JP5959423B2 - Aluminum alloy foil - Google Patents

Aluminum alloy foil Download PDF

Info

Publication number
JP5959423B2
JP5959423B2 JP2012263918A JP2012263918A JP5959423B2 JP 5959423 B2 JP5959423 B2 JP 5959423B2 JP 2012263918 A JP2012263918 A JP 2012263918A JP 2012263918 A JP2012263918 A JP 2012263918A JP 5959423 B2 JP5959423 B2 JP 5959423B2
Authority
JP
Japan
Prior art keywords
less
foil
aluminum alloy
solid solution
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012263918A
Other languages
Japanese (ja)
Other versions
JP2014109057A (en
Inventor
田中 宏樹
宏樹 田中
徹也 本居
徹也 本居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2012263918A priority Critical patent/JP5959423B2/en
Priority to PCT/JP2013/080890 priority patent/WO2014087827A1/en
Priority to MYPI2015701554A priority patent/MY170531A/en
Priority to KR1020157014093A priority patent/KR20150086481A/en
Priority to CN201380060970.4A priority patent/CN104797725B/en
Priority to DE112013005772.7T priority patent/DE112013005772T5/en
Publication of JP2014109057A publication Critical patent/JP2014109057A/en
Application granted granted Critical
Publication of JP5959423B2 publication Critical patent/JP5959423B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、アルミニウム合金箔に関する。   The present invention relates to an aluminum alloy foil.

従来より、アルミニウム合金箔は様々な分野において使用されている。近年では、アルミニウム合金箔は、薄くて導電性があるなどの観点から、例えば、リチウムイオン電池、電気二重層キャパシタ、リチウムイオンキャパシタ等の蓄電デバイスにおける電極の集電体などとして使用されている。具体的には、例えば、特許文献1、2に開示されるように、集電体としてのアルミニウム合金箔の一方の面に正極活物質およびバインダーを含む層を塗工し、乾燥させた後、正極活物質の密度向上と箔への密着性を向上させるために圧延を行うことによって蓄電デバイスとしてのリチウムイオン電池の正極が製造されている。   Conventionally, aluminum alloy foil has been used in various fields. In recent years, aluminum alloy foils are used, for example, as current collectors for electrodes in power storage devices such as lithium ion batteries, electric double layer capacitors, and lithium ion capacitors from the viewpoint of being thin and conductive. Specifically, for example, as disclosed in Patent Documents 1 and 2, after applying a layer containing a positive electrode active material and a binder on one surface of an aluminum alloy foil as a current collector, and drying, The positive electrode of the lithium ion battery as an electrical storage device is manufactured by rolling in order to improve the density of a positive electrode active material, and the adhesiveness to foil.

上記アルミニウム合金箔としては、例えば、特許文献3には、Si:0.01〜0.60質量%、Fe:0.2〜1.0質量%、Cu:0.05〜0.50質量%、Mn:0.5〜1.5質量%を含有し、残部がAlおよび不可避不純物からなり、引張強さが240MPa以上であり、n値が0.1以上であるリチウムイオン電池用のアルミニウム合金箔が開示されている。   As said aluminum alloy foil, for example, in patent document 3, Si: 0.01-0.60 mass%, Fe: 0.2-1.0 mass%, Cu: 0.05-0.50 mass% , Mn: Aluminum alloy for lithium ion batteries containing 0.5 to 1.5 mass%, the balance being Al and inevitable impurities, tensile strength is 240 MPa or more, and n value is 0.1 or more A foil is disclosed.

なお、本願に先行する技術文献として、他にも次の2つがある。特許文献4は、リチウムイオン電池用のアルミニウム合金箔ではないが、同文献には、Si:0.05〜0.30質量%、Fe:0.15〜0.60質量%、Cu:0.01〜0.20質量%を含有し、残部がAlおよび不可避的不純物からなり、引張強さが186〜212N/mm程度、箔厚が30μm〜100μm程度の多孔加工用のアルミニウム合金箔が開示されている。 In addition, there are the following two other technical documents preceding the present application. Patent Document 4 is not an aluminum alloy foil for a lithium ion battery, but the document includes Si: 0.05 to 0.30 mass%, Fe: 0.15 to 0.60 mass%, Cu: 0.00. Disclosed is an aluminum alloy foil for porous processing containing 01 to 0.20% by mass, the balance being made of Al and inevitable impurities, a tensile strength of about 186 to 212 N / mm 2 , and a foil thickness of about 30 μm to 100 μm. Has been.

また、特許文献5には、箔素材に使用できるアルミニウム合金板として、Fe:0.1〜2.5質量%およびSi:0.01〜0.5%を含有し、残部がAlおよび不可避的不純物であり、かつ固溶Fe量が200ppm以上であって、熱間圧延されないで冷間圧延されたアルミニウム合金板が開示されている。   Patent Document 5 contains Fe: 0.1 to 2.5% by mass and Si: 0.01 to 0.5% as an aluminum alloy plate that can be used as a foil material, with the balance being Al and inevitable. An aluminum alloy sheet that is an impurity and has a solid solution Fe amount of 200 ppm or more and is cold-rolled without being hot-rolled is disclosed.

特開2007−234277号公報JP 2007-234277 A 特開平11−67220号公報Japanese Patent Laid-Open No. 11-67220 特開2011−26656号公報JP 2011-26656 A 特開2006−283114号公報JP 2006-283114 A 特開2008−223075号公報Japanese Patent Laid-Open No. 2008-223075

しかしながら、従来のアルミニウム合金箔は、以下の点で問題がある。すなわち、上述したように、アルミニウム合金箔は、蓄電デバイスの電極等の箔使用部材の製造時において、圧延等により圧縮力を受ける。そのため、アルミニウム合金箔は、このような圧縮力に対して不必要な変形や破損を生じないように十分な強度が求められる。近年では、さらなる箔の薄肉化が求められており、これに対応するためにも箔の高強度化が望まれている。   However, the conventional aluminum alloy foil has problems in the following points. That is, as described above, the aluminum alloy foil receives a compressive force by rolling or the like when manufacturing a foil-use member such as an electrode of an electricity storage device. Therefore, the aluminum alloy foil is required to have sufficient strength so as not to cause unnecessary deformation and breakage against such a compressive force. In recent years, further thinning of the foil has been demanded, and in order to cope with this, it is desired to increase the strength of the foil.

箔の高強度化を図るための代表的な手法として、アルミニウム合金成分を調整する方法がある。しかしながら、単なる合金成分の調整だけでは、Al以外の合金成分の添加によって箔の比抵抗が大きくなり、導電性が低下する。このように、従来のアルミニウム合金箔は、導電性を大きく損なうことなく、高強度化を図ることが困難であるという問題がある。   As a typical method for increasing the strength of the foil, there is a method of adjusting an aluminum alloy component. However, by simply adjusting the alloy components, the specific resistance of the foil increases due to the addition of alloy components other than Al, and the conductivity decreases. Thus, the conventional aluminum alloy foil has a problem that it is difficult to increase the strength without significantly impairing the electrical conductivity.

本発明は、このような背景に鑑みてなされたものであり、導電性を大きく損なうことなく、高強度化を図ることが可能なアルミニウム合金箔を提供しようとして得られたものである。   The present invention has been made in view of such a background, and has been obtained in an attempt to provide an aluminum alloy foil capable of achieving high strength without significantly impairing electrical conductivity.

