JP5974573B2 - Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery - Google Patents

Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery Download PDF

Info

Publication number
JP5974573B2
JP5974573B2 JP2012067908A JP2012067908A JP5974573B2 JP 5974573 B2 JP5974573 B2 JP 5974573B2 JP 2012067908 A JP2012067908 A JP 2012067908A JP 2012067908 A JP2012067908 A JP 2012067908A JP 5974573 B2 JP5974573 B2 JP 5974573B2
Authority
JP
Japan
Prior art keywords
graphite
negative electrode
secondary battery
silicon oxide
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012067908A
Other languages
Japanese (ja)
Other versions
JP2013200984A (en
Inventor
晴洋 浅見
晴洋 浅見
貴英 木村
貴英 木村
中村 健一
健一 中村
圭二 山原
圭二 山原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012067908A priority Critical patent/JP5974573B2/en
Publication of JP2013200984A publication Critical patent/JP2013200984A/en
Application granted granted Critical
Publication of JP5974573B2 publication Critical patent/JP5974573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水系二次電池用負極材、それを用いた非水系二次電池用負極及びこの負極を備えた非水系二次電池、とりわけリチウムイオン二次電池に関する。   The present invention relates to a negative electrode material for a non-aqueous secondary battery, a negative electrode for a non-aqueous secondary battery using the same, and a non-aqueous secondary battery including the negative electrode, particularly a lithium ion secondary battery.

近年、電子機器の小型化に伴い、高容量の二次電池に対する需要が高まってきている。特に、ニッケル・カドミウム電池や、ニッケル・水素電池に比べ、よりエネルギー密度が高く、急速充放電特性に優れた非水系二次電池、とりわけリチウムイオン二次電池が注目されている。   In recent years, demand for high-capacity secondary batteries has increased with the downsizing of electronic devices. In particular, non-aqueous secondary batteries having higher energy density and excellent rapid charge / discharge characteristics, particularly lithium ion secondary batteries, are attracting attention as compared to nickel / cadmium batteries and nickel / hydrogen batteries.

リチウムイオンを吸蔵・放出できる正極及び負極、並びにLiPFやLiBF等のリチウム塩を溶解させた非水電解液からなる非水系リチウム二次電池が開発され、実用に供されている。 A nonaqueous lithium secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and a nonaqueous electrolyte solution in which a lithium salt such as LiPF 6 or LiBF 4 is dissolved has been developed and put into practical use.

この電池の負極材料としては種々のものが提案されているが、高容量であること及び放電電位の平坦性に優れていることなどから、天然黒鉛、コークス等の黒鉛化で得られる人造黒鉛、黒鉛化メソフェーズピッチ、黒鉛化炭素繊維等の黒鉛質の炭素材料が用いられている。   Various materials have been proposed as negative electrode materials for this battery. From the high capacity and excellent discharge potential flatness, natural graphite, artificial graphite obtained by graphitization of coke, etc., Graphite carbon materials such as graphitized mesophase pitch and graphitized carbon fiber are used.

また、一部の電解液に対して比較的安定している等の理由で非晶質の炭素材料も用いられている。更には、黒鉛粒子の表面に非晶質炭素を被覆あるいは付着させ、黒鉛と非晶質炭素の特性を合わせもたせた炭素材料も用いられている。   Amorphous carbon materials are also used because they are relatively stable with respect to some electrolyte solutions. Furthermore, a carbon material is also used in which amorphous carbon is coated or adhered to the surface of graphite particles to combine the characteristics of graphite and amorphous carbon.

また、特許文献1では、鱗片状、塊状又は板状である黒鉛粒子に力学的エネルギー処理を与えて、黒鉛粒子表面にダメージを与えるとともに粒子形状を球形にすることで急速充放電特性を向上させた炭素材料が用いられ、更に、この炭素材料の表面に非晶質炭素を被覆あるいは付着させることで、黒鉛と非晶質炭素の特性、そして急速充放電性を併せ持った複層構造の球形化炭素材料を用いることが提案されている。   Moreover, in patent document 1, the rapid charge / discharge characteristic is improved by giving mechanical energy treatment to the graphite particles which are scale-like, lump-like, or plate-like, damaging the graphite particle surface and making the particle shape spherical. In addition, by coating or adhering amorphous carbon to the surface of this carbon material, the spheroidization of the multilayer structure that combines the characteristics of graphite and amorphous carbon, and rapid charge / discharge characteristics It has been proposed to use a carbon material.

しかし、昨今非水系二次電池、とりわけリチウム二次電池の用途展開が図られ、従来のノート型パソコンや、移動通信機器、携帯型カメラ、携帯型ゲーム機等向けに加え、電動工具、電気自動車向け等、従来にも増した急速充放電性を要求されるとともに、高容量であり、かつ、高サイクル特性を併せ持つ非水系リチウム二次電池が望まれている。   Recently, however, non-aqueous secondary batteries, especially lithium secondary batteries, are being developed for use in applications such as conventional notebook computers, mobile communication devices, portable cameras, and portable game machines, as well as electric tools and electric vehicles. For example, a non-aqueous lithium secondary battery that is required to have a rapid charge / discharge property that has been increased in the past and that has a high capacity and high cycle characteristics is desired.

サイクル特性の改善には、例えば、特許文献2で、ラマンスペクトルから得られるR値が0.2以上である多層構造を有する炭素質物粒子とX線面間隔d002が0.36〜0.360nmにある結晶性の低い非晶質炭素質粒子を負極材に用いた非水系リチウム二次電池が提案されている。   To improve cycle characteristics, for example, in Patent Document 2, the carbonaceous material particles having a multilayer structure having an R value of 0.2 or more obtained from a Raman spectrum and the X-ray plane spacing d002 are set to 0.36 to 0.360 nm. A non-aqueous lithium secondary battery using an amorphous carbonaceous particle having low crystallinity as a negative electrode material has been proposed.

また、特許文献3では、表面が非晶質炭素で被覆された被覆黒鉛粒子と、表面が非晶質炭素で被覆されていない非被覆黒鉛粒子とが混合された負極材が提案されており、より具体的には、該被覆黒鉛粒子の核黒鉛と該非被覆黒鉛粒子とは同種の黒鉛粒子であり、更に被覆黒鉛粒子と該非被覆黒鉛粒子の粒子径は同じであることが開示されている。   Patent Document 3 proposes a negative electrode material in which coated graphite particles whose surface is coated with amorphous carbon and uncoated graphite particles whose surface is not coated with amorphous carbon are mixed. More specifically, it is disclosed that the core graphite of the coated graphite particles and the uncoated graphite particles are the same type of graphite particles, and that the particle diameters of the coated graphite particles and the uncoated graphite particles are the same.

また、炭素材料と電解液との副反応による放電容量の減少を抑制するために、特許文献4では、炭素材料とともに、珪素酸化物を負極材に用いることが提案されている。また、サイクル特性を低下させることなく、高容量を維持するために、特許文献5では、機械的表面融合処理をすることにより、平均粒子径d50が0.2〜20μmのSiO粉末を核として、この核の表面を平均粒子径d50が20nm〜13μmの人造黒鉛等の導電材物質で覆った導電性SiO粉末と、黒鉛とを含む負極材が提案されている。 Moreover, in order to suppress the reduction | decrease in the discharge capacity by the side reaction with a carbon material and electrolyte solution, in patent document 4, it is proposed to use a silicon oxide for a negative electrode material with a carbon material. Further, without reducing the cycle characteristics, in order to maintain a high capacity, in Patent Document 5, by a mechanical surface fusion treatment, the average particle size d50 is the SiO x powder 0.2~20μm as nuclei There has been proposed a negative electrode material comprising graphite and a conductive SiO x powder in which the surface of the core is covered with a conductive material such as artificial graphite having an average particle diameter d50 of 20 nm to 13 μm.

更に、特許文献6では、高容量を維持しつつ、サイクル特性を改善するために、黒鉛粉末、ピッチ等の炭素前駆体、珪素・珪素化合物・珪素合金、カーボンブラック及び鎖状高分子材料の空隙形成剤を焼成して得られたアスペクト比が1〜2である概略球形状の粒子からなるリチウムイオン二次電池用負極活物質が提案されている   Further, in Patent Document 6, in order to improve cycle characteristics while maintaining a high capacity, carbon precursors such as graphite powder, pitch, silicon / silicon compound / silicon alloy, carbon black, and voids of chain polymer materials are used. A negative electrode active material for lithium ion secondary batteries has been proposed, which is composed of roughly spherical particles having an aspect ratio of 1 to 2 obtained by firing a forming agent.

特許第3534391号公報Japanese Patent No. 3534391 特許第3291756号公報Japanese Patent No. 3291756 特開2005−294011号公報JP 2005-294011 A 特開平11−312518号公報JP 11-31518 A 特開2002−373653号公報JP 2002-373653 A 特開2008−186732号公報JP 2008-186732 A

しかし、前記の特許文献によっても本発明者らが目標としている高容量化を満たすものではなく、更にサイクル特性、レート特性を向上し得る負極材の提案までには至っていない。   However, even the above-mentioned patent document does not satisfy the high capacity targeted by the present inventors, and has not yet led to the proposal of a negative electrode material that can further improve cycle characteristics and rate characteristics.

したがって、本発明は、近年の電動工具や、電気自動車の用途に求められる特性をも満たすことの可能な、高容量であり、かつ、高サイクル特性、高レート特性をも併せもつ優れた非水系二次電池用の負極材を提案するものである。   Therefore, the present invention is an excellent non-aqueous system that has high capacity, high cycle characteristics, and high rate characteristics that can satisfy the characteristics required for the use of electric tools and electric vehicles in recent years. A negative electrode material for a secondary battery is proposed.

上記課題を解決するため、本発明者らは、鋭意検討の結果、球形化黒鉛による急速充放電性の長所を活かしつつ、充放電に伴うリチウムイオン等のアルカリイオンの吸蔵・放出による体積変化により、点接触している球形化黒鉛が離間することにより導電パスが低下し、結果としてサイクル特性が低下するという短所、及びリチウムイオン等のアルカリイオンの拡散パスが不十分であるという短所を回避するために、導電パス確保、及びリチウムイオン等のアルカリイオンの拡散パス確保のための鱗片状黒鉛を混合し、更に、酸化珪素粒子をも含むことによって、高容量であり、かつ、高サイクル、高レート特性をも有する非水系二次電池用負極材が得られることを見出し、本発明を完成させた。   In order to solve the above-mentioned problems, the present inventors, as a result of intensive studies, made use of the volume change due to occlusion / release of alkali ions such as lithium ions accompanying charging / discharging while taking advantage of the rapid charge / discharge properties of spheroidized graphite. , To avoid the disadvantage that the conductive path is lowered due to the separation of the spheroidized graphite in point contact, resulting in poor cycle characteristics, and that the diffusion path of alkali ions such as lithium ions is insufficient. In order to secure a conductive path and to secure a diffusion path of alkali ions such as lithium ions, the graphite-like graphite is mixed and further contains silicon oxide particles. The present inventors have found that a negative electrode material for non-aqueous secondary batteries having rate characteristics can also be obtained.

[1]本発明は、炭素質粒子(A)と、酸化珪素粒子(B)とを含み、炭素質粒子(A)が、少なくとも球形化黒鉛(A1)と鱗片状黒鉛(A2)とを含む混合物であることを特徴とする非水系二次電池用負極材に関する。
[2]本発明は、炭素質粒子(A)100質量部に対して、酸化珪素粒子(B)1〜50質量部を含む、前記[1]記載の非水系二次電池用負極材に関する。
[3]本発明は、球形化黒鉛(A1)と鱗片状黒鉛(A2)との質量比が95:5〜5:95である、前記[1]又は[2]記載の非水系二次電池用負極材に関する。
[4]本発明は、球形化黒鉛(A1)の50%粒子径(d50)Rgと、酸化珪素粒子(B)の50%粒子径(d50)Rsとの比Rs/Rgが、0.001〜5である、前記[1]〜[3]のいずれかに記載の非水系二次電池用負極材に関する。
[5]本発明は、酸化珪素粒子(B)が一般式SiO(xは0.5≦x≦1.6である)で示される、前記[1]〜[4]のいずれかに記載の非水系二次電池用負極材に関する。
[6]本発明は、球形化黒鉛(A1)の50%粒子径(d50)Rgが2〜30μmであり、酸化珪素粒子(B)の50%粒子径(d50)Rsが0.01〜10μmである、前記[1]〜[5]のいずれかに記載の非水系二次電池用負極材に関する。
[7]本発明は、球形化黒鉛(A1)のアスペクト比が2.09以下であり、鱗片状黒鉛(A2)のアスペクト比が2.1〜10である、前記[1]〜[6]のいずれかに記載の非水系二次電池用負極材に関する。
[8]本発明は、鱗片状黒鉛質粒子(A2)の短径の長さが0.9〜15μmである、前記[1]〜[7]のいずれかに記載の非水系二次電池用負極材に関する。
[9]本発明は、集電体と、該集電体上に形成された活物質層とを備える非水系二次電池用負極であって、前記活物質層が、前記[1]〜[8]のいずれかに記載の非水系二次電池用負極材を含有することを特徴とする非水系二次電池用負極に関する。
[10]本発明は、イオンを吸蔵・放出可能な正極及び負極、並びに電解質を備える非水系二次電池であって、前記負極が、前記[9]に記載の非水系二次電池用負極であることを特徴とする、非水系二次電池に関する。
[1] The present invention includes carbonaceous particles (A) and silicon oxide particles (B), and the carbonaceous particles (A) include at least spheroidized graphite (A1) and flaky graphite (A2). The present invention relates to a negative electrode material for a non-aqueous secondary battery, which is a mixture.
[2] The present invention relates to the negative electrode material for a non-aqueous secondary battery according to [1], including 1 to 50 parts by mass of silicon oxide particles (B) with respect to 100 parts by mass of the carbonaceous particles (A).
[3] The non-aqueous secondary battery according to [1] or [2], wherein the mass ratio of spheroidized graphite (A1) to scaly graphite (A2) is 95: 5 to 5:95. The present invention relates to a negative electrode material.
[4] In the present invention, the ratio Rs / Rg between the 50% particle diameter (d50) Rg of the spheroidized graphite (A1) and the 50% particle diameter (d50) Rs of the silicon oxide particles (B) is 0.001. It is related with the negative electrode material for non-aqueous secondary batteries in any one of said [1]-[3] which is ~ 5.
[5] The present invention according to any one of [1] to [4], wherein the silicon oxide particles (B) are represented by the general formula SiO x (x is 0.5 ≦ x ≦ 1.6). It relates to the negative electrode material for non-aqueous secondary batteries.
[6] In the present invention, the 50% particle size (d50) Rg of the spheroidized graphite (A1) is 2 to 30 μm, and the 50% particle size (d50) Rs of the silicon oxide particles (B) is 0.01 to 10 μm. It is related with the negative electrode material for non-aqueous secondary batteries in any one of said [1]-[5] which is.
[7] In the present invention, the spheroidized graphite (A1) has an aspect ratio of 2.09 or less, and the flaky graphite (A2) has an aspect ratio of 2.1 to 10, [1] to [6] It relates to the negative electrode material for non-aqueous secondary batteries in any one of.
[8] The non-aqueous secondary battery according to any one of [1] to [7], wherein the scale-like graphite particles (A2) have a minor axis length of 0.9 to 15 μm. The present invention relates to a negative electrode material.
[9] The present invention is a negative electrode for a non-aqueous secondary battery comprising a current collector and an active material layer formed on the current collector, wherein the active material layer is the above [1] to [ [8] A negative electrode for a nonaqueous secondary battery comprising the negative electrode material for a nonaqueous secondary battery according to any one of [8].
[10] The present invention is a nonaqueous secondary battery comprising a positive electrode and a negative electrode capable of occluding and releasing ions, and an electrolyte, wherein the negative electrode is the negative electrode for a nonaqueous secondary battery according to [9]. The present invention relates to a non-aqueous secondary battery.

