沿って移動することになる。
同様に調整リング53のアーム部53dの先端には第3のシール材59が配設されて、対向するハウジング50の壁部の内面と摺接するようになっている。なお、これら第2および第3のシール材58,59、および、前記した第1のシール材57は、いずれも調整リング53の厚み(図5、6の紙面に直行する方向の寸法)と同程度の寸法を有し、耐摩耗性に優れた金属材や樹脂材にて形成されている。
こうして制御空間TCは、ハウジング50の収容凹部50c内において、調整リング53の外周(詳しくは張出部53bの外周)とアーム部53dと、それらに対向するハウジング50の壁部とによって囲まれ、かつ前記第2および第3のシール材58,59によってオイルの流れが制限される領域に形成される。そして、この制御空間TCにおいて収容凹部50cの底面に開口する制御油路61によって、OCV60から制御油圧が供給される。
制御油路61は、その一端部が前記のように制御空間TCに臨む丸穴61aとして開口する一方、他端部がOCV60の制御ポート60aに連通している。OCV60は、後述するECU100からの信号を受けてスプールの位置が変更され、供給ポート60bからのオイルを制御ポート60aから制御油路61へ送り出す状態と、制御油路61から排出されてきたオイルを制御ポート60aに受け入れて、ドレンポート60cから排出する状態とに切り換えられる。
また、一例としてリニアソレノイドバルブであるOCV60は、ECU100からの信号に応じてスプールの位置が連続的に変化し、前記のように制御ポート60aから制御油路61へ送り出すオイルの圧力(制御油圧)をリニアに増大または減少させることができる。この制御油圧の調整により、以下に述べるように調整リング53を変位させてオイルポンプ5の容量を調整し、その吐出圧Pひいてはメインギャラリ47の油圧を制御することができる。
例えば、OCV60からの制御油圧を増大させることによって、制御空間TCの油圧が増大すると調整リング53が図5の反時計回りに変位して、ポンプ容量が減少するので、オイルポンプ5の吐出量が減少傾向となり、その吐出圧Pが低下する。反対に制御油圧を低下させると、調整リング53は図5の時計回りに変位し、ポンプ容量が増大して、その吐出圧Pも増大するようになる。
−油圧の制御−
次に、前記のようにオイルポンプ5の容量を変更し、その吐出圧Pを調整することで、メインギャラリ47の油圧を好適に維持する油圧制御装置の動作について、詳細に説明する。図7は、ECU100からOCV60への指令信号、即ちOCV電流指令値(一例として制御デューティー)と、オイルポンプ5の吐出圧Pとの関係を示す。この図からOCV電流指令値を大きくすれば、ポンプ回転数が高くなっても吐出圧Pを低く保つことができる一方、OCV電流指令値を小さくすれば吐出圧Pは高くなっており、オイルポンプ5の吐出圧Pを任意に制御できることが分かる。
ここで、エンジン1の燃費を低減するためには、できるだけオイルポンプ5の駆動負荷を軽減することが好ましいが、一方でピストンやクランクジャーナルなどの被潤滑部に適正なオイル供給を行うためには、メインギャラリ47の油圧を或る程度、高く維持しなくてはならない。すなわち、高回転ないし高負荷であれば被潤滑部に十分な油量および油圧を供給するために、メインギャラリ47の油圧は高めに維持する必要があり、一方、低回転ないし低負荷では油圧を低めに維持して、オイルポンプ5の駆動負荷を軽減したい。
そこで従来より、エンジン1の運転状態(例えばエンジン回転数Neや吸気量Ga、負荷率など)に応じて前記のようにOCV60への電流指令値を変更し、オイルポンプ5の容量を調整して、吐出圧Pをできるだけ低く制御することは提案されている。この場合、本実施形態のようにターボチャージャ20を装備するエンジン1では、このターボチャージャ20の回転数Nt(以下、ターボ回転数Ntという)や温度状態が問題になる。
