JP5968046B2 - Semiconductor device and manufacturing method of semiconductor device - Google Patents

Semiconductor device and manufacturing method of semiconductor device Download PDF

Info

Publication number
JP5968046B2
JP5968046B2 JP2012100634A JP2012100634A JP5968046B2 JP 5968046 B2 JP5968046 B2 JP 5968046B2 JP 2012100634 A JP2012100634 A JP 2012100634A JP 2012100634 A JP2012100634 A JP 2012100634A JP 5968046 B2 JP5968046 B2 JP 5968046B2
Authority
JP
Japan
Prior art keywords
semiconductor chip
base plate
insulating substrate
solder
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012100634A
Other languages
Japanese (ja)
Other versions
JP2013229457A5 (en
JP2013229457A (en
Inventor
卓 楠
卓 楠
健嗣 大津
健嗣 大津
荒木 健
健 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012100634A priority Critical patent/JP5968046B2/en
Publication of JP2013229457A publication Critical patent/JP2013229457A/en
Publication of JP2013229457A5 publication Critical patent/JP2013229457A5/ja
Application granted granted Critical
Publication of JP5968046B2 publication Critical patent/JP5968046B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Description

この発明は、半導体装置に関わり、特に部材の接合に焼結銀を用いた半導体装置に関するものである。   The present invention relates to a semiconductor device, and more particularly to a semiconductor device using sintered silver for joining members.

高温動作する半導体素子の接合方法として、ナノ(またはマイクロ)銀粒子ペーストによる焼結接合が広く検討されている。しかしながら銀はマイグレーション感受性が高いことで知られている。接合体の耐マイグレーション性を向上させるために、接合体に添加元素を加え、銀を合金化する方法が検討されている(例えば特許文献1)。   As a method for bonding semiconductor elements that operate at high temperatures, sintered bonding using nano (or micro) silver particle paste has been widely studied. However, silver is known for its high migration sensitivity. In order to improve the migration resistance of the joined body, a method of adding an additive element to the joined body and alloying silver has been studied (for example, Patent Document 1).

特開2011−29472号公報JP 2011-29472 A

銀にCu,Pd,Pt,Auなどの添加元素を加えて合金化することにより耐マイグレーション性が向上することは一般的に知られているが、接合体に不純物を添加するため、本来、焼結銀が有する放熱性は低下する。このため、本発明は、銀粒子ペーストによる焼結接合において、放熱性の向上を目的にしている。   Although it is generally known that migration resistance is improved by adding an additive element such as Cu, Pd, Pt, or Au to silver to improve the resistance to migration. The heat dissipating property of silver is reduced. For this reason, this invention aims at the improvement of heat dissipation in the sintering joining by a silver particle paste.

この発明に係わる半導体装置は、金属製のベース板と、両面に金属膜が形成されていて、一方の金属膜がベース板にはんだ層を介在して接合されている絶縁基板と、絶縁基板のもう一方の金属膜の上に形成された第1の金層と、第2の金層が形成されていて、焼結銀層を介在して第1の金層に接合されている半導体チップと、焼結銀層の周りに形成されていて、はんだと銀からなる合金部と、合金部の周りに形成されていて、はんだの溶融物が固化してなる溶融はんだ部を備え、焼結銀層の面積と合金部の面積と溶融はんだ部の面積の和は、絶縁基板の面積よりも小さい。 A semiconductor device according to the present invention includes a metal base plate, an insulating substrate in which a metal film is formed on both surfaces, and one metal film is bonded to the base plate with a solder layer interposed therebetween, and an insulating substrate A first gold layer formed on the other metal film; a semiconductor chip on which a second gold layer is formed and bonded to the first gold layer with a sintered silver layer interposed therebetween; The sintered silver layer is formed around the sintered silver layer, and includes an alloy portion made of solder and silver, and a molten solder portion formed around the alloy portion and solidified by a melt of the solder. The sum of the area of the layer, the area of the alloy part, and the area of the molten solder part is smaller than the area of the insulating substrate.

半導体チップの直下部分の接合体が純銀成分のため放熱性を低下させることなく耐マイグレーション性が向上する。   Since the joined body immediately below the semiconductor chip is a pure silver component, the migration resistance is improved without deteriorating heat dissipation.

本発明にかかわる半導体装置を示す概略構成図である。1 is a schematic configuration diagram showing a semiconductor device according to the present invention. 本発明にかかわる半導体装置の別の形態を示す概略構成図である。It is a schematic block diagram which shows another form of the semiconductor device concerning this invention. 本発明の形態1による接合方法を示す模式図である。It is a schematic diagram which shows the joining method by the form 1 of this invention. 本発明の形態1によるペレットマウントの方法を示す模式図である。It is a schematic diagram which shows the method of the pellet mounting by the form 1 of this invention. 本発明の形態2による接合方法を示す模式図である。It is a schematic diagram which shows the joining method by the form 2 of this invention. 本発明の形態3による接合方法を示す模式図である。It is a schematic diagram which shows the joining method by the form 3 of this invention. 本発明の形態3によるペレットマウントの方法を示す模式図である。It is a schematic diagram which shows the method of the pellet mounting by the form 3 of this invention. 本発明の形態4による接合方法を示す模式図である。It is a schematic diagram which shows the joining method by the form 4 of this invention.

以下に本発明にかかる半導体装置およびその製造方法の実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。   Embodiments of a semiconductor device and a manufacturing method thereof according to the present invention will be described below in detail with reference to the drawings. In addition, this invention is not limited to the following description, In the range which does not deviate from the summary of this invention, it can change suitably.