本発明の非水系二次電池用負極材を電極に用いた非水系二次電池は、高容量であり、かつ、サイクル特性、レート特性を向上することができる。   The nonaqueous secondary battery using the negative electrode material for a nonaqueous secondary battery of the present invention as an electrode has a high capacity and can improve cycle characteristics and rate characteristics.

本発明は、炭素質粒子(A)と、酸化珪素粒子(B)とを含み、炭素質粒子(A)が、少なくとも球形化黒鉛(A1)と鱗片状黒鉛(A2)とを含む混合物であることを特徴とする非水系二次電池用負極材である。なお、本明細書において、混合物とは、混合される成分、例えば球形化黒鉛(A1)と、鱗片状黒鉛(A2)とが、それぞれ含有されていることを意味し、負極材の製造工程において必ずしも混合されている必要はない。   The present invention is a mixture containing carbonaceous particles (A) and silicon oxide particles (B), wherein the carbonaceous particles (A) contain at least spheroidized graphite (A1) and scale-like graphite (A2). This is a negative electrode material for a non-aqueous secondary battery. In the present specification, the mixture means that components to be mixed, for example, spheroidized graphite (A1) and flaky graphite (A2) are contained, and in the production process of the negative electrode material It does not necessarily have to be mixed.

少なくとも球形化黒鉛(A1)と鱗片状黒鉛(A2)とを含む混合物である、炭素質粒子(A)は、電極とした場合に、点接触する球形化黒鉛(A1)の間に、面及びエッジが接触する鱗片状黒鉛(A2)が存在し、部分的に鱗片状黒鉛(A2)が球形化黒鉛(A1)の間に跨って球形化黒鉛(A1)を橋渡し、充放電に伴うリチウムイオン等のアルカリイオンの吸蔵・放出により球形化黒鉛(A1)に体積変化が生じ、球形化黒鉛(A1)の点接触が離隔した場合であっても、鱗片状黒鉛(A2)によって、炭素質粒子(A)の間の導電パスを確保して、サイクル特性を向上させることができる。また、電極とした場合に、少なくとも球形化黒鉛(A1)と鱗片状黒鉛(A2)とを含む混合物は、酸化珪素粒子(B)及び電解液の存在が可能となる間隙を形成し、この間隙に、リチウムイオン等のアルカリイオンの出入りしやすい高活性な酸化珪素粒子(B)を存在させることによって、更なる高容量化を実現することができる。また、充放電によるリチウムイオン等のアルカリイオンの吸蔵・放出に伴う酸化珪素粒子の体積変化も、球形化黒鉛(A1)と鱗片状黒鉛(A2)とを含む混合物によって形成された間隙が吸収するため、リチウムイオン等のアルカリイオンの吸蔵・放出を伴う充放電の繰り返しによる劣化を抑制し、サイクル特性を向上させることができる。更に球形化黒鉛(A1)と鱗片状黒鉛(A2)が作る電極内の空隙構造により、リチウムイオン等のアルカリイオンの拡散パスが確保され、レート特性をも向上させることが可能となる。   When the carbonaceous particles (A), which is a mixture containing at least spheroidized graphite (A1) and flaky graphite (A2), are used as electrodes, the surface and There is flaky graphite (A2) with which the edge comes into contact, and the flaky graphite (A2) partially spans between the spheroidized graphite (A1) and bridges the spheroidized graphite (A1). Even when the volume change occurs in the spheroidized graphite (A1) due to occlusion / release of alkali ions such as, and the point contact of the spheroidized graphite (A1) is separated, the scaly graphite (A2) causes carbonaceous particles to The conductive path between (A) can be secured and the cycle characteristics can be improved. Moreover, when it is set as an electrode, the mixture containing at least spheroidized graphite (A1) and scaly graphite (A2) forms a gap that allows the presence of silicon oxide particles (B) and an electrolytic solution. In addition, the presence of the highly active silicon oxide particles (B) in which alkali ions such as lithium ions are easy to enter and exit can further increase the capacity. In addition, the change in volume of silicon oxide particles accompanying the occlusion / release of alkali ions such as lithium ions due to charge / discharge is absorbed by the gap formed by the mixture containing spheroidized graphite (A1) and scaly graphite (A2). Therefore, it is possible to suppress deterioration due to repeated charge / discharge accompanied by occlusion / release of alkali ions such as lithium ions, and to improve cycle characteristics. Furthermore, the gap structure in the electrode formed by the spheroidized graphite (A1) and the flaky graphite (A2) secures a diffusion path for alkali ions such as lithium ions and improves rate characteristics.

〔炭素質粒子(A)〕
炭素質粒子(A)は、少なくとも球形化黒鉛(A1)と鱗片状黒鉛(A2)とを含む混合物である。
[Carbonaceous particles (A)]
The carbonaceous particles (A) are a mixture containing at least spheroidized graphite (A1) and flaky graphite (A2).

[球形化黒鉛(A1)]
球形化黒鉛(A1)は、具体的な形状、種類及び物性は特に制限されない。形状の具体的な例としては、球状、楕円状又は塊状等が挙げられる。中でも粒子が球に近い形状であることが好ましい。球形化黒鉛(A1)の製法は問わないが、例えば特許第3534391号公報に記載されたような力学的エネルギー処理を加えて球形化処理をした球形化黒鉛や、この球形化黒鉛に、有機化合物を混合し、該有機化合物を炭素化することによって製造される表面の少なくとも一部に炭素層を備えた複合型の球形化黒鉛を用いてもよい。ここで、「表面の少なくとも一部に炭素層を備えた」は、炭素層が黒鉛粒子の一部又は全部に層状に覆う形態のみならず、炭素層が表面の一部又は全部に付着・添着する形態をも包含する。炭素層は、表面の全部を被覆するように備えていてもよく、一部を被覆あるいは付着・添着してしてもよいが、好ましくは、表面の全部を被覆している。このような球形化黒鉛としては、例えば球形化黒鉛の表面の少なくとも一部に非晶質炭素からなる炭素層を備えた複合型の球形化黒鉛(「非晶質炭素被覆球形化黒鉛」ともいう)や、球形化黒鉛子の表面の少なくとも一部に黒鉛からなる炭素層を備えた複合型の球形化黒鉛(「黒鉛被覆球形化黒鉛」ともいう)を使用することができる。本発明において球形化黒鉛(A1)は、1種を単独で使用してもよく、2種以上を併用してもよい。なお、炭素層が黒鉛粒子の表面の少なくとも一部に炭素層を備えていることを、確認するためには、例えば、SEM写真等でも確認する事ができる。
[Spheronized graphite (A1)]
The specific shape, type and physical properties of the spheroidized graphite (A1) are not particularly limited. Specific examples of the shape include a spherical shape, an elliptical shape, and a lump shape. Among them, it is preferable that the particles have a shape close to a sphere. The production method of the spheroidized graphite (A1) is not limited. For example, the spheroidized graphite which has been spheroidized by applying mechanical energy treatment as described in Japanese Patent No. 3534391, and an organic compound Compound type spheroidized graphite having a carbon layer on at least a part of the surface produced by carbonizing the organic compound may be used. Here, “the carbon layer is provided on at least a part of the surface” means that the carbon layer is not only covered in a layered manner on a part or all of the graphite particles, but the carbon layer is attached or attached to a part or all of the surface. The form to be included is also included. The carbon layer may be provided so as to cover the entire surface, or may be partially coated or attached / attached, but preferably the entire surface is coated. As such spheroidized graphite, for example, composite spheroidized graphite (also referred to as “amorphous carbon-coated spheroidized graphite”) having a carbon layer made of amorphous carbon on at least a part of the surface of spheroidized graphite. ) Or composite type spheroidized graphite (also referred to as “graphite-coated spheroidized graphite”) having a carbon layer made of graphite on at least a part of the surface of the spheroidized graphite. In the present invention, the spheroidized graphite (A1) may be used alone or in combination of two or more. In order to confirm that the carbon layer has a carbon layer on at least a part of the surface of the graphite particles, for example, it can also be confirmed by an SEM photograph or the like.

力学的エネルギー処理は、例えば、ケーシング内部に多数のブレードを設置したローターを有する装置を用い、そのローターを高速回転することにより、その内部に導入した前記天然黒鉛又は人造黒鉛に対し、衝撃圧縮、摩擦及びせん断力等の機械的作用を与えることで、球形化処理を施すことができる。   Mechanical energy treatment is, for example, using an apparatus having a rotor with a large number of blades installed inside the casing, and rotating the rotor at a high speed to compress the impact on the natural graphite or artificial graphite introduced into the interior. A spheroidizing treatment can be performed by applying mechanical action such as friction and shearing force.

以下、球形化黒鉛(A1)に共通する物性を記載する。
<球形化黒鉛(A1)の物性>
(a−1)50%粒子径
球形化黒鉛(A1)の50%粒子径(d50)Rgは、好ましくは2〜30μmであり、より好ましく3〜28μm、更に好ましくは4〜26μmである。この範囲であれば、電極とした場合に、比表面積が大きくなることによる不可逆容量の増加を防ぐことができ、球形化黒鉛(A1)と電解液との接触面積の減少による急速充放電性の低下を防ぐことができる。ここで50%粒子径(d50)は、レーザー回折・散乱式粒度分布測定により測定される体積基準のメジアン径をいう。
Hereinafter, physical properties common to the spheroidized graphite (A1) will be described.
<Physical properties of spheroidized graphite (A1)>
(A-1) 50% particle diameter The 50% particle diameter (d50) Rg of the spheroidized graphite (A1) is preferably 2 to 30 µm, more preferably 3 to 28 µm, and further preferably 4 to 26 µm. If it is this range, when it is set as an electrode, the increase in the irreversible capacity | capacitance by a specific surface area becoming large can be prevented, and rapid charge / discharge property by the reduction | decrease of the contact area of a spheroidized graphite (A1) and electrolyte solution can be prevented. Decline can be prevented. Here, the 50% particle diameter (d50) refers to a volume-based median diameter measured by laser diffraction / scattering particle size distribution measurement.

(b−1)アスペクト比
球形化黒鉛(A1)の短径に対する長径の長さの比であるアスペクト比は、2.09以下、好ましくは2.0以下、より好ましくは1.9以下、更に好ましくは1.8以下、特に好ましくは1.7以下である。アスペクト比がこの範囲であると、粒子形状が楕円形、球形に近い状態になり、電極とした場合に粒子間の空隙の連続性が確保されリチウムイオンの移動性が高まり、急速充放電特性に優れた傾向を示す。なお、アスペクト比が大きすぎると、粒子形状が球状や楕円形ではなく、円盤状、板状になっていき、鱗片状黒鉛に近いものになり、粒子間の空隙が屈曲した形状となりリチウムイオンの移動性が悪く、急速充放電特性が劣る傾向を示す。なお、アスペクト比は、粒子の短径に対する長径の長さの比であり、最小値は1となるので、アスペクト比の下限は通常1である。球形化黒鉛(A1)のアスペクト比は後述する実施例の方法を用いて測定することができる。
(B-1) Aspect ratio The aspect ratio, which is the ratio of the length of the major axis to the minor axis of the spheroidized graphite (A1), is 2.09 or less, preferably 2.0 or less, more preferably 1.9 or less, and further It is preferably 1.8 or less, particularly preferably 1.7 or less. If the aspect ratio is within this range, the particle shape will be almost elliptical or spherical, and when used as an electrode, the continuity of voids between particles will be ensured and the mobility of lithium ions will be improved, resulting in rapid charge / discharge characteristics. Shows excellent trend. If the aspect ratio is too large, the particle shape is not spherical or elliptical, but disk-like or plate-like, close to scaly graphite, and the voids between the particles become bent, resulting in lithium ion The mobility is poor and the rapid charge / discharge characteristics tend to be inferior. The aspect ratio is the ratio of the length of the major axis to the minor axis of the particle, and the minimum value is 1. Therefore, the lower limit of the aspect ratio is usually 1. The aspect ratio of the spheroidized graphite (A1) can be measured using the method of Examples described later.

(c−1)タップ密度
球形化黒鉛(A1)のタップ密度は、好ましくは0.8g/cm以上、より好ましくは0.85g/cm以上である。タップ密度が0.8g/cm以上であるということは、球形化黒鉛(A1)がほぼ球状であることを示す。球形化黒鉛(A1)のタップ密度が0.8g/cm以上であると、電極とした場合に、電解液及び酸化珪素粒子を存在させることの可能な好適な間隙を球形化黒鉛(A1)と鱗片状黒鉛(A2)とで形成しつつ、電解液中のリチウムイオン等のアルカリイオンの移動性と、充放電時における炭素質粒子(球形化黒鉛(A1)と鱗片状黒鉛(A2))及び酸化珪素粒子(B)への十分なリチウムイオン等のアルカリイオンの出入りを確保することができ、高容量で、急速放電特性をもたらすことができる。タップ密度は後述する実施例の方法により測定する。
(C-1) Tap density The tap density of the spheroidized graphite (A1) is preferably 0.8 g / cm 3 or more, more preferably 0.85 g / cm 3 or more. That the tap density is 0.8 g / cm 3 or more indicates that the spheroidized graphite (A1) is almost spherical. When the tap density of the spheroidized graphite (A1) is 0.8 g / cm 3 or more, when the electrode is used as an electrode, a suitable gap in which the electrolytic solution and the silicon oxide particles can exist is formed into the spheroidized graphite (A1). And carbonaceous particles (spheroidized graphite (A1) and scaly graphite (A2)) during charging and discharging, and mobility of alkali ions such as lithium ions in the electrolyte solution In addition, sufficient entry and exit of alkali ions such as lithium ions to and from the silicon oxide particles (B) can be ensured, and rapid discharge characteristics can be provided with a high capacity. A tap density is measured by the method of the Example mentioned later.

(d−1)BET法による比表面積
球形化黒鉛(A1)のBET法による比表面積は、好ましくは0.5〜15m/g、より好ましくは1〜12m/g、更に好ましくは1.5〜10m/gである。本明細書において、BET法による比表面積は後述する実施例の方法により測定する。球形化黒鉛(A1)の比表面積を0.5m/g以上とすることで、リチウムイオン等のアルカリイオンの受け入れ性が良くなり、15m/g以下とすることで不可逆容量の増加による電池容量の減少を防ぐことができる。
(D-1) Specific surface area by BET method The specific surface area of the spherical graphite (A1) by the BET method is preferably 0.5 to 15 m 2 / g, more preferably 1 to 12 m 2 / g, still more preferably 1. 5 to 10 m 2 / g. In this specification, the specific surface area by BET method is measured by the method of the Example mentioned later. When the specific surface area of the spheroidized graphite (A1) is 0.5 m 2 / g or more, the acceptability of alkali ions such as lithium ions is improved, and when the specific surface area is 15 m 2 / g or less, the battery has an increased irreversible capacity. A decrease in capacity can be prevented.

