JP5969988B2 - Flat silver fine particles, method for producing the same, paste using the same, and method for producing a printed circuit using the paste - Google Patents

Flat silver fine particles, method for producing the same, paste using the same, and method for producing a printed circuit using the paste Download PDF

Info

Publication number
JP5969988B2
JP5969988B2 JP2013512485A JP2013512485A JP5969988B2 JP 5969988 B2 JP5969988 B2 JP 5969988B2 JP 2013512485 A JP2013512485 A JP 2013512485A JP 2013512485 A JP2013512485 A JP 2013512485A JP 5969988 B2 JP5969988 B2 JP 5969988B2
Authority
JP
Japan
Prior art keywords
sem
silver
fine particles
silver fine
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013512485A
Other languages
Japanese (ja)
Other versions
JPWO2012147945A1 (en
Inventor
太郎 中野谷
太郎 中野谷
崇 樋之津
崇 樋之津
宏敏 齋藤
宏敏 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Publication of JPWO2012147945A1 publication Critical patent/JPWO2012147945A1/en
Application granted granted Critical
Publication of JP5969988B2 publication Critical patent/JP5969988B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0551Flake form nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells

Description

本発明は、微細配線や接合体等に好適に用いられる平板状の銀微粒子とその製造方法および当該粒子を含有するペーストおよびそのペーストを用いた印刷回路に関する。   The present invention relates to tabular silver fine particles suitably used for fine wiring, bonded bodies, and the like, a method for producing the same, a paste containing the particles, and a printed circuit using the paste.

従来から、電子部品の電極や回路を形成する為に、銀粒子を有機媒体中に分散させた導電性ペーストが用いられてきた。導電性ペーストに用いられる銀粒子としては、銀粒子同士の接触面積の大きい平板状の銀粒子が好適に用いられている(例えば、特許文献1参照)。   Conventionally, a conductive paste in which silver particles are dispersed in an organic medium has been used to form electrodes and circuits of electronic components. As the silver particles used in the conductive paste, flat silver particles having a large contact area between the silver particles are suitably used (see, for example, Patent Document 1).

また近年では、電子機器の小型化が進むにつれて、配線の微細化が指向されてくるようになってきた。とりわけ、配線の微細化を図る為には、描かれる配線の導電性を確保しつつ、配線がより繊細に形成される必要がある。そのため、銀粒子自体についても微粒子化が進められてきている。特許文献2には湿式反応により得られる平板状の銀微粒子について開示されている。   In recent years, the miniaturization of wiring has been directed toward miniaturization of electronic devices. In particular, in order to miniaturize the wiring, it is necessary to form the wiring more delicately while ensuring the conductivity of the drawn wiring. For this reason, the silver particles themselves are being made finer. Patent Document 2 discloses tabular silver fine particles obtained by a wet reaction.

特許第3874634号公報Japanese Patent No. 3874634 特開2009−13449号公報JP 2009-13449 A

発明が開発しようとする課題Problems to be developed by the invention

単純な工程で平板の形状を有した銀微粒子を得る手法としては、先に示したように特許文献2に記載の方法が例示できる。しかし得られた微粒子で導電性を有する膜を得るためには250℃もの加熱を有する。銀微粒子は微細化すると融点を下げることができることが知られているが、この温度の加熱を必要とするのであれば、銀を微細化した効果を十分に享受できているとは言えない。その結果、金属配線を形成する基板の種類も限られたものとなってしまう問題があった。したがって、さらなる低温で導電性を示すようなペーストの提供が求められている。   As a technique for obtaining silver fine particles having a flat plate shape by a simple process, the method described in Patent Document 2 can be exemplified as described above. However, in order to obtain a film having conductivity with the obtained fine particles, heating of 250 ° C. is required. It is known that the silver fine particles can lower the melting point if they are miniaturized, but if heating at this temperature is required, it cannot be said that the effect of miniaturizing silver can be fully enjoyed. As a result, there is a problem that the types of substrates on which the metal wiring is formed are limited. Accordingly, there is a need to provide a paste that exhibits conductivity at a lower temperature.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、200℃程度の低温の熱処理であっても低抵抗値を示す導電性ペーストを提供することを目的としたものである。   The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a conductive paste that exhibits a low resistance value even when heat treatment is performed at a low temperature of about 200 ° C. is there.

本発明者らは、かかる目的を達成する為、鋭意研究を重ねた結果、以下に示す平板状の銀微粒子、平板状の銀微粒子の製造方法および前記平板状の銀微粒子を含む導電性ペーストを用いることにより前記課題が解決できる事を見出した。   In order to achieve the above object, the present inventors have conducted extensive research, and as a result, obtained are the following tabular silver fine particles, a method for producing tabular silver fine particles, and a conductive paste containing the tabular silver fine particles. It has been found that the above problems can be solved by using it.

本発明にかかる粒子は、平板状の銀微粒子であり、その表面に酢酸もしくは没食子酸0.1質量%以上3.0質量%以下付着しており、SEM像から算出した厚み方向の粒子径の平均値(以下、dSEM―Tと記載する)が10〜200nmであり、長手方向の粒子径の平均値(dSEM−Lが60〜2,000nmであり、前記長手方向の粒子径の平均値(d SEM−L と前記厚み方向の粒径の平均値(dSEM−T)の比(dSEM−L/dSEM−T)であるアスペクト比が2〜100である事を特徴とする。 The particles according to the present invention are tabular silver fine particles, and acetic acid or gallic acid is attached to the surface thereof in an amount of 0.1% by mass or more and 3.0% by mass or less , and the particle size in the thickness direction calculated from the SEM image. The average value (hereinafter referred to as d SEM-T ) is 10 to 200 nm, the average particle size in the longitudinal direction (d SEM-L ) is 60 to 2,000 nm, and the longitudinal particle size is The aspect ratio, which is the ratio (d SEM-L / d SEM-T ) of the average value (d SEM-L ) and the average value (d SEM-T ) of the particle size in the thickness direction, is 2 to 100. Features.

本発明にかかる平板状の銀微粒子の製造方法は、水溶性の銀化合物と水溶性の錯化剤と、ソルビン酸カリウムもしくは没食子酸水和物と、アスコルビン酸もしくはその誘導体あるいは異性体、ギ酸、シュウ酸、アセトアルデヒド、単糖類であるグルコース(ブドウ糖)、フルクトース(果糖)、二糖類であるマルトース(麦芽糖)、セロビオースから選択される1つの還元剤を水に添加して上記に記載した平板状の銀微粒子を作製することを特徴とする。 The method for producing tabular silver fine particles according to the present invention comprises a water-soluble silver compound, a water-soluble complexing agent, potassium sorbate or gallic acid hydrate , ascorbic acid or a derivative or isomer thereof, formic acid, One reducing agent selected from oxalic acid, acetaldehyde, monosaccharide glucose (glucose), fructose (fructose), disaccharide maltose (maltose), and cellobiose is added to water to form the plate-like plate described above Silver fine particles are produced.

更に、平板状の銀微粒子の製造方法は、クエン酸またはその誘導体を添加することを特徴とする。   Furthermore, the method for producing tabular silver fine particles is characterized by adding citric acid or a derivative thereof.

更に、平板状の銀微粒子の製造方法においては、有機物からなる還元剤がアスコルビン酸もしくはその誘導体あるいは異性体であることを特徴とする。   Furthermore, in the method for producing tabular silver fine particles, the reducing agent made of an organic substance is ascorbic acid, a derivative or an isomer thereof.

本発明にかかる導電性ペーストは、前記平板状の銀微粒子を含むことを特徴とする。   The electroconductive paste concerning this invention contains the said flat silver fine particle, It is characterized by the above-mentioned.

更に、導電性ペーストには、前記平板状の銀微粒子と共に、SEM像から算出した長手方向の粒子径の平均値(以下、DSEM―Lと記載する)が、2.5〜15.0μmであり、かつ前記平板状の銀微粒子のdSEM―Lに対して3〜50倍の範囲である銀粒子が混合されていることを特徴とする。Furthermore, in the conductive paste, the average value of the particle diameter in the longitudinal direction calculated from the SEM image (hereinafter referred to as D SEM-L ) is 2.5 to 15.0 μm together with the flat silver fine particles. And silver particles in a range of 3 to 50 times the d SEM-L of the tabular silver fine particles are mixed.

更に、前記銀粒子の形状が平板状である事を特徴とする。   Furthermore, the shape of the silver particles is flat.

本発明に示したペーストを用いて配線を形成することにより、200℃程度の低温熱処理によっても十分な導電性を示す配線を形成することが可能であり、基板の選択の幅を広げることが可能になる。   By forming a wiring using the paste shown in the present invention, it is possible to form a wiring having sufficient conductivity even by a low-temperature heat treatment at about 200 ° C., and to expand the range of substrate selection. become.