実施の形態1.
図1に、本願に関わる半導体装置の全体構成を示す。パッケージタイプの半導体装置100は、半導体チップ1、電極付きセラミックス基板3、ベース板6、ワイヤボンド22、外部リード14、モールド樹脂15などから構成されている。半導体チップ1、電極付きセラミックス基板3、ベース板6、ワイヤボンド22はモールド樹脂15で樹脂封止されている。半導体装置100は、ボンディングの終わった半導体チップを金型にセットして、熱硬化性の樹脂を流し込んで成形される。
Embodiment 1 FIG.
FIG. 1 shows an overall configuration of a semiconductor device according to the present application. The package type semiconductor device 100 includes a semiconductor chip 1, a ceramic substrate with electrodes 3, a base plate 6, wire bonds 22, external leads 14, a mold resin 15, and the like. The semiconductor chip 1, the electrode-attached ceramic substrate 3, the base plate 6, and the wire bond 22 are resin-sealed with a mold resin 15. The semiconductor device 100 is molded by setting a bonded semiconductor chip in a mold and pouring a thermosetting resin.

図2に、本願に関わる半導体装置の別形態を示す。ケースタイプの半導体装置200は、半導体チップ1、電極付きセラミックス基板3、ベース板6、ワイヤボンド22、外部リード14、ケース31、蓋32などから構成されている。半導体チップ1、電極付きセラミックス基板3、ベース板6、ワイヤボンド22は封止樹脂33で樹脂封止されている。半導体装置200は、ベース付け、ケース付け、ボンディングの終わった半導体チップに熱硬化性の樹脂を流し込んで成形される。   FIG. 2 shows another embodiment of the semiconductor device according to the present application. The case type semiconductor device 200 includes a semiconductor chip 1, a ceramic substrate 3 with electrodes, a base plate 6, wire bonds 22, external leads 14, a case 31, a lid 32, and the like. The semiconductor chip 1, the electrode-attached ceramic substrate 3, the base plate 6, and the wire bond 22 are sealed with a sealing resin 33. The semiconductor device 200 is formed by pouring a thermosetting resin into a semiconductor chip after base attachment, case attachment, and bonding.

図3は本発明の実施の形態1に関わる半導体装置を得るための接合工程を示す模式図である。半導体チップ1と電極付きセラミックス基板3は焼結銀層2を介して接合されている。半導体チップ(厚さ0.3mm)1には5mm角の大きさのものを用いている。電極付きセラミックス基板3は、銅電極とSi3N4基板から構成されている。銅電極3aと銅電極3cは10mm角のSi3N4基板(厚さ0.5mm)3bにロウ付け処理されている。半導体チップ1と電極
付きセラミックス基板3は、マイクロ(またはナノ)銀粒子を含む焼結型銀ペースト20を使って接合される。
FIG. 3 is a schematic diagram showing a bonding process for obtaining the semiconductor device according to the first embodiment of the present invention. The semiconductor chip 1 and the electrode-attached ceramic substrate 3 are joined via the sintered silver layer 2. A semiconductor chip (thickness 0.3 mm) 1 having a size of 5 mm square is used. The ceramic substrate 3 with an electrode is composed of a copper electrode and a Si3N4 substrate. The copper electrode 3a and the copper electrode 3c are brazed to a 10 mm square Si3N4 substrate (thickness 0.5 mm) 3b. The semiconductor chip 1 and the electrode-attached ceramic substrate 3 are bonded using a sintered silver paste 20 containing micro (or nano) silver particles.

焼結型銀ペースト20は、半導体チップ1から露出するように、電極付きセラミックス基板3に塗布する。焼結型銀ペースト20の印刷サイズは、6mm×6mmとし、意図的に半導体チップ1のチップサイズより大きくし、かつ電極付きセラミックス基板3のサイズより小さくする。このため電極付きセラミックス基板3には周囲に余白が残されている。焼結型銀ペースト20を塗布後、半導体チップ1と電極付きセラミックス基板3は張り合わされる。張り合わした半導体チップ1と電極付きセラミックス基板3は昇温され、焼結が完了する。焼結銀層2の厚みは10μm〜100μmとした。   The sintered silver paste 20 is applied to the electrode-attached ceramic substrate 3 so as to be exposed from the semiconductor chip 1. The printing size of the sintered silver paste 20 is 6 mm × 6 mm, intentionally larger than the chip size of the semiconductor chip 1 and smaller than the size of the ceramic substrate 3 with electrode. For this reason, a margin is left around the ceramic substrate 3 with electrodes. After applying the sintered silver paste 20, the semiconductor chip 1 and the electrode-attached ceramic substrate 3 are bonded together. The bonded semiconductor chip 1 and electrode-attached ceramic substrate 3 are heated to complete the sintering. The thickness of the sintered silver layer 2 was 10 μm to 100 μm.

半導体チップ1は、珪素(Si)によって形成したものの他、珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体によって形成したものも好適に使用することができる。ワイドバンドギャップ半導体としては、例えば、炭化珪素(SiC)、窒化ガリウム系材料またはダイヤモンドがある。ワイドバンドギャップ半導体を用いた場合、許容電流密度が高く、電力損失も低いため、電力用半導体素子を用いた装置の小型化が可能となる。   As the semiconductor chip 1, in addition to those formed of silicon (Si), those formed of a wide band gap semiconductor having a band gap larger than that of silicon can be suitably used. Examples of the wide band gap semiconductor include silicon carbide (SiC), a gallium nitride material, and diamond. When a wide bandgap semiconductor is used, the allowable current density is high and the power loss is low, so that a device using the power semiconductor element can be downsized.