本発明の一態様は、化学成分が、質量%で、Si:0.1%以上0.6%以下、Fe:0.2%以上1.5%以下を含有するとともにSi含有量とFe含有量との合計が0.48%以上であり、残部がAlおよび不可避的不純物からなり、箔厚が20μm以下であり、Siの固溶量が700質量ppm以上、Feの固溶量が150質量ppm以上であり、引張強さが220MPa以上であり、液体窒素中で測定した比抵抗が0.45μΩ・cm以上0.7μΩ・cm以下であることを特徴とするアルミニウム合金箔にある。
また、本発明の他の態様は、化学成分が、質量%で、Si:0.1%以上0.6%以下、Fe:0.2%以上1.5%以下(但し、Fe:0.2%以上0.5%以下を除く)、Cu:0.01%以上0.25%以下を含有するとともにSi含有量とFe含有量との合計が0.48%以上であり、残部がAlおよび不可避的不純物からなり、箔厚が20μm以下であり、Siの固溶量が700質量ppm以上、Feの固溶量が150質量ppm以上であり、引張強さが220MPa以上であり、液体窒素中で測定した比抵抗が0.45μΩ・cm以上0.7μΩ・cm以下であることを特徴とするアルミニウム合金箔にある。
In one embodiment of the present invention, the chemical component contains, in mass%, Si: 0.1% to 0.6%, Fe: 0.2% to 1.5%, and Si content and Fe content The total amount is 0.48% or more, the balance is made of Al and inevitable impurities, the foil thickness is 20 μm or less, the solid solution amount of Si is 700 mass ppm or more, and the solid solution amount of Fe is 150 mass. and at ppm or more, a tensile strength of not less than 220 MPa, Ru aluminum alloy foil near, characterized in that specific resistance measured in liquid nitrogen is less than 0.45μΩ · cm or more 0.7μΩ · cm.
In another embodiment of the present invention, the chemical component is, by mass, Si: 0.1% to 0.6%, Fe: 0.2% to 1.5% (provided that Fe: 0.00%). 2% or more and 0.5% or less), Cu: 0.01% or more and 0.25% or less, and the total of Si content and Fe content is 0.48% or more, and the balance is Al And an inevitable impurity, the foil thickness is 20 μm or less, the solid solution amount of Si is 700 mass ppm or more, the solid solution amount of Fe is 150 mass ppm or more, the tensile strength is 220 MPa or more, and liquid nitrogen The aluminum alloy foil is characterized in that the specific resistance measured therein is 0.45 μΩ · cm or more and 0.7 μΩ · cm or less.

上記アルミニウム合金箔は、上記特定の構成を有しているので、導電性を大きく損なうことなく、高強度化を図ることができる。したがって、上記アルミニウム合金箔は、例えば、蓄電デバイスの電極等の箔使用部材の製造時に圧延等による圧縮力が加えられた場合でも、不必要な塑性変形を抑制することができ、箔の薄肉化も実現しやすくなる。また、上記アルミニウム合金箔は、高強度化によっても導電性が大きく損なわれず良好な導電性を確保することができる。そのため、上記アルミニウム合金箔を、例えば、リチウムイオン電池等の蓄電デバイスにおける電極の集電体として用いれば、蓄電デバイスの高密度・高エネルギー化に寄与することができる。   Since the said aluminum alloy foil has the said specific structure, it can attain high intensity | strength, without impairing electroconductivity largely. Therefore, the aluminum alloy foil can suppress unnecessary plastic deformation, for example, even when a compressive force is applied by rolling or the like when manufacturing a foil-use member such as an electrode of an electricity storage device. It will be easier to realize. In addition, the aluminum alloy foil can ensure good conductivity without being greatly impaired in conductivity even when the strength is increased. Therefore, if the said aluminum alloy foil is used as an electrical power collector of the electrode in electrical storage devices, such as a lithium ion battery, for example, it can contribute to the high density and high energy increase of an electrical storage device.

実施例においてSi固溶量、Fe固溶量を測定する際の概略手順を説明するための説明図である。It is explanatory drawing for demonstrating the schematic procedure at the time of measuring Si solid solution amount and Fe solid solution amount in an Example.

上記アルミニウム合金箔における特定の化学成分(単位は質量%、以下の化学成分の説明では単に「%」と略記)の意義および限定理由は以下の通りである。   The significance and reason for limitation of the specific chemical component (unit is mass%, in the description of the chemical component below, simply abbreviated as “%”) in the aluminum alloy foil are as follows.

Si:0.1%以上0.6%以下
Siは、箔強度の向上を図るために必要な元素である。箔製造時にアルミニウム合金の温度が350℃を超えると、固溶していたSiおよびFeがAl−Fe−Si系化合物として析出しやすくなり、これにより冷間圧延時の加工硬化性が低減して箔強度が低下しやすい。そのため、箔製造時に350℃を超える高温での均質化処理を行わず、350℃以下の条件で熱間圧延を行うことが望ましいが、この条件下で箔強度を高め、箔の比抵抗を低減して導電性を確保するためには、Si含有量を0.1%以上0.6%以下とする必要がある。Si含有量が0.1%未満になると、箔の比抵抗は低減するが、箔の強度が向上しない。Si含有量が0.6%を超えると、さらなる箔強度の向上が困難となり、粗大なSi単相粒子が形成されて20μm以下の箔厚ではピンホールや箔切れの問題が生じやすくなる。Si含有量は、好ましくは0.12%以上であるとよい。Si含有量は、好ましくは0.4%以下であるとよい。
Si: 0.1% to 0.6% Si is an element necessary for improving the foil strength. If the temperature of the aluminum alloy exceeds 350 ° C. during the production of the foil, the dissolved Si and Fe are likely to precipitate as Al—Fe—Si based compounds, thereby reducing the work hardening during cold rolling. The foil strength tends to decrease. Therefore, it is desirable not to perform homogenization at a high temperature exceeding 350 ° C. during foil production, but to perform hot rolling under conditions of 350 ° C. or lower. However, under these conditions, the foil strength is increased and the specific resistance of the foil is reduced. And in order to ensure electroconductivity, it is necessary to make Si content into 0.1% or more and 0.6% or less. When the Si content is less than 0.1%, the specific resistance of the foil is reduced, but the strength of the foil is not improved. When the Si content exceeds 0.6%, it is difficult to further improve the foil strength, and coarse Si single-phase particles are formed. If the foil thickness is 20 μm or less, the problem of pinholes and foil breakage tends to occur. The Si content is preferably 0.12% or more. The Si content is preferably 0.4% or less.

Fe:0.2%以上1.5%以下
Feは、Siに次いで箔強度の向上を図るために必要な元素である。箔製造時にアルミニウム合金の温度が350℃を超えると、固溶していたSiおよびFeがAl−Fe−Si系化合物として析出しやすくなり、これにより冷間圧延時の加工硬化性が低減して箔強度が低下しやすい。そのため、箔製造時に350℃を超える高温で均質化処理を行わず、350℃以下の条件で熱間圧延を行うことが望ましいが、この条件下で箔強度を高め、箔の比抵抗を低減して導電性を確保するためには、Fe含有量を0.2%以上1.5%以下とする必要がある。Fe含有量が0.2%未満になると、箔の比抵抗は低減するが、箔の強度が向上しない。Fe含有量が1.5%を超えると、さらなる箔強度の向上が困難となり、粗大なAl−Fe系晶出物が鋳造時に形成される。上記の通り、アルミニウム合金鋳塊に対して350℃を超える高温で均質化処理を行わない場合には、鋳造時に形成されたAl−Fe系晶出物は粗大な状態のまま最終箔厚まで残存することになる。そのため、20μm以下の箔厚ではピンホールや箔切れの問題が生じやすくなる。また、必要以上のFe添加は、製造コスト増加の原因にもなる。Fe含有量は、好ましくは0.30%以上であるとよい。Fe含有量は、好ましくは1.2%以下、より好ましくは1.0%以下、さらに好ましくは0.80%以下であるとよい。但し、後述するように、上記化学成分が、質量%で、Cu:0.01%以上0.25%以下をさらに含有する場合には、Fe:0.2%以上1.5%以下のうち、Fe:0.2%以上0.5%以下が除かれる。
Fe: 0.2% or more and 1.5% or less Fe is an element necessary for improving the foil strength after Si. If the temperature of the aluminum alloy exceeds 350 ° C. during the production of the foil, the dissolved Si and Fe are likely to precipitate as Al—Fe—Si based compounds, thereby reducing the work hardening during cold rolling. The foil strength tends to decrease. For this reason, it is desirable to perform hot rolling under conditions of 350 ° C. or lower without performing homogenization at a high temperature exceeding 350 ° C. during foil production. In order to ensure conductivity, the Fe content needs to be 0.2% or more and 1.5% or less. When the Fe content is less than 0.2%, the specific resistance of the foil is reduced, but the strength of the foil is not improved. If the Fe content exceeds 1.5%, it is difficult to further improve the foil strength, and a coarse Al—Fe crystallized product is formed during casting. As described above, when the homogenization treatment is not performed on the aluminum alloy ingot at a temperature higher than 350 ° C., the Al—Fe crystallized product formed at the time of casting remains in a coarse state up to the final foil thickness. Will do. Therefore, the problem of pinholes and foil breakage tends to occur at a foil thickness of 20 μm or less. Moreover, addition of Fe more than necessary also causes an increase in manufacturing cost. The Fe content is preferably 0.30% or more. The Fe content is preferably 1.2% or less, more preferably 1.0% or less, and even more preferably 0.80% or less. However, as will be described later, when the chemical component further contains Cu: 0.01% or more and 0.25% or less by mass%, Fe: 0.2% or more and 1.5% or less Fe: 0.2% or more and 0.5% or less are excluded.