例えば、ターボ回転数Ntが高いほど、ベアリング31,32,36の冷却や油膜維持などのために多くの油量および高い油圧が要求されるので、図8(a)に一例を示すように、ターボ回転数Ntと適正な油圧との間には概ね比例関係がある。一方、一例を図8(b)に示すようにエンジン1の吸気量Gaが多いほどターボ回転数Ntは高くなる。このことから、エンジン1の運転状態からターボ回転数Ntを推定し、これに対応するようにオイルポンプ5の吐出圧Pを制御することが考えられる。
しかしながら、エンジン1の運転状態とターボ回転数Ntとの間には時間的なズレが生じ易く、前記図8(b)のような関係は、エンジン1の運転状態が変化する過渡時には保持されない。例えば、アクセルペダルの踏み込みに応じてエンジン負荷が急上昇するときには、図9に一例を示すように遅れてターボ回転数Ntが立ち上がることになり、吸気量Gaやエンジン回転数Neの変化に対してターボ回転数Ntの変化が遅れることになる。
また、そのような加速の過渡時には、前記のようなターボ回転数Ntの上昇や排気温度の上昇、排気流量の増大によってターボチャージャ20の温度状態も遅れて上昇する。例えば前記図9に表れているように、比較的熱容量の小さなラジアルベアリング31、32の温度Trbは相対的に早く上昇し、一方、比較的熱容量の大きなスラストベアリング36の温度Tsbは相対的に緩やかに上昇する。
このように加速の過渡時にはターボ回転数Ntの上昇、およびターボチャージャ20のベアリング31,32,36などの温度Trb,Tsb(以下、ターボ温度Trb,Tsbともいう)の上昇が、エンジン1の運転状態の変化に対して遅れることから、仮にエンジン1の運転状態からターボ回転数Ntを推定し、これに応じてオイルポンプ5の吐出圧Pを制御すると、一時的にオイルの供給が過剰になって、オイルポンプ5の駆動負荷が大きくなってしまう。
反対に、例えばエンジン1が暫く高負荷で運転された後にアクセルペダルが離されて、エンジン負荷が急減するときには、ターボ回転数Ntやターボ温度Trb,Tsbなどがすぐには低下しないので、この場合にも、エンジン1の運転状態に応じてオイルポンプ5の吐出圧Pを低下させると、一時的にオイルの供給不足が生じてしまい、ベアリング31,32,36などにダメージを与える虞がある。
かかる点を考慮して本実施形態では、ECU100(目標油圧設定部)により、まず、エンジン1の運転状態に基づいてターボ回転数Ntやターボ温度Trb,Tsbに対応するオイルポンプ5の吐出圧Pの目標値Pt(目標油圧)を算出する。そして、エンジン1が定常的な運転状態にあれば、この目標油圧Ptに基づいてオイルポンプ5の容量を調整し、その吐出圧Pを制御する。
また、ECU100によって、エンジン1の運転状態の変化に対するターボ回転数Ntやターボ温度Trb,Tsbの変化の応答遅れを表すターボ時定数τを算出し、エンジン1の運転状態が所定以上、急に変化する過渡時には、そのターボ時定数τを用いて目標油圧Ptを補正する。これにより、過渡時であっても実際のターボ回転数Ntやターボ温度Trb,Tsbに対応した好適な目標油圧Ptを設定することができる。
−具体的な制御動作−
以下、図10に示すフローチャートを参照して具体的に、ECU100によって行われるオイルポンプ5の制御(油圧制御)について説明する。なお、図示の制御ルーチンは、エンジン1の運転中に一定周期(例えば数msec〜数十ミリsec程度)毎に実行される。
図10(a)には油圧制御の全体的な制御動作を示し、まず、スタート後のステップST1では、エンジン1の運転状態に関する所定の情報を取得する。例えば、クランク角センサ101からの信号によってエンジン回転数Neを算出し、エアフローメータ102からの信号によって吸気量Gaを算出し、これらエンジン回転数Neおよび吸気量Gaまたはアクセル操作量などから、エンジン1の負荷率を算出する。
続くステップST2では、前記のエンジン回転数Ne、吸気量Ga、負荷率等に基づいて、即ち、エンジン1の運転状態に基づいて、詳しくは後述するようにオイルポンプ5の吐出圧Pの目標値(目標油圧Pt)を設定する。また、ステップST3,ST4では、それぞれ油温センサ104および油圧センサ103の信号によって油温および油圧を算出する(油温、油圧の取得)。