次に図4のように半導体チップ1が接合された電極付きセラミックス基板3に、厚さ0.1mmtのはんだ枠4を半導体チップ1が内枠内に収まるようにかぶせる。マウント時にはんだ枠4の内側が半導体チップ1の側面に接触しないように、はんだ枠4には開口部21を設ける。はんだ枠4の内枠寸法は5.3mm×5.3mm、外枠寸法は7mm×7mmとした。はんだ枠4は、Snを主成分とする鉛フリーのはんだペレットで構成し、Ag、Cu、Sb、In、Ni、Bi、Znなどを含む。鉛フリーはんだの代表例にはSn3銀0.5Cuを挙げることが出来る。はんだ枠4は、焼結銀層2の表面と接触するが半導体チップ1の外周には接触しない。   Next, as shown in FIG. 4, a 0.1 mm-thick solder frame 4 is placed on the ceramic substrate 3 with electrodes to which the semiconductor chip 1 is bonded so that the semiconductor chip 1 fits in the inner frame. An opening 21 is provided in the solder frame 4 so that the inner side of the solder frame 4 does not contact the side surface of the semiconductor chip 1 during mounting. The inner frame size of the solder frame 4 was 5.3 mm × 5.3 mm, and the outer frame size was 7 mm × 7 mm. The solder frame 4 is composed of lead-free solder pellets containing Sn as a main component, and includes Ag, Cu, Sb, In, Ni, Bi, Zn, and the like. A typical example of lead-free solder is Sn3 silver 0.5Cu. The solder frame 4 contacts the surface of the sintered silver layer 2 but does not contact the outer periphery of the semiconductor chip 1.

次にはんだ枠4と同程度の融点を有するはんだペレット5をベース板6にマウントし、その上にはんだ枠4がマウントされている電極付きセラミックス基板3をマウントする。はんだペレット5は、Snを主成分とする鉛フリーはんだで構成し、Ag、Cu、Sb、In、Ni、Bi、Znなどを含む。   Next, a solder pellet 5 having a melting point similar to that of the solder frame 4 is mounted on the base plate 6, and the electrode-attached ceramic substrate 3 on which the solder frame 4 is mounted is mounted thereon. The solder pellet 5 is made of lead-free solder containing Sn as a main component, and includes Ag, Cu, Sb, In, Ni, Bi, Zn, and the like.

次に半導体チップ1と電極付きセラミックス基板3とベース板6の一体物を還元性雰囲気でリフロー処理する。はんだペレット5が溶融し電極付きセラミックス基板3とベース板6とのはんだ接合が実行されベース板接合部7が形成される。同時に、半導体チップの外周部のはんだ枠4が溶融する。これにより、焼結銀層2のうち半導体チップ1から露出している部分は合金化して合金部8が形成される。半導体チップ1の内側の部分は外部と遮断された状態となる。この外部から遮断された部分は純銀からなる焼結銀で構成されている。還元性雰囲気は、電極付きセラミックス基板3とベース板6とのはんだ接合に有効であるとともに、はんだ枠4の溶融時にはんだの焼結銀への濡れ性を向上させる。リフロー後のベース板をモジュール用ケースに取り付け、ワイヤボンドを結線し、半導体装置を作製する。   Next, the integrated body of the semiconductor chip 1, the electrode-attached ceramic substrate 3 and the base plate 6 is reflowed in a reducing atmosphere. The solder pellets 5 are melted, and solder joining between the ceramic substrate 3 with electrode and the base plate 6 is executed to form the base plate joint 7. At the same time, the solder frame 4 on the outer periphery of the semiconductor chip is melted. As a result, a portion of the sintered silver layer 2 exposed from the semiconductor chip 1 is alloyed to form an alloy portion 8. The inner part of the semiconductor chip 1 is cut off from the outside. The portion cut off from the outside is composed of sintered silver made of pure silver. The reducing atmosphere is effective for solder joining between the ceramic substrate 3 with electrode and the base plate 6 and improves the wettability of the solder to the sintered silver when the solder frame 4 is melted. The base plate after reflow is attached to the module case, and wire bonds are connected to manufacture a semiconductor device.

次に比較例となる半導体装置の作成方法を説明する。合金粉末(Ag-20%Pd)を接合材として、5mm角の半導体チップ(厚さ0.3mm)を、両面に銅電極がロウ付け処理された10mm角のSi3N4セラミックス基板(厚さ0.5mm)と接合した。チップ接合されたセラミックス基板をはんだペレットを用い、還元性雰囲気でリフロー処理し、ベース板と接合した。リフロー後のベース板をモジュール用ケースに取り付け、ワイヤボンドを結線し、半導体装置の比較サンプル1を作製した。   Next, a method for manufacturing a semiconductor device as a comparative example will be described. With alloy powder (Ag-20% Pd) as a bonding material, a 5mm square semiconductor chip (thickness 0.3mm) and a 10mm square Si3N4 ceramic substrate (thickness 0.5mm) with copper electrodes brazed on both sides Joined. The chip-bonded ceramic substrate was reflowed in a reducing atmosphere using solder pellets and bonded to the base plate. The base plate after the reflow was attached to the module case, and wire bonds were connected to produce a comparative sample 1 of the semiconductor device.

2つのサンプルをパワーサイクル試験にかけて、チップ表面の到達温度をサーモビュアーで計測した。その結果、実施の形態1にかかわる半導体装置のチップ表面の温度は比較サンプル1よりも5℃低い結果となった。以上のように本発明によれば、半導体装置の放熱性を維持したまま、耐マイグレーション性を向上させることができる。   Two samples were subjected to a power cycle test, and the temperature reached on the chip surface was measured with a thermoviewer. As a result, the temperature of the chip surface of the semiconductor device according to the first embodiment was 5 ° C. lower than that of the comparative sample 1. As described above, according to the present invention, it is possible to improve the migration resistance while maintaining the heat dissipation of the semiconductor device.