接触抵抗を測定するために用いたパターン図である。It is the pattern diagram used in order to measure contact resistance. GC−MSスペクトルを示した図である。It is the figure which showed GC-MS spectrum. GC−MSスペクトルを示した図である。It is the figure which showed GC-MS spectrum. 接触抵抗と比抵抗の相関を示した図である。It is the figure which showed the correlation of contact resistance and specific resistance.

以下、平板状の銀微粒子、平板状の銀微粒子の製造方法および導電性ペーストの最良の形態に関して説明する。   Hereinafter, the flat silver fine particles, the method for producing the flat silver fine particles, and the best mode of the conductive paste will be described.

<平板状の銀微粒子>
本発明における平板状の銀微粒子は、炭素数が2〜10の有機物で表面を被覆する。炭素数が10を超えるような高分子の有機物で被覆をしてしまうと、導電膜を形成する際に有機物を低温にて熱分解させることが難しくなる。結果、十分に抵抗値を下げることが出来ず好ましくない。表面を被覆する有機物は、好ましくは炭素数が2〜8、更に好ましくは炭素数が2〜6の有機物である。また、炭素数の少ない有機物であっても、被覆量が多くなってしまうと抵抗値を下げられないという前述したような問題が生じてしまう。被覆量については3.0質量%以下で0.1質量%以上が良く、好ましくは2.0質量%以下で0.1質量%以上、更に好ましくは1.0質量%以下で0.1質量%以上ある。
<Plate-shaped silver fine particles>
The flat silver fine particles in the present invention cover the surface with an organic substance having 2 to 10 carbon atoms. If it coat | covers with high molecular organic substance which has 10 or more carbon atoms, it will become difficult to thermally decompose organic substance at low temperature when forming a conductive film. As a result, the resistance value cannot be lowered sufficiently, which is not preferable. The organic substance covering the surface is preferably an organic substance having 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms. Moreover, even if it is an organic substance with few carbon numbers, if the coating amount increases, the above-described problem that the resistance value cannot be lowered occurs. The coating amount is 3.0% by mass or less and preferably 0.1% by mass or more, preferably 2.0% by mass or less and 0.1% by mass or more, more preferably 1.0% by mass or less and 0.1% by mass. % Or more.

また、本発明における平板状の銀微粒子は、dSEM−Tが10〜200nmである。厚み方向の粒子径が変化すると、相対的に粒子の長手方向の大きさも変化するため、この範囲を外れると前記したようにペーストの粘度や充填性で不具合が生じてしまう。なお、dSEM−Tの値としてより好ましくは、10〜190nmである。また、ここで「長手方向の大きさ」とは板状形状における板面部分の対角線のうちで、最も長く観測される長さをいう。Moreover, d SEM-T is 10-200 nm in the flat silver fine particle in this invention. When the particle size in the thickness direction changes, the size of the particles in the longitudinal direction also changes relatively. Therefore, if the particle size is out of this range, problems occur in the viscosity and filling properties of the paste as described above. The value of d SEM-T is more preferably 10 to 190 nm. Here, the “longitudinal size” means the longest observed length among the diagonal lines of the plate surface portion in the plate shape.

更に、本発明における平板状の銀微粒子は、粒子のアスペクト比(dSEM−L/dSEM−T)が2〜100であることが好ましく、3〜50であることがより好ましい。アスペクト比がこの範囲にある平板状の銀微粒子と市販の銀粒子を混合することで、塗布膜における充填性が良くなり比抵抗を下げるのに有効である。また、接触面積が増加することにより、接触抵抗を下げるのにも有効となる。この時平板状の銀微粒子は、dSEM−Lが60〜2,000nmであり、より好ましくは105〜1,900nmである。Furthermore, the flat silver fine particles in the present invention preferably have a particle aspect ratio (d SEM-L / d SEM-T ) of 2 to 100, and more preferably 3 to 50. By mixing flat silver particles having an aspect ratio within this range and commercially available silver particles, the filling property in the coating film is improved and effective in reducing the specific resistance. In addition, an increase in the contact area is effective in reducing the contact resistance. At this time, the flat silver fine particles have a d SEM-L of 60 to 2,000 nm, more preferably 105 to 1,900 nm.

<平板状の銀微粒子の製造方法>
本発明における平板状の銀微粒子の製造法は、湿式還元法を採用しており、銀イオン分散液の調液工程、銀の還元工程、銀粒子の洗浄工程、銀粒子の乾燥工程によって平板状の銀微粒子を得る。以下に、本発明における銀微粒子の製造方法について詳細に説明する。
<Method for producing flat silver fine particles>
The method for producing tabular silver fine particles in the present invention employs a wet reduction method, and is formed into a plate shape by a silver ion dispersion liquid preparation step, a silver reduction step, a silver particle washing step, and a silver particle drying step. Silver fine particles are obtained. Below, the manufacturing method of the silver fine particle in this invention is demonstrated in detail.

(銀イオン分散液の調液工程)
本工程では、銀化合物、錯化物、炭素数が3〜10である有機物、を混合して銀イオン分散液を得る。本工程で用いられる物質について以下で詳細に説明をする。
(Preparation process of silver ion dispersion)
In this step, a silver compound, a complex, and an organic substance having 3 to 10 carbon atoms are mixed to obtain a silver ion dispersion. The substance used in this step will be described in detail below.

(銀化合物)
コストや安全性といった観点から本反応は水中で行われる事が好ましく、原料となる銀化合物も水溶性であると、反応の均一性から見れば好ましい。具体的には、水に対する溶解性を示す銀化合物としては硝酸銀、酢酸銀などが例示できるが、溶解されやすさからみて、硝酸銀が好ましい。また、ただし、銀そのものを酸で溶解した溶液を利用してもよい。
(Silver compound)
This reaction is preferably carried out in water from the viewpoint of cost and safety, and the silver compound as a raw material is preferably water-soluble from the viewpoint of the uniformity of the reaction. Specifically, silver nitrate, silver acetate and the like can be exemplified as the silver compound showing solubility in water, but silver nitrate is preferable from the viewpoint of ease of dissolution. However, a solution in which silver itself is dissolved with an acid may be used.

(錯化剤)
錯化剤とは、金属イオンと結合して錯イオンを形成させるものをいう。錯化剤を用いる事により、安定に平板状の銀微粒子を生成する事が出来る。また、反応液を酸性側にする事により、粒子の形状を平板状に調整することが容易となる。そのため、水溶液中で酸性の錯化剤を使用することが好ましい。こうした錯化剤としては、クエン酸、酒石酸、グルコン酸、蓚酸や、マロン酸、コハク酸、グルタル酸、アジピン酸、リンゴ酸、フマル酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸などのカルボン酸或いはオキシカルボン酸系の錯化剤、またEDTA(エチレンジアミン四酢酸)、DTPA(ジエチレントリアミン5酢酸)、IDA(イミノニ酢酸)、NTA(ニトリロ3酢酸)等のアミンカルボン酸系の錯化剤といったものを例示することができる。
(Complexing agent)
The complexing agent is a compound that combines with metal ions to form complex ions. By using a complexing agent, tabular silver fine particles can be stably produced. Moreover, it becomes easy to adjust the shape of particle | grains to flat form by making a reaction liquid into the acidic side. Therefore, it is preferable to use an acidic complexing agent in an aqueous solution. These complexing agents include citric acid, tartaric acid, gluconic acid, succinic acid, malonic acid, succinic acid, glutaric acid, adipic acid, malic acid, fumaric acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid. Complexing agents such as carboxylic acids or oxycarboxylic acids such as EDTA (ethylenediaminetetraacetic acid), DTPA (diethylenetriaminepentaacetic acid), IDA (iminoniacetic acid), NTA (nitrilotriacetic acid), etc. An agent can be exemplified.

(被覆物用有機物)
炭素数3〜10である有機物は、還元析出される銀微粒子の立体障害として働き、粒子同士が凝集するのを防止する。炭素数が1、2では、立体障害としての働きが十分ではなく粒子が粗大化してしまう。一方、炭素数が10より大きくなってしまうと、有機物を低温にて熱分解させることが難しくなるため、導電性膜に成形した時に十分に抵抗値を下げる事が出来ず好ましくない。好ましくは炭素数3〜8、更に好ましくは炭素数が3〜6の有機物である。
(Organic for coating)
The organic substance having 3 to 10 carbon atoms acts as a steric hindrance of the silver fine particles that are reduced and deposited, and prevents the particles from aggregating. When the number of carbon atoms is 1 or 2, the function as steric hindrance is not sufficient, and the particles become coarse. On the other hand, if the number of carbon atoms exceeds 10, it is difficult to thermally decompose the organic substance at a low temperature, which is not preferable because the resistance value cannot be lowered sufficiently when formed into a conductive film. Preferably it is a C3-C8, More preferably, it is a C3-C6 organic substance.