Si含有量とFe含有量との合計:0.48%以上
Si含有量とFe含有量との合計(以下、「Si+Fe量」ということがある。)は、220MPa以上の引張強さを確保する上で重要である。Si+Fe量が0.48%未満になると、220MPa以上の引張強さが得られず、高強度化を図ることが困難になる。Si+Fe量は、220MPa以上の引張強さを確保しやすくなる観点から、好ましくは0.49%以上、より好ましくは0.5%以上、さらに好ましくは0.52%以上であるとよい。なお、上述したSi含有量、Fe含有量の上限などを考慮し、Si+Fe量は1.6%以下であるとよく、好ましくは1.4%以下、より好ましくは1.2%以下であるとよい。
Total of Si content and Fe content: 0.48% or more The total of Si content and Fe content (hereinafter sometimes referred to as “Si + Fe amount”) ensures a tensile strength of 220 MPa or more. Is important above. When the amount of Si + Fe is less than 0.48%, a tensile strength of 220 MPa or more cannot be obtained, and it becomes difficult to increase the strength. The amount of Si + Fe is preferably 0.49% or more, more preferably 0.5% or more, and further preferably 0.52% or more, from the viewpoint of easily securing a tensile strength of 220 MPa or more. In consideration of the Si content, the upper limit of the Fe content, and the like, the Si + Fe content is preferably 1.6% or less, preferably 1.4% or less, more preferably 1.2% or less. Good.

上記化学成分は、質量%で、Cu:0.01%以上0.25%以下をさらに含有することができる。この場合の意義および限定理由は以下の通りである。 The above chemical components, by mass%, Cu: Ru may further contain 0.01% to 0.25% or less. The significance and reasons for limitation in this case are as follows.

Cu:0.01%以上0.25%以下
Cuは、箔の強度向上に寄与する元素である。その効果を得るため、Cu含有量は0.01%以上とすることが好ましい。なお、0.01%未満のCuは、不可避的不純物として含まれていてもよい。一方、Cu含有量が過大になると箔の強度が増加するが比抵抗も増加する。そのため、Cu含有量は0.25%以下とすることが好ましい。Cu含有量は、好ましくは0.02%以上であるとよい。Cu含有量は、好ましくは0.18%以下であるとよい。
Cu: 0.01% or more and 0.25% or less Cu is an element that contributes to improving the strength of the foil. In order to obtain the effect, the Cu content is preferably 0.01% or more. Note that Cu of less than 0.01% may be included as an inevitable impurity. On the other hand, when the Cu content is excessive, the strength of the foil increases, but the specific resistance also increases. Therefore, the Cu content is preferably 0.25% or less. The Cu content is preferably 0.02% or more. The Cu content is preferably 0.18% or less.

上記化学成分は、不可避的不純物としてMn、Mg、Cr、Zn、Ni、Ga、V、Tiなどの元素を含有することができる。但し、Mn、Mgは、過剰に含まれると箔の比抵抗を増加させ、導電率を劣化させるおそれがある。そのため、Mn含有量は0.01%以下、Mg含有量は0.01%以下とすることが好ましい。Cr、Zn、Ni、Ga、V、Tiなどの他の元素は、比較的、比抵抗増大に寄与しない元素であるので、各元素の含有量はそれぞれ0.05%以下とすることが好ましい。また、全体の不可避的不純物の合計含有量は、0.15%以下であれば、導電性や高強度化に実質的な影響を及ぼすことがないので許容することができる。   The chemical component can contain elements such as Mn, Mg, Cr, Zn, Ni, Ga, V, and Ti as inevitable impurities. However, if Mn and Mg are excessively contained, the specific resistance of the foil is increased and the electrical conductivity may be deteriorated. Therefore, it is preferable that the Mn content is 0.01% or less and the Mg content is 0.01% or less. Since other elements such as Cr, Zn, Ni, Ga, V, and Ti are elements that do not contribute to the increase in specific resistance, the content of each element is preferably 0.05% or less. Further, if the total content of inevitable impurities as a whole is 0.15% or less, it can be tolerated because it does not substantially affect conductivity and increase in strength.

上記アルミニウム合金箔において、箔厚は20μm以下である。箔厚が20μmを超えると、近年要求されることが多い箔の薄肉化(箔厚ゲージダウン)に対応することができない。上記アルミニウム合金箔は、箔厚が20μm以下であるので、例えば、箔の薄肉化の要求が大きい蓄電デバイス電極の集電体用途に特に好適である。上記アルミニウム合金箔において、箔厚は、薄肉化、蓄電デバイスの小型化へ寄与できるなどの観点から、好ましくは20μm未満、より好ましくは19μm以下、さらに好ましくは、18μm以下、さらにより好ましくは17μm以下とすることができる。一方、箔厚は、例えば、蓄電デバイスの電極等の箔使用部材の製造時における取扱容易性などの観点から、好ましくは8μm以上、より好ましくは9μm以上、さらに好ましくは10μm以上とすることができる。   In the aluminum alloy foil, the foil thickness is 20 μm or less. If the foil thickness exceeds 20 μm, it cannot cope with the thinning of the foil (foil thickness gauge down), which is often required in recent years. Since the aluminum alloy foil has a foil thickness of 20 μm or less, for example, the aluminum alloy foil is particularly suitable for use as a current collector for an electricity storage device electrode that requires a large thickness of the foil. In the aluminum alloy foil, the thickness of the foil is preferably less than 20 μm, more preferably 19 μm or less, still more preferably 18 μm or less, and even more preferably 17 μm or less, from the viewpoint of reducing the thickness and contributing to downsizing of the electricity storage device. It can be. On the other hand, the thickness of the foil is preferably 8 μm or more, more preferably 9 μm or more, and even more preferably 10 μm or more from the viewpoint of ease of handling at the time of manufacturing a foil using member such as an electrode of an electricity storage device. .

上記アルミニウム合金箔において、Siの固溶量は700質量ppm以上、Feの固溶量は150質量ppm以上である。Siの固溶量が700質量ppm未満、Feの固溶量が150質量ppm未満になると、引張強さが220MPa以上という高強度化を図ることができなくなる。Siの固溶量は、上記高強度化を確実なものとする観点から、好ましくは720質量ppm以上、より好ましくは740質量ppm以上、さらに好ましくは760質量ppm以上であるとよい。なお、Siの固溶量は、その値が高いほど好ましいが、実製造上、造塊時の冷却速度などの観点から、その上限は1000質量ppm以下とすることができる。一方、Feの固溶量は、上記高強度化を確実なものとする観点から、好ましくは170質量ppm以上、より好ましくは190質量ppm以上、さらに好ましくは200質量ppm以上であるとよい。なお、Feの固溶量は、その値が高いほど好ましいが、実製造上、造塊時の冷却速度などの観点から、その上限は500質量ppm以下とすることができる。   In the aluminum alloy foil, the solid solution amount of Si is 700 mass ppm or more, and the solid solution amount of Fe is 150 mass ppm or more. When the solid solution amount of Si is less than 700 ppm by mass and the solid solution amount of Fe is less than 150 ppm by mass, it becomes impossible to achieve a high strength with a tensile strength of 220 MPa or more. The solid solution amount of Si is preferably 720 ppm by mass or more, more preferably 740 ppm by mass or more, and further preferably 760 ppm by mass or more, from the viewpoint of ensuring the above-described increase in strength. In addition, although the amount of solid solution of Si is so preferable that the value is high, the upper limit can be 1000 mass ppm or less from a viewpoint of the cooling rate at the time of ingot formation, etc. on actual manufacture. On the other hand, the solid solution amount of Fe is preferably 170 ppm by mass or more, more preferably 190 ppm by mass or more, and further preferably 200 ppm by mass or more from the viewpoint of ensuring the high strength. In addition, although the solid solution amount of Fe is so preferable that the value is high, the upper limit can be 500 mass ppm or less from viewpoints, such as a cooling rate at the time of agglomeration, in actual manufacture.