実施の形態2.
図5は本発明の実施の形態2に関わる半導体装置を得るための接合工程を示す模式図である。接合された半導体チップ1と電極付きセラミックス基板3を鉛フリーのはんだペレット5を介在させてベース板6に載置する。はんだペレット5と同程度の融点を有する厚さ0.1mmtのはんだ枠4を、半導体チップ1が内枠内に収まるようにマウントする。次に半導体チップ1と電極付きセラミックス基板3とベース板6の一体物を還元性雰囲気でリフロー処理する。実施の形態2によれば、実施の形態1と同様に、半導体装置の放熱性を維持したまま、耐マイグレーション性を向上させることができる。
Embodiment 2. FIG.
FIG. 5 is a schematic diagram showing a bonding process for obtaining a semiconductor device according to the second embodiment of the present invention. The bonded semiconductor chip 1 and ceramic substrate 3 with electrodes are placed on the base plate 6 with lead-free solder pellets 5 interposed. A 0.1 mm thick solder frame 4 having the same melting point as that of the solder pellet 5 is mounted so that the semiconductor chip 1 can be accommodated in the inner frame. Next, the integrated body of the semiconductor chip 1, the electrode-attached ceramic substrate 3 and the base plate 6 is subjected to a reflow process in a reducing atmosphere. According to the second embodiment, as in the first embodiment, it is possible to improve the migration resistance while maintaining the heat dissipation of the semiconductor device.

実施の形態3.
図6は本発明の実施の形態3に関わる半導体装置を得るための接合工程を示す模式図である。半導体チップ(厚さ0.3mm)1は、5mm角のものを用い、裏面にAuメタライズ層12を形成する。電極付きセラミックス基板3は、10mm角のSi3N4基板(厚さ0.5mm)の両面に銅電極3aと銅電極3cをロウ付け処理した構造を有している。銅電極3aの接合領域付近には厚さ1μmのAuめっき層9を形成する。Auめっき層9の面積は半導体チップ1の面
積よりも大きいが、電極付きセラミックス基板3の面積よりも小さいため、極付きセラミックス基板3の周囲には余白が残されている。半導体チップ1と電極付きセラミックス基板3はマイクロ(またはナノ)銀粒子を含む焼結型銀ペーストを用いて張り合わせる。焼結型銀ペーストの印刷サイズは、焼結銀層2が半導体チップ1の内側に収まるように4.8mm×4.8mmとした。焼結銀層2の厚みは10〜100μmとした。
Embodiment 3 FIG.
FIG. 6 is a schematic view showing a bonding process for obtaining a semiconductor device according to the third embodiment of the present invention. A semiconductor chip (thickness 0.3 mm) 1 is 5 mm square, and an Au metallized layer 12 is formed on the back surface. The ceramic substrate 3 with an electrode has a structure in which a copper electrode 3a and a copper electrode 3c are brazed on both sides of a 10 mm square Si3N4 substrate (thickness 0.5 mm). An Au plating layer 9 having a thickness of 1 μm is formed in the vicinity of the bonding region of the copper electrode 3a. Although the area of the Au plating layer 9 is larger than the area of the semiconductor chip 1 but smaller than the area of the electrode-attached ceramic substrate 3, a blank is left around the electrode-attached ceramic substrate 3. The semiconductor chip 1 and the electrode-attached ceramic substrate 3 are bonded together using a sintered silver paste containing micro (or nano) silver particles. The printing size of the sintered silver paste was set to 4.8 mm × 4.8 mm so that the sintered silver layer 2 fits inside the semiconductor chip 1. The thickness of the sintered silver layer 2 was 10 to 100 μm.

次に半導体チップ1が接合された電極付きセラミックス基板3に、厚さ0.1mmtの鉛フリーはんだで構成されるはんだ枠4を半導体チップ1が内枠内に収まるようにマウントする(図7参照)。はんだ枠4の大きさは、マウント時に半導体チップの側面に接触しないように内枠5.3mm×5.3mm、外枠7mm×7mmとした。はんだ枠4は、Snを主成分とするペレット状はんだで構成され、Ag、Cu、Sb、In、Ni、Bi、Znなどを含む。   Next, a solder frame 4 made of lead-free solder having a thickness of 0.1 mm is mounted on the electrode-attached ceramic substrate 3 to which the semiconductor chip 1 is bonded so that the semiconductor chip 1 fits in the inner frame (see FIG. 7). . The size of the solder frame 4 was set to 5.3 mm × 5.3 mm for the inner frame and 7 mm × 7 mm for the outer frame so as not to contact the side surface of the semiconductor chip during mounting. The solder frame 4 is composed of pelletized solder containing Sn as a main component, and includes Ag, Cu, Sb, In, Ni, Bi, Zn, and the like.

次にはんだ枠4と同程度の融点を有する鉛フリーのはんだペレット5をベース板6にマウントし、さらに、その上にチップ接合され且つはんだ枠4がマウントされている電極付きセラミックス基板3をマウントする。はんだペレット5は、Snを主成分とし、Ag、Cu、Sb、In、Ni、Bi、Znなどを含む。   Next, a lead-free solder pellet 5 having a melting point similar to that of the solder frame 4 is mounted on the base plate 6, and the ceramic substrate 3 with an electrode on which the chip frame is bonded and the solder frame 4 is mounted is mounted thereon. To do. The solder pellet 5 is mainly composed of Sn and contains Ag, Cu, Sb, In, Ni, Bi, Zn, and the like.

次にベース板を還元性雰囲気でリフロー処理し、電極付きセラミックス基板3とベース板6のはんだ接合を実行するとともに半導体チップ1の外周部のはんだを溶融し、半導体チップの外周部をはんだで被覆する。リフロー後のベース板6をモジュール用ケースに取り付け、ワイヤボンドで結線し、実施の形態3に関わる半導体装置を作製する。   Next, the base plate is subjected to reflow treatment in a reducing atmosphere, soldering of the ceramic substrate 3 with electrode and the base plate 6 is performed, the solder on the outer periphery of the semiconductor chip 1 is melted, and the outer periphery of the semiconductor chip is covered with the solder To do. The base plate 6 after reflow is attached to the module case and connected by wire bonding, and the semiconductor device according to the third embodiment is manufactured.