(銀の還元工程)
本工程では、前記調液工程において作製した銀イオン分散液に対し、還元剤を添加する事により銀微粒子を得る。本工程で用いられる還元剤について詳細に説明する。
(Silver reduction process)
In this step, silver fine particles are obtained by adding a reducing agent to the silver ion dispersion prepared in the liquid preparation step. The reducing agent used in this step will be described in detail.

(還元剤)
均一な平板状の粒子を得るためには還元力の弱い還元剤を用いる必要がある。具体的には、有機物からなる還元剤であることが好ましい。さらに具体的にはアルデヒド基を有するような有機物であるギ酸、シュウ酸、アスコルビン酸、アセトアルデヒド、単糖類であるグルコース(ブドウ糖)、フルクトース(果糖)、二糖類であるマルトース(麦芽糖)、セロビオースといったものが例示できる。
(Reducing agent)
In order to obtain uniform tabular grains, it is necessary to use a reducing agent having a weak reducing power. Specifically, a reducing agent made of an organic material is preferable. Further formic acid is specifically an organic material such as an aldehyde group, oxalic acid, ascorbic acid, acetaldehyde, glucose monosaccharide (glucose), fructose (fruit sugar), maltose (malt sugar) is a disaccharide, and Serobio scan This can be illustrated.

(銀微粒子の回収および洗浄工程)
還元工程を経て得られた銀微粒子には、被覆されていない過剰の有機物が含有されている為、粒子を回収後に有機物を洗浄する必要がある。洗浄溶媒としては、純水を用いる事が好適である。回収および洗浄の方式としては、デカンテーションやフィルタープレスなどが上げられるがこれらに限定をするわけではない。
(Silver fine particle recovery and washing process)
Since the silver fine particles obtained through the reduction step contain an excessive organic substance that is not coated, it is necessary to wash the organic substance after collecting the particles. It is preferable to use pure water as the cleaning solvent. As a method of recovery and washing, decantation, filter press, etc. can be raised, but not limited thereto.

(銀微粒子の乾燥工程)
洗浄後の粒子は多くの水分を含有している為、使用前に水分を除去する必要がある。水分除去の方法としては、真空乾燥とするのが好適である。温度は100℃以下とするのが好適で、80℃以下とするのがより好適である。あまり熱をかけてしまうと乾燥の時点で粒子同士が焼結してしまう為好ましくない。
(Drying process of silver fine particles)
Since the washed particles contain a lot of moisture, it is necessary to remove the moisture before use. As a method for removing moisture, vacuum drying is preferable. The temperature is preferably 100 ° C. or lower, and more preferably 80 ° C. or lower. If too much heat is applied, particles are sintered at the time of drying, which is not preferable.

<銀微粒子の評価方法>
作製した平板状の銀微粒子は、以下の方法にて被覆物の付着量評価、被覆物の炭素数評価、粒子径の評価を実施した。
<Method for evaluating silver fine particles>
The produced plate-like silver fine particles were subjected to the evaluation of the coating amount, the carbon number of the coating, and the particle diameter by the following methods.

(被覆物の付着量)
被覆物の付着量は、灰分測定用灰皿(角型50×30×10mm)に銀微粒子を、厚み1〜2mmとなるように入れ、該灰分測定用灰皿をマッフル炉(ヤマト科学株式会社製 FO310)にて焼成し、該焼成前後の質量から算出した。また、該焼成の条件は大気中で昇温速度10℃/minで25℃から700℃まで昇温し、その後自然冷却して室温まで冷却するという条件である。
(Amount of coating)
As for the amount of coating, the silver fine particles are placed in an ashtray for ash measurement (square 50 × 30 × 10 mm) so as to have a thickness of 1 to 2 mm, and the ashtray for ash measurement is used in a muffle furnace (FO310 manufactured by Yamato Scientific Co., Ltd. ) And calculated from the mass before and after the firing. The firing conditions are such that the temperature is raised from 25 ° C. to 700 ° C. at a rate of temperature rise of 10 ° C./min in the air, and then naturally cooled and cooled to room temperature.

(被覆物の炭素数評価)
被覆物の炭素数は、例えば、得られた銀粒子をGC−MSにかけて、有機物成分を確認することにより行った。本発明においては、GC−MS装置(Aglent technologies株式会社製の7890A GC Systemおよび5975C inert XL EI/CI MSD)を用いて、ヘリウム雰囲気の元、350℃に銀粒子を加熱し、気化したガス成分を、カラム(J&W Scientific社製 DB−5HT 123−5731 流量2.0ml/分)を用いて、分離、捕集することにより、被覆物の評価を実施した。
(Evaluation of carbon number of coating)
The carbon number of the coating was determined by, for example, subjecting the obtained silver particles to GC-MS and confirming the organic component. In the present invention, using a GC-MS apparatus (7890A GC System and 5975C inert XL EI / CI MSD manufactured by Agilent Technologies Inc.), the vaporized gas component is heated and vaporized at 350 ° C. under a helium atmosphere. Were separated and collected using a column (DB-5HT 123-5731, flow rate 2.0 ml / min, manufactured by J & W Scientific), and the coating was evaluated.

(粒子径評価)
また、本発明において、長手方向および厚み方向の粒子径の算出方法としては、以下に示すとおりである。走査型電子顕微鏡(日立ハイテクノロジーズ製のS−4700)を用いて粒子表面の観察を実施した。観察における拡大倍率は、粒子サイズがおおよそ500nm以下の際は30,000倍、500〜2,000nmの際は10,000倍、2,000nm以上の際は3,000倍とした。観察により得られた50個以上の任意の粒子について、画像解析ソフト(旭化成エンジニアリング株式会社製のA像くん(登録商標))を用いる事により粒子径を算出した。
(Particle size evaluation)
In the present invention, the particle diameter calculation method in the longitudinal direction and the thickness direction is as follows. The particle surface was observed using a scanning electron microscope (S-4700, manufactured by Hitachi High-Technologies Corporation). The magnification during observation was 30,000 times when the particle size was approximately 500 nm or less, 10,000 times when the particle size was 500 to 2,000 nm, and 3,000 times when the particle size was 2,000 nm or more. About 50 or more arbitrary particles obtained by observation, the particle diameter was calculated by using image analysis software (A image-kun (registered trademark) manufactured by Asahi Kasei Engineering Co., Ltd.).

<平板状の銀微粒子を含有したペースト>
本発明に記載の平板状の銀微粒子を用いて作製した導電性ペーストについて詳細に説明する。
<Paste containing flat silver particles>
The conductive paste produced using the flat silver fine particles described in the present invention will be described in detail.

(銀粒子)
銀粒子には、本発明に記載の平板状の銀微粒子を用いる事を特徴とする。また、公知の方法にて作製した銀粒子を混合して使用しても良いが、一般的に混合する銀粒子の形状としては、平板状の銀粒子が好ましい。
(Silver particles)
The silver particles are characterized by using the flat silver particles described in the present invention. Moreover, although the silver particle produced by the well-known method may be mixed and used, as a shape of the silver particle generally mixed, a flat silver particle is preferable.

混合する銀粒子は、DSEM―Lが2.5〜15.0μmであり、かつ本発明に記載している平板状の銀微粒子のdSEM―Lの3〜50倍であることが好ましい。より好ましくは、DSEM―Lが3.0〜10.0μmであり、かつ平板状の銀微粒子のdSEM―Lの5〜20倍である。このように大きさの異なる2種類の銀粉末を混合することで、充填性が良くなり比抵抗および接触抵抗が良好となる。The silver particles to be mixed preferably have a D SEM-L of 2.5 to 15.0 μm and 3 to 50 times the d SEM-L of tabular silver fine particles described in the present invention. More preferably, D SEM-L is 3.0 to 10.0 μm, and 5 to 20 times the d SEM-L of flat silver fine particles. By mixing two kinds of silver powders having different sizes in this way, the filling property is improved and the specific resistance and contact resistance are improved.

(分散媒)
本発明における導電性ペーストに使用する分散媒は、極性溶媒である事が好ましい。極性溶媒を選択すれば、蒸気圧が低いため取り扱いには好適である。特に各種の樹脂と相溶する性質を有するものを使用すれば問題ないが、エステル系、エーテル系、ケトン系、エーテルエステル系、アルコール系、炭化水素系、アミン系などの有機溶剤を使用するのが好ましい。
(Dispersion medium)
The dispersion medium used for the conductive paste in the present invention is preferably a polar solvent. If a polar solvent is selected, the vapor pressure is low, which is suitable for handling. There is no problem if one having a property compatible with various resins is used, but an organic solvent such as ester, ether, ketone, ether ester, alcohol, hydrocarbon or amine is used. Is preferred.