そして、オイルポンプ5の実際の吐出圧Pが前記の目標油圧Ptになるようにフィードバック制御を行う。すなわち、ステップST5では、例えば前記油圧の情報から実際のポンプ吐出圧Pと目標油圧Ptとの偏差を算出し、この偏差に応じてPID則などにより、ポンプ吐出圧Pを目標油圧Ptに収束させるようなポンプ容量の目標値を算出する(フィードバック制御演算)。
また、ステップST6では、前記のポンプ容量の目標値になるようにオイルポンプ5の制御空間TCに供給する制御油圧を算出して、この制御油圧をOCV60が出力するよう、そのスプールを動作させるための指令信号、即ちOCV電流指令値(制御デューティー)を算出し、これをOCV60へ出力してリターンする。これによりオイルポンプ5の吐出圧Pひいてはメインギャラリ47の油圧が制御される。
なお、前記のポンプ容量、制御油圧、OCV電流指令値などのパラメータの対応関係は、予め実験・シミュレーションなどによって適合されてマップとしてECU100のROMに記憶されており、前記のステップST6では、そのようなマップを参照して、目標とするポンプ容量を実現するためのOCV電流指令値を算出する。また、マップの代わりにパラメータの対応関係を計算式として設定することもできる。
―目標油圧の設定―
次に、前記のステップST2における目標油圧Ptの設定について詳細に説明する。図10(b)には目標油圧Ptを設定するルーチンの一例を示し、このルーチンを実行することによってECU100が、目標油圧設定部としての機能を実現する。
同図におけるスタート後のステップST21では、前記のようにエアフローメータ102からの信号に基づいて算出されている吸気量Gaを取得し、ステップST22では、同様にクランク角センサ101からの信号に基づいて算出されているエンジン回転数Neを取得する。なお、これらの情報は、ECU100のRAM若しくはバックアップRAMに一時的に記憶され、所定のサイクル毎に更新されている。
また、ステップST23では、油温センサ104によって検出された油温の情報を取得する。この油温の情報もECU100のRAM若しくはバックアップRAMに一時的に記憶されているものを読み取ってもよいし、油温センサ104の信号から算出してもよい。
そして、ステップST24では、エンジン1の運転状態が所定以上、急に変化する過渡時における目標油圧Ptを算出するためのターボ時定数τを算出する。すなわち、上述したように過渡時にはエンジン1の運転状態の変化に対してターボチャージャ20の回転数Ntや温度状態(ベアリング31,32,36の温度Trb,Tsb)が遅れて変化するので、この遅れ分を補償するために時定数τを用いるのである。
−ターボ時定数の算出(第1の例)−
第1の例としては、まず、エンジン1の運転状態の変化に対するターボ回転数Ntの変化の応答遅れを表すターボ回転時定数τと、ターボ温度、即ちラジアルベアリング31,32の温度Trbおよびスラストベアリング36の温度Tsbの変化の応答遅れを表すターボ温度時定数τとを、それぞれエンジン1の運転状態などに基づいて算出する。例えば、ターボ回転時定数τは図11(a)に示すマップを参照して算出する。
すなわち、ターボ回転数Ntの変化の応答遅れにはエンジン1の吸気量Gaとの相関があり、吸気量Gaの多いときほど遅れは小さくなるので、図11(a)に示すマップにおいてはターボ回転時定数τを、吸気量Gaの多いときほど小さな値に設定している。反対に、エンジン1の吸気量Gaの少ないときほど応答遅れは大きくなるので、ターボ回転時定数τは大きな値に設定している。
このようなターボ回転時定数τと吸気量Gaとの関係は、予め実験・シミュレーションなどによって適合されて、前記のようなマップとしてECU100のROMに記憶されている。図示の例ではターボ回転時定数τは、吸気量Gaの増大する加速時には減速時に比べて小さな値に設定されており、加速の過渡時にエンジン回転数Neが上昇するときにはターボ回転時定数τが小さめの値になる。一方、減速の過渡時にはターボ回転時定数τは大きめの値になる。