比較例となる半導体装置の作成方法を説明する。両面に銅電極がロウ付け処理された、10mm角のセラミックス基板(Si3N4;厚さ0.5mm)に、厚さ1μmの部分Auめっきを基板の接合領域に施した。合金粉末(Ag-20%Pd)を接合材として、5mm角の半導体チップ(厚さ0.3mm)をセラミックス基板に接合した。チップ接合されたセラミックス基板をはんだペレットを用い、還元性雰囲気でリフロー処理し、ベース板と接合した。リフロー後のベース板をモジュール用ケースに取り付け、ワイヤボンド結線し、半導体装置の比較サンプル2を作製した。   A method for manufacturing a semiconductor device as a comparative example will be described. A 10-mm square ceramic substrate (Si3N4; thickness 0.5 mm) with copper electrodes brazed on both sides was subjected to partial Au plating with a thickness of 1 μm in the bonding area of the substrate. A 5 mm square semiconductor chip (thickness 0.3 mm) was bonded to the ceramic substrate using the alloy powder (Ag-20% Pd) as a bonding material. The chip-bonded ceramic substrate was reflowed in a reducing atmosphere using solder pellets and bonded to the base plate. The base plate after reflow was attached to the module case and wire-bonded to produce a comparative sample 2 of the semiconductor device.

2つのサンプルをパワーサイクル試験にかけて、チップ表面の到達温度をサーモビュアーで計測した。その結果、実施の形態3に関わる半導体装置のチップ表面の温度は、比較サンプル2よりも5℃低い結果となった。以上のように本発明によれば、半導体装置の放熱性を維持したまま、耐マイグレーション性を向上させることができる。   Two samples were subjected to a power cycle test, and the temperature reached on the chip surface was measured with a thermoviewer. As a result, the temperature of the chip surface of the semiconductor device according to the third embodiment was 5 ° C. lower than that of the comparative sample 2. As described above, according to the present invention, it is possible to improve the migration resistance while maintaining the heat dissipation of the semiconductor device.

実施の形態のメカニズムについて以下に補足説明する。接合領域に施されたAuめっき層9により、焼結銀の存在しない未接合領域の濡れ性が向上する。この効果により、溶融はんだは半導体チップ1と電極付きセラミックス基板3の間隙に導かれる。溶融はんだは容易に半導体チップ内の焼結銀層2に到達し、チップ内に収められた焼結銀の界面近傍で焼結銀と固溶し、組成Sn/Agを有する合金部8が形成される。半導体チップの裏面のAuメタ
ライズ層12により、溶融はんだはチップ内の焼結銀層2に到達した後、チップ裏面のAuメタライズ層12に達し、濡れ広がり、半導体チップと電極付きセラミックス基板の間隙を完全に埋める。半導体チップの外周部分は、銀と合金化していない溶融はんだ部10により被覆される。
The mechanism of the embodiment will be supplementarily described below. The Au plating layer 9 applied to the bonded region improves the wettability of the unbonded region where no sintered silver is present. Due to this effect, the molten solder is guided to the gap between the semiconductor chip 1 and the electrode-attached ceramic substrate 3. The molten solder easily reaches the sintered silver layer 2 in the semiconductor chip and is solid-solved with the sintered silver near the interface of the sintered silver contained in the chip to form an alloy part 8 having the composition Sn / Ag. Is done. By the Au metallized layer 12 on the back surface of the semiconductor chip, the molten solder reaches the sintered silver layer 2 in the chip, and then reaches the Au metallized layer 12 on the back surface of the chip, soaking and spreading. Fill completely. The outer peripheral portion of the semiconductor chip is covered with a molten solder portion 10 that is not alloyed with silver.

このようにAuめっき層9は、半導体チップ1と電極付きセラミックス基板3との隙間を埋める効果が要求される。Auめっき層9を電極付きセラミックス基板3の全面に形成した場合、溶融はんだが導かれる方向が半導体チップ1の外側方向にも生じるため、隙間を埋めることが難しくなる。このことからAuめっき層9は部分めっきである必要がある。実施の形態3では、Auめっき層9のサイズをはんだ枠4と同サイズの7mm×7mmとした。Auめっき層9の厚みは、半導体チップ1を電極付きセラミックス基板3に接合する際の熱拡散の影響による濡れ性の低下を防止するため1μm以上は必要である。   Thus, the Au plating layer 9 is required to fill the gap between the semiconductor chip 1 and the electrode-attached ceramic substrate 3. When the Au plating layer 9 is formed on the entire surface of the ceramic substrate 3 with electrodes, the direction in which the molten solder is guided also occurs in the outer direction of the semiconductor chip 1, so that it becomes difficult to fill the gap. For this reason, the Au plating layer 9 needs to be partially plated. In the third embodiment, the size of the Au plating layer 9 is 7 mm × 7 mm which is the same size as the solder frame 4. The thickness of the Au plating layer 9 is required to be 1 μm or more in order to prevent a decrease in wettability due to the influence of thermal diffusion when the semiconductor chip 1 is bonded to the ceramic substrate 3 with electrodes.

実施の形態1、2では焼結銀層2が溶融はんだと合金化されつつも、断面構造的に半導
体チップ1の外側に存在する。一方、実施の形態3では焼結銀層2が完全に半導体チップ1の内側に収められているため、実施の形態1、2よりも、マイグレーションがより起こ
りにくい。また間隙がはんだで埋められているため、ヒートサイクル耐性を損なうことなく耐マイグレーション性の向上が見込める。
In the first and second embodiments, the sintered silver layer 2 exists outside the semiconductor chip 1 in a cross-sectional structure while being alloyed with the molten solder. On the other hand, since the sintered silver layer 2 is completely contained inside the semiconductor chip 1 in the third embodiment, migration is less likely to occur than in the first and second embodiments. In addition, since the gap is filled with solder, an improvement in migration resistance can be expected without impairing heat cycle resistance.