(分散剤)
本発明における導電性ペーストには銀粒子をほどよく分散させる分散剤を添加しても良い。こうした分散剤を使用することで、ペースト中では粒子の独立性を確保することができる。その性質としては、粒子表面と親和性を有すると共に分散媒に対しても親和性を有するものであればよく、市販汎用のものであってもよい。例えば、また、単独の種類のみならず、併用使用しても構わない。この添加量は、銀粒子の質量に対して3.0質量%以下、好ましくは1.0質量%以下、一層好ましくは0.5質量%以下である。
(Dispersant)
You may add the dispersing agent which disperse | distributes silver particle moderately to the electrically conductive paste in this invention. By using such a dispersant, independence of particles can be ensured in the paste. The property is not particularly limited as long as it has an affinity for the particle surface and also has an affinity for the dispersion medium, and may be a commercially available one. For example, not only a single type but also a combination may be used. This addition amount is 3.0% by mass or less, preferably 1.0% by mass or less, more preferably 0.5% by mass or less, based on the mass of the silver particles.

(樹脂)
本発明における導電性ペーストに添加されるべき樹脂は、広く知られている熱硬化型もしくは熱可塑型のいずれの樹脂も採用することができる。具体例としては、熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、イソシアネート化合物、メラミン樹脂、尿素樹脂、シリコーン樹脂などから選択することができる。また、熱可塑樹脂としては、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂などから選択することができる。樹脂の添加量としては、銀粒子の質量に対して2〜20質量%、好ましくは2〜15質量%とするのがよい。添加する樹脂量が多すぎると、焼成後に樹脂が必要以上に配線中に残ってしまい、導電性に多大な影響を与えるため好ましくない。一方添加量を少なくすると配線と基板との密着性が確保できないため、少なくとも2質量%程度の添加は必要である。
(resin)
As the resin to be added to the conductive paste in the present invention, any of widely known thermosetting or thermoplastic resins can be adopted. As specific examples, the thermosetting resin can be selected from phenol resin, epoxy resin, unsaturated polyester resin, isocyanate compound, melamine resin, urea resin, silicone resin, and the like. Moreover, as a thermoplastic resin, it can select from an acrylic resin, a polyester resin, a polyurethane resin, etc. The addition amount of the resin is 2 to 20% by mass, preferably 2 to 15% by mass with respect to the mass of the silver particles. If the amount of resin to be added is too large, the resin remains in the wiring more than necessary after firing, which is not preferable because it has a great influence on the conductivity. On the other hand, if the addition amount is reduced, the adhesion between the wiring and the substrate cannot be ensured. Therefore, it is necessary to add at least about 2 mass%.

導電性ペーストには、一般的に熱硬化型のエポキシ樹脂が多く用いられており、エポキシ樹脂の中でも、貯蔵安定性を高めるという観点から、多価エポキシ化合物が好ましい。また、多価エポキシ樹脂の中でも、生産性が圧倒的に高いグリシジル型エポキシ樹脂が好ましく、より好ましくは、硬化物の接着性や耐熱性に優れる事から、多価フェノール類をグリシジル化したエポキシ樹脂が好ましい。いっそう好ましくは、ビスフェノール型エポキシ樹脂であることがよく、とりわけ、ビスフェノールAをグリシジル化したエポキシ樹脂とビスフェノールFをグリシジル化したエポキシ樹脂がよい。   In general, a thermosetting epoxy resin is often used for the conductive paste, and among the epoxy resins, a polyvalent epoxy compound is preferable from the viewpoint of enhancing storage stability. Among polyvalent epoxy resins, a glycidyl type epoxy resin having an overwhelmingly high productivity is preferable, and more preferably an epoxy resin obtained by glycidylating polyhydric phenols because of excellent adhesion and heat resistance of a cured product. Is preferred. More preferably, it is a bisphenol type epoxy resin, and in particular, an epoxy resin obtained by glycidylating bisphenol A and an epoxy resin obtained by glycidylating bisphenol F are preferred.

また、樹脂の形態としては液状を呈しているものが好ましい。なお、エポキシ当量としては300以下であることが好ましい。エポキシ当量が300よりも大きい値になると、組成物が固形になり抵抗値が高くなるとともに使用する際に取扱が不便であるので好ましくない。   The resin is preferably in the form of a liquid. The epoxy equivalent is preferably 300 or less. When the epoxy equivalent is a value larger than 300, the composition becomes solid, the resistance value becomes high, and handling is inconvenient when used, which is not preferable.

樹脂にエポキシ樹脂を使用する場合は、硬化剤を併用する必要があり、硬化剤の種類としては、市販汎用のものであってもよい。また、単独の種類のみならず、併用使用しても構わない。硬化剤の種類としては、アミン系硬化剤、酸無水物系硬化剤、イミダゾール類、ルイス酸、ブレンステッド酸、フェノール樹脂などが挙げられる。   When an epoxy resin is used for the resin, it is necessary to use a curing agent in combination, and the type of curing agent may be a commercially available one. Moreover, you may use together not only a single kind. Examples of the curing agent include amine curing agents, acid anhydride curing agents, imidazoles, Lewis acids, Bronsted acids, and phenol resins.

<導電性ペーストの製造>
銀粒子および分散媒、樹脂などの成分を混合した後、混練脱泡機へ導入して該成分の混練物を形成させる。その後、場合によって機械的分散処理を行ってペーストを形成させる。
<Manufacture of conductive paste>
Components such as silver particles, a dispersion medium, and a resin are mixed and then introduced into a kneading defoaming machine to form a kneaded product of the components. Thereafter, a paste is formed by performing a mechanical dispersion treatment in some cases.

上記の機械的分散処理には銀粒子の著しい改質を伴わないという条件下において、公知のいずれの方法も採用することが可能である。具体的には、超音波分散、ディスパー、三本ロールミル、ボールミル、ビーズミル、二軸ニーダー、自公転式攪拌機などが例示でき、これらは単独あるいは複数を併用して使用することも可能である。   Any known method can be employed under the condition that the mechanical dispersion treatment is not accompanied by significant modification of silver particles. Specifically, an ultrasonic dispersion, a disper, a three roll mill, a ball mill, a bead mill, a twin screw kneader, a self-revolving stirrer and the like can be exemplified, and these can be used alone or in combination.

<導電膜の評価>
作製した導電性ペーストの評価として、比抵抗および接触抵抗の測定を実施した。
<Evaluation of conductive film>
As evaluation of the produced conductive paste, specific resistance and contact resistance were measured.

(比抵抗)
膜厚30μmのメタルマスクを使用し、10mm□のパターンでアルミナ基板上にベタ印刷した。得られた印刷基板を焼成炉(ヤマト科学株式会社製のDKM400)にて、大気中200℃60分間で熱処理したものについて、比抵抗の算出を行った。
(Resistivity)
Using a metal mask having a thickness of 30 μm, solid printing was performed on an alumina substrate with a 10 mm □ pattern. The specific resistance of the printed board obtained was heat-treated in the atmosphere at 200 ° C. for 60 minutes in a firing furnace (DKM400 manufactured by Yamato Scientific Co., Ltd.), and the specific resistance was calculated.

導電膜の表面抵抗を四端子型抵抗率計(三菱化学株式会社製のロレスタ GP MCP―T610型)で測定し、導電膜の厚みを表面粗度計(東京精密株式会社製のサーフコム1500D型)で測定し、下記(1)式より比抵抗を算出した。
比抵抗(μΩ・cm)=表面抵抗(Ω/□)×膜厚(μm)×100 ・・・(1)
The surface resistance of the conductive film was measured with a four-terminal type resistivity meter (Loresta GP MCP-T610 type manufactured by Mitsubishi Chemical Corporation), and the thickness of the conductive film was measured with a surface roughness meter (Surfcom 1500D type manufactured by Tokyo Seimitsu Co., Ltd.) The specific resistance was calculated from the following equation (1).
Specific resistance (μΩ · cm) = surface resistance (Ω / □) × film thickness (μm) × 100 (1)

(接触抵抗)
スクリーン印刷機(マイクロテック株式会社製のMT―320T)を用いて、図1のパターンにて、ITOガラス基板(ジオマテック株式会社製の0006)上に印刷した。得られた印刷基板を焼成炉(ヤマト科学株式会社製のDKM400)にて、大気中200℃60分間で熱処理したものについて、接触抵抗の測定を実施した。従って、以下の実施例において接触抵抗を測定しているということは、印刷回路を形成することができると見なせる。
(Contact resistance)
Using a screen printing machine (MT-320T manufactured by Microtech Co., Ltd.), printing was performed on an ITO glass substrate (0006 manufactured by Geomat Co., Ltd.) with the pattern shown in FIG. The contact resistance of the obtained printed board was measured in a firing furnace (DKM400 manufactured by Yamato Scientific Co., Ltd.) at 200 ° C. for 60 minutes in the atmosphere. Therefore, the measurement of contact resistance in the following examples can be regarded as being able to form a printed circuit.