上記Siの固溶量、上記Feの固溶量は、基本的には、以下の方法により測定することができる。すなわち、熱フェノール溶解抽出法を用い、アルミニウム合金箔から採取した試験片に含まれるAl−Fe系化合物、Al−Fe−Si系化合物を残渣として得る。そして、この熱フェノール溶解抽出法による上記残渣からSi、Feを溶解させ、誘導結合プラズマ発光分析法(ICP)による定量分析を行い、上記化合物として析出したSi析出量、Fe析出量を求める。また、塩酸溶解抽出法を用い、アルミニウム合金箔から採取した試験片に含まれるSi単相粒子を残渣として得る。そして、この塩酸溶解抽出法による上記残渣を溶解し、ICPによる定量分析を行い、Si単相粒子として析出したSi析出量を求める。そして、熱フェノール溶解抽出法より得られたSi析出量と塩酸溶解抽出法より得られたSi析出量の和をSi総析出量とする。また、熱フェノール溶解抽出法より得られたFe析出量をFe総析出量とする。そして、アルミニウム合金箔のSi成分分析値からSi総析出量を差し引いた値をSi固溶量とする。また、アルミニウム合金箔のFe成分分析値からFe総析出量を差し引いた値をFe固溶量とする。   Basically, the solid solution amount of Si and the solid solution amount of Fe can be measured by the following method. That is, using a hot phenol dissolution extraction method, an Al—Fe compound and an Al—Fe—Si compound contained in a test piece collected from an aluminum alloy foil are obtained as a residue. And Si and Fe are melt | dissolved from the said residue by this hot phenol melt | dissolution extraction method, the quantitative analysis by an inductively coupled plasma emission spectrometry (ICP) is performed, and Si precipitation amount and Fe precipitation amount which precipitated as the said compound are calculated | required. Moreover, Si single phase particle | grains contained in the test piece extract | collected from the aluminum alloy foil are obtained as a residue using hydrochloric acid melt | dissolution extraction method. And the said residue by this hydrochloric acid melt | dissolution extraction method is melt | dissolved, the quantitative analysis by ICP is performed, and Si precipitation amount precipitated as Si single phase particle | grains is calculated | required. The sum of the Si precipitation amount obtained by the hot phenol dissolution extraction method and the Si precipitation amount obtained by the hydrochloric acid dissolution extraction method is taken as the total Si precipitation amount. Moreover, let Fe precipitation amount obtained by the hot phenol melt | dissolution extraction method be Fe total precipitation amount. The value obtained by subtracting the total Si precipitation amount from the Si component analysis value of the aluminum alloy foil is defined as the Si solid solution amount. Further, a value obtained by subtracting the total Fe precipitation amount from the Fe component analysis value of the aluminum alloy foil is defined as an Fe solid solution amount.

上記アルミニウム合金箔において、引張強さは220MPa以上である。引張強さが220MPa未満では本願にいう高強度とはいえない。引張強さは、好ましくは223MPa以上、より好ましくは225MPa以上、さらに好ましくは230MPa以上であるとよい。なお、引張強さの上限は、特に限定されるものではないが、比抵抗とのバランスなどを考慮して最適な範囲に決定することができる。引張強さは、例えば、340MPa程度以下とすることができる。なお、引張強さは、JIS Z2241に準拠して測定される値である。   In the aluminum alloy foil, the tensile strength is 220 MPa or more. If the tensile strength is less than 220 MPa, it cannot be said to be the high strength referred to in the present application. The tensile strength is preferably 223 MPa or more, more preferably 225 MPa or more, and further preferably 230 MPa or more. The upper limit of the tensile strength is not particularly limited, but can be determined within an optimum range in consideration of the balance with the specific resistance. The tensile strength can be, for example, about 340 MPa or less. The tensile strength is a value measured according to JIS Z2241.

上記アルミニウム合金箔において、比抵抗は0.45μΩ・cm以上0.7μΩ・cm以下である。なお、上記比抵抗は、液体窒素中で測定される値である。液体窒素中にて比抵抗を測定するのは、測定雰囲気温度の影響を除去するためである。   In the aluminum alloy foil, the specific resistance is 0.45 μΩ · cm or more and 0.7 μΩ · cm or less. The specific resistance is a value measured in liquid nitrogen. The specific resistance is measured in liquid nitrogen in order to remove the influence of the measurement ambient temperature.

比抵抗は、合金成分であるSi、Feの固溶量と相関がある。比抵抗が上記範囲内にある場合は、導電性を大きく損なうことなく、高強度化を図ることができる。比抵抗が0.45μΩ・cm未満になると、箔製造時に加工硬化し難く、引張強さを220MPa以上とし難くなる。比抵抗は、好ましくは0.50μΩ・cm以上、より好ましくは0.55μΩ・cm以上とすることができる。一方、比抵抗が高くなると、箔製造時に加工硬化しやすく高強度化を図りやすくなるが、導電性が低下する傾向が見られる。そのため、比抵抗は、比較的高強度のアルミニウム合金箔とされる3003系アルミニウム合金箔の比抵抗の約60%である0.7μΩ・cm程度とするのがよい。比抵抗は、好ましくは0.69μΩ・cm以下、より好ましくは0.68μΩ・cm以下とすることができる。なお、比抵抗は、JIS H0505に準拠し、ダブルブリッジ法により測定することができる。   The specific resistance correlates with the solid solution amount of Si and Fe as alloy components. When the specific resistance is within the above range, the strength can be increased without significantly degrading the conductivity. When the specific resistance is less than 0.45 μΩ · cm, it is difficult to work and harden at the time of manufacturing the foil, and the tensile strength is hardly set to 220 MPa or more. The specific resistance is preferably 0.50 μΩ · cm or more, more preferably 0.55 μΩ · cm or more. On the other hand, when the specific resistance is high, it is easy to work and harden at the time of manufacturing the foil, and it is easy to increase the strength, but there is a tendency for the conductivity to decrease. Therefore, the specific resistance is preferably about 0.7 μΩ · cm, which is about 60% of the specific resistance of the 3003 series aluminum alloy foil, which is a relatively high strength aluminum alloy foil. The specific resistance is preferably 0.69 μΩ · cm or less, more preferably 0.68 μΩ · cm or less. The specific resistance can be measured by a double bridge method in accordance with JIS H0505.

上記アルミニウム合金箔は、蓄電デバイス電極の集電体用として用いることができる。この場合は、集電体としてのアルミニウム合金箔の表面に電極活物質が付けられる。具体的には、この場合は、アルミニウム合金箔の表面に、電極活物質を含む層が塗工され、乾燥後に圧延等による圧縮力が加えられる。このような場合であっても、上記アルミニウム合金箔は、圧縮力により不必要な塑性変形が生じ難いので、電極活物質が剥離し難く、その上、良好な導電性も確保できる。また、上記アルミニウム合金箔は、箔強度に優れるため、箔の薄肉化の要求にも対応しやすい。そのため、この場合は、リチウムイオン電池等の蓄電デバイスの高密度・高エネルギー化に寄与することができる。 The aluminum alloy foil, Ru can be used for the current collector of the electric storage device electrodes. In this case, an electrode active material is attached to the surface of the aluminum alloy foil as a current collector. Specifically, in this case, a layer containing an electrode active material is applied to the surface of the aluminum alloy foil, and a compressive force by rolling or the like is applied after drying. Even in such a case, the aluminum alloy foil is unlikely to undergo unnecessary plastic deformation due to the compressive force, so that the electrode active material is difficult to peel off, and good electrical conductivity can be secured. Moreover, since the said aluminum alloy foil is excellent in foil strength, it is easy to respond to the request | requirement of foil thinning. Therefore, in this case, it can contribute to high density and high energy storage devices such as lithium ion batteries.

上記アルミニウム合金箔は、例えば、次のようにして製造することができる。すなわち、上記アルミニウム合金箔は、上記特定の化学成分からなるアルミニウム合金鋳塊を熱間圧延した後、箔圧延を含む冷間圧延を行うことにより得ることができる。   The aluminum alloy foil can be produced, for example, as follows. That is, the aluminum alloy foil can be obtained by hot rolling an aluminum alloy ingot composed of the specific chemical component and then performing cold rolling including foil rolling.