(e−1)002面の面間隔(d002)
球形化黒鉛(A1)のX線広角回折法による002面の面間隔(d002)が3.37Å以下、Lcが900Å以上である。X線広角回折法による002面の面間隔(d002)が3.37Å以下、Lcが900Å以上であることは、球形化黒鉛(A1a)の結晶性が高いということであり、非晶質炭素材料に見られるような不可逆容量が大きいことによる低容量化を生じない高容量電極となる負極材を得ることができる。X線広角回折法による002面の面間隔(d002)は後述する実施例の方法により測定する。
(E-1) 002 plane spacing (d002)
Spherical graphite (A1) has a 002 plane spacing (d002) of 3.37 mm or less and Lc of 900 mm or more according to the X-ray wide angle diffraction method. The fact that the 002 plane spacing (d002) by X-ray wide angle diffraction method is 3.37 mm or less and Lc is 900 mm or more means that the crystallinity of the spheroidized graphite (A1a) is high, and the amorphous carbon material Thus, a negative electrode material that becomes a high-capacity electrode that does not cause a reduction in capacity due to a large irreversible capacity can be obtained. The inter-surface distance (d002) of the 002 surface by the X-ray wide angle diffraction method is measured by the method of the example described later.

(e−2)非晶質炭素の002面の面間隔(d002)
球形化黒鉛の表面の少なくとも一部を被覆する非晶質炭素のX線広角回折法による002面の面間隔(d002)は3.40Å以上、Lcが500Å以下であることが好ましい。002面の面間隔(d002)を3.40Å以上、Lcを500Å以下とすることにより、リチウムイオンの受け入れ性が向上することができる。
(E-2) Amorphous carbon 002 plane spacing (d002)
It is preferable that the interplanar spacing (d002) of the 002 plane by the X-ray wide angle diffraction method of amorphous carbon covering at least a part of the surface of the spheroidized graphite is 3.40 mm or more and Lc is 500 mm or less. When the 002 plane spacing (d002) is 3.40 mm or more and Lc is 500 mm or less, the acceptability of lithium ions can be improved.

(f−1)真密度
球形化黒鉛(A1)の真密度は、好ましくは2.1g/cm以上である。より好ましくは2.15g/cm以上であり、更に好ましくは2.2g/cm以上である。真密度は後述する実施例の方法により測定する。真密度が2.1g/cm以上であるということは、黒鉛粒子の本体の結晶性が高いことを示し、不可逆容量の少ない高容量の負極材を得ることをできる。
(F-1) True density The true density of the spheroidized graphite (A1) is preferably 2.1 g / cm 3 or more. More preferably, it is 2.15 g / cm 3 or more, and further preferably 2.2 g / cm 3 or more. A true density is measured by the method of the Example mentioned later. A true density of 2.1 g / cm 3 or higher indicates that the crystallinity of the main body of the graphite particles is high, and a high capacity negative electrode material with a small irreversible capacity can be obtained.

<球形化黒鉛(A1)の製造方法>
力学的エネルギー処理を加えて球形化処理をした球形化黒鉛(A1)は、前記の性状を具備していれば、どのような製法で作製しても問題はないが、例えば、下記の方法で製造することができる。例えば、特許第3534391号公報に記載の電極用炭素材料を用いることができる。具体的には、例えば、鱗片状、塊状又は板状の天然黒鉛、並びに石油コークス、石炭ピッチコークス、石炭ニードルコークス及びメソフェーズピッチ等を2500℃以上に加熱して製造した人造黒鉛に、力学的エネルギー処理を与えることで製造できる。
<Method for producing spheroidized graphite (A1)>
The spheroidized graphite (A1) that has been spheroidized by applying mechanical energy treatment can be produced by any method as long as it has the above-mentioned properties. Can be manufactured. For example, the carbon material for electrodes described in Japanese Patent No. 3534391 can be used. Specifically, for example, artificial graphite produced by heating scale-like, lump-like or plate-like natural graphite, petroleum coke, coal pitch coke, coal needle coke, mesophase pitch, etc. to 2500 ° C. or more, mechanical energy It can be manufactured by giving a treatment.

力学的エネルギー処理は、例えば、ケーシング内部に多数のブレードを設置したローターを有する装置を用い、そのローターを高速回転することにより、その内部に導入した天然黒鉛又は人造黒鉛に対し、衝撃圧縮、摩擦及びせん断力等の機械的作用を与えることで製造できる。   The mechanical energy treatment uses, for example, a device having a rotor with a large number of blades installed inside the casing, and rotates the rotor at a high speed, so that the natural graphite or artificial graphite introduced therein is subjected to impact compression and friction. And can be produced by applying mechanical action such as shearing force.

球形化黒鉛(A1)は、上記で得られた球形化黒鉛の表面の少なくとも一部に非晶質炭素からなる炭素層を備えた複合型の球形化黒鉛であってもよい。炭素層を備えた複合型の球形化黒鉛を製造する方法としては、球形化黒鉛の表面に石油系や石炭系のタールやピッチ、ポリビニルアルコール、ポリアクリルニトリル、フェノール樹脂、セルロース等の樹脂を必要により溶媒等を用いて混合した後、非酸化性雰囲気で500℃〜3000℃、好ましくは700℃〜2000℃、より好ましくは800〜1500℃で焼成することで炭素層を備えた複合型の炭素質粒子を製造することができる。   The spheroidized graphite (A1) may be a composite spheroidized graphite having a carbon layer made of amorphous carbon on at least a part of the surface of the spheroidized graphite obtained above. As a method for producing composite spheroidized graphite with a carbon layer, a resin such as petroleum-based or coal-based tar or pitch, polyvinyl alcohol, polyacrylonitrile, phenol resin, or cellulose is required on the surface of spheroidized graphite. After mixing using a solvent or the like, a composite type carbon having a carbon layer by firing at 500 to 3000 ° C., preferably 700 to 2000 ° C., more preferably 800 to 1500 ° C. in a non-oxidizing atmosphere. Particles can be produced.

複合型の球形化黒鉛の炭素層の量である被覆率は、黒鉛粒子の表面に存在する炭素層の量であり、炭素質粒子(A1)100質量%に対して、0.1〜10質量%であることが好ましい。この範囲であれば、リチウムイオン等のアルカリイオンの入出力特性の向上に寄与できる。被覆率は、より好ましくは、0.2〜8質量%であり、更に好ましくは、0.4〜5質量%である。被覆率は、黒鉛粒子の表面に存在する炭素層の質量%で表し、被覆率は、実施例で後述する方法により測定することができる。   The coverage, which is the amount of the carbon layer of the composite spheroidized graphite, is the amount of the carbon layer present on the surface of the graphite particles, and is 0.1 to 10 mass with respect to 100 mass% of the carbonaceous particles (A1). % Is preferred. If it is this range, it can contribute to the improvement of the input-output characteristic of alkali ions, such as lithium ion. The coverage is more preferably 0.2 to 8% by mass, and still more preferably 0.4 to 5% by mass. The coverage is represented by mass% of the carbon layer present on the surface of the graphite particles, and the coverage can be measured by the method described later in the examples.

複合型の球形化黒鉛の炭素層が非晶質炭素である場合、被覆率は、好ましくは0.1〜10質量%、より好ましくは0.2〜8質量%、さらに好ましくは0.4〜5質量%である。非晶質炭素からなる炭素層の被覆率を0.1質量%以上とすることで、非晶質炭素の有するリチウムイオン等のアルカリイオンの高い受け入れ性を充分利用することができる。被覆率を10質量%以下とすることで、非晶質炭素が持つ不可逆容量の大きさの影響による容量の低下を防ぐことができ、非晶質炭素からなる炭素層による接触抵抗の増大を抑制し、レート特性を改善することができる。   When the carbon layer of the composite spheroidized graphite is amorphous carbon, the coverage is preferably 0.1 to 10% by mass, more preferably 0.2 to 8% by mass, and still more preferably 0.4 to 5% by mass. By setting the coverage of the carbon layer made of amorphous carbon to 0.1% by mass or more, high acceptability of alkali ions such as lithium ions possessed by amorphous carbon can be fully utilized. By setting the coverage to 10% by mass or less, it is possible to prevent a decrease in capacity due to the influence of the irreversible capacity of amorphous carbon, and to suppress an increase in contact resistance due to a carbon layer made of amorphous carbon. In addition, the rate characteristics can be improved.

球形化黒鉛の非晶質炭素からなる炭素層の被覆率は次式により求めることができる。
被覆率(質量%)=100−(K×D)/((K+T)×N)×100
この式において、Kはタールピッチとの混合に供した黒鉛粒子の質量(Kg)、Tは黒鉛粒子との混合に供した被覆原料であるタールピッチの質量(kg)、DはKとTの混合物のうち実際に焼成に供した混合物量、Nは焼成後の炭素層を黒鉛粒子の表面の少なくとも一部に備えた球形化黒鉛の質量を示す。
The coverage of the carbon layer made of amorphous carbon of spheroidized graphite can be obtained by the following equation.
Coverage (mass%) = 100− (K × D) / ((K + T) × N) × 100
In this equation, K is the mass (Kg) of the graphite particles subjected to mixing with the tar pitch, T is the mass (kg) of the tar pitch that is the coating raw material used for mixing with the graphite particles, and D is the amount of K and T Of the mixture, the amount of the mixture actually subjected to firing, N, represents the mass of spheroidized graphite provided with a carbon layer after firing on at least a part of the surface of the graphite particles.

[鱗片状黒鉛(A2)]
鱗片状黒鉛(A2)は、黒鉛の結晶性が完全に近い結晶を示すように高純度化した天然黒鉛と、人工的に形成した黒鉛とがあり、天然黒鉛であることが好ましい。本明細書において鱗片状とは、鱗片状黒鉛(A2)の短径に対する長径の長さの比である平均アスペクト比が2.1以上のものをいう。
[Scaly graphite (A2)]
The scaly graphite (A2) includes natural graphite highly purified so that the crystallinity of graphite is almost completely crystallized, and artificially formed graphite, and is preferably natural graphite. In the present specification, scaly means that the average aspect ratio, which is the ratio of the length of the major axis to the minor axis of the scaly graphite (A2), is 2.1 or more.

(a−2)50%粒子径(d50)
鱗片状黒鉛(A2)の50%粒子径(d50)Rgは、好ましくは2〜30μmであり、より好ましくは3〜28μm、更に好ましくは4〜26μmである。この範囲であれば、電極とした場合に、比表面積が大きくなることによる不可逆容量の増加を防ぐことができる。また、鱗片状黒鉛(A2)の50%粒子径(d50)Rgが大きすぎると、鱗片状黒鉛(A2)を混合した電極用材料をバインダーや水、或いは有機溶媒を加えてスラリー状として塗布する工程で、大粒子に起因したスジ引きや凹凸を生じることがある。ここで50%粒子径(d50)は、レーザー回折・散乱式粒度分布測定により測定される体積基準のメジアン径をいう。
(A-2) 50% particle size (d50)
The 50% particle diameter (d50) Rg of the flaky graphite (A2) is preferably 2 to 30 μm, more preferably 3 to 28 μm, and still more preferably 4 to 26 μm. If it is this range, when it is set as an electrode, the increase in the irreversible capacity | capacitance by a specific surface area becoming large can be prevented. If the 50% particle size (d50) Rg of the flaky graphite (A2) is too large, the electrode material mixed with the flaky graphite (A2) is applied as a slurry by adding a binder, water, or an organic solvent. In the process, streaks or irregularities due to large particles may occur. Here, the 50% particle diameter (d50) refers to a volume-based median diameter measured by laser diffraction / scattering particle size distribution measurement.

(b−2)アスペクト比
粒子の短径に対する長径の長さの比であるアスペクト比は、2.1〜10が好ましい。アスペクト比は、2.3〜9であることがより好ましく、2.5〜8であることが更に好ましい。アスペクト比がこの範囲であると、少なくとも球形化黒鉛(A1)と鱗片状黒鉛(A2)とを含む混合物により、酸化珪素粒子が存在可能となる好適な間隙を形成しつつ、点接触する球形化黒鉛(A1)の間に面及びエッジが接触する鱗片状黒鉛(A2)が存在し、部分的に鱗片状黒鉛(A2)が球形化黒鉛(A1)間に跨って球形化黒鉛(A1)を橋渡すように接触して電極とすることができ、充放電の繰り返しにより、球形化黒鉛(A1)の体積変化により点接触している球形化黒鉛(A1)同士が離れた場合であっても、鱗片状黒鉛(A2)による橋渡しによって、導電パスを確保し、サイクル特性を向上することができる。鱗片状黒鉛(A2)のアスペクト比は後述する実施例の方法を用いて測定することができる。
(B-2) Aspect ratio The aspect ratio, which is the ratio of the length of the major axis to the minor axis of the particles, is preferably 2.1 to 10. The aspect ratio is more preferably 2.3 to 9, and still more preferably 2.5 to 8. When the aspect ratio is within this range, a mixture containing at least spheroidized graphite (A1) and flaky graphite (A2) forms a suitable gap in which silicon oxide particles can be present, and spheroidizes in point contact. Between the graphite (A1), there is a flaky graphite (A2) whose surface and edge are in contact, and the flaky graphite (A2) partially spans between the spheroidized graphite (A1) and the spheroidized graphite (A1). Even when the electrodes can be brought into contact with each other as a bridge, and the spherical graphites (A1) that are in point contact with each other due to the volume change of the spherical graphite (A1) are separated by repeated charge and discharge. By means of bridging with flaky graphite (A2), it is possible to secure a conductive path and improve cycle characteristics. The aspect ratio of the scale-like graphite (A2) can be measured by using the method of Examples described later.

(c−2)タップ密度
鱗片状黒鉛(A2)のタップ密度は、好ましく0.1g/cm以上であり、より好ましくは0.15g/cm以上である。また、鱗片状黒鉛(A2)のタップ密度は、好ましくは0.2g/cm以下であり、より好ましくは2.0g/cm以下、更に好ましくは1.6g/cm以下である。鱗片状黒鉛(A2)のタップ密度が上記範囲内であると、球形化黒鉛(A1)と鱗片状黒鉛(A2)とを含む混合物により、酸化珪素粒子(B)が存在可能となる間隙を形成しつつ、球形化黒鉛(A1)の粒子間を跨いで橋渡す構造を形成した場合であっても、電極の強度を低下させることなく、充放電による酸化珪素粒子(B)、球形化黒鉛(A1)及び鱗片状黒鉛(A2)の体積変化を上記構造が吸収し、体積変化に伴って生じる電極活物質の劣化を抑制することができ、サイクル特性を向上することができる。タップ密度は後述する実施例の方法により測定する。
(C-2) Tap density The tap density of the scaly graphite (A2) is preferably 0.1 g / cm 3 or more, more preferably 0.15 g / cm 3 or more. The tap density of the scaly graphite (A2) is preferably 0.2 g / cm 3 or less, more preferably 2.0 g / cm 3 or less, and further preferably 1.6 g / cm 3 or less. When the tap density of the flaky graphite (A2) is within the above range, a mixture containing the spheroidized graphite (A1) and the flaky graphite (A2) forms a gap in which the silicon oxide particles (B) can exist. However, even in the case of forming a structure that bridges between the particles of the spheroidized graphite (A1), the silicon oxide particles (B), spheroidized graphite ( The above structure absorbs the volume change of A1) and flaky graphite (A2), the deterioration of the electrode active material caused by the volume change can be suppressed, and the cycle characteristics can be improved. A tap density is measured by the method of the Example mentioned later.

(d−2)BET法による比表面積
鱗片状黒鉛(A2)のBET法による比表面積は好ましくは1〜40m/gである。鱗片状黒鉛(A2)のBET法による比表面積は2〜35m/gであることがより好ましく、3〜30m/gであることが更に好ましい。鱗片状黒鉛(A2)のBET法による比表面積は、リチウムイオン等のアルカリイオンの受け入れ性が良くなり、40m/g以下とすることで不可逆容量の増加による電池容量の減少を防ぐことができる。BET法比表面積は後述する実施例の方法により測定する。
(D-2) Specific surface area by BET method The specific surface area of the scaly graphite (A2) by the BET method is preferably 1 to 40 m 2 / g. BET specific surface area of the flake graphite (A2) is more preferably from 2~35m 2 / g, and further preferably from 3~30m 2 / g. The specific surface area of the scaly graphite (A2) by the BET method improves the acceptability of alkali ions such as lithium ions, and by making it 40 m 2 / g or less, it is possible to prevent a decrease in battery capacity due to an increase in irreversible capacity. . The BET method specific surface area is measured by the method of Examples described later.