図1に示すパターンは、それぞれ(1)300μm、(2)500μm、(3)1,000μm、(4)2,000μmと間隔があいており、間隔の異なるパターンで抵抗値を測定する事により、接触抵抗を算出した。具体的には、パターンの間隔を横軸、実測抵抗値を縦軸に取った際に得られるグラフのY切片の半分を接触抵抗とした。   The patterns shown in FIG. 1 are spaced apart from (1) 300 μm, (2) 500 μm, (3) 1,000 μm, and (4) 2,000 μm, respectively. The contact resistance was calculated. Specifically, the half of the Y-intercept of the graph obtained when the interval between the patterns is taken on the horizontal axis and the measured resistance value is taken on the vertical axis was taken as the contact resistance.

<実施例1>
(銀微粒子Aの作製方法)
純水1,000gに対して、銀化合物としての硝酸銀結晶(東洋化学工業株式会社製の特級品)51.0gと、錯化剤としてのクエン酸一水和物(和光純薬工業株式会社製の特級品)50.2gと、被覆用有機物としてソルビン酸カリウム(和光純薬工業株式会社製の特級品)7.7gを加えた後、50℃に加温し銀イオン分散液を得た。
<Example 1>
(Method for producing silver fine particles A)
51.0 g of silver nitrate crystals (special grade product manufactured by Toyo Chemical Co., Ltd.) as a silver compound and citric acid monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) as a complexing agent for 1,000 g of pure water 50.2 g and potassium sorbate (special grade product manufactured by Wako Pure Chemical Industries, Ltd.) 7.7 g as an organic material for coating, and then heated to 50 ° C. to obtain a silver ion dispersion.

次いで、純水1,000gに対して、還元剤としてのL(+)−アスコルビン酸(和光純薬工業株式会社製の特級品)26.6gを溶解し、50℃に加温し還元剤分散液を得た。   Next, 26.6 g of L (+)-ascorbic acid (special grade product manufactured by Wako Pure Chemical Industries, Ltd.) as a reducing agent is dissolved in 1,000 g of pure water, heated to 50 ° C. and dispersed in the reducing agent. A liquid was obtained.

窒素雰囲気の元で、前記銀イオン分散液を攪拌したまま、還元剤分散液を定量送液ポンプ(東京理科器械株式会社製のRP−2100)を用いて33ml/分の速度で添加した。その後、液温を50℃に保ち、60分間保持して銀微粒子を得た。   Under a nitrogen atmosphere, the reducing agent dispersion was added at a rate of 33 ml / min using a quantitative liquid feed pump (RP-2100 manufactured by Tokyo Science Instruments Co., Ltd.) while stirring the silver ion dispersion. Thereafter, the liquid temperature was kept at 50 ° C. and kept for 60 minutes to obtain silver fine particles.

得られた銀微粒子に対して純水を流しながら、吸引ろ過をすることにより粒子を洗浄し、余分な不純物を取り除いた。その後、30℃で12時間真空乾燥をすることにより銀微粒子の乾燥粉を得た。なお、銀微粒子Aの製造方法および特性を表1に示す。また、以後の銀微粒子(B乃至I)についても同じく表1に示す。   The particles were washed by suction filtration while flowing pure water with respect to the obtained silver fine particles to remove excess impurities. Thereafter, vacuum drying was performed at 30 ° C. for 12 hours to obtain dry powder of silver fine particles. The production method and characteristics of the silver fine particles A are shown in Table 1. The silver fine particles (B to I) thereafter are also shown in Table 1.

乾燥粉をSEMにて観察したところ、平板状の銀微粒子であり、そのdSEM−Lは635nm、dSEM−Tは142nm、アスペクト比4.5であった。When the dried powder was observed with an SEM, it was found to be tabular silver fine particles having a d SEM-L of 635 nm, a d SEM-T of 142 nm, and an aspect ratio of 4.5.

乾燥粉のGC−MSスペクトル結果を図2に示す。観察されたピークは酢酸であることが確認された。横軸は時間(秒)であり、縦軸はアバンダンスである。   The GC-MS spectrum result of the dried powder is shown in FIG. The observed peak was confirmed to be acetic acid. The horizontal axis is time (seconds), and the vertical axis is abundance.

<実施例2>
(銀微粒子Bの作製方法)
銀イオン分散液に対して、pH調節の目的で60質量%硝酸(和光純薬工業株式会社製の特級品)を4.2g添加した以外は銀微粒子Aの場合と同様の事を行った。
<Example 2>
(Method for producing silver fine particles B)
The same procedure as in the case of silver fine particles A was performed except that 4.2 g of 60% by mass nitric acid (special grade product manufactured by Wako Pure Chemical Industries, Ltd.) was added to the silver ion dispersion for the purpose of pH adjustment.

乾燥粉をSEMにて観察したところ、平板状の銀微粒子であり、そのdSEM−Lは885nm、dSEM−Tは176nm、アスペクト比5.0であった。When the dried powder was observed with an SEM, it was found to be tabular silver fine particles having a d SEM-L of 885 nm, a d SEM-T of 176 nm, and an aspect ratio of 5.0.

<実施例3>
(銀微粒子Cの作製方法)
銀イオン分散液に対して、pH調節の目的で60質量%硝酸(和光純薬工業株式会社製の特級品)を10.5g添加した以外は銀微粒子Aの場合と同様の事を行った。
<Example 3>
(Method for producing silver fine particles C)
The same procedure as in the case of silver fine particles A was performed, except that 10.5 g of 60% by mass nitric acid (special grade manufactured by Wako Pure Chemical Industries, Ltd.) was added to the silver ion dispersion for the purpose of pH adjustment.

乾燥粉をSEMにて観察したところ、平板状の銀微粒子であり、そのdSEM−Lは1132nm、dSEM−Tは138nm、アスペクト比8.2であった。When the dried powder was observed with an SEM, it was found to be tabular silver fine particles having a d SEM-L of 1132 nm, a d SEM-T of 138 nm, and an aspect ratio of 8.2.

<実施例4>
(銀微粒子Dの作製方法)
大気雰囲気の元で反応を実施し、還元剤添加後の保持時間を3時間とした以外は銀微粒子Aの場合と同様の事を行った。
<Example 4>
(Method for producing silver fine particles D)
The reaction was carried out in an air atmosphere, and the same operation as in the case of silver fine particles A was performed except that the retention time after addition of the reducing agent was 3 hours.

乾燥粉をSEMにて観察したところ、平板状の銀微粒子であり、そのdSEM−Lは873nm、dSEM−Tは46nm、アスペクト比19.0であった。When the dried powder was observed with an SEM, it was found to be tabular silver fine particles having a d SEM-L of 873 nm, a d SEM-T of 46 nm, and an aspect ratio of 19.0.

<実施例5>
(銀微粒子Eの作製方法)
添加剤をソルビン酸カリウムから没食子酸水和物(東京化成工業株式会社製の特級品)に変更した以外は銀微粒子Aの場合と同様の事を行った。
<Example 5>
(Method for producing silver fine particles E)
The same thing as the case of the silver fine particles A was performed except that the additive was changed from potassium sorbate to gallic acid hydrate (special grade manufactured by Tokyo Chemical Industry Co., Ltd.).

乾燥粉をSEMにて観察したところ、平板状の銀微粒子であり、そのdSEM−Lは280nm、dSEM−Tは40nm、アスペクト比7.2であった。When the dried powder was observed with an SEM, it was found to be tabular silver fine particles having a d SEM-L of 280 nm, a d SEM-T of 40 nm, and an aspect ratio of 7.2.

<比較例1>
(銀微粒子Fの作製方法)
添加剤をソルビン酸カリウムからゼラチン(シグマアルドリッチ社製)に変更した以外は銀微粒子Aの場合と同様の事を行った。この銀微粒子の作製方法は、特許文献2に記載の実施例と同じである。しかしながら、本条件においては粒子の水に対する親和性が非常に良く吸引ろ過による洗浄および回収が出来なかった。これはゼラチンの主成分がたんぱく質であるために、カルボキシル基やアミノ基といった官能基を数多く有している為であると考えられる。
<Comparative Example 1>
(Method for producing silver fine particles F)
The same operation as in the case of silver fine particles A was performed except that the additive was changed from potassium sorbate to gelatin (manufactured by Sigma-Aldrich). The method for producing the silver fine particles is the same as the example described in Patent Document 2. However, the affinity of the particles to water was very good under these conditions, and washing and recovery by suction filtration could not be performed. This is probably because gelatin has many functional groups such as carboxyl groups and amino groups because the main component of gelatin is protein.