この際、アルミニウム合金鋳塊は350℃を超える高温での均質化処理を行うことなく熱間圧延するとよい。熱間圧延は、350℃以下の温度に加熱してから開始し、熱間圧延の開始時、熱間圧延の途中および熱間圧延の終了時における温度をいずれも350℃以下とすることができる。熱間圧延の開始温度に到達してからの保持時間は特に限定されるものではないが、Al−Fe−Si系化合物の析出を抑制しやすくなるなどの観点から、12時間以内とすることができる。なお、熱間圧延は、一回で行ってもよいし、粗圧延後に仕上圧延を行う等、複数回に分けて行ってもよい。   At this time, the aluminum alloy ingot is preferably hot-rolled without performing homogenization at a high temperature exceeding 350 ° C. Hot rolling starts after heating to a temperature of 350 ° C. or lower, and the temperature at the start of hot rolling, during hot rolling, and at the end of hot rolling can be 350 ° C. or lower. . Although the holding time after reaching the hot rolling start temperature is not particularly limited, it may be within 12 hours from the viewpoint of facilitating the precipitation of the Al—Fe—Si compound. it can. Note that the hot rolling may be performed once, or may be performed in a plurality of times, such as finish rolling after rough rolling.

また、冷間圧延は、途中で焼鈍を行うことなく、箔厚を20μm以下とする。途中焼鈍を行うと、Al−Fe−Si系化合物の析出が促進され、冷間圧延時の加工硬化性が低下して箔強度の低下を招くからである。なお、冷間圧延終了後の最終焼鈍も途中焼鈍と同様の理由により行わないことが好ましい。箔圧延を含む冷間圧延における最終圧延率は、引張強さ220MPa以上の高強度化を図る観点から、好ましくは95%以上、より好ましくは96%以上、さらに好ましくは97%以上とすることができる。最終圧延率は、100×(冷間圧延前の熱間圧延板の板厚−最終の冷間圧延後のアルミニウム合金箔の箔厚)/(冷間圧延前の熱間圧延板の板厚)から算出される値である。   In the cold rolling, the foil thickness is set to 20 μm or less without annealing in the middle. When annealing is performed in the middle, precipitation of the Al—Fe—Si-based compound is promoted, and work hardening at the time of cold rolling is lowered, resulting in a decrease in foil strength. In addition, it is preferable not to perform the final annealing after completion | finish of cold rolling for the same reason as intermediate annealing. The final rolling rate in cold rolling including foil rolling is preferably 95% or more, more preferably 96% or more, and still more preferably 97% or more, from the viewpoint of increasing the tensile strength of 220 MPa or more. it can. Final rolling rate is 100 × (plate thickness of hot rolled plate before cold rolling−foil thickness of aluminum alloy foil after final cold rolling) / (plate thickness of hot rolled plate before cold rolling) It is a value calculated from

実施例に係るアルミニウム合金箔について、以下に説明する。   The aluminum alloy foil according to the example will be described below.

(実施例1)
表1に示す化学成分のアルミニウム合金を半連続鋳造法にて造塊し面削することにより、アルミニウム合金鋳塊を準備した。なお、表1に示す化学成分のアルミニウム合金のうち、合金A〜Hが実施例に適する化学成分のアルミニウム合金であり、合金I〜Oが比較例としての化学成分のアルミニウム合金である。
Example 1
An aluminum alloy ingot was prepared by ingot forming and chamfering an aluminum alloy having chemical components shown in Table 1 by a semi-continuous casting method. Of the aluminum alloys having chemical components shown in Table 1, alloys A to H are aluminum alloys having chemical components suitable for the examples, and alloys I to O are aluminum alloys having chemical components as comparative examples.

Figure 0005959423
Figure 0005959423

上記準備したアルミニウム合金鋳塊を、均質化処理を施すことなく熱間圧延し、厚さ2mmの熱間圧延板を得た。この際、熱間圧延は、粗圧延と仕上圧延を連続して行った。また、上記熱間圧延において、粗圧延に供する前のアルミニウム合金鋳塊は、330℃に加熱して6時間保持することによって粗圧延の開始温度(熱間圧延の開始温度)を330℃とした。また、粗圧延の終了温度(熱間圧延の途中温度)は310℃、仕上圧延の終了温度(熱間圧延の終了温度)は270℃とした。このように本例では、上記熱間圧延の開始温度および終了温度だけでなく、熱間圧延の途中温度である粗圧延の終了温度、つまり、仕上圧延の開始温度も330℃以下とした。   The prepared aluminum alloy ingot was hot-rolled without subjecting it to a homogenization treatment to obtain a hot-rolled plate having a thickness of 2 mm. At this time, in hot rolling, rough rolling and finish rolling were continuously performed. In the hot rolling, the aluminum alloy ingot before being subjected to the rough rolling is heated to 330 ° C. and held for 6 hours to set the rough rolling start temperature (hot rolling start temperature) to 330 ° C. . The end temperature of rough rolling (temperature during hot rolling) was 310 ° C., and the end temperature of finish rolling (end temperature of hot rolling) was 270 ° C. As described above, in this example, not only the hot rolling start temperature and end temperature, but also the rough rolling end temperature, which is the intermediate temperature of hot rolling, that is, the finish rolling start temperature, is set to 330 ° C. or less.

次いで、室温に戻った後、途中で焼鈍を行うことなく箔圧延を含む冷間圧延を繰り返し行い、箔厚12μmのアルミニウム合金箔を得た。なお、上記冷間圧延における最終圧延率は、100×(冷間圧延前の熱間圧延板の板厚2000μm−最終の冷間圧延後のアルミニウム合金箔の箔厚12μm)/(冷間圧延前の熱間圧延板の板厚2000μm)=99.4%である。   Subsequently, after returning to room temperature, cold rolling including foil rolling was repeatedly performed without annealing in the middle to obtain an aluminum alloy foil having a foil thickness of 12 μm. The final rolling rate in the cold rolling is 100 × (the thickness of the hot rolled sheet before cold rolling is 2000 μm−the thickness of the aluminum alloy foil after the final cold rolling is 12 μm) / (before the cold rolling) The thickness of the hot-rolled sheet is 2000 μm) = 99.4%.

次に、得られたアルミニウム合金箔を試験材として、引張強さ、耐力および伸び、比抵抗(電気抵抗率)、Si固溶量およびFe固溶量の測定を行った。具体的には、引張強さ、耐力および伸びは、JIS Z2241準拠し、試験材からJIS5号試験片を採取してn=2にて測定した。比抵抗は、JIS H0505に準拠し、ダブルブリッジ法により測定した。なお、雰囲気温度の影響を除去するため、比抵抗の測定は液体窒素中で行った。   Next, using the obtained aluminum alloy foil as a test material, tensile strength, yield strength and elongation, specific resistance (electrical resistivity), Si solid solution amount, and Fe solid solution amount were measured. Specifically, the tensile strength, proof stress, and elongation were measured in accordance with JIS Z2241, and a JIS No. 5 test piece was collected from the test material and n = 2. The specific resistance was measured by a double bridge method according to JIS H0505. In order to remove the influence of the ambient temperature, the specific resistance was measured in liquid nitrogen.

Si固溶量およびFe固溶量の測定は、次の手順により行った。図1を参照しながら説明する。図1には、熱フェノール溶解抽出法により得られた残渣と塩酸溶解抽出法により得られた残渣とから、アルミニウム合金箔におけるSi総析出量、Fe総析出量を分析する方法が記載されている。なお、Si析出量、Fe析出量の分析方法は、「佐藤,泉:軽金属学会第68回春期大会講演概要,(1985),55.」の学術文献、「村松,松尾,小松ら:軽金属学会第76回春期大会講演概要,(1989),51.」の学術文献を参照することができる。   The Si solid solution amount and the Fe solid solution amount were measured according to the following procedure. This will be described with reference to FIG. FIG. 1 describes a method for analyzing the total Si precipitation amount and the total Fe precipitation amount in an aluminum alloy foil from the residue obtained by the hot phenol dissolution extraction method and the residue obtained by the hydrochloric acid dissolution extraction method. . In addition, the analysis method of Si precipitation amount and Fe precipitation amount is the academic literature of "Sato, Izumi: The Light Metal Society of Japan 68th Spring Conference Outline, (1985), 55.", "Muramatsu, Matsuo, Komatsu et al .: Light Metal Society of Japan. The academic literature of the 76th Spring Conference Lecture Summary, (1989), 51. "can be referred to.