これにより、後述する式(1)によって算出される目標油圧Ptは、加速の過渡時には早めに上昇するようになり、反対に減速の過渡時には油圧の低下が遅れることになるので、過渡的には目標油圧Ptがやや高めに算出されるようになる。よって、ターボチャージャ20へのオイルの供給不足を防止する上で有利になる。
一方、ターボ温度時定数τについては、ターボチャージャ20のベアリング31,32,36の熱容量に主として依存するが、これ以外にもエンジン1の油温、水温や排気温、排気流量などとの相関があるので、図示は省略するが、例えば、吸気量Gaや油温などとの対応関係を予め実験・シミュレーションなどによって適合してマップを作成し、ECU100のROMに記憶しておく。
本実施形態では、ラジアルベアリング31,32の熱容量がスラストベアリング36と比較して小さく、図9を参照して上述したように、その温度Trbの変化が比較的早い(即ち、温度変化の応答遅れが小さい)ことを考慮して、エンジン1の加速の過渡時には、ターボ温度時定数τとして、ラジアルベアリング31,32についての設定値を用い、減速の過渡時にはスラストベアリング36についての設定値を用いる。
そのために前記のターボ温度時定数τのマップ(図示せず)には、ラジアルベアリング31,32について適合した比較的小さな値と、スラストベアリング36について適合した比較的大きな値とがそれぞれ設定されている。そして、エンジン1の加速の過渡時には、比較的早く温度上昇するラジアルベアリング31、32の温度Trbに対応するように、ターボ温度時定数τとして比較的小さな値が用いられる。反対に減速の過渡時には、比較的緩やかに温度が低下するスラストベアリング36の温度Tsbに対応するように、ターボ温度時定数τとして比較的大きな値が用いられる。
さらに、前記のようにそれぞれマップを参照して算出したターボ回転時定数τおよびターボ温度時定数τのうちから、加速の過渡時にはターボ時定数τとして、より値の小さなものが選択され、減速の過渡時にはより値の大きなものが選択される。このターボ時定数τを用いて、後述する式(1)により算出される目標油圧Ptも、加速および減速の過渡時にやや高めに算出されるようになるので、ターボチャージャ20へのオイルの供給不足を防止する上で有利になる。
−ターボ時定数の算出(第2の例)−
次に、ターボ時定数τの算出の第2の例を説明する。この第2の例では、前記のようにターボ回転時定数τおよびターボ温度時定数τから選択するのではなく、また、2つの時定数τ,τに所定の重み付けをして算出するのでもなく、エンジン1の運転状態(吸気量Ga、エンジン回転数Ne、負荷率など)に対応する好適な値を予め実験・シミュレーションなどによって適合したマップを参照して、ターボ時定数τを算出する。
前記のマップには、前記第1の例でターボ回転時定数τおよびターボ温度時定数τから選択するターボ時定数τと同様に、エンジン1の運転状態の変化に対するターボ回転数Ntやターボ温度Trb,Tsbの変化の応答遅れを考慮して、最適な目標油圧Ptを算出することができるようなターボ時定数τの値が設定されている。
一例を図11(b)に示すマップは、図11(a)に示すマップと同じくエンジン1の吸気量Gaに対応づけて好適なターボ回転時定数τを設定したものである。また、このマップにおいてもエンジン1の加速時と減速時とでターボ時定数τは互いに異なる値が設定されており、それぞれの要求に合わせて最適な目標油圧Ptを算出できるようになっている。
詳しくは図示のマップにおいてターボ時定数τは、エンジン1の加速時には吸気量Gaの多いときほどターボ時定数τが小さな値になるように、一方、減速時には吸気量Gaの多いときほどターボ時定数τが大きな値になるように、それぞれ設定されている。そして、それら加速時および減速時のそれぞれの設定値を示す2本のグラフが、吸気量Gaの少ないところで交差している。