実施の形態4.
図8は本発明の実施の形態4に関わる半導体装置を得るための接合工程を示す模式図で
ある。実施の形態3と同様に半導体チップ1が接合された電極付きセラミックス基板3を鉛フリーのはんだペレット5を介在させてベース板6に載置する。はんだペレット5と同程度の融点を有する厚さ0.1mmtのはんだ枠4を半導体チップ1が内枠内に収まるようにマウントする。次に半導体チップ1と電極付きセラミックス基板3とベース板6の一体物を還元性雰囲気でリフロー処理する。実施の形態4によれば、実施の形態3と同様に、半導体装置の放熱性を維持したまま、耐マイグレーション性を向上させることができる。
Embodiment 4 FIG.
FIG. 8 is a schematic diagram showing a bonding process for obtaining a semiconductor device according to the fourth embodiment of the present invention. Similarly to the third embodiment, the electrode-attached ceramic substrate 3 to which the semiconductor chip 1 is bonded is placed on the base plate 6 with the lead-free solder pellets 5 interposed therebetween. A solder frame 4 having a melting point comparable to that of the solder pellet 5 and having a thickness of 0.1 mm is mounted so that the semiconductor chip 1 fits in the inner frame. Next, the integrated body of the semiconductor chip 1, the electrode-attached ceramic substrate 3 and the base plate 6 is subjected to a reflow process in a reducing atmosphere. According to the fourth embodiment, as in the third embodiment, the migration resistance can be improved while maintaining the heat dissipation of the semiconductor device.

半導体チップ1にSiCを用いた場合、半導体装置100、200はその特徴を生かすべくSiの時と比較してより高温で動作させることになる。SiCデバイスを搭載する半導体装置においては、半導体装置としてより高い信頼性が求められるため、高信頼の半導体装置を実現するという本発明のメリットはより効果的なものとなる。   When SiC is used for the semiconductor chip 1, the semiconductor devices 100 and 200 are operated at a higher temperature than in the case of Si in order to take advantage of the characteristics. In a semiconductor device on which an SiC device is mounted, since higher reliability is required as a semiconductor device, the merit of the present invention for realizing a highly reliable semiconductor device becomes more effective.

なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。   It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

1 半導体チップ、2 焼結銀層、3 電極付きセラミックス基板、4 はんだ枠、5
はんだペレット、6 ベース板、7 ベース板接合部、8 合金部、9 Auめっき層、10 溶融はんだ、12 Auメタライズ層、20 焼結型銀ペースト、21 開口部、100 半導体装置、200 半導体装置
1 Semiconductor chip, 2 sintered silver layer, 3 ceramic substrate with electrodes, 4 solder frame, 5
Solder pellet, 6 base plate, 7 base plate joint, 8 alloy part, 9 Au plating layer, 10 molten solder, 12 Au metallized layer, 20 sintered silver paste, 21 opening, 100 semiconductor device, 200 semiconductor device

Claims (9)