先ず、熱フェノール溶解抽出法に関して説明する。アルミニウム合金箔から2gの試験片を採取した(S10)。なお、試験片は、アルミニウム合金箔から小片を切り出し、合計で2gとなるように秤量した。次いで、フェノール50mlを入れたビーカーをホットプレート上に載置してフェノールを170℃〜180℃に加熱した後、試験片を投入して溶解させた(S11)。次いで、上記溶液が入ったビーカーをホットプレートから降ろして冷却した(S12)。次いで、固化防止のため、上記冷却した溶液にベンジルアルコールを添加した(S13)。次いで、上記ベンジルアルコールを添加した溶液を、ポリテトラフルオロエチレン製のメンブランフィルター(孔径0.1μm)により濾過し(S14)、Al−Fe系化合物、Al−Fe−Si系化合物を残渣として得た(S15)。次いで、この熱フェノール溶解抽出法により得られた残渣から10%−NaOH溶液にてSiを溶解させた後、王水(体積比で濃塩酸:濃硝酸=3:1)にてFeを溶解させ、溶解したSi、Feを含む混合液を得た。次いで、この混合液を誘導結合プラズマ発光分析法(ICP)にて定量分析した(S16)。これにより、Al−Fe系化合物、Al−Fe−Si系化合物として析出したSi析出量、Fe析出量を求めた。   First, the hot phenol dissolution extraction method will be described. A 2 g test piece was collected from the aluminum alloy foil (S10). In addition, the test piece cut out the small piece from the aluminum alloy foil, and weighed it so that it might become 2g in total. Next, a beaker containing 50 ml of phenol was placed on a hot plate and the phenol was heated to 170 ° C. to 180 ° C., and then a test piece was added and dissolved (S11). Next, the beaker containing the above solution was lowered from the hot plate and cooled (S12). Next, benzyl alcohol was added to the cooled solution to prevent solidification (S13). Next, the solution to which the benzyl alcohol was added was filtered through a polytetrafluoroethylene membrane filter (pore size: 0.1 μm) (S14) to obtain an Al—Fe compound and an Al—Fe—Si compound as a residue. (S15). Next, Si was dissolved in a 10% -NaOH solution from the residue obtained by this hot phenol dissolution extraction method, and then Fe was dissolved in aqua regia (concentrated hydrochloric acid: concentrated nitric acid = 3: 1 by volume). A mixed liquid containing dissolved Si and Fe was obtained. Next, this mixed solution was quantitatively analyzed by inductively coupled plasma optical emission spectrometry (ICP) (S16). Thereby, the amount of Si deposited and the amount of Fe deposited as Al—Fe compounds and Al—Fe—Si compounds were determined.

次に、塩酸溶解抽出法に関して説明する。アルミニウム合金箔から2gの試験片を採取した(S20)。なお、試験片は、上記と同様に採取した。次いで、HCl(体積比で濃塩酸:水=1:1)120mlを入れたビーカーに試験片を投入して室温にて溶解させ、さらに過酸化水素水Hを2〜3滴を加えた(S21)。次いで、上記溶液を、ポリテトラフルオロエチレン製のメンブランフィルター(孔径0.1μm)により濾過し(S24)、Si単相粒子を残渣として得た(S25)。次いで、この塩酸溶解抽出法により得られた残渣を10%−NaOH溶液にて溶解させた後、上記王水を混ぜてpH1〜2に酸性化させた。次いで、この溶液を誘導結合プラズマ発光分析法(ICP)にて定量分析した(S26)。これにより、Si単相粒子として析出したSi析出量を求めた。 Next, the hydrochloric acid dissolution extraction method will be described. A 2 g test piece was collected from the aluminum alloy foil (S20). In addition, the test piece was extract | collected similarly to the above. Next, the test piece was placed in a beaker containing 120 ml of HCl (concentrated hydrochloric acid: water = 1: 1 by volume) and dissolved at room temperature, and 2 to 3 drops of hydrogen peroxide water H 2 O 2 was added. (S21). Next, the solution was filtered through a polytetrafluoroethylene membrane filter (pore size: 0.1 μm) (S24) to obtain Si single-phase particles as a residue (S25). Next, the residue obtained by this hydrochloric acid dissolution extraction method was dissolved in a 10% -NaOH solution, and then mixed with the aqua regia to acidify to pH 1-2. Next, this solution was quantitatively analyzed by inductively coupled plasma optical emission spectrometry (ICP) (S26). Thereby, the amount of Si deposited as Si single phase particles was determined.

次に、上記熱フェノール溶解抽出法より得られたSi析出量と塩酸溶解抽出法より得られたSi析出量の和をSi総析出量とした。また、熱フェノール溶解抽出法より得られたFe析出量をFe総析出量とした。そして、アルミニウム合金箔のSi成分分析値からSi総析出量を差し引いた値をSi固溶量とした。また、アルミニウム合金箔のFe成分分析値からFe総析出量を差し引いた値をFe固溶量とした。   Next, the sum of the Si precipitation amount obtained by the hot phenol dissolution extraction method and the Si precipitation amount obtained by the hydrochloric acid dissolution extraction method was taken as the total Si precipitation amount. Further, the Fe precipitation amount obtained by the hot phenol dissolution extraction method was defined as the total Fe precipitation amount. The value obtained by subtracting the total Si precipitation amount from the Si component analysis value of the aluminum alloy foil was defined as the Si solid solution amount. Further, the value obtained by subtracting the total Fe precipitation amount from the Fe component analysis value of the aluminum alloy foil was defined as the Fe solid solution amount.

また、箔圧延状況について調査するため、試験材の背面から照明を当て、光のもれの有無によりピンホールの発生状況もあわせて調査した。以上の結果をまとめて表2に示す。   In addition, in order to investigate the foil rolling situation, lighting was applied from the back of the test material, and the occurrence of pinholes was also investigated according to the presence or absence of light leakage. The above results are summarized in Table 2.

Figure 0005959423
Figure 0005959423

これらの結果に示されるように、試験材C1は、Si+Fe量が0.47%である合金Iを用いたため、引張強さが220MPa未満と低かった。   As shown in these results, since the test material C1 used the alloy I whose Si + Fe amount was 0.47%, the tensile strength was as low as less than 220 MPa.

試験材C2は、Si含有量が0.1%未満、Fe含有量が0.2%未満である合金Jを用いており、Si固溶量が700質量ppm未満、Fe固溶量が150質量ppm未満である。そのため、試験材C2は、引張強さが220MPa未満と低かった。   The test material C2 uses an alloy J having an Si content of less than 0.1% and an Fe content of less than 0.2%, an Si solid solution content of less than 700 mass ppm, and an Fe solid solution content of 150 mass. Less than ppm. Therefore, the test material C2 has a low tensile strength of less than 220 MPa.

試験材C3は、Si含有量が0.6%を超える合金Kを用いたため、粗大なSi単相粒子が形成され、これによるピンホールが発生した。   Since the test material C3 used an alloy K having an Si content exceeding 0.6%, coarse Si single-phase particles were formed, and pinholes were generated due to this.

試験材C4は、Fe含有量が0.2%未満の合金Lを用いており、Fe固溶量が150質量ppm未満である。そのため、試験材C3は、引張強さが220MPa未満と低かった。   The test material C4 uses an alloy L having an Fe content of less than 0.2%, and the Fe solid solution content is less than 150 mass ppm. Therefore, the test material C3 had a low tensile strength of less than 220 MPa.

試験材C5は、Fe含有量が1.5%を超える合金Mを用いたため、粗大なAl−Fe系粒子が形成され、これによるピンホールが発生した。   Since the test material C5 used the alloy M in which the Fe content exceeded 1.5%, coarse Al—Fe-based particles were formed, and pinholes were generated thereby.

これらに対して、試験材E1〜E8は、いずれも上述した特定の化学成分を有する合金A〜Hからなり、箔厚が20μm以下、Siの固溶量が700質量ppm以上、Feの固溶量が150質量ppm以上、引張強さが220MPa以上となっている。また、試験材E1〜E8は、いずれも液体窒素中で測定した比抵抗が0.45μΩ・cm以上0.7μΩ・cm以下となっている。この結果から、試験材E1〜E8は、引張強さが220MPa以上という高強度化がなされているにもかかわらず、導電性が大きく低下していないことがわかる。   On the other hand, the test materials E1 to E8 are all made of the alloys A to H having the specific chemical components described above, the foil thickness is 20 μm or less, the Si solid solution amount is 700 mass ppm or more, and the Fe solid solution. The amount is 150 ppm by mass or more and the tensile strength is 220 MPa or more. In addition, the test materials E1 to E8 all have a specific resistance measured in liquid nitrogen of 0.45 μΩ · cm to 0.7 μΩ · cm. From this result, it can be seen that the electrical conductivity of the test materials E1 to E8 is not greatly reduced despite the high tensile strength of 220 MPa or more.