言い換えると、エンジン1が吸気量Gaの少ない低負荷・低回転の運転状態にあるとき、ターボ時定数τは、エンジン1の減速時よりも加速時の方が大きな値として算出され、それよりも吸気量Gaの多い状態ではターボ時定数τは、加速時よりも減速時の方が大きな値として算出される。これにより、後述する式(1)によって算出される目標油圧Ptは、ターボ回転数Ntおよびターボ温度Trb,Tsb並びにそれらの変化に対応する適切な値になる。
例えば、既に或る程度の吸気量Gaがある状態ではターボ温度Trb,Tsbが高くなっているので、さらに温度の上昇する加速の過渡時には、速やかに目標油圧Ptを上昇させるべく、ターボ時定数τを小さな値とすることができる。一方、吸気量Gaが少なくてターボラグがあるような状態では、ターボ温度Trb,Tsbも低いので、加速の過渡時における目標油圧Ptの上昇を遅らせて、オイルポンプ5の駆動負荷を減らすためにターボ時定数τを大きな値とするのである。
また、減速の過渡時については、既に或る程度の吸気量Gaがあってターボ温度Trb,Tsbの高い状態であれば、目標油圧Ptの低下が遅くなるようにターボ時定数τを小さな値とする。一方、吸気量Gaが少なくてターボ温度Trb,Tsbの低い状態であれば、ターボ時定数τは大きな値とし、エンジン1の減速に応じて速やかに目標油圧Ptを低下させることによって、オイルポンプ5の駆動負荷を減らすことができる。
次に、図10(b)に戻って、目標油圧Ptの算出の仕方を具体的に説明する。図示のルーチンのステップST25において算出される目標油圧Ptは、エンジン1の運転状態が定常的であるか過渡的であるかによって異なるものとなる。まず、エンジン1が定常的な運転状態にあれば、その運転状態に基づいて目標油圧Ptを算出する。これは、エンジン1の定常的な運転状態におけるターボチャージャ20の回転数Ntや温度状態Trb,Tsbに対応する好適な値になる。
この目標油圧Ptは、ECU100のROMに記憶させたマップから求めるようにすればよい。目標油圧のマップの図示は省略するが、例えば上述した図8(a)の関係と図8(b)の関係とを反映するように、吸気量Gaやエンジン回転数Neに対応する目標油圧Ptを予め実験・シミュレーションなどによって適合し、設定すればよい。なお、エンジン1が定常的な運転状態にあることは、例えば吸気量Ga、エンジン回転数Ne、負荷率などの時間あたりの変化量から判定することができる。
そのような定常的な運転状態ではなく、例えば加速運転や減速運転など、エンジン1の運転状態が所定以上、大きく変化する過渡時であれば、その運転状態の変化に対し遅れてターボチャージャ20の回転数Ntや温度状態(ターボ温度Trb,Tsb)が変化することになる。そこで、その遅れ分を補償するように、前記の目標油圧Ptをターボ時定数τを用いて補正する。
具体的には、例えば、定常状態から過渡状態に切り替わる際のエンジン1の運転状態に基づいて、前記目標油圧Ptのマップから算出した目標油圧Ptを基本値Ptbとする。そして、この基本値Ptbを目標油圧Ptの初期値として以下の式(1)の計算を繰り返すことにより、エンジン1の運転状態が所定以上、急に変化する過渡時においても適切な目標油圧Ptを算出することができる。
Pt(n) ← Pt(n-1)+(Ptb(n)−Pt(n-1))/τ ・・・ (1)
前記の式(1)においてPt(n)は、ある制御サイクル(n)における目標油圧Pt、即ち、算出する目標油圧Ptの今回値であり、Pt(n-1)は、前回の制御サイクルで算出した目標油圧(前回値)である。Ptb(n)は、今回の制御サイクルで前記目標油圧のマップから求めた目標油圧Ptの基本値Ptbであり、τはターボ時定数である。なお、前記したように目標油圧Pt(n)の初期値はその基本値Ptb(n)の初期値になる。
前記の式(1)を用いて目標油圧Ptを逐次、算出することにより、運転状態が所定以上、大きく変化する加速や減速の過渡時にも、ターボ回転数Ntやターボ温度Trb,Tsbの変化の遅れ分を補償して、実際のターボ回転数Ntやターボ温度Trb,Tsbに見合うような適切な目標油圧Ptを算出することができる。なお、ターボ時定数τ=1とすれば、前記の式(1)において Pt(n) ← Ptb(n) となる。