(e−2)002面の面間隔(d002)及びLc
鱗片状黒鉛(A2)のX線広角回折法による002面の面間隔(d002)は0.337nm以下である。一方黒鉛の002面の面間隔の理論値は0.335nmであるため、黒鉛の002面の面間隔は通常0.335nm以上である。また、鱗片状黒鉛(A2)のX線広角回折法によるLcは90nm以上、好ましくは95nm以上である。002面の面間隔(d002)が0.337nm以下であると、鱗片状黒鉛(A2)の結晶性が高いことを示し、高容量となる負極材を得ることができる。また、Lcが90nm以上である場合にも、結晶性が高いことを示し。高容量となる負極材を得ることができる。X線広角回折法による002面の面間隔(d002)と、Lcは後述する実施例の方法により測定する。
(E-2) 002 plane spacing (d002) and Lc
The interplanar spacing (d002) of the 002 plane by the X-ray wide angle diffraction method of the scaly graphite (A2) is 0.337 nm or less. On the other hand, since the theoretical value of the interplanar spacing of the 002 plane of graphite is 0.335 nm, the interplanar spacing of the 002 plane of graphite is usually 0.335 nm or more. Further, Lc of the scaly graphite (A2) by the X-ray wide angle diffraction method is 90 nm or more, preferably 95 nm or more. When the interplanar spacing (d002) of the 002 plane is 0.337 nm or less, the scaly graphite (A2) has high crystallinity, and a negative electrode material having a high capacity can be obtained. In addition, when Lc is 90 nm or more, the crystallinity is high. A negative electrode material having a high capacity can be obtained. The interplanar spacing (d002) of the 002 surface by the X-ray wide angle diffraction method and Lc are measured by the method of the example described later.

(f−2)真密度
鱗片状黒鉛(A2)の真密度(測定法は後述の実施例のとおり)は好ましくは2.1g/cm以上、より好ましくは2.15g/cm以上、更に好ましくは2.2g/cm以上である。真密度が2.1g/cm以上の結晶性の高い黒鉛であると、不可逆容量の少ない高容量の負極材を得ることができる。
(F-2) True density The true density of the scaly graphite (A2) (the measurement method is as in Examples described later) is preferably 2.1 g / cm 3 or more, more preferably 2.15 g / cm 3 or more, and further Preferably it is 2.2 g / cm 3 or more. If the true density is a highly crystalline graphite having a true density of 2.1 g / cm 3 or more, a high capacity negative electrode material with a small irreversible capacity can be obtained.

(g−2)粒子短径の長さ
鱗片状黒鉛(A2)の短径の長さは、好ましくは15μm以下、より好ましくは10μm以下、更に好ましくは8μm以下である。また、鱗片状黒鉛(A2)の短径の長さは、好ましくは0.9μm以上である。鱗片状黒鉛(A2)の短径の長さが0.9〜15μmであると、球形化黒鉛(A1)と鱗片状黒鉛(A2)とを含む混合物により、酸化珪素粒子(B)が存在可能となる好適な間隙を形成しつつ、面又はエッジが接触する鱗片状黒鉛(A2)が部分的に球形化黒鉛(A1)の粒子間を跨いで橋渡すように接触した電極とすることができ、充放電の繰り返しにより、球形化黒鉛(A1)の体積変化が生じても導電性パスを確保することができるとともに、存在する酸化珪素粒子の体積変化を、球形化黒鉛(A1)と鱗片状黒鉛(A2)とのによって形成された間隙が吸収し、体積変化に伴って生じる電極活物質の劣化を抑制することができ、サイクル特性を向上することができる。更に、球形化黒鉛(A1)と鱗片状黒鉛(A2)とのによって形成された間隙により、リチウムイオン等のアルカリイオンの拡散パスが確保され、レート特性を向上することができる。鱗片状黒鉛(A2)の短径の長さが大きすぎると、間隙に存在する酸化珪素粒子の体積変化を十分吸収することができず、球形化黒鉛(A1)と鱗片状黒鉛(A2)との接触が保たれず、導電パス切れを起こす可能性が発現する。鱗片状黒鉛(A2)の短径の長さの測定は、後述する実施例の方法を用いてアスペクト比の測定を行う際に短径を測定する方法と同様の方法で行うことができる。
(G-2) Length of particle minor axis The length of the minor axis of the scaly graphite (A2) is preferably 15 μm or less, more preferably 10 μm or less, and still more preferably 8 μm or less. The length of the minor axis of the scaly graphite (A2) is preferably 0.9 μm or more. When the length of the minor axis of the flaky graphite (A2) is 0.9 to 15 μm, silicon oxide particles (B) can exist due to the mixture containing the spheroidized graphite (A1) and the flaky graphite (A2). The scaly graphite (A2) with which the surface or edge is in contact with each other can be formed as an electrode that bridges between the particles of the spheroidized graphite (A1) while forming a suitable gap. The conductive path can be secured even if the volume change of the spheroidized graphite (A1) is caused by repeated charge and discharge, and the volume change of the silicon oxide particles present is changed between the spheroidized graphite (A1) and the scale-like shape. The gap formed by graphite (A2) absorbs the deterioration of the electrode active material caused by the volume change, and the cycle characteristics can be improved. Further, the gap formed by the spheroidized graphite (A1) and the flaky graphite (A2) secures a diffusion path for alkali ions such as lithium ions, thereby improving rate characteristics. If the length of the minor axis of the flaky graphite (A2) is too large, the volume change of the silicon oxide particles present in the gap cannot be sufficiently absorbed, and the spheroidized graphite (A1) and the flaky graphite (A2) In this case, there is a possibility that the contact of the conductive path is not maintained. The length of the minor axis of the flaky graphite (A2) can be measured by the same method as the method of measuring the minor axis when measuring the aspect ratio by using the method of Examples described later.

<鱗片状黒鉛(A2)の製造>
鱗片状黒鉛(A2)は、前述の性状であれば、どのような製法で作製しても問題ない。例えば、鱗片状、塊状又は板状の天然黒鉛、或いは、例えば石油コークス、石炭ピッチコークス、石炭ニードルコークス、メソフェーズピッチ等を2500℃以上に加熱して製造した人造黒鉛を、必要により、不純物除去、粉砕、篩い分けや分級処理を行うことで得ることができる。
<Manufacture of scale-like graphite (A2)>
As long as the flake graphite (A2) has the above-mentioned properties, it can be produced by any manufacturing method. For example, scale-like, massive or plate-like natural graphite, or artificial graphite produced by heating petroleum coke, coal pitch coke, coal needle coke, mesophase pitch, etc. to 2500 ° C. or more, if necessary, removing impurities, It can be obtained by grinding, sieving or classification.

〔球形化黒鉛(A1)と鱗片状黒鉛(A2)の質量比〕
球形化黒鉛(A1)と鱗片状黒鉛(A2)の質量比(球形化黒鉛(A1):鱗片状黒鉛(A2))は、95:5〜5:95であることが好ましい。球形化黒鉛(A1)と鱗片状黒鉛(A2)の質量比が前記範囲であると、球形化黒鉛(A1)と鱗片状黒鉛(A2)とを含む混合物により、酸化珪素粒子(B)が存在可能となる好適な間隙を形成しつつ、球形化黒鉛(A1)の粒子間を跨いで、鱗片状黒鉛(A2)が球形化黒鉛(A1)を橋渡すように接触して電極とすることができる。球形化黒鉛(A1)と鱗片状黒鉛(A2)との質量比は、より好ましくは90:10〜10:90であり、更に好ましくは85:15〜15:85である。
[Mass ratio of spheroidized graphite (A1) and scale-like graphite (A2)]
The mass ratio of spheroidized graphite (A1) to flaky graphite (A2) (spheroidized graphite (A1): flaky graphite (A2)) is preferably 95: 5 to 5:95. When the mass ratio of spheroidized graphite (A1) and flaky graphite (A2) is within the above range, silicon oxide particles (B) are present due to the mixture containing spheroidized graphite (A1) and flaky graphite (A2). While forming a suitable gap that can be made, the flaky graphite (A2) crosses between the particles of the spheroidized graphite (A1) and contacts the spheroidized graphite (A1) so as to bridge the spheroidized graphite (A1). it can. The mass ratio of spheroidized graphite (A1) and scaly graphite (A2) is more preferably 90:10 to 10:90, and still more preferably 85:15 to 15:85.

〔酸化珪素粒子(B)〕
酸化珪素粒子(B)は、二酸化珪素(SiO)を原料とし、金属珪素(Si)及び/又は炭素を用いてSiOを熱還元することにより得られる、SiOのxの値が0<x<2で表される珪素酸化物からなる粒子の総称である。珪素(Si)は、黒鉛と比較して理論容量が大きく、更に非晶質珪素酸化物は、リチウムイオン等のアルカリイオンの出入りがしやすく、高容量を得ることが可能となる。
[Silicon oxide particles (B)]
The silicon oxide particles (B) are obtained by using silicon dioxide (SiO 2 ) as a raw material and thermally reducing SiO 2 using metal silicon (Si) and / or carbon, and the value of x of SiO x is 0 < A general term for particles made of silicon oxide represented by x <2. Silicon (Si) has a larger theoretical capacity than that of graphite, and amorphous silicon oxide allows easy entry and exit of alkali ions such as lithium ions, so that a high capacity can be obtained.

本発明で用いる酸化珪素粒子(B)は、酸化珪素粒子を核として、この表面の少なくとも一部に非晶質炭素からなる炭素層を備えた複合型の酸化物粒子であってもよい。酸化珪素粒子(B)は、非晶質炭素からなる炭素層を備えていない酸化珪素粒子(B1)及び複合型の酸化物粒子(B2)からなる群より選ばれる1種を単独で用いてもよく、2種以上を併用してもよい。ここで、「表面の少なくとも一部に非晶質炭素からなる炭素層を備えた」とは、炭素層が酸化珪素粒子の表面の一部又は全部を層状に覆う形態のみならず、炭素層が表面の一部又は全部に付着・添着する形態をも包含する。炭素層は、表面の全部を被覆するように備えていてもよく、一部を被覆あるいは付着・添着してもよい。   The silicon oxide particles (B) used in the present invention may be composite oxide particles having silicon oxide particles as nuclei and a carbon layer made of amorphous carbon on at least a part of the surface. The silicon oxide particles (B) may be used alone as selected from the group consisting of silicon oxide particles (B1) not having a carbon layer made of amorphous carbon and composite oxide particles (B2). In addition, two or more kinds may be used in combination. Here, “having a carbon layer made of amorphous carbon on at least a part of the surface” means that the carbon layer covers not only a part or all of the surface of the silicon oxide particles in a layered manner, It includes forms that adhere to or adhere to part or all of the surface. The carbon layer may be provided so as to cover the entire surface, or a part of the carbon layer may be coated, attached, or attached.

以下に酸化珪素粒子(B)の物性を記載する。非晶質炭素からなる炭素層を備えていない酸化珪素粒子(B1)と非晶質炭素からなる炭素層を備えた複合型の酸化物粒子(B2)は、以下の共通する物性を有する。   The physical properties of the silicon oxide particles (B) are described below. The silicon oxide particles (B1) not having a carbon layer made of amorphous carbon and the composite oxide particles (B2) having a carbon layer made of amorphous carbon have the following common physical properties.

本発明で用いる酸化珪素粒子(B)としては、一般式SiO(xは0.5≦x≦1.6である)で示される酸化珪素粒子(B)であることが好ましい。一般式SiOのxの範囲は、より好ましくはxが0.6≦x≦1.5であり、更に好ましくはxが1.2以下であり、特に好ましくxが1.0以下である。一般式SiOのxが0.5≦x≦1.6の範囲であると、リチウムイオン等のアルカリイオンの出入りのしやすい高活性な非晶質Siにより、高容量化を得ることができる。また、電極とした場合に、球形化黒鉛(A1)と鱗片状黒鉛(A2)とを含む混合物によって、球形化黒鉛(A1)同士と、球形化黒鉛(A1)間を橋渡すように接触した鱗片状黒鉛(A2)との間隙に、酸化珪素粒子(B)が存在することによって、充放電によるリチウムイオン等のアルカリイオンの吸蔵・放出に伴う酸化珪素粒子(B)の体積変化が、炭素質粒子(A)(すなわち、球形化黒鉛(A1)と鱗片状黒鉛(A2))によって形成された間隙に吸収され、体積変化による電極活物質の劣化を抑制することができる。一般式SiOのxの値が0.5よりも小さいと、リチウムイオン等のアルカリイオンの出入りのしやすい高活性な非晶質の珪素酸化物の割合が大きくなり高容量を得ることができるものの、リチウムイオン等のアルカリイオンの吸蔵・放出に伴う体積変化が大きくなり、この体積変化を球形化黒鉛(A1)と鱗片状黒鉛(A2)によって形成された間隙が吸収しきれず、結果としてサイクル特性が低下する場合がある。一般式SiOのxが1.6よりも大きいと、リチウムイオンの酸化珪素粒子に含まれる酸素が反応し、酸化リチウムが生成され、充放電効率が低下する。 The silicon oxide particles (B) used in the present invention are preferably silicon oxide particles (B) represented by the general formula SiO x (x is 0.5 ≦ x ≦ 1.6). The range of x in the general formula SiO x is more preferably x is 0.6 ≦ x ≦ 1.5, more preferably x is 1.2 or less, and particularly preferably x is 1.0 or less. When x in the general formula SiO x is in the range of 0.5 ≦ x ≦ 1.6, a high capacity can be obtained by highly active amorphous Si in which alkali ions such as lithium ions are easy to enter and exit. . Moreover, when it was set as the electrode, it contacted so that spheroidized graphite (A1) and spheroidized graphite (A1) might be bridged by the mixture containing spheroidized graphite (A1) and scaly graphite (A2). Due to the presence of the silicon oxide particles (B) in the gap with the flaky graphite (A2), the volume change of the silicon oxide particles (B) accompanying the occlusion / release of alkali ions such as lithium ions due to charge / discharge is It is absorbed in the gap formed by the porous particles (A) (that is, the spheroidized graphite (A1) and the flaky graphite (A2)), and the deterioration of the electrode active material due to the volume change can be suppressed. When the value of x in the general formula SiO x is smaller than 0.5, the proportion of highly active amorphous silicon oxide in which alkali ions such as lithium ions are easily introduced and exited increases, and a high capacity can be obtained. However, the volume change accompanying the occlusion / release of alkali ions such as lithium ions increases, and the gap formed by the spheroidized graphite (A1) and the flaky graphite (A2) cannot be absorbed by this volume change, resulting in a cycle. The characteristics may deteriorate. When x in the general formula SiO x is larger than 1.6, oxygen contained in the silicon oxide particles of lithium ions reacts to generate lithium oxide, and charge / discharge efficiency is lowered.