<比較例2>
(銀微粒子Gの作製方法)
銀粉Fに対してゼラチンの量を1/4に変更した以外は銀微粒子Aの場合と同様の事を行った。本条件においては粒子表面に吸着しているゼラチンが銀微粒子Eに比べて少なかった為回収をする事が可能であった。
<Comparative example 2>
(Method for producing silver fine particles G)
The same procedure as in the case of silver fine particles A was performed except that the amount of gelatin was changed to 1/4 with respect to silver powder F. Under these conditions, the amount of gelatin adsorbed on the particle surface was less than that of the silver fine particles E, so that it could be recovered.

乾燥粉をSEMにて観察したところ、平板状の銀微粒子であり、そのdSEM−Lは628nm、dSEM−Tは91nm、アスペクト比6.9であった。When the dried powder was observed with an SEM, it was found to be tabular silver fine particles having a d SEM-L of 628 nm, a d SEM-T of 91 nm, and an aspect ratio of 6.9.

乾燥粉をGC−MSにて測定したところ、図3のようにいくつかのピークが確認された。すなわち、添加剤にゼラチンを用いた銀微粒子Gは、高分子の保護剤が用いられていることが確認できる。   When the dried powder was measured by GC-MS, several peaks were confirmed as shown in FIG. That is, it can be confirmed that the silver fine particles G using gelatin as an additive use a polymer protective agent.

<比較例3>
(銀微粒子Hの作製方法)
添加剤にソルビン酸カリウムから酢酸(関東化学株式会社製の特級品)に変更した以外は銀微粒子Aの場合と同様のことを行った。しかしながら本条件においては、得られた粒子は凝集粉であり、目的としていた平板状のものを得ることが出来なかった。
<Comparative Example 3>
(Method for producing silver fine particles H)
The same operation as in the case of silver fine particles A was performed except that potassium sorbate was changed to acetic acid (special grade product manufactured by Kanto Chemical Co., Ltd.) as an additive. However, under these conditions, the obtained particles were agglomerated powder, and the intended flat plate shape could not be obtained.

<比較例4>
(銀微粒子Iの作製方法)
還元剤をアスコルビン酸からヒドラジン(和光純薬工業株式会社製の特級品)に変更した以外は銀微粒子Aの場合と同様の事を行った。しかしながら本条件においては、得られた粒子は凝集粉であり、目的としていた平板状のものを得ることが出来なかった。
<Comparative example 4>
(Method for producing silver fine particles I)
The same procedure as in the case of silver fine particles A was performed except that the reducing agent was changed from ascorbic acid to hydrazine (special grade manufactured by Wako Pure Chemical Industries, Ltd.). However, under these conditions, the obtained particles were agglomerated powder, and the intended flat plate shape could not be obtained.

Figure 0005969988
Figure 0005969988

(ペースト評価)
表1で示した銀微粒子A、G、Hを用いてペーストの評価を実施した。
(Paste evaluation)
The paste was evaluated using the silver fine particles A, G, and H shown in Table 1.

<実施例11>
分散溶媒としてテルピネオール(和光純薬工業株式会社製の特級品)1.9g、分散剤として高分子系顔料分散剤アジスパーPA−111(味の素ファインテクノ株式会社製)0.1g、樹脂としてビスフェノールF型エポキシ樹脂のJER807(三菱化学株式会社製)4.6g、硬化剤として三フッ化ホウ素モノエチルアミン錯体(和光純薬工業株式会社製)0.2gをそれぞれ添加して混合した。さらに、銀微粒子Aを93.2g混合した後、自公転式真空攪拌ミキサー(株式会社EME製のV−mini300)にて30秒攪拌した。
<Example 11>
1.9 g of terpineol (special grade manufactured by Wako Pure Chemical Industries, Ltd.) as a dispersion solvent, 0.1 g of a polymer pigment dispersant Ajisper PA-111 (Ajinomoto Fine Techno Co., Ltd.) as a dispersant, bisphenol F type as a resin 4.6 g of epoxy resin JER807 (manufactured by Mitsubishi Chemical Corporation) and 0.2 g of boron trifluoride monoethylamine complex (manufactured by Wako Pure Chemical Industries, Ltd.) as a curing agent were added and mixed. Further, after 93.2 g of silver fine particles A were mixed, the mixture was stirred for 30 seconds with a self-revolving vacuum stirring mixer (V-mini300 manufactured by EME Co., Ltd.).

このようにして得られた混合物を三本ロール(EXAKT Apparatebaus社製のM−80S型)にて、5回パスさせることで導電性ペーストを作製した。得られた導電性ペーストを基板に印刷し、200℃で60分の条件で加熱処理して導電膜を形成させた。   The mixture thus obtained was passed five times with a three-roll (EXAKT Apparatebaus M-80S type) to prepare a conductive paste. The obtained conductive paste was printed on a substrate and heat-treated at 200 ° C. for 60 minutes to form a conductive film.

このようにして得られた導電膜の比抵抗および接触抵抗を測定した結果、比抵抗は17.3μΩ・cmであり、接触抵抗は0.161Ωであった。比抵抗、接触抵抗共に低い導電膜が得られた。   As a result of measuring the specific resistance and contact resistance of the conductive film thus obtained, the specific resistance was 17.3 μΩ · cm and the contact resistance was 0.161Ω. A conductive film having low specific resistance and contact resistance was obtained.

<比較例11>
実施例11において、使用した銀微粒子を銀微粒子Gとした以外は実施例11を繰り返した。この結果、得られた導電膜の比抵抗は35.1μΩ・cmであり、接触抵抗は0.166Ωであった。
<Comparative Example 11>
In Example 11, Example 11 was repeated except that the silver fine particles used were changed to silver fine particles G. As a result, the specific resistance of the obtained conductive film was 35.1 μΩ · cm, and the contact resistance was 0.166Ω.

<比較例12>
実施例11において、使用した銀微粒子を銀微粒子Hとした以外は実施例11を繰り返した。この結果、得られた導電膜の比抵抗は32.6μΩ・cmであり、接触抵抗は0.231Ωであった。
<Comparative Example 12>
In Example 11, Example 11 was repeated except that the silver fine particles used were changed to silver fine particles H. As a result, the specific resistance of the obtained conductive film was 32.6 μΩ · cm, and the contact resistance was 0.231Ω.

これより、添加剤としてゼラチンのような高分子のものを使用した場合、焼結性が阻害され、比抵抗が高くなってしまう。一方、添加剤の炭素数が少なすぎると、分散性が悪くなり凝集粒子となることで、ペースト作製、印刷、硬化後の塗膜において、充填性が悪くなり、比抵抗および、接触抵抗が悪くなる。したがって、凝集体ではなく、低温焼結性を有した平板状の銀微粒子を作製するためには、添加剤として炭素数が3〜10のものを使用するのがよい。   Accordingly, when a polymer such as gelatin is used as an additive, the sinterability is hindered and the specific resistance is increased. On the other hand, if the number of carbons in the additive is too small, dispersibility becomes poor and aggregated particles are formed, resulting in poor fillability and poor specific resistance and contact resistance in the coating film after paste preparation, printing and curing. Become. Accordingly, in order to produce flat silver particles having low temperature sinterability rather than aggregates, it is preferable to use those having 3 to 10 carbon atoms as additives.

本発明により得られた平板状の銀微粒子は、単独でペースト化しても良いが、公知の銀粒子と混合することで、比抵抗、接触抵抗共に低いペーストが得られる。そこで、公知の銀粒子との混合ペーストについての実施例を記載する。混合に使用した公知の銀粒子(銀粒子I乃至銀粒子L)を表2に示す(なお、DSEM−LはSEM像から算出した長手方向の粒子径の平均値、DSEM−TはSEM像から算出した厚み方向の粒子径の平均値、アスペクト比はDSEM−L/DSEM−Tで算出される値である)。The tabular silver fine particles obtained by the present invention may be made into a paste alone, but a paste having low specific resistance and contact resistance can be obtained by mixing with known silver particles. Then, the Example about the mixed paste with a well-known silver particle is described. Known silver particles (silver particles I to silver particles L) used for mixing are shown in Table 2 (D SEM-L is the average value of the particle diameter in the longitudinal direction calculated from the SEM image, and D SEM-T is SEM. The average value of the particle diameter in the thickness direction calculated from the image and the aspect ratio are values calculated by D SEM-L / D SEM-T ).

なお、銀粒子においては、必ずしも板状でない物も含まれる。銀粒子の形状が板状でない場合は、DSEM−LはSEM像から算出した粒子の長軸長さの平均値であり、DSEM−TはSEM像から算出した短軸長さの平均値を表す。In addition, in silver particle, the thing which is not necessarily plate shape is also contained. When the shape of the silver particles is not plate-like, D SEM-L is an average value of major axis lengths of particles calculated from SEM images, and D SEM-T is an average value of minor axis lengths calculated from SEM images. Represents.