したがって、本実施形態に係るエンジン1の油圧制御装置によると、まず、エンジン1の運転状態から目標油圧Ptを設定することによって、言い換えると、エンジン1の運転状態からターボチャージャ20の回転数(ターボ回転数Nt)を推定し、これに応じてターボ回転数Ntが高いほど(ターボ温度Trb,Tsbも高いほど)、エンジン1の油圧を高くなるように制御することによって、ターボチャージャ20に必要なオイル供給を実現できる。
特に、エンジン1の運転状態が所定以上、急に変化する加速または減速の過渡時においては、その運転状態の変化に対するターボ回転数Ntやターボ温度Trb,Tsbの変化の遅れを補償するように、ターボ時定数τを用いて目標油圧Ptを適切に補正することで、過渡時においてもターボチャージャ20の実際の回転数Ntや温度状態Trb,Tsbに対応した適切なオイル供給を実現することができる。
よって、エンジン1の定常的な運転状態のみならず、加速や減速の過渡時においても、ターボチャージャ20に過不足のないオイル供給を実現し、その信頼性を十分に担保しながらオイルポンプ5の駆動負荷はできるだけ軽減して、燃費の改善を図ることができる。
(他の実施形態)
以上、説明した実施形態では、自動車用の直列4気筒ディーゼルエンジン1の油圧制御装置として本発明を適用した場合について説明したが、本発明はこれに限らず、自動車以外のエンジンの油圧制御装置としても適用可能である。勿論、気筒数やエンジンの形式(V型や水平対向型等)にも限定されず、ガソリンエンジンにも適用可能である。
また、前記の実施形態ではオイルポンプ5の容量可変機構として、調整リング53によってドライブロータ51およびドリブンロータ52を変位させ、入力軸5aの1回転当たりの吐出量を変更する構造について説明したが、このような構造にも限定されない。オイルポンプは内接式、外接式を問わずギヤポンプにも限定されず、可変容量形のものであればよい。
さらに、エンジン1の油圧を制御するために可変容量形のオイルポンプ5を装備する構造にも限定されず、例えばリニアソレノイドバルブなど、開度を無段階に調整して、油圧をリニアに調圧することのできるバルブを用いて、容量が固定のオイルポンプから吐出されるオイルの油量および油圧を調整するようにしてもよい。
また、前記の実施形態では、ターボ回転数Ntをエンジン1の運転状態(吸気量Ga、エンジン回転数Ne、負荷率など)から推定しているが、さらに大気圧も加味するようにすれば、ターボ回転数Ntをより正確に推定し、これに基づいてより適切な目標油圧Ptを設定することができる。
同様にターボ温度Trb,Tsbについても、エンジン1の運転状態だけでなく、例えば油温やエンジン水温の少なくとも一方を加味すれば、より正確に推定することができる。また、ターボチャージャ20の温度状態としてベアリング31,32,36以外の温度を用いてもよい。
また、前記の実施形態において、さらに目標油圧Ptを、エンジン1の油温が高いときほど高めの値になるように補正してもよい。これは、エンジン1の油温が高いほど、これによるターボチャージャ20のベアリング31,32,36などの冷却性能が低下するからである。
本発明の油圧制御によれば、ターボ過給機の信頼性を損なうことなくオイルポンプの駆動負荷をできるだけ軽減し、燃費の改善が図られるので、例えば自動車のエンジンなどに適用して効果が高い。
1 エンジン
5 可変容量形のオイルポンプ
20 ターボチャージャ(ターボ過給機)
31,32 ラジアルベアリング(ラジアル軸受け)
36 スラストベアリング(スラスト軸受け)
100 ECU(目標油圧設定部)
Nt ターボ回転数(ターボ過給機の回転数)
Trb ラジアルベアリングの温度(ターボ過給機の温度状態)
Tsb スラストベアリングの温度(ターボ過給機の温度状態)
P オイルポンプの吐出圧
Pt 目標油圧(油圧の制御目標値)
τ ターボ時定数
τ ターボ回転時定数
τ ターボ温度時定数