<酸化珪素粒子(B)の物性>
(a−3)酸化珪素粒子(B)の50%粒子径(d50)Rs
酸化珪素粒子Bの50%粒子径(d50)Rsは、好ましくは0.01〜10μm、より好ましくは0.1〜9μm、更に好ましくは0.5〜8μmである。50%粒子径(d50)が前記範囲内であると、電極とした場合に、炭素質粒子(A)によって形成された間隙に酸化珪素粒子(B)が存在し、充放電によるリチウムイオン等のアルカリイオンの吸蔵・放出に伴う酸化珪素粒子(B)の体積変化を炭素質粒子(A)によって形成された間隙が吸収して、体積変化による負極活物質の劣化を抑制し、結果としてサイクル特性を向上することができる。ここで50%粒子径(d50)Rsは、レーザー回折・散乱式粒度分布測定により測定される体積基準のメジアン径をいう。
<Physical properties of silicon oxide particles (B)>
(A-3) 50% particle diameter (d50) Rs of silicon oxide particles (B)
The 50% particle diameter (d50) Rs of the silicon oxide particles B is preferably 0.01 to 10 μm, more preferably 0.1 to 9 μm, and still more preferably 0.5 to 8 μm. When the electrode has an 50% particle diameter (d50) within the above range, silicon oxide particles (B) are present in the gaps formed by the carbonaceous particles (A), and lithium ions and the like due to charge and discharge are present. The gap formed by the carbonaceous particles (A) absorbs the volume change of the silicon oxide particles (B) due to the occlusion / release of alkali ions, thereby suppressing the deterioration of the negative electrode active material due to the volume change, resulting in cycle characteristics. Can be improved. Here, 50% particle diameter (d50) Rs refers to a volume-based median diameter measured by laser diffraction / scattering particle size distribution measurement.

(d−3)酸化珪素粒子(B)のBET法比表面積
酸化珪素粒子(B)のBET法により比表面積は0.5〜60m/gであることが好ましく、1〜40m/gであることがより好ましい。酸化珪素粒子(B)のBET法による比表面積が前記範囲内であると、電極とした場合に、電解液内のリチウムイオン等のアルカリイオンの移動性と、充放電時における炭素質粒子(A)及び酸化珪素粒子(B)への十分なリチウムイオン等のアルカリイオンの出入りとを確保することができ、高容量化を実現することができる。酸化珪素粒子のBET法による比表面積が0.5m/gを下回ると、酸化珪素粒子(B)が比較的大きくなり、炭素質粒子(A)によって形成された間隙に酸化珪素粒子(B)が存在し難しくなる。一方、比表面積が60m/gを上回ると、酸化珪素粒子(B)が小さくなりすぎて、充放電時にリチウムイオン等のアルカリイオンの出入りによる酸化珪素粒子(B)の膨張・収縮の体積変化を繰り返すことによる活物質の劣化の抑制が困難になる場合がある。BET法比表面積は後述する実施例の方法により測定する。
(D-3) a specific surface area by the BET method of BET specific surface area of the silicon oxide particles of silicon oxide particles (B) (B) is preferably from 0.5~60m 2 / g, in 1~40m 2 / g More preferably. When the specific surface area by the BET method of the silicon oxide particles (B) is within the above range, the mobility of alkali ions such as lithium ions in the electrolytic solution and the carbonaceous particles (A ) And sufficient entry / exit of alkali ions such as lithium ions to / from the silicon oxide particles (B), and high capacity can be realized. When the specific surface area of the silicon oxide particles by the BET method is less than 0.5 m 2 / g, the silicon oxide particles (B) become relatively large, and the silicon oxide particles (B) are formed in the gaps formed by the carbonaceous particles (A). Exist and become difficult. On the other hand, when the specific surface area exceeds 60 m 2 / g, the silicon oxide particles (B) become too small, and the volume change of expansion / contraction of the silicon oxide particles (B) due to the entry / exit of alkali ions such as lithium ions during charging / discharging. In some cases, it is difficult to suppress the deterioration of the active material by repeating the above. The BET method specific surface area is measured by the method of Examples described later.

<酸化珪素粒子(B1)の製造方法>
酸化珪素粒子(B1)は、本発明の特性を満たすものであれば、製法は問わないが、例えば特許第3952118号公報に記載されたような方法によって製造された酸化珪素粒子(B)を使用することができる。具体的には、二酸化珪素粉末と、金属珪素粉末を特定の割合で混合し、この混合物を反応器に充填した後、常圧あるいは特定の圧力に減圧し、1000℃以上に昇温し、保持してSiOガスを発生させ、冷却析出させて、一般式SiO(xは0.5≦x≦1.6)粒子を得ることができる。析出物は、力学的エネルギー処理を与えることで粒子とすることができる。
<Method for producing silicon oxide particles (B1)>
The silicon oxide particles (B1) may be produced by any method as long as they satisfy the characteristics of the present invention. For example, silicon oxide particles (B) produced by a method described in Japanese Patent No. 3952118 are used. can do. Specifically, silicon dioxide powder and metal silicon powder are mixed at a specific ratio, and after the mixture is charged into the reactor, the pressure is reduced to normal pressure or specific pressure, and the temperature is raised to 1000 ° C. or higher and held. Then, SiO x gas is generated and cooled and precipitated to obtain particles of the general formula SiO x (x is 0.5 ≦ x ≦ 1.6). The precipitate can be made into particles by applying mechanical energy treatment.

力学的エネルギー処理は、例えば、ボールミル、振動ボールミル、遊星ボールミル、転動ボールミル等の装置を用いて、反応器に充填した原料と、この原料と反応しない運動体を入れて、これに振動、回転又はこれらが組み合わされた動きを与える方法によって、前記特性を満たす酸化珪素粒子(B1)を形成することができる。   For mechanical energy treatment, for example, using a device such as a ball mill, a vibrating ball mill, a planetary ball mill, or a rolling ball mill, a raw material charged in the reactor and a moving body that does not react with the raw material are placed, and this is vibrated and rotated. Alternatively, the silicon oxide particles (B1) satisfying the above characteristics can be formed by a method of giving a combined movement.

<酸化物粒子(B2)の製造方法>
酸化物粒子(B2)は、前記二酸化珪素粒子(B1)の表面の少なくとも一部に非晶質炭素からなる炭素層を備えた複合型の酸化物粒子(B2)であり、複合型の酸化物粒子(B2)を製造する方法としては、二酸化珪素粒子(B1)に石油系や石炭系のタールやピッチ、ポリビニルアルコール、ポリアクリルニトリル、フェノール樹脂、セルロース等の樹脂を必要により溶媒等を用いて混合した後、非酸化性雰囲気で500℃〜3000℃、好ましくは700℃〜2000℃、より好ましくは800〜1500℃で焼成することで酸化物粒子(B2)を製造することができる。
<Method for producing oxide particles (B2)>
The oxide particles (B2) are composite oxide particles (B2) having a carbon layer made of amorphous carbon on at least a part of the surface of the silicon dioxide particles (B1). As a method for producing the particles (B2), a resin such as petroleum-based or coal-based tar or pitch, polyvinyl alcohol, polyacrylonitrile, phenol resin, cellulose, or the like is used as necessary for the silicon dioxide particles (B1). After mixing, oxide particles (B2) can be produced by firing at 500 ° C. to 3000 ° C., preferably 700 ° C. to 2000 ° C., and more preferably 800-1500 ° C. in a non-oxidizing atmosphere.

〔比Rs/Rg〕
本発明において、球形化黒鉛(A1)の50%粒子径(d50)Rgと、酸化珪素粒子(B)の50%粒子径(d50)Rsとの比Rs/Rgは、0.001〜5であることが好ましい。より好ましくは0.01〜4、更に好ましくは0.05〜3、特に好ましくは0.1〜2である。比Rs/Rgが前記範囲内であると、電極とした場合に、球形化黒鉛(A1)と鱗片状黒鉛(A2)とを含む混合物によって、球形化黒鉛(A1)同士と、球形化黒鉛(A1)の間を橋渡すように接触した鱗片状黒鉛(A2)との間隙に、酸化珪素粒子(B)を存在させることができ、理論容量が炭素質粒子(A)(球形化黒鉛(A1)と鱗片状黒鉛(A2))よりも大きく、リチウムイオン等のアルカリイオンの出入りのしやすい酸化珪素粒子(B)の存在によって、更なる高容量化を実現することができる。充放電によるリチウムイオン等のアルカリイオンの吸蔵・放出に伴う酸化珪素粒子(B)の体積変化は、炭素質粒子(A)により形成された間隙が吸収するため、酸化珪素粒子(B)の体積変化に伴う電極の劣化を抑制し、結果としてサイクル特性を向上させることができる。また、充放電によりリチウムイオン等のアルカリイオンが出入りした場合であっても、鱗片状黒鉛(A2)によって導電パス、リチウムイオン等のアルカリイオンの拡散パスを確保することができ、急速充放電特性と、高容量化を実現することができる。
[Ratio Rs / Rg]
In the present invention, the ratio Rs / Rg of the 50% particle diameter (d50) Rg of the spheroidized graphite (A1) and the 50% particle diameter (d50) Rs of the silicon oxide particles (B) is 0.001 to 5. Preferably there is. More preferably, it is 0.01-4, More preferably, it is 0.05-3, Most preferably, it is 0.1-2. When the ratio Rs / Rg is within the above range, when the electrode is used, a mixture containing spheroidized graphite (A1) and flaky graphite (A2) is used to form spheroidized graphite (A1) and spheroidized graphite ( The silicon oxide particles (B) can be present in the gap with the scaly graphite (A2) in contact so as to bridge between A1), and the theoretical capacity is carbonaceous particles (A) (spheroidized graphite (A1)). ) And scaly graphite (A2)), and the presence of silicon oxide particles (B) that allow easy entry and exit of alkali ions such as lithium ions makes it possible to further increase the capacity. The volume change of the silicon oxide particles (B) accompanying the occlusion / release of alkali ions such as lithium ions due to charge / discharge is absorbed by the gap formed by the carbonaceous particles (A). It is possible to suppress the deterioration of the electrode due to the change, and as a result, the cycle characteristics can be improved. In addition, even when alkali ions such as lithium ions come in and out due to charge and discharge, the scaly graphite (A2) can secure a conductive path and a diffusion path of alkali ions such as lithium ions, and can be rapidly charged and discharged. Thus, a high capacity can be realized.

〔炭素質粒子(A)と酸化珪素粒子(B)の混合割合〕
本発明の非水系二次電池用負極材は、炭素質粒子(A)(球形化黒鉛(A1)と鱗片状黒鉛(A2))100質量部に対して、酸化珪素粒子(B)1〜50質量部含むことが好ましい。非水系二次電池用負極材は、炭素質粒子(A)100質量部に対して、酸化珪素粒子(B)が、より好ましくは1.2〜40質量部、更に好ましくは1.5〜30質量部、特に好ましくは2〜20質量部である。非水系二次電池用負極材が、炭素質粒子(A)100質量部に対して、酸化珪素粒子(B)を前記範囲で含むものである場合には、電極とした場合に、炭素質粒子(A)によって形成された間隙に酸化珪素粒子(B)を存在させることができ、さらなる高容量化の実現と、サイクル特性を向上させることができる。
[Mixing ratio of carbonaceous particles (A) and silicon oxide particles (B)]
The negative electrode material for a non-aqueous secondary battery of the present invention has silicon oxide particles (B) 1 to 50 with respect to 100 parts by mass of carbonaceous particles (A) (spheroidized graphite (A1) and flaky graphite (A2)). It is preferable to include parts by mass. In the negative electrode material for a non-aqueous secondary battery, the silicon oxide particles (B) are more preferably 1.2 to 40 parts by mass, further preferably 1.5 to 30 with respect to 100 parts by mass of the carbonaceous particles (A). Part by mass, particularly preferably 2 to 20 parts by mass. When the negative electrode material for a non-aqueous secondary battery includes the silicon oxide particles (B) in the above range with respect to 100 parts by mass of the carbonaceous particles (A), the carbonaceous particles (A The silicon oxide particles (B) can be present in the gaps formed by the above), so that the capacity can be further increased and the cycle characteristics can be improved.

〔炭素質粒子(A)と酸化珪素粒子(B)の混合物のタップ密度〕
本発明の非水系二次電池用負極材は、炭素質粒子(A)(球形化黒鉛(A1)と鱗片状黒鉛(A2))100質量部に対して、酸化珪素粒子(B)1〜50質量部含む混合物のタップ密度は、好ましくは0.6〜1.8g/cm、より好ましくは0.7〜1.7g/cm、更に好ましくは0.8〜1.8g/cmである。タップ密度が前記範囲内であると、電極とした場合に、炭素質粒子(A)によって形成された間隙に電解液及び酸化珪素粒子(B)を存在させた状態となり、高容量化を実現することができる。
[Tap density of mixture of carbonaceous particles (A) and silicon oxide particles (B)]
The negative electrode material for a non-aqueous secondary battery of the present invention has silicon oxide particles (B) 1 to 50 with respect to 100 parts by mass of carbonaceous particles (A) (spheroidized graphite (A1) and flaky graphite (A2)). The tap density of the mixture containing parts by mass is preferably 0.6 to 1.8 g / cm 3 , more preferably 0.7 to 1.7 g / cm 3 , and still more preferably 0.8 to 1.8 g / cm 3 . is there. When the tap density is within the above range, when the electrode is used, the electrolyte and silicon oxide particles (B) are present in the gaps formed by the carbonaceous particles (A), thereby realizing high capacity. be able to.

<非水系二次電池用負極材>
本発明の非水系二次電池用負極材は、炭素質粒子(A)と、酸化珪素粒子(B)とを含み、炭素質粒子(A)が、少なくとも球形化黒鉛(A1)と、鱗片状黒鉛(A2)とを含む混合物である。球形化黒鉛(A1)と、鱗片状黒鉛(A2)と、酸化珪素粒子(B)とを同時に混合してもよく、球形化黒鉛(A1)と鱗片状黒鉛(A2)とを混合した後、酸化珪素粒子(B)を混合してもよく、球形化黒鉛(A1)と酸化珪素粒子(B)とを混合した後、鱗片状黒鉛(A2)を混合してもよく、鱗片状黒鉛(A2)と酸化珪素粒子(B)とを混合した後、球形化黒鉛(A1)を添加して混合してもよい。
<Non-aqueous secondary battery anode material>
The negative electrode material for a non-aqueous secondary battery of the present invention includes carbonaceous particles (A) and silicon oxide particles (B), and the carbonaceous particles (A) are at least spheroidized graphite (A1) and scaly. It is a mixture containing graphite (A2). Spherical graphite (A1), scaly graphite (A2), and silicon oxide particles (B) may be mixed at the same time. After mixing spheroidizing graphite (A1) and scaly graphite (A2), Silicon oxide particles (B) may be mixed, and after spheroidizing graphite (A1) and silicon oxide particles (B) are mixed, scaly graphite (A2) may be mixed, scaly graphite (A2). ) And silicon oxide particles (B) may be mixed, and then spheroidized graphite (A1) may be added and mixed.

混合する際に用いる装置としては、特に制限はないが、例えば、回転型混合機の場合:円筒型混合機、双子円筒型混合機、二重円錐型混合機、正立方型混合機、鍬形混合機、固定型混合機の場合:螺旋型混合機、リボン型混合機、Muller型混合機、Helical Flight型混合機、Pugmill型混合機、流動化型混合機等を用いることができる。   There are no particular restrictions on the apparatus used for mixing, but for example, in the case of a rotary mixer: a cylindrical mixer, a twin cylindrical mixer, a double cone mixer, a regular cubic mixer, a saddle type mixer Machine, stationary mixer: spiral mixer, ribbon mixer, Muller mixer, Helical Flight mixer, Pugmill mixer, fluidized mixer, etc. can be used.

<非水系二次電池用負極>
本発明に係る負極材を用いて負極を作製するには、負極材に結着樹脂を配合したものを水若しくは有機系溶剤でスラリーとし、必要によりこれに増粘材を加えて集電体に塗布し、乾燥すればよい。
<Negative electrode for non-aqueous secondary battery>
In order to produce a negative electrode using the negative electrode material according to the present invention, a mixture of a negative electrode material and a binder resin is made into a slurry with water or an organic solvent, and if necessary, a thickener is added to the current collector. What is necessary is just to apply | coat and dry.