Figure 0005969988
(ペースト作製)
表1、2で示した銀微粒子A乃至Iと銀粒子J乃至Mを用いて混合ペーストの評価を実施した。なお、銀微粒子と銀粒子をまとめて若しくはどちらか一方を呼ぶ場合は銀粉末ともよぶ。
Figure 0005969988
(Paste preparation)
The mixed paste was evaluated using the silver fine particles A to I and the silver particles J to M shown in Tables 1 and 2. In addition, when silver fine particles and silver particles are referred to collectively or one of them is referred to as silver powder.

<実施例12〜17>
実施例11において、使用した銀粉末を表3に記載の組み合わせとし、実施例11において銀微粒子Aを93.2gであったところを、銀微粒子および銀粒子の混合量をそれぞれ46.6g、合計93.2gとした以外は、実施例11を繰り返した。得られた比抵抗、接触抵抗を表3に合わせて記載している。
<Examples 12 to 17>
In Example 11, the silver powder used was a combination shown in Table 3, and in Example 11, the amount of silver fine particles A was 93.2 g, and the total amount of silver fine particles and silver particles was 46.6 g in total. Example 11 was repeated except that 93.2 g. The specific resistance and contact resistance obtained are shown in Table 3.

<比較例13、14>
実施例11において、使用した銀粉末を表3に記載の銀粉末(1種類の銀粒子)に変更した以外は、実施例11を繰り返した。得られた比抵抗、接触抵抗を表3に合わせて記載している。
<Comparative Examples 13 and 14>
In Example 11, Example 11 was repeated except that the silver powder used was changed to the silver powder (one type of silver particle) shown in Table 3. The specific resistance and contact resistance obtained are shown in Table 3.

<比較例15、16>
実施例11において、使用した銀粉末を表3に記載の組み合わせとし、銀粉末の混合量を各46.6g、合計93.2gとした以外は、実施例11を繰り返した。得られた比抵抗、接触抵抗を表3に合わせて記載した。
<Comparative Examples 15 and 16>
In Example 11, Example 11 was repeated except that the silver powder used was a combination shown in Table 3 and the mixed amount of the silver powder was 46.6 g each, for a total of 93.2 g. The obtained specific resistance and contact resistance are shown in Table 3.

Figure 0005969988
Figure 0005969988

比較例13および14で示すようにミクロンサイズの銀粒子を単独で用いてペーストを作製した場合、比抵抗、接触抵抗共に高い事が分かる。これに対して、実施例12〜17および比較例15〜16に示すように、大きさの異なる2種類の銀粉末を混合してペースト化する事で、比抵抗、接触抵抗共に低くなる結果となっている。   As shown in Comparative Examples 13 and 14, it can be seen that when a paste is prepared using silver particles of micron size alone, both the specific resistance and the contact resistance are high. On the other hand, as shown in Examples 12 to 17 and Comparative Examples 15 to 16, by mixing two types of silver powders having different sizes and making a paste, both the specific resistance and the contact resistance are reduced. It has become.

混合する微粒子に関して、比較例15のように平板状の銀粒子用いた場合、比抵抗を低くすることは可能であるが、接触抵抗は十分に低いとは言えない。また、比較例16のように球状の銀粒子を用いた場合、接触抵抗を低くすることは可能であるが、比抵抗は十分に低いとは言えない。   Regarding the fine particles to be mixed, when flat silver particles are used as in Comparative Example 15, the specific resistance can be lowered, but the contact resistance cannot be said to be sufficiently low. Moreover, when spherical silver particles are used as in Comparative Example 16, the contact resistance can be lowered, but the specific resistance cannot be said to be sufficiently low.

実施例12〜17のように、混合する微粒子を本明細書に記載の平板状の銀微粒子とすることで、比抵抗、接触抵抗共に低くすることが可能である。また、実施例17のように混合するミクロンサイズの銀粒子を球状としても同様に比抵抗、接触抵抗共に低くすることが可能となっている。この結果を図4にグラフで示す。   As in Examples 12 to 17, when the fine particles to be mixed are the flat silver fine particles described in this specification, both the specific resistance and the contact resistance can be lowered. Further, even when the micron-sized silver particles to be mixed are made spherical as in Example 17, both the specific resistance and the contact resistance can be lowered similarly. The results are shown graphically in FIG.

図4は比抵抗と接触抵抗の関係を示すグラフである。縦軸は接触抵抗(Ω)であり、横軸は比抵抗(μΩ・cm)である。なお、横軸は対数軸である。黒菱形が実施例であり、白四角が比較例である。黒菱形の実施例は比抵抗および接触抵抗共に低かったが、白四角の比較例は、いずれか一方若しくは両方の特性が高い結果であった。   FIG. 4 is a graph showing the relationship between specific resistance and contact resistance. The vertical axis represents contact resistance (Ω), and the horizontal axis represents specific resistance (μΩ · cm). The horizontal axis is a logarithmic axis. Black diamonds are examples, and white squares are comparative examples. In the black diamond example, both specific resistance and contact resistance were low, but in the white square comparative example, either one or both characteristics were high.

本発明によって、平板状の銀微粒子および銀微粒子を含有した導電性ペーストを得ることができ、200℃程度の処理温度で比抵抗値、接触抵抗値ともに良好な導電膜を得ることが可能となった。この事は、太陽電池やコンデンサー、RFIDといった分野において配線描画や電極形成に好適に利用が出来る。   According to the present invention, tabular silver fine particles and conductive paste containing silver fine particles can be obtained, and a conductive film having good specific resistance and contact resistance can be obtained at a processing temperature of about 200 ° C. It was. This can be suitably used for wiring drawing and electrode formation in fields such as solar cells, capacitors, and RFIDs.

Claims (7)

表面を被覆する有機物が酢酸もしくは没食子酸であり、前記有機物の被覆量が0.1質量%以上3.0質量%以下であり、SEM像から算出した厚み方向の粒子径の平均値(dSEM−T)が10〜200nmであり、長手方向の粒子径の平均値(dSEM−L)が60〜2,000nmであり、前記長手方向の粒子径の平均値(dSEM−L)と前記厚み方向の粒径の平均値(dSEM−T)の比(dSEM−L/dSEM−T)であるアスペクト比が2〜100であることを特徴とする平板状の銀微粒子粉末。 The organic material covering the surface is acetic acid or gallic acid, the organic material coating amount is 0.1% by mass or more and 3.0% by mass or less, and the average value of the particle diameter in the thickness direction calculated from the SEM image (d SEM -T ) is 10 to 200 nm, the average value of the particle diameter in the longitudinal direction (d SEM-L ) is 60 to 2,000 nm, the average value of the particle diameter in the longitudinal direction (d SEM-L ) and the above A flat silver fine particle powder having an aspect ratio of 2 to 100 which is a ratio (d SEM-L / d SEM-T ) of average values (d SEM-T ) of particle diameters in the thickness direction. 水溶性の銀化合物と水溶性の錯化剤と、ソルビン酸カリウムもしくは没食子酸水和物からなる添加剤とを水に加え、アスコルビン酸もしくはその誘導体あるいは異性体、ギ酸、シュウ酸、アセトアルデヒド、単糖類であるグルコース(ブドウ糖)、フルクトース(果糖)、二糖類であるマルトース(麦芽糖)、セロビオースから選択される1つの還元剤を添加して請求項1に記載された平板状の銀微粒子を生成させる、銀粒子粉末の製造方法。   A water-soluble silver compound, a water-soluble complexing agent, and an additive comprising potassium sorbate or gallic acid hydrate are added to water, and ascorbic acid or a derivative or isomer thereof, formic acid, oxalic acid, acetaldehyde, simple substance A plate-like silver fine particle according to claim 1 is produced by adding one reducing agent selected from sugar (glucose), fructose (fructose), disaccharide maltose (maltose), and cellobiose. The manufacturing method of silver particle powder. 前記錯化剤が、クエン酸塩である、請求項2に記載の銀粒子粉末の製造方法。   The method for producing a silver particle powder according to claim 2, wherein the complexing agent is citrate. 表面を被覆する有機物が酢酸若しくは没食子酸であり、前記有機物の被覆量が0.1質量%以上3.0質量%以下であり、SEM像から算出した厚み方向の粒子径の平均値(dSEM−T)が10〜200nmであり、長手方向の粒子径の平均値(dSEM−L)が60〜2,000nmであり、前記長手方向の粒子径の平均値(dSEM−L)と前記厚み方向の粒径の平均値(dSEM−T)の比(dSEM−L/dSEM−T)であるアスペクト比が2〜100であることを特徴とする平板状の銀微粒子粉末を含む銀ペースト。 The organic material covering the surface is acetic acid or gallic acid, the organic material coating amount is 0.1 mass% or more and 3.0 mass% or less, and the average value of the particle diameter in the thickness direction calculated from the SEM image (d SEM -T ) is 10 to 200 nm, the average value of the particle diameter in the longitudinal direction (d SEM-L ) is 60 to 2,000 nm, the average value of the particle diameter in the longitudinal direction (d SEM-L ) and the above A flat silver fine particle powder characterized by having an aspect ratio of 2 to 100, which is a ratio (d SEM-L / d SEM-T ) of average particle size values (d SEM-T ) in the thickness direction Silver paste. 請求項1に記載された平板状の銀微粒子粉末と共に、長手方向の粒子径の平均値(DSEM−L)が2.5〜15.0μmであり、かつ請求項1に記載の前記平板状の銀微粒子粉末のdSEM―Lに対して長手方向の粒子径の平均値(D SEM−L )が3〜50倍の大きさである銀粒子とを混合してなる銀ペースト。 With tabular silver fine powder according to claim 1, the longitudinal direction of the mean value of the particle diameter (D SEM-L) is 2.5~15.0Myuemu, and the flat of claim 1 A silver paste obtained by mixing silver particles having an average particle diameter (D SEM-L ) in the longitudinal direction of 3 to 50 times the d SEM-L of the silver fine particle powder. 請求項5に記載されている銀粒子の形状が平板状である銀ペースト。   A silver paste in which the shape of the silver particles described in claim 5 is flat. 請求項4ないし6のいずれかに記載の銀ペーストを用いて回路を印刷法により形成する印刷回路の製造方法。   A method for manufacturing a printed circuit, wherein the circuit is formed by a printing method using the silver paste according to claim 4.
JP2013512485A 2011-04-28 2012-04-27 Flat silver fine particles, method for producing the same, paste using the same, and method for producing a printed circuit using the paste Active JP5969988B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011100657 2011-04-28
JP2011100657 2011-04-28
PCT/JP2012/061448 WO2012147945A1 (en) 2011-04-28 2012-04-27 Tabular silver particle, manufacturing method therefor, paste using same, and printed circuit using paste