Claims (10)

  1. ターボ過給機を備えたエンジンの油圧制御装置であって、
    エンジンの運転状態に基づいて前記ターボ過給機の回転数を推定し、このターボ回転数が高いほど高圧側の値になるようにエンジンの油圧の制御目標値を設定する、目標油圧設定部を備えており、
    前記目標油圧設定部は、エンジンの運転状態の変化に対するターボ過給機の温度変化の応答遅れを表すターボ温度時定数を算出し、このターボ温度時定数を用いて油圧の制御目標値を補正する、ことを特徴とするエンジンの油圧制御装置。
  2. 請求項1に記載のエンジンの油圧制御装置において、
    前記目標油圧設定部は、エンジンの運転状態の変化に対するターボ回転数の変化の応答遅れを表すターボ回転時定数を算出し、このターボ回転時定数を用いて前記油圧の制御目標値を補正する、エンジンの油圧制御装置。
  3. 請求項2に記載のエンジンの油圧制御装置において、
    前記目標油圧設定部は、前記ターボ回転時定数を少なくともエンジンの吸気量に基づいて算出する、エンジンの油圧制御装置。
  4. 請求項2またはのいずれかに記載のエンジンの油圧制御装置において、
    前記目標油圧設定部は、エンジン回転数の上昇する加速の過渡時には、エンジン回転数の低下する減速の過渡時に比べて前記ターボ回転時定数を小さな値に算出する、エンジンの油圧制御装置。
  5. 請求項1〜4のいずれか1つに記載のエンジンの油圧制御装置において、
    前記目標油圧設定部は、ターボ過給機のタービンシャフトのラジアル軸受けおよびスラスト軸受けのいずれか一方について、その温度変化の応答遅れを表すようにターボ温度時定数を算出する、エンジンの油圧制御装置。
  6. 請求項に記載のエンジンの油圧制御装置において、
    前記目標油圧設定部は、エンジン回転数の上昇する加速の過渡時には、熱容量の小さな方の軸受けについてターボ温度時定数を算出する一方、エンジン回転数の低下する減速の過渡時には、熱容量の大きな方の軸受けについてターボ温度時定数を算出する、エンジンの油圧制御装置。
  7. 請求項5または6のいずれかに記載のエンジンの油圧制御装置において、
    前記目標油圧設定部は、エンジンの油温および水温の少なくとも一方を加味して前記ターボ温度時定数を算出する、エンジンの油圧制御装置。
  8. 請求項1〜7のいずれか1つに記載のエンジンの油圧制御装置において、
    前記目標油圧設定部は、前記目標油圧設定部は、エンジンの運転状態に大気圧も加味してターボ回転数を推定する、エンジンの油圧制御装置。
  9. 請求項〜8のいずれか1つに記載のエンジンの油圧制御装置において、
    前記目標油圧設定部は、エンジンの油温が高いときほど高圧側の値になるように、油圧の制御目標値を設定する、エンジンの油圧制御装置。
  10. 請求項〜9のいずれか1つに記載のエンジンの油圧制御装置において、
    エンジンには容量可変形のオイルポンプが装備され、
    前記目標油圧設定部により設定された油圧の制御目標値に基づいて前記オイルポンプの容量を変更し、その吐出圧を制御するように構成されている、エンジンの油圧制御装置
JP2013030139A 2013-02-19 2013-02-19 エンジンの油圧制御装置 Active JP5989569B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013030139A JP5989569B2 (ja) 2013-02-19 2013-02-19 エンジンの油圧制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013030139A JP5989569B2 (ja) 2013-02-19 2013-02-19 エンジンの油圧制御装置