結着樹脂としては、非水電解液に対して安定で、かつ非水溶性のものを用いるのが好ましい。例えばスチレン、ブタジエンゴム、イソプレンゴム、エチレン・プロピレンゴム等のゴム状高分子;ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、芳香族ポリアミド等の合成樹脂;スチレン・ブタジエン・スチレンブロック共重合体やその水素添加物、スチレン・エチレン・ブタジエン、スチレン共重合体、スチレン・イソプレン、スチレンブロック共重合体やその水素化物等の熱可塑性エラストマー;シンジオタクチック−1,2−ポリブタジエン、エチレン・酢酸ビニル共重合体、エチレンと炭素数3〜12のα−オレフィンとの共重合体等の軟質樹脂状高分子;ポリテトラフルオロエチレン・エチレン共重合体、ポリビニデンフルオライド、ポリペンタフルオロプロピレン、ポリヘキサフルオロプロピレン等のフッ素化高分子等を用いることができる。有機系媒体としては、例えばN−メチルピロリドンや、ジメチルホルムアミドを挙げることができる。   As the binder resin, it is preferable to use a resin that is stable with respect to the non-aqueous electrolyte and water-insoluble. For example, rubbery polymers such as styrene, butadiene rubber, isoprene rubber, ethylene / propylene rubber; synthetic resins such as polyethylene, polypropylene, polyethylene terephthalate, and aromatic polyamide; styrene / butadiene / styrene block copolymers and hydrogenated products thereof, Thermoplastic elastomers such as styrene / ethylene / butadiene, styrene copolymer, styrene / isoprene, styrene block copolymer and hydride thereof; syndiotactic-1,2-polybutadiene, ethylene / vinyl acetate copolymer, ethylene Soft resinous polymers such as copolymers with α-olefins having 3 to 12 carbon atoms; fluorine such as polytetrafluoroethylene / ethylene copolymers, polyvinylidene fluoride, polypentafluoropropylene, and polyhexafluoropropylene It is possible to use a polymer, and the like. Examples of the organic medium include N-methylpyrrolidone and dimethylformamide.

結着樹脂は、負極材100質量部に対して好ましくは0.1質量部以上、より好ましくは0.2質量部以上用いる。結着樹脂の割合を負極材100質量部に対して0.1質量部以上とすることで、負極材料相互間や負極材料と集電体との結着力が十分となり、負極から負極材料が剥離することによる電池容量の減少及びリサイクル特性の悪化を防ぐことができる。結着樹脂は、負極材料100質量部に対して多くても10質量部、好ましくは7質量部以下となるように用いるのが好ましい。   The binder resin is preferably used in an amount of 0.1 parts by mass or more, more preferably 0.2 parts by mass or more with respect to 100 parts by mass of the negative electrode material. By setting the ratio of the binder resin to 0.1 parts by mass or more with respect to 100 parts by mass of the negative electrode material, the binding force between the negative electrode materials and between the negative electrode material and the current collector is sufficient, and the negative electrode material is separated from the negative electrode. It is possible to prevent the battery capacity from being reduced and the recycling characteristics from being deteriorated. The binder resin is preferably used so as to be at most 10 parts by mass, preferably 7 parts by mass or less, with respect to 100 parts by mass of the negative electrode material.

スラリーに添加する増粘材としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース及びヒドロキシプロピルセルロース等の水溶性セルロース類やポリビニルアルコール、ポリエチレングリコール等を用いればよい。なかでも好ましいのはカルボキシメチルセルロースである。増粘材は負極材100質量部に対して好ましくは1〜10質量部、より好ましくは0.2〜7質量部となるように用いる。   As the thickener added to the slurry, water-soluble celluloses such as carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose, polyvinyl alcohol, polyethylene glycol, and the like may be used. Of these, carboxymethylcellulose is preferred. The thickener is preferably used in an amount of 1 to 10 parts by mass, more preferably 0.2 to 7 parts by mass with respect to 100 parts by mass of the negative electrode material.

負極集電体としては従来からこの用途に用い得ることが知られている銅、銅合金、ステンレス鋼、ニッケル、チタン、炭素等を用いればよい。集電体の形状は通常はシート状であり、その表面に凹凸をつけたものや、ネット、パンチングメタル等を用いるものも好ましい。   As the negative electrode current collector, copper, copper alloy, stainless steel, nickel, titanium, carbon, or the like that is conventionally known to be used for this purpose may be used. The shape of the current collector is usually a sheet shape, and those having an uneven surface or those using a net, punching metal or the like are preferable.

集電体に負極材料と結着樹脂のスラリーを塗布・乾燥したのちは、加圧して集電体上に形成された負極活物質層の密度を大きくし、もって負極活物質層単位体積当たりの電池容量を大きくするのが好ましい。負極活物質層の密度は好ましくは1.2g/cm以上、より好ましくは1.3g/cm以上、また、好ましくは1.9g/cm以下、より好ましくは1.8g/cm以下である。負極活物質層の密度を1.2g/cm以上とすることで、電極の厚みの増大に伴う電池の容量の低下を防ぐことができる。負極活物質層の密度を1.8g/cm以下とすることで、電極内の粒子間空隙の減少に伴い、空隙に保持される電解液量が減り、リチウム(Li)イオン等のアルカリイオンの移動性が小さくなり急速充放電特性が小さくなるのを防ぐことができる。 After applying and drying the slurry of the negative electrode material and the binder resin to the current collector, pressurize to increase the density of the negative electrode active material layer formed on the current collector, so that the negative electrode active material layer per unit volume It is preferable to increase the battery capacity. The density of the negative electrode active material layer is preferably 1.2 g / cm 3 or more, more preferably 1.3 g / cm 3 or more, and preferably 1.9 g / cm 3 or less, more preferably 1.8 g / cm 3 or less. It is. By setting the density of the negative electrode active material layer to 1.2 g / cm 3 or more, it is possible to prevent a decrease in battery capacity accompanying an increase in electrode thickness. By setting the density of the negative electrode active material layer to 1.8 g / cm 3 or less, the amount of electrolyte solution retained in the voids decreases as the interparticle voids in the electrode decrease, and alkali ions such as lithium (Li) ions Therefore, it is possible to prevent the rapid charge / discharge characteristics from being reduced.

<非水系二次電池>
本発明に係る非水系二次電池は、上記の負極を用いる以外は、常法に従って作製することができる。正極材料としては基本組成がLiCoO2で表されるリチウムコバルト複合酸化物、LiNiO2で表されるリチウムニッケル複合酸化物、LiMnO2やLiMn24で表されるリチウムマンガン複合酸化物等のリチウム遷移金属複合酸化物、二酸化マンガン等の遷移金属酸化物、並びにこれらの複合酸化物混合物、更にはTiS2、FeS2、Nb34、Mo34、CoS2、V25、CrO3、V33、FeO2、GeO2、LiNi0.33Mn0.33Co0.332等を用いればよい。これらの正極材料に結着樹脂を配合したものを適当な溶媒でスラリー化して集電体に塗布・乾燥することにより正極を作製できる。なおスラリー中にはアセチレンブラックやケッチェンブラック等の導電材を含有させるのが好ましい。また所望により増粘材を含有させてもよい。増粘材及び結着樹脂としてはこの用途に周知のもの、例えば負極の作製に用いるものとして例示したものを用いればよい。正極材料100質量部に対する配合比率は、導電剤は0.5〜20質量部、特に1〜15質量部が好ましく、増粘材は好ましくは0.2〜10質量部、より好ましくは0.5〜7質量部であり、結着樹脂は水でスラリー化するときは好ましくは0.2〜10質量部、より好ましくは0.5〜7質量部であり、N−メチルピロリドン等の結着樹脂を溶解する有機溶媒でスラリー化するときには好ましくは0.5〜20質量部、より好ましくは1〜15質量部である。正極集電体としては、アルミニウム、チタン、ジルコニウム、ハフニウム、ニオブ、タンタル等やこれらの合金を用いればよい。なかでもアルミニウム、チタン、タンタルやその合金を用いるのが好ましく、アルミニウムないしはその合金を用いるのが最も好ましい。
<Non-aqueous secondary battery>
The non-aqueous secondary battery according to the present invention can be produced according to a conventional method except that the above negative electrode is used. As the positive electrode material, lithium such as lithium cobalt composite oxide whose basic composition is represented by LiCoO 2 , lithium nickel composite oxide represented by LiNiO 2 , lithium manganese composite oxide represented by LiMnO 2 or LiMn 2 O 4 Transition metal complex oxides, transition metal oxides such as manganese dioxide, and mixtures of these complex oxides, as well as TiS 2 , FeS 2 , Nb 3 S 4 , Mo 3 S 4 , CoS 2 , V 2 O 5 , CrO 3 , V 3 O 3 , FeO 2 , GeO 2 , LiNi 0.33 Mn 0.33 Co 0.33 O 2 or the like may be used. A positive electrode can be produced by slurrying a mixture of these positive electrode materials with a binder resin with an appropriate solvent, and applying and drying to a current collector. The slurry preferably contains a conductive material such as acetylene black or ketjen black. Moreover, you may contain a thickener as desired. As the thickener and the binder resin, those well-known in this application, for example, those exemplified as those used for the production of the negative electrode may be used. The blending ratio with respect to 100 parts by mass of the positive electrode material is preferably 0.5 to 20 parts by mass, particularly 1 to 15 parts by mass for the conductive agent, and preferably 0.2 to 10 parts by mass, more preferably 0.5 to the thickener. ~ 7 parts by mass, and the binder resin is preferably 0.2 to 10 parts by mass, more preferably 0.5 to 7 parts by mass when slurried with water, and a binder resin such as N-methylpyrrolidone. When it is made into a slurry with an organic solvent that dissolves, it is preferably 0.5 to 20 parts by mass, more preferably 1 to 15 parts by mass. As the positive electrode current collector, aluminum, titanium, zirconium, hafnium, niobium, tantalum, or an alloy thereof may be used. Of these, aluminum, titanium, tantalum or an alloy thereof is preferably used, and aluminum or an alloy thereof is most preferably used.

電解液も従来周知の非水溶媒に種々のリチウム塩を溶解させたものを用いることができる。非水溶媒としては、エチレンカーボネート、フルオロエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート及びビニレンカーボネート等の環状カーボネート、ジメチルカーボネート、エチルメチルカーボネート及びジエチルカーボネート等の鎖状カーボネート、γ−ブチロラクトン等の環状エステル、クラウンエーテル、2−メチルテトラヒドロフラン、テトラヒドロフラン、1,2−ジメチルテトラヒドロフラン及び1,3−ジオキソラン等の環状エーテル、1,2−ジメトキシエタン等の鎖状エーテル等を用いればよい。通常はこれらをいくつか併用する。なかでも環状カーボネートと鎖状カーボネート、又はこれに更に他の溶媒を併用するのが好ましい。   As the electrolytic solution, a solution in which various lithium salts are dissolved in a conventionally known non-aqueous solvent can be used. Non-aqueous solvents include ethylene carbonate, fluoroethylene carbonate, propylene carbonate, butylene carbonate and vinylene carbonate and other cyclic carbonates, dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate and other chain carbonates, γ-butyrolactone and other cyclic esters, crown Ether, 2-methyltetrahydrofuran, tetrahydrofuran, 1,2-dimethyltetrahydrofuran and cyclic ethers such as 1,3-dioxolane, chain ethers such as 1,2-dimethoxyethane, etc. may be used. Usually some of these are used together. Of these, it is preferable to use a cyclic carbonate and a chain carbonate, or another solvent in combination.

またビニレンカーボネート、ビニルエチレンカーボネート、無水コハク酸、無水マレイン酸、プロパンスルトン、ジエチルスルホン等の化合物やジフルオロリン酸リチウムのようなジフルオロリン酸塩等が添加されていても良い。更に、ジフェニルエーテル、シクロヘキシルベンゼン等の過充電防止剤が添加されていても良い。   Further, compounds such as vinylene carbonate, vinyl ethylene carbonate, succinic anhydride, maleic anhydride, propane sultone, diethyl sulfone, difluorophosphate such as lithium difluorophosphate, and the like may be added. Furthermore, an overcharge inhibitor such as diphenyl ether or cyclohexylbenzene may be added.

非水溶媒に溶解させる電解質としては、LiClO、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiC(CFSO等を用いればよい。電解液中の電解質の濃度は通常は0.5〜2モル/リットル、好ましくは0.6〜1.5モル/リットルである。 Examples of the electrolyte dissolved in the non-aqueous solvent include LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), may be used LiC (CF 3 SO 2) 3 and the like. The concentration of the electrolyte in the electrolytic solution is usually 0.5 to 2 mol / liter, preferably 0.6 to 1.5 mol / liter.

正極と負極との間に介在させるセパレーターには、ポリエチレンやポリプロピレン等のポリオレフィンの多孔性シートや不織布を用いるのが好ましい。   For the separator interposed between the positive electrode and the negative electrode, it is preferable to use a porous sheet or non-woven fabric of polyolefin such as polyethylene or polypropylene.

本発明に係る非水系二次電池は、負極/正極の容量比を1.01〜1.5に設計することが好ましく1.2〜1.4に設計することがより好ましい。非水系二次電池は、リチウムイオンを吸蔵・放出可能な正極及び負極、並びに電解質を備えたリチウムイオン二次電池であることが好ましい。   In the non-aqueous secondary battery according to the present invention, the negative electrode / positive electrode capacity ratio is preferably designed to be 1.01 to 1.5, and more preferably 1.2 to 1.4. The non-aqueous secondary battery is preferably a lithium ion secondary battery including a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and an electrolyte.

次に実施例により本発明の具体的態様を更に詳細に説明するが、本発明はこれらの例によって限定されるものではない。   EXAMPLES Next, specific embodiments of the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

なお、本明細書における粒子径、アスペクト比、タップ密度、BET法比表面積、X線回折、真密度、細孔容量等の測定は次記により行った。   In this specification, the particle diameter, aspect ratio, tap density, BET specific surface area, X-ray diffraction, true density, pore volume, and the like were measured as follows.

粒子径:ポリオキシエチレン(20)ソルビタンモノラウレートの2(容量)%水溶液約1mlに、炭素粉末約20mgを加え、これをイオン交換水約200mlに分散させたものを、レーザー回折式粒度分布計(堀場製作所製 LA−920)を用いて体積基準粒度分布を測定し、メジアン径(d50)を求めた。測定条件は超音波分散1分間、超音波強度2、循環速度2、相対屈折率1.50である。   Particle size: Laser diffraction particle size distribution obtained by adding about 20 mg of carbon powder to about 1 ml of 2% (volume) aqueous solution of polyoxyethylene (20) sorbitan monolaurate and dispersing it in about 200 ml of ion-exchanged water. The volume-based particle size distribution was measured using a meter (LA-920, manufactured by Horiba, Ltd.) to determine the median diameter (d50). The measurement conditions are ultrasonic dispersion for 1 minute, ultrasonic intensity 2, circulation speed 2, and relative refractive index 1.50.