金属製のベース板と、
両面に金属膜が形成されていて、一方の金属膜が前記ベース板にはんだ層を介在して接合されている絶縁基板と、
前記絶縁基板のもう一方の金属膜の上に形成された第1の金層と、
第2の金層が形成されていて、焼結銀層を介在して前記第1の金層に接合されている半導体チップと、
前記焼結銀層の周りに形成されていて、はんだと銀からなる合金部と、
前記合金部の周りに形成されていて、はんだの溶融物が固化してなる溶融はんだ部を備え、
前記焼結銀層の面積と前記合金部の面積と前記溶融はんだ部の面積の和は、前記絶縁基板の面積よりも小さいことを特徴とする半導体装置。
A metal base plate,
A metal film is formed on both surfaces, and one metal film is bonded to the base plate via a solder layer;
A first gold layer formed on the other metal film of the insulating substrate;
A semiconductor chip formed with a second gold layer and bonded to the first gold layer via a sintered silver layer;
Formed around the sintered silver layer, and an alloy portion made of solder and silver;
It is formed around the alloy part, and comprises a molten solder part formed by solidifying a solder melt,
The sum of the area of the sintered silver layer, the area of the alloy part, and the area of the molten solder part is smaller than the area of the insulating substrate.
前記半導体チップは、ケイ素に比べてバンドギャップが大きい、ワイドバンドギャップ半導体により形成されていることを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1 , wherein the semiconductor chip is formed of a wide band gap semiconductor having a larger band gap than silicon . 前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム系材料、ダイヤモンドのいずれかの半導体であることを特徴とする請求項2に記載の半導体装置。 3. The semiconductor device according to claim 2 , wherein the wide band gap semiconductor is one of silicon carbide, a gallium nitride material, and diamond. 金属膜が両面に形成されている絶縁基板の片側に、周囲に余白を残して銀ペーストを塗布する第1工程と、
前記第1工程で塗布された銀ペーストよりも面積が小さい半導体チップを用意し、前記半導体チップと前記絶縁基板を前記銀ペーストを介在させて張り合わせる第2工程と、
前記第2工程で張り合わされた絶縁基板と半導体チップを前記銀ペーストの焼結温度まで昇温し、前記絶縁基板と前記半導体チップとの接合体を得る第3工程と、
前記半導体チップよりも面積が大きくかつ前記銀ペーストよりも面積が小さい開口部が設けられているはんだ枠を前記第3工程で得られた接合体にかぶせる第4工程と、
前記第4工程ではんだ枠がかぶせられた接合体を金属製のベース板にはんだ層を介在させて載置し、前記接合体と前記ベース板との一体物を得る第5工程と、
前記第5工程で得られた接合体とベース板との一体物を加熱し、前記接合体と前記ベース板とを接合する第6工程とを備えていることを特徴とする半導体装置の製造方法。
A first step of applying a silver paste on one side of an insulating substrate having a metal film formed on both sides, leaving a margin around the periphery;
Preparing a semiconductor chip having a smaller area than the silver paste applied in the first step, and bonding the semiconductor chip and the insulating substrate with the silver paste interposed therebetween;
A third step of heating the insulating substrate and the semiconductor chip bonded together in the second step to a sintering temperature of the silver paste to obtain a bonded body of the insulating substrate and the semiconductor chip;
A fourth step of covering the joined body obtained in the third step with a solder frame having an opening larger in area than the semiconductor chip and smaller in area than the silver paste;
A fifth step of placing the joined body covered with the solder frame in the fourth step with a solder layer interposed on a metal base plate, and obtaining an integrated body of the joined body and the base plate;
A method for manufacturing a semiconductor device, comprising: a sixth step of heating an integrated body of the joined body and the base plate obtained in the fifth step and joining the joined body and the base plate. .
金属膜が両面に形成されている絶縁基板の片側に、周囲に余白を残して銀ペーストを塗布する第1工程と、
前記第1工程で塗布された銀ペーストよりも面積が小さい半導体チップを用意し、前記半導体チップと前記絶縁基板を前記銀ペーストを介在させて張り合わせる第2工程と、
前記第2工程で張り合わされた絶縁基板と半導体チップを前記銀ペーストの焼結温度まで昇温し、前記絶縁基板と前記半導体チップとの接合体を得る第3工程と、
はんだ層を介在させて前記第3工程で得られた接合体を金属製のベース板に載置し、前記接合体と前記ベース板との一体物を得る第4工程と、
前記半導体チップよりも面積が大きくかつ前記銀ペーストよりも面積が小さい開口部が設けられているはんだ枠を前記第4工程で得られる一体物にかぶせる第5工程と、
前記第5工程を経た接合体とベース板との一体物を加熱し、前記接合体と前記ベース板とを接合する第6工程とを備えていることを特徴とする半導体装置の製造方法。
A first step of applying a silver paste on one side of an insulating substrate having a metal film formed on both sides, leaving a margin around the periphery;
Preparing a semiconductor chip having a smaller area than the silver paste applied in the first step, and bonding the semiconductor chip and the insulating substrate with the silver paste interposed therebetween;
A third step of heating the insulating substrate and the semiconductor chip bonded together in the second step to a sintering temperature of the silver paste to obtain a bonded body of the insulating substrate and the semiconductor chip;
A fourth step of placing the joined body obtained in the third step with a solder layer interposed therebetween on a metal base plate to obtain an integrated body of the joined body and the base plate;
A fifth step of covering the integrated body obtained in the fourth step with a solder frame having an opening larger in area than the semiconductor chip and smaller in area than the silver paste;
A method of manufacturing a semiconductor device, comprising: a sixth step of heating an integrated body of the joined body and the base plate that has undergone the fifth step to join the joined body and the base plate.
金属膜が両面に形成されている絶縁基板の片側に、周囲に余白を残して第1の金層を形成する第1工程と、
前記第1工程で第1の金層が形成された絶縁基板と前記第1の金層よりも面積が小さく片面に第2の金層が形成されている半導体チップを、前記第1の金層と前記第2の金層を向き合わせて、かつ前記半導体チップよりも面積が小さい銀ペーストを介在させて、張り合わせる第2工程と、
前記第2工程で張り合わされた絶縁基板と半導体チップを前記銀ペーストの焼結温度まで昇温し、前記絶縁基板と前記半導体チップとの接合体を得る第3工程と、
前記半導体チップよりも面積が大きくかつ前記第1の金層よりも面積が小さい開口部が設けられているはんだ枠を前記第3工程で得られた接合体にかぶせる第4工程と、
前記第4工程ではんだ枠がかぶせられた接合体を金属製のベース板にはんだ層を介在させて載置し、前記接合体と前記ベース板との一体物を得る第5工程と、
前記第5工程で得られた接合体とベース板との一体物を加熱し、前記接合体と前記ベース板とを接合する第6工程とを備えていることを特徴とする半導体装置の製造方法。
A first step of forming a first gold layer on one side of an insulating substrate having a metal film formed on both sides, leaving a margin around it;
An insulating substrate on which the first gold layer is formed in the first step and a semiconductor chip having a smaller area than the first gold layer and a second gold layer formed on one side are formed on the first gold layer. And a second step of laminating the second gold layer facing each other and interposing a silver paste having a smaller area than the semiconductor chip,
A third step of heating the insulating substrate and the semiconductor chip bonded together in the second step to a sintering temperature of the silver paste to obtain a bonded body of the insulating substrate and the semiconductor chip;
A fourth step of covering the joined body obtained in the third step with a solder frame having an opening larger in area than the semiconductor chip and smaller in area than the first gold layer;
A fifth step of placing the joined body covered with the solder frame in the fourth step with a solder layer interposed on a metal base plate, and obtaining an integrated body of the joined body and the base plate;
A method for manufacturing a semiconductor device, comprising: a sixth step of heating an integrated body of the joined body and the base plate obtained in the fifth step and joining the joined body and the base plate. .
金属膜が両面に形成されている絶縁基板の片側に、周囲に余白を残して第1の金層を形成する第1工程と、
前記第1工程で第1の金層が形成された絶縁基板と前記第1の金層よりも面積が小さく片面に第2の金層が形成されている半導体チップを、前記第1の金層と前記第2の金層を向き合わせて、かつ前記半導体チップよりも面積が小さい銀ペーストを介在させて、張り合わせる第2工程と、
前記第2工程で張り合わされた絶縁基板と半導体チップを前記銀ペーストの焼結温度まで昇温し、前記絶縁基板と前記半導体チップとの接合体を得る第3工程と、
はんだ層を介在させて前記第3工程で得られた接合体を金属製のベース板に載置し、前記接合体と前記ベース板との一体物を得る第4工程と、
前記半導体チップよりも面積が大きくかつ前記第1の金層よりも面積が小さい開口部が設けられているはんだ枠を前記第4工程で得られる一体物の接合体にかぶせる第5工程と、前記第5工程を経た接合体とベース板との一体物を加熱し、前記接合体と前記ベース板とを接合する第6工程とを備えていることを特徴とする半導体装置の製造方法。
A first step of forming a first gold layer on one side of an insulating substrate having a metal film formed on both sides, leaving a margin around it;
An insulating substrate on which the first gold layer is formed in the first step and a semiconductor chip having a smaller area than the first gold layer and a second gold layer formed on one side are formed on the first gold layer. And a second step of laminating the second gold layer facing each other and interposing a silver paste having a smaller area than the semiconductor chip,
A third step of heating the insulating substrate and the semiconductor chip bonded together in the second step to a sintering temperature of the silver paste to obtain a bonded body of the insulating substrate and the semiconductor chip;
A fourth step of placing the joined body obtained in the third step with a solder layer interposed therebetween on a metal base plate to obtain an integrated body of the joined body and the base plate;
A fifth step in which a solder frame having an opening larger in area than the semiconductor chip and smaller in area than the first gold layer is placed on the unitary joint obtained in the fourth step; and A method of manufacturing a semiconductor device, comprising: a sixth step of heating an integrated body of the joined body and the base plate that has undergone the fifth step to join the joined body and the base plate.
前記半導体チップは、ケイ素に比べてバンドギャップが大きい、ワイドバンドギャップ半導体により形成されていることを特徴とする請求項4から7のいずれか1項に記載の半導体装置の製造方法。 8. The method of manufacturing a semiconductor device according to claim 4 , wherein the semiconductor chip is formed of a wide band gap semiconductor having a band gap larger than that of silicon . 9. 前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム系材料、ダイヤモンドのいずれかの半導体であることを特徴とする請求項8に記載の半導体装置の製造方法。 9. The method of manufacturing a semiconductor device according to claim 8 , wherein the wide band gap semiconductor is one of silicon carbide, a gallium nitride-based material, and diamond.
JP2012100634A 2012-04-26 2012-04-26 Semiconductor device and manufacturing method of semiconductor device Expired - Fee Related JP5968046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012100634A JP5968046B2 (en) 2012-04-26 2012-04-26 Semiconductor device and manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012100634A JP5968046B2 (en) 2012-04-26 2012-04-26 Semiconductor device and manufacturing method of semiconductor device