Publications (2)

Publication Number Publication Date
JP2014159758A JP2014159758A (ja) 2014-09-04
JP5989569B2 true JP5989569B2 (ja) 2016-09-07

Family

ID=51611600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013030139A Active JP5989569B2 (ja) 2013-02-19 2013-02-19 エンジンの油圧制御装置

Country Status (1)

Country Link
JP (1) JP5989569B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190034174A (ko) 2015-12-03 2019-04-01 주식회사 엘지생활건강 가단성 구강 조성물을 포함하는 구강용 제제

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6270684B2 (ja) * 2014-10-03 2018-01-31 トヨタ自動車株式会社 油圧制御装置
CN206626224U (zh) 2014-11-19 2017-11-10 爱信精机株式会社 安全阀
JP2016098684A (ja) * 2014-11-19 2016-05-30 アイシン精機株式会社 圧力調整装置
JP6439875B2 (ja) * 2015-08-20 2018-12-19 日産自動車株式会社 エンジンの制御装置及びエンジンの制御方法
US10480425B2 (en) * 2018-03-16 2019-11-19 GM Global Technology Operations LLC Method of managing a propulsion system based on health of a lubrication system
CN115095407B (zh) * 2022-05-25 2024-03-19 潍柴动力股份有限公司 一种柴油机机油压力控制方法及***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171828A (ja) * 1985-01-28 1986-08-02 Nissan Motor Co Ltd タ−ボチヤ−ジヤの潤滑装置
JP2000130174A (ja) * 1998-10-27 2000-05-09 Fuji Heavy Ind Ltd 過給機付きエンジンの制御装置
JP2005090403A (ja) * 2003-09-18 2005-04-07 Toyota Motor Corp 電動機付過給機の潤滑制御装置
JP4583038B2 (ja) * 2004-02-09 2010-11-17 株式会社デンソー 過給機付き内燃機関の過給圧推定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190034174A (ko) 2015-12-03 2019-04-01 주식회사 엘지생활건강 가단성 구강 조성물을 포함하는 구강용 제제

Also Published As

Publication number Publication date
JP2014159758A (ja) 2014-09-04

Similar Documents

Publication Publication Date Title
JP5989569B2 (ja) エンジンの油圧制御装置
JP6013223B2 (ja) エンジンの油圧制御装置
US5123246A (en) Continuously proportional variable geometry turbocharger system and method of control
JP5898107B2 (ja) 可変容量型オイルポンプの制御装置
JP6217236B2 (ja) 多気筒エンジンの制御装置及び制御方法
US20110219767A1 (en) Control device for internal combustion engine equipped with turbocharger
US10267190B2 (en) Engine oil supply apparatus
CN105189950A (zh) 向发动机供应机油的机油供应装置
USRE41714E1 (en) Valve characteristic changing apparatus for internal combustion engine
US8430645B2 (en) Two stage pressure regulation system for variable displacement hydraulic pumps
CN105189977A (zh) 用于控制多缸发动机的控制装置
CA1207539A (en) Control arrangement for an hydraulic assist turbocharger
EP2683921A1 (fr) Systeme de lubrification d'un moteur thermique, comprenant une pompe a huile a cylindree variable
JP6551445B2 (ja) エンジンの制御装置
JP6009966B2 (ja) 油圧制御装置
JP2014015898A (ja) 内燃機関及び内燃機関の制御方法
JP2010169066A (ja) 車両の制御装置
JP7410813B2 (ja) 可変容量オイルポンプの制御装置
JP5077482B2 (ja) 内燃機関の潤滑システム
JP2010185302A (ja) 内燃機関の制御装置
JP2018159339A (ja) エンジンの制御装置
JP2010209885A (ja) 潤滑油供給装置の制御装置
JP6607530B2 (ja) エンジンの制御装置
JPH05231119A (ja) エンジンの潤滑油供給制御装置
JP6092652B2 (ja) 可変容量型オイルポンプの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160810

R151 Written notification of patent or utility model registration

Ref document number: 5989569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250