アスペクト比:負極表面、集電体の膜面に対して平行な面で切断し研磨した断面、あるいは負極を集電体の膜面に対して垂直に切断し研磨した断面の写真を撮影をし、撮影された写真の画像解析により、炭素質粒子(A)表面(断面)の長径(最も長い径)、短径を50点以上測定する。測定された長径及び短径のそれぞれについて平均値を求め、これら平均長径と平均短径との比を、アスペクト比(長径/短径)とする。また、負極活物質が負極の形態を維持していない(例えば粉末状)場合、負極活物質粒子をガラスなどの基体となる平板に並べた状態で樹脂包埋し、平板に対し平行な面で研磨や切断し、その断面写真から前述の通り長径を測定する。同様に黒鉛断面の短径を測定し、アスペクト比を求める。ここで、極板化した粒子は、通常は平板に対して粒子の厚み方向が垂直になるように並ぶ傾向があることから、上記の方法により、粒子に特徴的な長径と短径を得ることができる。なお、粒子の断面(若しくは表面)写真は、一般的には、走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて撮影する。但し、SEM写真では炭素質粒子(A)の形状を特定できない場合には、偏光顕微鏡又は透過型電子顕微鏡(Transmission Electron Microscope:TEM)を用いて、上述と同様に断面(表面)写真を撮影することにより、アスペクト比を求めることができる。
本実施例においては、負極を集電体の膜面に対して垂直に切断、研磨し、その断面写真を撮影し、撮影された写真の画像解析により、炭素質粒子(A)断面の長径、短径(粒を100点測定した。
Aspect ratio: Take a picture of the negative electrode surface, a cross section cut and polished in a plane parallel to the film surface of the current collector, or a cross section of the negative electrode cut perpendicularly to the film surface of the current collector and polished. The major axis (longest diameter) and the minor axis of the surface (cross section) of the carbonaceous particles (A) are measured by 50 or more points by image analysis of the photograph taken. An average value is obtained for each of the measured major axis and minor axis, and the ratio of the average major axis to the average minor axis is defined as an aspect ratio (major axis / minor axis). In addition, when the negative electrode active material does not maintain the negative electrode form (for example, in powder form), the negative electrode active material particles are embedded in a resin in a state where they are arranged on a flat plate serving as a substrate such as glass, and the surface is parallel to the flat plate. Polish and cut and measure the major axis from the cross-sectional photograph as described above. Similarly, the minor axis of the graphite cross section is measured to determine the aspect ratio. Here, since the plate-like particles usually tend to be arranged so that the thickness direction of the particles is perpendicular to the flat plate, the above-mentioned method obtains characteristic long and short diameters of the particles. Can do. In addition, generally the cross-section (or surface) photograph of particle | grains is image | photographed using a scanning electron microscope (Scanning Electron Microscope: SEM). However, when the shape of the carbonaceous particles (A) cannot be specified by the SEM photograph, a cross-sectional (surface) photograph is taken in the same manner as described above using a polarizing microscope or a transmission electron microscope (TEM). Thus, the aspect ratio can be obtained.
In this example, the negative electrode was cut and polished perpendicularly to the film surface of the current collector, a cross-sectional photograph thereof was taken, and by analysis of the photographed image, the major axis of the carbonaceous particle (A) cross section, Short diameter (100 grains were measured.

タップ密度:粉体密度測定器タップデンサーKYT−3000((株)セイシン企業社製)を用いて測定した。10ccのタップセルに炭素質粒子等を落下させ、セルに満杯に充填したのち、ストローク長10mmのタップを500回行って、そのときの密度をタップ密度とした。   Tap density: It measured using the powder density measuring device tap denser KYT-3000 (made by Seishin Enterprise Co., Ltd.). After dropping carbonaceous particles or the like into a 10 cc tap cell and filling the cell fully, tap with a stroke length of 10 mm was performed 500 times, and the density at that time was defined as the tap density.

BET法比表面積:大倉理研社製 AMS−8000を用いて測定した。250℃で予備乾燥し、更に30分間窒素ガスを流したのち、窒素ガス吸着によるBET1点法により測定した。   BET specific surface area: Measured using AMS-8000 manufactured by Okura Riken Co., Ltd. After pre-drying at 250 ° C. and flowing nitrogen gas for 30 minutes, the BET one-point method by nitrogen gas adsorption was used for measurement.

X線回折:炭素質粒子に約15質量%のX線標準高純度シリコン粉末を加えて混合したものを材料とし、グラファイトモノクロメーターで単色化したCuKα線を線源とし、反射式ディフラクトメーター法で広角X線回折曲線を測定し、学振法を用いて面間隔(d002)及び結晶子の大きさ(Lc)を求めた。   X-ray diffraction: Reflective diffractometer method using CuKα rays monochromatized with a graphite monochromator as a source, with carbonaceous particles mixed with about 15% by mass of X-ray standard high-purity silicon powder. A wide-angle X-ray diffraction curve was measured using the Gakushin method, and the interplanar spacing (d002) and crystallite size (Lc) were determined.

真密度:ブタノールを使用した液相置換法(ピクノメータ法)によって、媒体として界面活性剤の0.1%水溶液を用いて測定した。   True density: Measured by a liquid phase substitution method (pycnometer method) using butanol using a 0.1% aqueous solution of a surfactant as a medium.

細孔容量(10nm〜100000nmの範囲の細孔容量);水銀ポロシメーター(機種名:マイクロメリティックス社製・オートポア9520)を用い水銀圧入法により実施した。未プレスあるいはプレス後の電極シート2000mmを、正確に切り出し秤量して、真空下(50μm/Hg)室温(24℃)にて10分間の前処理(脱気)を行った後、水銀圧力を4.0psiaから40,000psiaに上昇させ、次いで15psiaまで降下させた(全測定点数120ポイント)。測定した120ポイントでは、30psia迄は5秒間、それ以降は各圧力10秒間の平衡時間の後、水銀の圧入量を測定した。
こうして得られた水銀圧入曲線から、Washburnの方程式(D=−(1/P)4γcosψ)を用いて細孔分布を算出した。尚、Dは細孔直径、Pはかかる圧力、γは水銀の表面張力((485dynes/cmを使用)、ψは接触角(140゜を使用))を示す。
Pore volume (pore volume in the range of 10 nm to 100000 nm): The mercury porosimeter (model name: manufactured by Micromeritics, Autopore 9520) was used to carry out the mercury intrusion method. An unpressed or pressed electrode sheet 2000 mm 2 was accurately cut out and weighed, and pretreated (degassed) for 10 minutes at room temperature (24 ° C.) under vacuum (50 μm / Hg), and then the mercury pressure was adjusted. The pressure was increased from 4.0 psia to 40,000 psia and then to 15 psia (total number of measurement points: 120 points). At the 120 points measured, the intrusion amount of mercury was measured after an equilibration time of 5 seconds until 30 psia and thereafter 10 seconds for each pressure.
From the mercury intrusion curve thus obtained, the pore distribution was calculated using the Washburn equation (D = − (1 / P) 4γcos ψ). D represents the pore diameter, P represents the pressure, γ represents the surface tension of mercury (using 485 dynes / cm), and ψ represents the contact angle (using 140 °).

粒子の短径の長さ:前記アスペクト比を測定する際に行う短径の測定の方法と同様の方法で測定した。   Length of minor axis of particle: Measured by the same method as the method of measuring the minor axis when measuring the aspect ratio.

[実施例1]
〔球形化黒鉛(A1)の作製〕
原料黒鉛として、平均粒子径100μmの鱗片状黒鉛粒子を黒鉛粒子表面にダメージを与えながら球形化処理を行い、その後更に分級処理により微粉を除去して、球形化黒鉛を得た。得られた球形化黒鉛粒子は、X線広角回折法による002面の面間隔(d002)が3.35ÅでLcが1000Å以上、タップ密度が1.00g/cm、BET法比表面積7.0m2/g、平均粒子径Rgが16μm、アスペクト比が1.6、タップ密度が1.15g/cm、BET法比表面積3.5m2/g、真密度2.2g/cmであった。
[Example 1]
[Production of spheroidized graphite (A1)]
As raw material graphite, spheroidized graphite particles having an average particle diameter of 100 μm were spheroidized while damaging the surface of the graphite particles, and thereafter fine powder was removed by classification to obtain spheroidized graphite. The obtained spheroidized graphite particles have an 002 plane spacing (d002) of 3.35 mm, an Lc of 1000 mm or more, a tap density of 1.00 g / cm 3 , a BET specific surface area of 7.0 m by an X-ray wide angle diffraction method. 2 / g, average particle diameter Rg was 16 μm, aspect ratio was 1.6, tap density was 1.15 g / cm 3 , BET specific surface area was 3.5 m 2 / g, and true density was 2.2 g / cm 3 . .

〔鱗片状黒鉛(A2)〕
天然に産出する黒鉛を、不純物除去、粉砕、分級して得られた鱗片状黒鉛A2を用いた。この鱗片状黒鉛(A2)は、アスペクト比が3.6、X線広角回折法による002面の面間隔(d002)が3.35nm、Lcが1000nm以上、50%粒子径(d50)Rgが4μm、タップ密度が0.3g/ccであった。鱗片状黒鉛(A2)の短径の長さは、平均1.5μmであった。
[Scaly graphite (A2)]
Scale-like graphite A2 obtained by removing impurities, pulverizing and classifying naturally produced graphite was used. This scaly graphite (A2) has an aspect ratio of 3.6, an interplanar spacing (d002) of 002 plane of 3.35 nm by X-ray wide angle diffraction method, Lc of 1000 nm or more, and a 50% particle diameter (d50) Rg of 4 μm. The tap density was 0.3 g / cc. The length of the minor axis of the scaly graphite (A2) was an average of 1.5 μm.

〔酸化珪素粒子(B)〕
酸化珪素粒子(B)は、市販のSiO粒子(SiOのx=1)粒子(大阪チタニウムテクノロジーズ)を用いた。SiO粒子は、50%粒子径(d50)Rsが6μmであり、BET比表面積が6m/gであった。
[Silicon oxide particles (B)]
As the silicon oxide particles (B), commercially available SiO particles (SiO x x = 1) particles (Osaka Titanium Technologies) were used. The SiO particles had a 50% particle diameter (d50) Rs of 6 μm and a BET specific surface area of 6 m 2 / g.

〔混合物の作製〕
球形化黒鉛(A1)と鱗片状黒鉛(A2)の質量比が78:22であり、炭素質粒子(A)(球形化黒鉛(A1)と鱗片状黒鉛(A2)との合計)100質量部に対して、酸化珪素粒子(B1)12質量部を混合した。具体的には、球形化黒鉛(A1)(50%粒子径(d50)Rg:16μm)0.7g、鱗片状黒鉛(A2)(50%粒子径(d50):4μm)0.2g、酸化珪素粒子(B)(50%粒子径(d50)Rs:6μm)0.1gを乾式混合し、混合物とした。比Rs/Rgは0.375であった。また、前記混合物のタップ密度は、1.0g/cmであった。
(Production of mixture)
The mass ratio of spheroidized graphite (A1) and flaky graphite (A2) is 78:22, and carbonaceous particles (A) (total of spheroidized graphite (A1) and flaky graphite (A2)) 100 parts by mass 12 parts by mass of silicon oxide particles (B1) were mixed. Specifically, spheroidized graphite (A1) (50% particle size (d50) Rg: 16 μm) 0.7 g, flake graphite (A2) (50% particle size (d50): 4 μm) 0.2 g, silicon oxide 0.1 g of particles (B) (50% particle size (d50) Rs: 6 μm) was dry-mixed to obtain a mixture. The ratio Rs / Rg was 0.375. The tap density of the mixture was 1.0 g / cm 3 .

(性能評価用電池の作製)
炭素質粒子(A)(球形化黒鉛(A1)と鱗片状黒鉛(A2)の合計)と酸化珪素粒子(B)の前記混合物100質量部と、バインダーとしてカルボキシメチルセルロース(CMC)1質量%水溶液300質量部及びスチレンブタジエンゴム(SBR)48質量%水性ディスパージョン6.25質量部とを、ハイブリダイズミキサーにて、混練し、スラリーとした。このスラリーを厚さ18μmの圧延銅箔上にブレード法で、目付け7〜8mg/cmとなるように塗布し、乾燥させた。その後、負極活物質層の密度1.4〜1.5g/cmとなるようにロードセル付きの250mφロールプレスにてロールプレスし、直径12.5mmの円形状に打ち抜き、110℃で2時間、真空乾燥し、評価用の負極とした。未プレスの状態で、水銀ポロシメーターにより、電極の細孔容積を測定した結果、0.21ml/gであった。前記負極と、対極としてLi箔とを電解液を含浸させたセパレーターを介して重ねて、充放電試験用の電池を作製した。電解液としてはエチレンカーボネート:ジメチルカーボネート:エチルメチルカーボネート=3:3:4(質量比)混合液に、LiPFを1モル/リットルとなるように溶解させたものを用いた。
(Production of battery for performance evaluation)
100 parts by mass of the mixture of carbonaceous particles (A) (a total of spheroidized graphite (A1) and scaly graphite (A2)) and silicon oxide particles (B), and 1% by weight aqueous solution 300 of carboxymethylcellulose (CMC) as a binder Part by mass and 6.25 parts by mass of an aqueous dispersion of 48% by mass of styrene butadiene rubber (SBR) were kneaded with a hybridizing mixer to obtain a slurry. This slurry was applied onto a rolled copper foil having a thickness of 18 μm by a blade method so as to have a basis weight of 7 to 8 mg / cm 2 and dried. Then, it roll-presses with a 250 mφ roll press with a load cell so that the density of the negative electrode active material layer is 1.4 to 1.5 g / cm 3 , punched into a circular shape with a diameter of 12.5 mm, and 110 ° C. for 2 hours. It vacuum-dried and set it as the negative electrode for evaluation. As a result of measuring the pore volume of the electrode with a mercury porosimeter in an unpressed state, it was 0.21 ml / g. The negative electrode and a Li foil as a counter electrode were stacked through a separator impregnated with an electrolytic solution to produce a battery for a charge / discharge test. As the electrolytic solution, a solution obtained by dissolving LiPF 6 in a mixed solution of ethylene carbonate: dimethyl carbonate: ethyl methyl carbonate = 3: 3: 4 (mass ratio) to 1 mol / liter was used.

(放電容量評価)
先ず0.12mA/cmの電流密度で前記正極及び負極に対して5mVまで充電し、更に5mVの一定電圧で電流値が0.012mAになるまで充電し、負極中にリチウムをドープした後、0.12mA/cmの電流密度で前記正極及び負極に対して1.5Vまで放電を行った。このサイクルを2回繰り返し、初期調整とした。3サイクル以降は、0.49mA/cmの電流密度で正極及び負極に対して5mVまで充電し、更に、5mVの一定電圧で電流値が0.049mAになるまで充電し、負極中にリチウムをドープした後、0.49mA/cmの電流密度で正極及び負極に対して1.5Vまで放電を行った。放電容量は、負極重量から負極と同面積に打ち抜いた銅箔の重量を差し引くことで負極活物質重量を求め、この負極活物質重量で前記放電容量を除して、重量当りの放電容量を求めた。
(Discharge capacity evaluation)
First, the positive electrode and the negative electrode are charged to 5 mV at a current density of 0.12 mA / cm 2 , further charged to a current value of 0.012 mA at a constant voltage of 5 mV, and lithium is doped into the negative electrode. The positive electrode and the negative electrode were discharged to 1.5 V at a current density of 0.12 mA / cm 2 . This cycle was repeated twice for initial adjustment. After 3 cycles, the positive electrode and the negative electrode are charged to 5 mV at a current density of 0.49 mA / cm 2 , and further charged at a constant voltage of 5 mV until the current value becomes 0.049 mA. After doping, the positive electrode and the negative electrode were discharged to 1.5 V at a current density of 0.49 mA / cm 2 . The discharge capacity is obtained by subtracting the weight of the copper foil punched out in the same area as the negative electrode from the negative electrode weight to obtain the negative electrode active material weight, and dividing the discharge capacity by the negative electrode active material weight to obtain the discharge capacity per weight. It was.