したがって、本例によれば、導電性を大きく損なうことなく、高強度化を図ることが可能なアルミニウム合金箔を提供することができる。また、上記アルミニウム合金箔は、薄肉化を図っても高強度であるので、ピンホールや箔切れ等の問題も回避することもできる。   Therefore, according to this example, it is possible to provide an aluminum alloy foil capable of achieving high strength without greatly impairing conductivity. Moreover, since the aluminum alloy foil has high strength even if it is thinned, problems such as pinholes and foil breakage can also be avoided.

(実施例2)
表1に示す化学成分のアルミニウム合金Aを半連続鋳造法にて造塊し面削することにより、アルミニウム合金鋳塊を準備した。また、表1に示す従来合金の1050合金(合金N)、3003合金(合金O)を半連続鋳造法にて造塊し面削することにより、比較としてのアルミニウム合金鋳塊もあわせて準備した。
(Example 2)
An aluminum alloy ingot was prepared by ingot forming and chamfering aluminum alloy A having chemical components shown in Table 1 by a semi-continuous casting method. In addition, a comparative aluminum alloy ingot was prepared by ingot forming and chamfering 1050 alloy (alloy N) and 3003 alloy (alloy O) of conventional alloys shown in Table 1 by a semi-continuous casting method. .

上記準備したアルミニウム合金鋳塊を用いて、表3に示す製造条件にて箔厚12μmのアルミニウム合金箔を製造した。なお、表3における冷間圧延は、室温に戻ってから開始した。得られたアルミニウム合金箔について、実施例1と同様にして、引張強さ、耐力および伸び、比抵抗(電気抵抗率)、Si固溶量およびFe固溶量を測定し、箔圧延状況(ピンポール発生の有無)を調査した。その結果をまとめて表4に示す。   Using the prepared aluminum alloy ingot, an aluminum alloy foil having a foil thickness of 12 μm was produced under the production conditions shown in Table 3. In addition, the cold rolling in Table 3 was started after returning to room temperature. For the obtained aluminum alloy foil, the tensile strength, proof stress and elongation, specific resistance (electrical resistivity), Si solid solution amount and Fe solid solution amount were measured in the same manner as in Example 1, and the foil rolling situation (pin pole) Existence of occurrence) was investigated. The results are summarized in Table 4.

Figure 0005959423
Figure 0005959423

Figure 0005959423
Figure 0005959423

表4に示すように、試験材C6〜C8は、熱間圧延時における熱間圧延の開始温度が350℃を超えていたため、Al−Fe−Si系化合物の形成が促進され、Si固溶量が700質量ppm未満、Fe固溶量が150質量ppm未満となり、引張強さが220MPa未満と低くなった。   As shown in Table 4, since the test materials C6 to C8 had a hot rolling start temperature of over 350 ° C. during hot rolling, formation of an Al—Fe—Si based compound was promoted, and the amount of Si solid solution Was less than 700 ppm by mass, the Fe solid solution was less than 150 ppm by mass, and the tensile strength was less than 220 MPa.

試験材C9は、熱間圧延の開始前に520℃で均質化処理を行って作製されたものである。そのため、試験材C9は、Al−Fe−Si系化合物の形成が促進され、Si固溶量が700質量ppm未満、Fe固溶量が150質量ppm未満となり、引張強さが220MPa未満と低くなった。   The test material C9 was produced by performing a homogenization treatment at 520 ° C. before the start of hot rolling. Therefore, in the test material C9, the formation of an Al—Fe—Si-based compound is promoted, the Si solid solution amount is less than 700 mass ppm, the Fe solid solution amount is less than 150 mass ppm, and the tensile strength is less than 220 MPa. It was.

試験材C10は、熱間圧延の開始温度は340℃であるが、冷間圧延の途中、板厚1mmのときに380℃で途中焼鈍を行って作製されている。そのため、試験材C10は、Al−Fe−Si系化合物の形成が促進され、Si固溶量が700質量ppm未満、Fe固溶量が150質量ppm未満となり、引張強さが220MPa未満と低くなった。   The test material C10 has a hot rolling start temperature of 340 ° C., and is produced by performing annealing at 380 ° C. in the middle of cold rolling at a plate thickness of 1 mm. Therefore, in the test material C10, the formation of the Al—Fe—Si compound is promoted, the Si solid solution amount is less than 700 mass ppm, the Fe solid solution amount is less than 150 mass ppm, and the tensile strength is less than 220 MPa. It was.

試験材C11、C12は、従来合金である1050合金(合金N)、3003合金(合金O)を用い、さらに熱間圧延の開始前に350℃を超える520℃という高温で均質化処理を行って作製されたものである。試験材C11は、化学成分が従来合金である1050合金(合金N)と同じであるので、220MPa未満と低くなった。試験材C12は、化学成分が従来合金である3003合金(合金O)と同じであるので、比抵抗が1.2μΩ・cm以上と極めて高く、導電性に劣っていた。   As test materials C11 and C12, 1050 alloy (alloy N) and 3003 alloy (alloy O), which are conventional alloys, are used, and further homogenized at a high temperature of 520 ° C. exceeding 350 ° C. before the start of hot rolling. It was produced. Since the test material C11 has the same chemical composition as the conventional alloy 1050 alloy (alloy N), the test material C11 was as low as less than 220 MPa. Since the test material C12 had the same chemical composition as the conventional alloy 3003 alloy (alloy O), the specific resistance was as extremely high as 1.2 μΩ · cm or more, and the conductivity was poor.

これらに対して、試験材E9、E10は、いずれも上述した特定の化学成分を有する合金Aからなり、箔厚が20μm以下、Siの固溶量が700質量ppm以上、Feの固溶量が150質量ppm以上、引張強さが220MPa以上となっている。また、試験材E9、E10は、いずれも液体窒素中で測定した比抵抗が0.45μΩ・cm以上0.7μΩ・cm以下となっている。この結果から、試験材E9、E10は、引張強さが220MPa以上という高強度化がなされているにもかかわらず、導電性が大きく低下していないことがわかる。   On the other hand, the test materials E9 and E10 are both made of the alloy A having the specific chemical component described above, the foil thickness is 20 μm or less, the solid solution amount of Si is 700 mass ppm or more, and the solid solution amount of Fe is It is 150 mass ppm or more and the tensile strength is 220 MPa or more. The test materials E9 and E10 both have a specific resistance measured in liquid nitrogen of 0.45 μΩ · cm to 0.7 μΩ · cm. From this result, it can be seen that the test materials E9 and E10 do not have a significant decrease in conductivity despite the fact that the tensile strength is increased to 220 MPa or more.

したがって、本例によれば、導電性を大きく損なうことなく、高強度化を図ることが可能なアルミニウム合金箔を提供することができる。   Therefore, according to this example, it is possible to provide an aluminum alloy foil capable of achieving high strength without greatly impairing conductivity.

以上、実施例について説明したが、本発明は、上記実施例により限定されるものではなく、本発明の趣旨を損なわない範囲内で種々の変形を行うことができる。   As mentioned above, although the Example was described, this invention is not limited by the said Example, A various deformation | transformation can be performed within the range which does not impair the meaning of this invention.

Claims (3)