Publications (2)

Publication Number Publication Date
JPWO2012147945A1 JPWO2012147945A1 (en) 2014-07-28
JP5969988B2 true JP5969988B2 (en) 2016-08-17

Family

ID=47072456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013512485A Active JP5969988B2 (en) 2011-04-28 2012-04-27 Flat silver fine particles, method for producing the same, paste using the same, and method for producing a printed circuit using the paste

Country Status (3)

Country Link
JP (1) JP5969988B2 (en)
TW (2) TWI530963B (en)
WO (1) WO2012147945A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6366140B2 (en) 2012-11-29 2018-08-01 国立大学法人九州大学 Metal fine particle-containing structure
JP6168837B2 (en) * 2013-05-13 2017-07-26 国立大学法人東北大学 Copper fine particles and method for producing the same
CN105050755B (en) * 2013-06-25 2017-03-15 化研科技株式会社 The manufacture method of laminar argentum powder, conductive paste and laminar argentum powder
JP2015050120A (en) * 2013-09-03 2015-03-16 株式会社小森コーポレーション Functional membrane patterning method, electronic device producing method, and transparent conductive film
CN106029261A (en) * 2014-02-27 2016-10-12 学校法人关西大学 Copper nanoparticles and production method for same, copper nanoparticle fluid dispersion, copper nanoink, copper nanoparticle preservation method, and copper nanoparticle sintering method
JP6325878B2 (en) * 2014-04-22 2018-05-16 株式会社ノリタケカンパニーリミテド Method for producing tabular silver nanoparticles and composition containing tabular silver nanoparticles
JP6628351B2 (en) 2015-07-24 2020-01-08 国立大学法人大阪大学 Silver particle production method
JP6920029B2 (en) 2016-04-04 2021-08-18 日亜化学工業株式会社 Metal powder sintered paste and its manufacturing method, conductive material manufacturing method
JP6762848B2 (en) * 2016-11-02 2020-09-30 東洋アルミニウム株式会社 Paste composition
JP6859799B2 (en) * 2017-03-29 2021-04-14 三菱マテリアル株式会社 Paste-like silver powder composition, method for producing a bonded body, and method for producing a silver film
JP7090651B2 (en) * 2018-01-26 2022-06-24 日清エンジニアリング株式会社 Manufacturing method of silver fine particles and silver fine particles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196278A (en) * 2005-01-12 2006-07-27 Bando Chem Ind Ltd Composite particle dispersion and its manufacturing method
JP2006339057A (en) * 2005-06-03 2006-12-14 Nec Corp Resin metal composite conductive material, its manufacturing method, and electronic device using it
WO2007037440A1 (en) * 2005-09-29 2007-04-05 Alpha Scientific, Corporation Conductive powder and process for producing the same, conductive powder paste, and process for producing the conductive powder paste
WO2007105636A1 (en) * 2006-03-10 2007-09-20 Mitsui Mining & Smelting Co., Ltd. Process for production of ultrafine silver particles and ultrafine silver particles produced by the process
JP2009013449A (en) * 2007-07-02 2009-01-22 Mitsui Mining & Smelting Co Ltd Flat silver powder, method for producing flat silver powder, and electrically conductive paste
JP2009179879A (en) * 2008-01-06 2009-08-13 Dowa Electronics Materials Co Ltd Silver micropowder having excellent affinity for polar medium, and silver ink
JP2009221505A (en) * 2008-03-14 2009-10-01 Dowa Electronics Materials Co Ltd Silver nanoparticle coated with gallic acid or its derivative
JP2011080147A (en) * 2009-09-11 2011-04-21 Dowa Electronics Materials Co Ltd Joining material and joining method using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196278A (en) * 2005-01-12 2006-07-27 Bando Chem Ind Ltd Composite particle dispersion and its manufacturing method
JP2006339057A (en) * 2005-06-03 2006-12-14 Nec Corp Resin metal composite conductive material, its manufacturing method, and electronic device using it
WO2007037440A1 (en) * 2005-09-29 2007-04-05 Alpha Scientific, Corporation Conductive powder and process for producing the same, conductive powder paste, and process for producing the conductive powder paste
WO2007105636A1 (en) * 2006-03-10 2007-09-20 Mitsui Mining & Smelting Co., Ltd. Process for production of ultrafine silver particles and ultrafine silver particles produced by the process
JP2009013449A (en) * 2007-07-02 2009-01-22 Mitsui Mining & Smelting Co Ltd Flat silver powder, method for producing flat silver powder, and electrically conductive paste
JP2009179879A (en) * 2008-01-06 2009-08-13 Dowa Electronics Materials Co Ltd Silver micropowder having excellent affinity for polar medium, and silver ink
JP2009221505A (en) * 2008-03-14 2009-10-01 Dowa Electronics Materials Co Ltd Silver nanoparticle coated with gallic acid or its derivative
JP2011080147A (en) * 2009-09-11 2011-04-21 Dowa Electronics Materials Co Ltd Joining material and joining method using the same

Also Published As

Publication number Publication date
TW201603049A (en) 2016-01-16
TWI530963B (en) 2016-04-21
WO2012147945A1 (en) 2012-11-01
TWI530964B (en) 2016-04-21
TW201306049A (en) 2013-02-01
JPWO2012147945A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5969988B2 (en) Flat silver fine particles, method for producing the same, paste using the same, and method for producing a printed circuit using the paste
KR101354873B1 (en) Metal nanoparticles dispersion
JP5176824B2 (en) Silver-coated copper fine particles, dispersion thereof, and production method thereof
JP5898400B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
JP6241908B2 (en) Coated fine metal particles and production method thereof
WO2014080662A1 (en) Copper powder and method for producing same
JP2008198595A (en) Metal particulate ink paste and organic acid treated metal particulate
JP2008176951A (en) Silver-based particulate ink paste
EP3309798B1 (en) Surface-coated copper filler, method for producing same and conductive composition
JP2016028176A (en) Method for manufacturing copper powder
JP5424545B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
KR101643516B1 (en) Silver particle-containing composition, dispersion liquid, paste, and production method for each
JP6562196B2 (en) Copper fine particle sintered body and method for producing conductive substrate
WO2016152214A1 (en) Copper powder and conductive composition containing same
JP6446069B2 (en) Conductive fine particles
JP2007191752A (en) Tin-coated silver powder and method for producing the tin-coated silver powder
JP6605848B2 (en) Dispersion solution of surface-coated metal fine particles, and method for producing sintered conductor and conductive connecting member, including steps of applying and sintering this dispersion solution
JP5790433B2 (en) Silver powder and method for producing the same
JPWO2015122430A1 (en) Method for producing metal nanoparticles
JP2019214748A (en) Surface-coated metal fine particle and dispersion solution thereof
JP6776973B2 (en) Method for manufacturing surface-coated copper filler intermediate
JP5445659B2 (en) Silver-coated copper fine particles, dispersion thereof, and production method thereof
TW201906964A (en) Electrically conductive paste
JP2010082512A (en) Method for forming coating film by using metal fine particle dispersion liquid and coating film formed by using the dispersion liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160708

R150 Certificate of patent or registration of utility model

Ref document number: 5969988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250