(サイクル特性評価)
前記電池で、3サイクル以降の充放電サイクルを50回繰り返し、下記式(2)により容量維持率を求め、下記式(3)により50サイクル時の充放電効率を評価した。負極活物質重量は、負極重量から負極と同面積に打ち抜いた銅箔の重量を差し引くことによって求めた。
(Cycle characteristic evaluation)
With the battery, the charge / discharge cycle after 3 cycles was repeated 50 times, the capacity retention rate was determined by the following formula (2), and the charge / discharge efficiency at 50 cycles was evaluated by the following formula (3). The negative electrode active material weight was determined by subtracting the weight of the copper foil punched out to the same area as the negative electrode from the negative electrode weight.

容量維持率
容量維持率(%)={53サイクル後の放電容量(mAh/g)/3サイクル目の放電容量(mAh/g)}×100 (2)
Capacity maintenance ratio Capacity maintenance ratio (%) = {discharge capacity after 53 cycles (mAh / g) / 3 discharge capacity at the third cycle (mAh / g)} × 100 (2)

50サイクル時の充放電効率
50サイクル時の充放電効率(%)={53回サイクル時の放電容量(mAh/g)/53サイクル時の充電容量(mAh/g)}×100 (3)
Charging / discharging efficiency at 50 cycles Charging / discharging efficiency at 50 cycles (%) = {discharge capacity at 53 cycles (mAh / g) / charge capacity at 53 cycles (mAh / g)} × 100 (3)

(レート特性評価)
レート特性は、前記放電容量評価によって求めた2サイクル目の放電容量と3サイクル目の放電容量から、下記式(1)に従って求めた。3サイクル目は、0.49mA/cmの電流密度で正極及び負極に対して5mVまで充電し、更に、5mVの一定電圧で電流値が0.049mAになるまで充電し、負極中にリチウムをドープした後、0.49mA/cmの電流密度で正極及び負極に対して1.5Vまで放電を行った。放電容量は、負極重量から負極と同面積に打ち抜いた銅箔の重量を差し引くことで負極活物質重量を求め、この負極活物質重量で前記放電容量を除して、重量当りの放電容量を求めた。
レート特性(%)={3サイクル目の放電容量(mAh/g)/2サイクル目の放電容量(mAh/g)}×100 (1)
(Rate characteristics evaluation)
The rate characteristics were determined according to the following formula (1) from the discharge capacity at the second cycle and the discharge capacity at the third cycle determined by the discharge capacity evaluation. In the third cycle, the positive electrode and the negative electrode are charged to 5 mV at a current density of 0.49 mA / cm 2 , and further charged to a current value of 0.049 mA at a constant voltage of 5 mV. After doping, the positive electrode and the negative electrode were discharged to 1.5 V at a current density of 0.49 mA / cm 2 . The discharge capacity is obtained by subtracting the weight of the copper foil punched out in the same area as the negative electrode from the negative electrode weight to obtain the negative electrode active material weight, and dividing the discharge capacity by the negative electrode active material weight to obtain the discharge capacity per weight. It was.
Rate characteristic (%) = {discharge capacity at the third cycle (mAh / g) / 2 discharge capacity at the second cycle (mAh / g)} × 100 (1)

[比較例1]
実施例1と同様の球形化黒鉛(A1)100質量部と、酸化珪素粒子(B)12質量部とを混合し、鱗片状黒鉛(A2)を用いていないこと以外は実施例1と同様にして、評価用電池を作製した。
[Comparative Example 1]
Similar to Example 1, except that 100 parts by mass of spheroidized graphite (A1) similar to Example 1 and 12 parts by mass of silicon oxide particles (B) are mixed and scaly graphite (A2) is not used. Thus, an evaluation battery was produced.

[比較例2]
実施例1と同様の鱗片状黒鉛(A2)100質量部と、酸化珪素粒子(B)12質量部とを混合し、非晶質炭素被覆球形化黒鉛(A1)を用いていないこと以外は実施例1と同様にして、評価用電池を作製した。
[Comparative Example 2]
The same as in Example 1 except that 100 parts by mass of flaky graphite (A2) and 12 parts by mass of silicon oxide particles (B) were mixed, and the amorphous carbon-coated spheroidized graphite (A1) was not used. A battery for evaluation was produced in the same manner as in Example 1.

以下の表1に、実施例1、比較例1及び2の容量維持率及び50サイクル時の充放電効率を記載する。   In Table 1 below, the capacity retention ratio of Example 1 and Comparative Examples 1 and 2 and the charge / discharge efficiency at 50 cycles are described.

表1に示すように、球形化黒鉛(A1)と鱗片状黒鉛(A2)とを含む混合物である炭素質粒子(A)と、酸化珪素粒子(B)とを含む負極材を用いた電池は、比較例1及び比較例2の負極材を用いた電池と比較して、50サイクル目の容量維持率、充放電効率が良好な数値を示し、高容量化を実現していることが確認でき、更にレート特性の低下を抑制して、高レート特性を維持していることが確認できた。   As shown in Table 1, a battery using a negative electrode material containing carbonaceous particles (A), which is a mixture containing spheroidized graphite (A1) and scaly graphite (A2), and silicon oxide particles (B) Compared to the batteries using the negative electrode materials of Comparative Example 1 and Comparative Example 2, the capacity retention rate and charge / discharge efficiency at the 50th cycle showed good numerical values, confirming that high capacity was achieved. Furthermore, it was confirmed that the high rate characteristic was maintained by suppressing the deterioration of the rate characteristic.

本発明の負極材を用いる電極を備える非水電解液二次電池は、高容量であり、かつ、サイクル特性、レート特性を向上するものであるため、近年の電動工具や、電気自動車の用途に求められる特性をも満たすことができ、産業上有用である。   The non-aqueous electrolyte secondary battery provided with the electrode using the negative electrode material of the present invention has a high capacity and improves cycle characteristics and rate characteristics, so that it can be used for recent power tools and electric vehicles. It can satisfy required characteristics and is industrially useful.

Claims (9)

炭素質粒子(A)と、酸化珪素粒子(B)とを含み、炭素質粒子(A)が、少なくとも球形化黒鉛(A1)と鱗片状黒鉛(A2)とを含む混合物であり、球形化黒鉛(A1)の50%粒子径(d50)Rgと、酸化珪素粒子(B)の50%粒子径(d50)Rsとの比Rs/Rgが、0.001〜5であって、球形化黒鉛(A1)、鱗片状黒鉛(A2)及び酸化珪素粒子(B)のそれぞれが独立した状態の混合物であることを特徴とする非水系二次電池用負極材。 Carbonaceous particles (A) and silicon oxide particles (B), and the carbonaceous particles (A) are a mixture containing at least spheroidized graphite (A1) and flaky graphite (A2). 50% particle diameter (d50) and Rg of (A1), the ratio Rs / Rg and the 50% particle diameter (d50) Rs silicon oxide particles (B) is, I 0.001 der spherical graphite A negative electrode material for a non-aqueous secondary battery , wherein (A1), flaky graphite (A2), and silicon oxide particles (B) are each an independent mixture . 炭素質粒子(A)100質量部に対して、酸化珪素粒子(B)1〜50質量部を含む、請求項1記載の非水系二次電池用負極材。   The negative electrode material for nonaqueous secondary batteries according to claim 1, comprising 1 to 50 parts by mass of silicon oxide particles (B) with respect to 100 parts by mass of carbonaceous particles (A). 球形化黒鉛(A1)と鱗片状黒鉛(A2)との質量比が95:5〜5:95である、請求項1又は2記載の非水系二次電池用負極材。   The negative electrode material for a non-aqueous secondary battery according to claim 1 or 2, wherein the mass ratio of the spheroidized graphite (A1) and the flaky graphite (A2) is 95: 5 to 5:95. 酸化珪素粒子(B)が一般式SiO(xは0.5≦x≦1.6である)で示される、請求項1〜3のいずれか1項記載の非水系二次電池用負極材。 4. The negative electrode material for a non-aqueous secondary battery according to claim 1, wherein the silicon oxide particles (B) are represented by a general formula SiO x (x is 0.5 ≦ x ≦ 1.6). . 球形化黒鉛(A1)の50%粒子径(d50)Rgが2〜30μmであり、酸化珪素粒子(B)の50%粒子径(d50)Rsが0.01〜10μmである、請求項1〜4のいずれか1項記載の非水系二次電池用負極材。   The 50% particle diameter (d50) Rg of the spheroidized graphite (A1) is 2 to 30 μm, and the 50% particle diameter (d50) Rs of the silicon oxide particles (B) is 0.01 to 10 μm. 5. The negative electrode material for a non-aqueous secondary battery according to any one of 4. 球形化黒鉛(A1)のアスペクト比が2.09以下であり、鱗片状黒鉛(A2)のアスペクト比が2.1〜10である、請求項1〜5のいずれか1項記載の非水系二次電池用負極材。   The non-aqueous two-phase composition according to any one of claims 1 to 5, wherein the spheroidized graphite (A1) has an aspect ratio of 2.09 or less, and the flaky graphite (A2) has an aspect ratio of 2.1 to 10. Negative electrode material for secondary batteries. 鱗片状黒鉛質粒子(A2)の短径の長さが0.9〜15μmである、請求項1〜6のいずれか1項記載の非水系二次電池用負極材。   The negative electrode material for a nonaqueous secondary battery according to any one of claims 1 to 6, wherein the length of the minor axis of the scaly graphite particles (A2) is 0.9 to 15 µm. 集電体と、該集電体上に形成された活物質層とを備える非水系二次電池用負極であって、前記活物質層が、請求項1〜7のいずれか1項に記載の非水系二次電池用負極材を含有することを特徴とする非水系二次電池用負極。   It is a negative electrode for non-aqueous secondary batteries provided with an electrical power collector and the active material layer formed on this electrical power collector, Comprising: The said active material layer is any one of Claims 1-7. A negative electrode for a non-aqueous secondary battery, comprising a negative electrode material for a non-aqueous secondary battery. イオンを吸蔵・放出可能な正極及び負極、並びに電解質を備える非水系二次電池であって、前記負極が、請求項8に記載の非水系二次電池用負極であることを特徴とする、非水系二次電池。   A nonaqueous secondary battery comprising a positive electrode and a negative electrode capable of occluding and releasing ions, and an electrolyte, wherein the negative electrode is a negative electrode for a nonaqueous secondary battery according to claim 8, Water-based secondary battery.
JP2012067908A 2012-03-23 2012-03-23 Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery Active JP5974573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012067908A JP5974573B2 (en) 2012-03-23 2012-03-23 Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012067908A JP5974573B2 (en) 2012-03-23 2012-03-23 Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2013200984A JP2013200984A (en) 2013-10-03
JP5974573B2 true JP5974573B2 (en) 2016-08-23

Family

ID=49521093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012067908A Active JP5974573B2 (en) 2012-03-23 2012-03-23 Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP5974573B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210184205A1 (en) * 2019-01-03 2021-06-17 Lg Chem, Ltd. Anode active material for secondary battery, electrode comprising same, and method for manufacturing same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6268729B2 (en) * 2012-03-23 2018-01-31 三菱ケミカル株式会社 Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP6476814B2 (en) * 2013-12-18 2019-03-06 三菱ケミカル株式会社 Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same
JP2015164127A (en) * 2014-01-31 2015-09-10 三菱化学株式会社 Carbon material for nonaqueous secondary battery negative electrode, negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2015170542A (en) * 2014-03-10 2015-09-28 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP6534835B2 (en) * 2015-03-12 2019-06-26 株式会社豊田自動織機 Power storage device provided with negative electrode active material layer and negative electrode active material layer
KR102323428B1 (en) 2015-03-13 2021-11-09 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery, method of manufacturing the same, and rechargeable lithium battery including the same
CN108713266B (en) * 2016-03-10 2022-04-29 日本电气株式会社 Lithium ion secondary battery
WO2018047939A1 (en) * 2016-09-09 2018-03-15 昭和電工株式会社 Negative electrode material for lithium ion secondary cell
CN109997257B (en) 2016-11-22 2023-12-12 三菱化学株式会社 Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP6977504B2 (en) * 2016-11-22 2021-12-08 三菱ケミカル株式会社 Negative electrode material for non-aqueous secondary batteries, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries
KR102412700B1 (en) 2016-11-22 2022-06-23 미쯔비시 케미컬 주식회사 Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP6908261B2 (en) * 2017-03-16 2021-07-21 エリーパワー株式会社 Sealed battery, assembled battery and engine start battery
DE102017211086A1 (en) * 2017-06-29 2019-01-03 Sgl Carbon Se Novel composite material
PL3694033T3 (en) * 2017-10-05 2022-10-17 Umicore Negative electrode material for lithium ion secondary cell, method for producing same, paste for negative electrode, negative electrode sheet, and lithium ion secondary cell
KR102321261B1 (en) 2017-10-27 2021-11-03 주식회사 엘지에너지솔루션 Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
CN110915033B (en) * 2017-12-01 2022-06-07 株式会社Lg化学 Negative electrode for lithium secondary battery and lithium secondary battery including the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005036690A1 (en) * 2003-10-07 2006-12-28 株式会社ジーエス・ユアサコーポレーション Nonaqueous electrolyte secondary battery
JP5011629B2 (en) * 2004-02-19 2012-08-29 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP5257740B2 (en) * 2008-01-30 2013-08-07 東海カーボン株式会社 Composite carbon material for negative electrode material of lithium secondary battery and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210184205A1 (en) * 2019-01-03 2021-06-17 Lg Chem, Ltd. Anode active material for secondary battery, electrode comprising same, and method for manufacturing same
US11799072B2 (en) * 2019-01-03 2023-10-24 Lg Energy Solution, Ltd. Anode active material for secondary battery, electrode comprising same, and method for manufacturing same

Also Published As

Publication number Publication date
JP2013200984A (en) 2013-10-03

Similar Documents

Publication Publication Date Title
JP5974573B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP5943052B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
EP2413404B1 (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP6268729B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP7099325B2 (en) Negative electrode material for non-aqueous secondary batteries, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries
JP5082207B2 (en) Method for producing negative electrode material for lithium secondary battery, and negative electrode for lithium secondary battery and lithium secondary battery using the same
JP6060506B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP7192499B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2012001845A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and production method for same
JP6977504B2 (en) Negative electrode material for non-aqueous secondary batteries, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries
JP2012033375A (en) Carbon material for nonaqueous secondary battery
JP2014060124A (en) Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP7334735B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2022550820A (en) Spherical carbon-based negative electrode active material, manufacturing method thereof, negative electrode containing same, and lithium secondary battery
JP2021061230A (en) Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2012216520A (en) Method for producing composite graphite particle for nonaqueous secondary battery and composite graphite particle produced by the method, negative electrode and nonaqueous secondary battery
JP2015185443A (en) Carbon material for nonaqueous secondary battery and nonaqueous secondary battery
JP7248019B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2012033376A (en) Negative electrode active material for nonaqueous secondary battery
JP7388109B2 (en) Negative electrode materials for non-aqueous secondary batteries, negative electrodes for non-aqueous secondary batteries, and non-aqueous secondary batteries
JP7099005B2 (en) Negative electrode material for non-aqueous secondary batteries and its manufacturing method, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries
JP2022551434A (en) Spherical carbon-based negative electrode active material, manufacturing method thereof, negative electrode containing same, and lithium secondary battery
WO2023074216A1 (en) Particles and method for producing same, and secondary battery and method for manufacturing same
CN117882210A (en) Negative electrode active material, method for preparing same, and negative electrode and secondary battery comprising same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160704

R150 Certificate of patent or registration of utility model

Ref document number: 5974573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350