化学成分が、質量%で、Si:0.1%以上0.6%以下、Fe:0.2%以上1.5%以下を含有するとともにSi含有量とFe含有量との合計が0.48%以上であり、残部がAlおよび不可避的不純物からなり、
箔厚が20μm以下であり、
Siの固溶量が700質量ppm以上、Feの固溶量が150質量ppm以上であり、
引張強さが220MPa以上であり、
液体窒素中で測定した比抵抗が0.45μΩ・cm以上0.7μΩ・cm以下であることを特徴とするアルミニウム合金箔。
The chemical component contains Si: 0.1% or more and 0.6% or less, Fe: 0.2% or more and 1.5% or less, and the total of Si content and Fe content is 0. 48% or more, the balance consisting of Al and inevitable impurities,
The foil thickness is 20 μm or less,
The solid solution amount of Si is 700 mass ppm or more, the solid solution amount of Fe is 150 mass ppm or more,
The tensile strength is 220 MPa or more,
An aluminum alloy foil characterized by having a specific resistance measured in liquid nitrogen of 0.45 μΩ · cm to 0.7 μΩ · cm.
学成分が、質量%で、Si:0.1%以上0.6%以下、Fe:0.2%以上1.5%以下(但し、Fe:0.2%以上0.5%以下を除く)、Cu:0.01%以上0.25%以下を含有するとともにSi含有量とFe含有量との合計が0.48%以上であり、残部がAlおよび不可避的不純物からなり、
箔厚が20μm以下であり、
Siの固溶量が700質量ppm以上、Feの固溶量が150質量ppm以上であり、
引張強さが220MPa以上であり、
液体窒素中で測定した比抵抗が0.45μΩ・cm以上0.7μΩ・cm以下であることを特徴とするアルミニウム合金箔。
Chemical components, by mass%, Si: 0.1% to 0.6% or less, Fe: 0.2% to 1.5% or less (however, Fe: 0.2% to 0.5% or less excluding), Cu: the sum of the Si content and the Fe content and having free 0.01% to 0.25% or less is 0.48% or more, and the balance of Al and unavoidable impurities,
The foil thickness is 20 μm or less,
The solid solution amount of Si is 700 mass ppm or more, the solid solution amount of Fe is 150 mass ppm or more,
The tensile strength is 220 MPa or more,
Aluminum alloy foil resistivity measured in liquid nitrogen is characterized by the following der Rukoto 0.45μΩ · cm or more 0.7μΩ · cm.
請求項1または2に記載のアルミニウム合金箔は、蓄電デバイス電極の集電体用であることを特徴とするアルミニウム合金箔。   The aluminum alloy foil according to claim 1 or 2 is used for a current collector of an electricity storage device electrode.
JP2012263918A 2012-12-03 2012-12-03 Aluminum alloy foil Active JP5959423B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012263918A JP5959423B2 (en) 2012-12-03 2012-12-03 Aluminum alloy foil
PCT/JP2013/080890 WO2014087827A1 (en) 2012-12-03 2013-11-15 Aluminum-alloy foil
MYPI2015701554A MY170531A (en) 2012-12-03 2013-11-15 Aluminum alloy foil
KR1020157014093A KR20150086481A (en) 2012-12-03 2013-11-15 Aluminum-alloy foil
CN201380060970.4A CN104797725B (en) 2012-12-03 2013-11-15 Aluminum-alloy foil
DE112013005772.7T DE112013005772T5 (en) 2012-12-03 2013-11-15 Aluminum alloy foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012263918A JP5959423B2 (en) 2012-12-03 2012-12-03 Aluminum alloy foil

Publications (2)

Publication Number Publication Date
JP2014109057A JP2014109057A (en) 2014-06-12
JP5959423B2 true JP5959423B2 (en) 2016-08-02

Family

ID=50883252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012263918A Active JP5959423B2 (en) 2012-12-03 2012-12-03 Aluminum alloy foil

Country Status (6)

Country Link
JP (1) JP5959423B2 (en)
KR (1) KR20150086481A (en)
CN (1) CN104797725B (en)
DE (1) DE112013005772T5 (en)
MY (1) MY170531A (en)
WO (1) WO2014087827A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3061839B1 (en) * 2013-10-25 2019-04-24 UACJ Corporation Aluminum alloy foil for electrode current collector, and method for producing same
JP6431314B2 (en) * 2014-08-13 2018-11-28 三菱アルミニウム株式会社 Method for producing aluminum alloy foil
JP6431315B2 (en) * 2014-08-14 2018-11-28 三菱アルミニウム株式会社 Aluminum alloy foil and method for producing the same
WO2017135108A1 (en) * 2016-02-01 2017-08-10 株式会社Uacj Aluminum alloy foil and method for producing same
JP6952024B2 (en) * 2016-03-11 2021-10-20 株式会社Uacj Aluminum alloy foil
JP2017166027A (en) * 2016-03-16 2017-09-21 株式会社Uacj Aluminum alloy foil
JP6769727B2 (en) * 2016-04-07 2020-10-14 三菱アルミニウム株式会社 Aluminum alloy foil for battery current collector and its manufacturing method
PL3714077T3 (en) * 2017-11-21 2024-05-20 Speira Gmbh Battery electrode foil for the production of lithium-ion accumulators
CN108149172B (en) * 2017-12-26 2019-11-01 湖南科技大学 A kind of processing method of fine grain cubic texture corrosion fatigue resistant aluminum alloy plate materials
JP6730382B2 (en) * 2018-08-13 2020-07-29 三菱アルミニウム株式会社 Aluminum foil for battery current collector and method of manufacturing the same
CN111044598A (en) * 2018-11-28 2020-04-21 东莞东阳光科研发有限公司 Method for measuring solid precipitation amount and solid solubility of alloying metal elements in aluminum foil
JP7216571B2 (en) * 2019-02-26 2023-02-01 東洋アルミニウム株式会社 Aluminum alloy foil and its manufacturing method
CN111519050B (en) * 2020-04-13 2021-10-22 江苏中基复合材料有限公司 Aluminum foil for low-pinhole high-finish electronic tag and production process thereof
CN114277286B (en) * 2021-12-29 2022-08-02 江苏鼎胜新能源材料股份有限公司 High-tensile-strength and high-extensibility aluminum foil for power lithium battery and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3933573B2 (en) * 2002-12-26 2007-06-20 東洋アルミニウム株式会社 Aluminum foil for current collector of lithium ion battery, current collector of lithium ion battery and lithium ion battery
JP5495694B2 (en) * 2009-09-30 2014-05-21 株式会社Uacj製箔 Aluminum alloy foil for lithium ion secondary battery and method for producing the same
JP5591583B2 (en) * 2010-05-14 2014-09-17 株式会社Uacj Aluminum alloy foil for lithium-ion battery electrode current collector
JP5639398B2 (en) * 2010-07-16 2014-12-10 株式会社神戸製鋼所 Aluminum hard foil for battery current collector
JP2012224927A (en) * 2011-04-21 2012-11-15 Mitsubishi Alum Co Ltd Aluminum alloy foil for positive electrode current collector of lithium ion battery, and method for manufacturing the same
JP5848672B2 (en) * 2011-06-07 2016-01-27 株式会社Uacj Method for producing aluminum alloy foil and aluminum alloy foil
WO2013146369A1 (en) * 2012-03-29 2013-10-03 古河スカイ株式会社 Aluminum alloy foil for electrode current collector and method for manufacturing same

Also Published As

Publication number Publication date
JP2014109057A (en) 2014-06-12
MY170531A (en) 2019-08-14
CN104797725B (en) 2017-05-24
DE112013005772T5 (en) 2015-08-13
CN104797725A (en) 2015-07-22
WO2014087827A1 (en) 2014-06-12
KR20150086481A (en) 2015-07-28

Similar Documents

Publication Publication Date Title
JP5959423B2 (en) Aluminum alloy foil
JP5848672B2 (en) Method for producing aluminum alloy foil and aluminum alloy foil
JP5959405B2 (en) Aluminum alloy foil
JP5816285B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP6220773B2 (en) Method for producing aluminum alloy foil for electrode current collector
JP5264409B2 (en) Aluminum alloy foil for lithium ion battery electrode and method for producing the same
JP5448929B2 (en) Aluminum alloy hard foil having excellent bending resistance and method for producing the same
JP7165782B2 (en) aluminum alloy foil
TW201229246A (en) Aluminum alloy foil for electrode current collectors and manufacturing method thereof
JP6128976B2 (en) Copper alloy and high current connector terminal material
JP2014047367A (en) Aluminum hard foil for battery collector
JP6749121B2 (en) Copper alloy plate with excellent strength and conductivity
JP2011026656A (en) Aluminum alloy foil for lithium ion secondary battery and method for producing the same
WO2013018165A1 (en) Aluminum alloy foil for electrode collector and production method therefor
JP5758182B2 (en) Aluminum material
JP5582791B2 (en) Aluminum alloy foil for lithium-ion battery electrode current collector
JP5830100B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP6749122B2 (en) Copper alloy plate with excellent strength and conductivity
JP2015120968A (en) Aluminum alloy for hard foil, aluminum alloy hard foil, aluminum alloy foil for lithium ion secondary battery positive collector and manufacturing method for aluminum alloy hard foil
JPWO2017135108A1 (en) Aluminum alloy foil and method for producing the same
JP2017166027A (en) Aluminum alloy foil
JP6513896B2 (en) Aluminum alloy foil for lithium ion battery positive electrode current collector and method for producing the same
JP2017186636A (en) Aluminum alloy foil and manufacturing method therefor
JP2013209686A (en) Rolled copper foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160621

R150 Certificate of patent or registration of utility model

Ref document number: 5959423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350