Publications (3)

Publication Number Publication Date
JP2013229457A JP2013229457A (en) 2013-11-07
JP2013229457A5 JP2013229457A5 (en) 2014-12-25
JP5968046B2 true JP5968046B2 (en) 2016-08-10

Family

ID=49676805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012100634A Expired - Fee Related JP5968046B2 (en) 2012-04-26 2012-04-26 Semiconductor device and manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5968046B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265693B2 (en) * 2013-11-12 2018-01-24 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP2015216160A (en) * 2014-05-08 2015-12-03 三菱電機株式会社 Electric power semiconductor device and manufacturing method of electric power semiconductor device
CN106463600A (en) * 2014-05-16 2017-02-22 国立研究开发法人产业技术综合研究所 Thermoelectric conversion element and thermoelectric conversion module
JP2018098219A (en) * 2015-03-18 2018-06-21 株式会社日立製作所 Semiconductor device and manufacturing method of the same
JP6917127B2 (en) * 2016-08-23 2021-08-11 ローム株式会社 Semiconductor devices and power modules
DE102016118784A1 (en) 2016-10-04 2018-04-05 Infineon Technologies Ag Chip carrier, configured for delamination-free encapsulation and stable sintering
JP6991950B2 (en) * 2018-09-26 2022-01-13 日立Astemo株式会社 Power module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904767B2 (en) * 2005-10-17 2012-03-28 富士電機株式会社 Semiconductor device
JP2011029472A (en) * 2009-07-28 2011-02-10 Hitachi Metals Ltd Junction material, method of mounting semiconductor using the same, and semiconductor device

Also Published As

Publication number Publication date
JP2013229457A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
JP5968046B2 (en) Semiconductor device and manufacturing method of semiconductor device
US8643185B2 (en) Semiconductor apparatus, manufacturing method of semiconductor apparatus, and joint material
CN103035601B (en) Include the semiconductor devices of Diffusion Welding layer on sintering silver layer
JP4262672B2 (en) Semiconductor device and manufacturing method thereof
TWI523724B (en) A bonding material, a method for producing the same, and a method of manufacturing the bonding structure
JP2012174927A (en) Semiconductor device and manufacturing method of the same
CN108475647B (en) Power semiconductor device and method for manufacturing power semiconductor device
JP5578326B2 (en) Lead component, manufacturing method thereof, and semiconductor package
JP5659663B2 (en) Semiconductor device and manufacturing method of semiconductor device
KR101609495B1 (en) Semiconductor device and fabrication method for semiconductor device
JP2006066716A (en) Semiconductor device
WO2010047010A1 (en) Semiconductor device and method for manufacturing the same
JP2005340268A (en) Transistor package
JP2011243752A (en) Semiconductor device manufacturing method, internal semiconductor connection member, and internal semiconductor connection member group
JP2005129886A (en) Semiconductor device and its manufacturing method
JP2008235531A (en) Package for hermetic sealing, and connection structure
CN111433910B (en) Semiconductor device and method for manufacturing semiconductor device
JP2005236019A (en) Manufacturing method of semiconductor device
JP6011410B2 (en) Semiconductor device assembly, power module substrate and power module
CN112951786A (en) Solder material, layer structure and forming method thereof, chip package and forming method thereof, chip arrangement and forming method thereof
JP5898575B2 (en) Semiconductor device
TWI555125B (en) Method for manufacturing package of power module
JP3850313B2 (en) Semiconductor device
TWI745572B (en) Electronic parts installation module
JP7320446B2 (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160705

R151 Written notification of patent or utility model registration

Ref document number: 5968046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees