JP5495694B2 - Aluminum alloy foil for lithium ion secondary battery and method for producing the same - Google Patents

Aluminum alloy foil for lithium ion secondary battery and method for producing the same Download PDF

Info

Publication number
JP5495694B2
JP5495694B2 JP2009225766A JP2009225766A JP5495694B2 JP 5495694 B2 JP5495694 B2 JP 5495694B2 JP 2009225766 A JP2009225766 A JP 2009225766A JP 2009225766 A JP2009225766 A JP 2009225766A JP 5495694 B2 JP5495694 B2 JP 5495694B2
Authority
JP
Japan
Prior art keywords
rolling
mass
aluminum alloy
foil
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009225766A
Other languages
Japanese (ja)
Other versions
JP2011074433A (en
Inventor
山本兼滋
古谷智彦
藤田和子
鈴木覚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
UACJ Foil Corp
Original Assignee
UACJ Corp
UACJ Foil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp, UACJ Foil Corp filed Critical UACJ Corp
Priority to JP2009225766A priority Critical patent/JP5495694B2/en
Publication of JP2011074433A publication Critical patent/JP2011074433A/en
Application granted granted Critical
Publication of JP5495694B2 publication Critical patent/JP5495694B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明はリチウムイオン二次電池の正極材に用いられるリチウムイオン二次電池用アルミニウム合金箔に関する。   The present invention relates to an aluminum alloy foil for a lithium ion secondary battery used for a positive electrode material of a lithium ion secondary battery.

近年、携帯電話、ノートパソコン等の携帯用電子機器の電源にエネルギー密度の高いリチウムイオン二次電池が用いられている。   In recent years, lithium ion secondary batteries with high energy density have been used as power sources for portable electronic devices such as mobile phones and notebook computers.

リチウムイオン二次電池の電極材は、正極板、セパレータ及び負極板で構成される。正極材には電気伝導性に優れ、二次電池の電気効率に影響せず、発熱が少ないという特徴を有するアルミニウム合金箔が支持体として使用され、一般的にJIS1085やJIS3003アルミニウム合金が用いられている。アルミニウム合金箔表面にはリチウム含有金属酸化物、たとえばLiCoOを主成分とする活物質を塗布する。製造方法としては、20μm程度のアルミニウム箔に、100μm程度の厚さの活物質を両面に塗布し、活物質中の溶媒を除去する乾燥工程を経て、さらに活物質の密度を増大させるためのプレスを行う。このようにして製造された正極板はセパレータ、負極板と積層された後、捲回してケースに収納される。 The electrode material of the lithium ion secondary battery includes a positive electrode plate, a separator, and a negative electrode plate. As the positive electrode material, an aluminum alloy foil is used as a support, which is excellent in electric conductivity, does not affect the electric efficiency of the secondary battery, and generates less heat. Generally, JIS 1085 and JIS 3003 aluminum alloys are used. Yes. An active material mainly composed of a lithium-containing metal oxide such as LiCoO 2 is applied to the surface of the aluminum alloy foil. As a manufacturing method, a press for increasing the density of the active material is further performed through a drying process in which an active material having a thickness of about 100 μm is applied to both sides of an aluminum foil of about 20 μm and the solvent in the active material is removed. I do. The positive electrode plate manufactured in this manner is laminated with the separator and the negative electrode plate, and then wound and stored in the case.

ケースに収納される際に、正極材に用いられるアルミニウム合金箔の反発力が大きく、スプリングバック量が大きいと、ケースへ収納する際の収納性が悪く、収納後も捲回体内部で隙間ができ、性能劣化し、結果的に容量が低下するという問題があった。また、強度が不足すると、活物質塗布工程で変形などの不具合を引き起こし、破断や亀裂が生じ易いという問題もあり、十分な強度を備え、かつ、ケース収納性に優れたアルミニウム合金箔が望まれている。   When the aluminum alloy foil used for the positive electrode material has a large repulsive force when stored in the case and the springback amount is large, the storage property when stored in the case is poor, and there is a gap inside the wound body after storage. There was a problem that the performance deteriorated and the capacity decreased as a result. In addition, when the strength is insufficient, there is a problem that the active material application process causes problems such as deformation, and breakage and cracks are likely to occur, and an aluminum alloy foil having sufficient strength and excellent case storage is desired. ing.

リチウムイオン二次電池の正極材で強度に関する記述がある文献は、特許文献1に製造工程中に破断や亀裂を防止するために引張強度を98MPa以上とすることが示されている。しかし、製造工程中の破断や亀裂を防止するためには十分な強度とは言えない。   A document describing the strength of a positive electrode material of a lithium ion secondary battery shows that Patent Document 1 has a tensile strength of 98 MPa or more in order to prevent breakage and cracks during the manufacturing process. However, the strength is not sufficient to prevent breakage and cracks during the manufacturing process.

また、特許文献2には高強度化することで圧着工程において塑性変形をせず、活物質との剥離を防止する方法が示されている。しかし、単なる高強度化では引張強さの増加に伴い、耐力の増加も招くので、捲回後にケースに収納する際、反発力が大きくなり、膨れは大きくなってしまう。   Further, Patent Document 2 discloses a method of preventing peeling from an active material without increasing plasticity in the pressure-bonding process by increasing the strength. However, simply increasing the strength causes an increase in yield strength as the tensile strength increases, and therefore, when stored in a case after winding, the repulsive force increases and the swelling increases.

特許3444769号公報Japanese Patent No. 3444769 特開2008−150651号公報JP 2008-150651 A

本発明は、リチウムイオン二次電池の正極材に使用されるアルミニウム合金箔について、活物質塗布時に変形などの不具合や破断が生じ難いので活物質の切れや剥離が発生せず、かつ、捲回体としてケースに収納する際に反発力が小さいのでケースへの収納性が良好であるリチウム二次電池用アルミニウム合金箔を提供することを目的とする。   The present invention relates to an aluminum alloy foil used for a positive electrode material of a lithium ion secondary battery, and it is difficult to cause defects such as deformation or breakage during application of the active material. An object of the present invention is to provide an aluminum alloy foil for a lithium secondary battery that has a good releasability when housed in a case as a body and thus has good housing properties.

本発明者らは、リチウムイオン二次電池の正極材に使用されるアルミニウム合金箔について検討した。その結果、成分及び製造工程を適切な範囲に規制することで、Mn系析出物分布を制御し、それにより熱処理後の箔の耐力値を適正化することで、十分な強度を備え、活物質塗布時に破断や亀裂、変形などの不具合が起こらず、かつ捲回体としたときのスプリングバック量が少なく、ケースへの収納性に優れる箔が得られることを見出し、本発明に至った。   The present inventors examined aluminum alloy foil used for the positive electrode material of a lithium ion secondary battery. As a result, the Mn-based precipitate distribution is controlled by regulating the components and the production process to an appropriate range, thereby optimizing the proof stress value of the foil after the heat treatment, providing sufficient strength, and an active material The present inventors have found that a foil that does not cause defects such as breakage, cracks, and deformation at the time of application and that has a small amount of springback when formed into a wound body and that is excellent in storage property in a case can be obtained.

本発明は請求項1において、Si0.01〜0.60mass%、Fe0.2〜1.0mass%、Cu0.05〜0.50mass%、Mn0.5〜1.5mass%を含有し、残部がAlと不可避不純物からなり、引張強さが240MPa以上であり、100℃で30分間の熱処理後の0.2%耐力が270MPa以下であり、180℃で30分間の熱処理後の引張強さが200MPa以上であり、厚さが5〜30μmであることを特徴とするリチウムイオン二次電池用アルミニウム合金箔とした。 The present invention according to claim 1 contains Si 0.01 to 0.60 mass%, Fe 0.2 to 1.0 mass%, Cu 0.05 to 0.50 mass%, Mn 0.5 to 1.5 mass%, with the balance being Al. The tensile strength is 240 MPa or more, the 0.2% proof stress after heat treatment at 100 ° C. for 30 minutes is 270 MPa or less, and the tensile strength after heat treatment at 180 ° C. for 30 minutes is 200 MPa or more. der is, to an aluminum alloy foil for a lithium ion secondary battery having a thickness and wherein 5~30μm der Rukoto.

本発明は請求項2において、Si0.01〜0.60mass%、Fe0.2〜1.0mass%、Cu0.05〜0.50mass%、Mn0.5〜1.5mass%を含有し、残部がAlと不可避不純物からなるアルミニウム鋳塊を520〜620℃で1〜20時間均質化処理する段階と、熱間圧延段階であって、均質化処理後に圧延開始温度以下に冷却を行わずに圧延開始温度を400〜600℃とする熱間圧延段階と、冷間圧延段階と、冷間圧延段階の途中の中間焼鈍段階と、箔圧延段階とを含み、前記冷間圧延段階において、上がり温度が150℃以下であり、中間焼鈍段階後の最終圧延率が45〜75%であり、前記中間焼鈍段階において、冷間圧延材がバッチ炉において300〜550℃で1分〜3時間焼鈍処理され、前記箔圧延段階において、一回の圧延での圧下率が50%であることを特徴とする5〜30μmの厚さを有するリチウムイオン二次電池用アルミニウム合金箔の製造方法とした。
The present invention according to claim 2 contains Si 0.01 to 0.60 mass%, Fe 0.2 to 1.0 mass%, Cu 0.05 to 0.50 mass%, Mn 0.5 to 1.5 mass%, with the balance being Al. And a step of homogenizing the aluminum ingot made of unavoidable impurities at 520 to 620 ° C. for 1 to 20 hours, and a hot rolling step, and after the homogenization treatment, the rolling start temperature is not cooled below the rolling start temperature. Including a hot rolling stage, a cold rolling stage, an intermediate annealing stage in the middle of the cold rolling stage, and a foil rolling stage. In the cold rolling stage, the rising temperature is 150 ° C. The final rolling rate after the intermediate annealing stage is 45 to 75%, and in the intermediate annealing stage, the cold rolled material is annealed at 300 to 550 ° C. for 1 minute to 3 hours in the batch furnace, and the foil Pressure In the rolling stage, the reduction ratio in one rolling was 50%, and the method for producing an aluminum alloy foil for a lithium ion secondary battery having a thickness of 5 to 30 μm was obtained.

本発明により、活物質塗布時に活物質の切れや剥離が発生せず、捲回体としてケースに収納する際の収納性が良好なリチウム二次電池用アルミニウム合金箔を提供できる。   According to the present invention, it is possible to provide an aluminum alloy foil for a lithium secondary battery that does not cause breakage or peeling of the active material during application of the active material, and has good storage properties when stored in a case as a wound body.

A.アルミニウム合金箔
A−1.組成
本発明に係るリチウムイオン二次電池用アルミニウム合金箔の組成はSi0.01〜0.60mass%、Fe0.2〜1.0mass%、Cu0.05〜0.50mass%、Mn0.5〜1.5mass%を含有し、残部がAlと不可避不純物からなる。以下において、「mass%」を単に「%」と記す。不可避不純物にはCr、Ni、Zn等を0.01%以下、Tiを0.05%以下含む。
A. Aluminum alloy foil A-1. Composition The composition of the aluminum alloy foil for lithium ion secondary batteries according to the present invention is as follows: Si 0.01 to 0.60 mass%, Fe 0.2 to 1.0 mass%, Cu 0.05 to 0.50 mass%, Mn 0.5 to 1. 5 mass% is contained, and the balance consists of Al and inevitable impurities. In the following, “mass%” is simply referred to as “%”. Inevitable impurities include 0.01% or less of Cr, Ni, Zn, etc. and 0.05% or less of Ti.

SiはAl12(Mn,Fe)Si相(α相)を形成して、アルミニウム合金箔の強度に寄与する。Si含有量が0.01%未満は、通常使用する地金に不純物成分としてSiが含まれるため、経済的に実現が困難である。また、0.6%を超えるとMn析出物の分布密度が大きくなり、冷間圧延中の加工硬化が大きくなる。その結果、熱処理後の耐力が上昇するので好ましくない。 Si forms an Al 12 (Mn, Fe) 3 Si phase (α phase) and contributes to the strength of the aluminum alloy foil. When the Si content is less than 0.01%, it is difficult to realize economically because Si is included as an impurity component in the normally used metal. On the other hand, if it exceeds 0.6%, the distribution density of Mn precipitates increases and work hardening during cold rolling increases. As a result, the yield strength after heat treatment is increased, which is not preferable.

Feもアルミニウム合金箔の強度に寄与する元素である。Fe含有量が0.2%未満ではその効果が得られない。一方、1.0%を超えると耐力が上昇し、捲回体としたときの膨れ量が大きくなり、ケース収納性が悪化する。   Fe is also an element contributing to the strength of the aluminum alloy foil. If the Fe content is less than 0.2%, the effect cannot be obtained. On the other hand, if it exceeds 1.0%, the yield strength is increased, the amount of swelling when the wound body is formed becomes large, and the case storage property is deteriorated.

Cuもアルミニウム合金箔の強度に寄与する元素であり、活物質塗布後の乾燥工程での軟化を抑制する。Cu含有量が0.05%未満ではその効果が十分に得られず、0.50%を超えると耐力が上昇し、捲回体としたときの膨れ量が大きくなり、ケース収納性が悪化する。   Cu is also an element that contributes to the strength of the aluminum alloy foil, and suppresses softening in the drying process after application of the active material. If the Cu content is less than 0.05%, the effect cannot be sufficiently obtained. If the Cu content exceeds 0.50%, the yield strength is increased, and the amount of swelling when the wound body is formed becomes large, and the case storage property is deteriorated. .

Mnもアルミニウム合金箔の強化に寄与する元素である。Mn含有量が0.5%未満であると強度付与の効果が十分に得られず、1.5%を超えると耐力が上昇し過ぎてケース収納性が悪化する。   Mn is also an element contributing to strengthening of the aluminum alloy foil. If the Mn content is less than 0.5%, the effect of imparting strength cannot be sufficiently obtained, and if it exceeds 1.5%, the yield strength is excessively increased and the case storage property is deteriorated.

A−2.引張強さ
本発明に係るリチウムイオン二次電池用アルミニウム合金箔の引張強さは、240MPa以上とする。240MPa未満では強度が不足し、活物質の密度を向上させるためのプレス時に張力が加わり、切れやシワが発生する。成分かつ製造工程を適正な範囲とすることで引張強さを240MPaとすることができる。
A-2. Tensile strength The tensile strength of the aluminum alloy foil for a lithium ion secondary battery according to the present invention is 240 MPa or more. If the pressure is less than 240 MPa, the strength is insufficient, tension is applied during pressing to improve the density of the active material, and cuts and wrinkles are generated. A tensile strength can be 240 Mpa by making a component and a manufacturing process into an appropriate range.

A−3.熱処理後の耐力と引張強さ
正極板の製造方法として、活物質中の溶媒を除去する目的で乾燥が行われる。この乾燥工程では100〜180℃程度の温度で熱処理が行われる。この熱処理により、正極板に用いられるアルミニウム合金箔は軟化して機械的特性が変化する場合があるため、熱処理後のアルミニウム合金箔の機械的特性が重要となる。本発明では、この機械的特性として、100℃で30分間の熱処理後の0.2%耐力を270MPa以下とし、180℃で30分間の熱処理後の引張強さを200MPa以上とする。
A-3. Yield Strength and Tensile Strength after Heat Treatment As a method for producing the positive electrode plate, drying is performed for the purpose of removing the solvent in the active material. In this drying step, heat treatment is performed at a temperature of about 100 to 180 ° C. Since the aluminum alloy foil used for the positive electrode plate may be softened by this heat treatment to change the mechanical properties, the mechanical properties of the aluminum alloy foil after the heat treatment are important. In the present invention, as the mechanical characteristics, the 0.2% proof stress after heat treatment at 100 ° C. for 30 minutes is 270 MPa or less, and the tensile strength after heat treatment at 180 ° C. for 30 minutes is 200 MPa or more.

正極板はセパレータ、負極板と積層された後、捲回してケースに収納されるが、耐力が大き過ぎると、捲回体としたときのスプリングバック量が大きくなるため、ケース収納時に収まり難く、ケース収納後はケースの膨れ変形を引き起こす。このため、熱処理後の0.2%耐力を270MPa以下とする必要がある。また、乾燥工程で軟化が起こると捲回体とした後に強度が不足し、活物質の剥離が生じたり、活物質がアルミニウム箔に食い込むことによる亀裂が生じたりする虞がある。そのため、熱処理後の引張強さ200MPa以上とする必要がある。   After the positive electrode plate is laminated with the separator and the negative electrode plate, it is wound and stored in the case, but if the proof stress is too large, the amount of spring back when it is used as a wound body increases, so it is difficult to fit in the case storage, After the case is stored, the case swells and deforms. For this reason, the 0.2% yield strength after heat treatment needs to be 270 MPa or less. In addition, when softening occurs in the drying process, the strength is insufficient after forming a wound body, and the active material may be peeled off or a crack may occur due to the active material biting into the aluminum foil. Therefore, it is necessary to make the tensile strength after heat treatment 200 MPa or more.

熱処理条件は、通常、100〜180℃で行われている。100℃で30分間の熱処理後の0.2%耐力が270MPa以下であると、それ以上の熱処理温度であっても0.2%耐力は270MPaを超えることはなく、ケースの収納性は良好となる。さらに、180℃×30分の熱処理後の引張強さが200MPaを超えていれば、それ以下の温度で熱処理された場合の引張強さは200MPaを下回ることはなく、亀裂が生じるのを防止するのに十分な強度を得ることができる。   The heat treatment is usually performed at 100 to 180 ° C. When the 0.2% yield strength after heat treatment at 100 ° C. for 30 minutes is 270 MPa or less, the 0.2% yield strength does not exceed 270 MPa even at higher heat treatment temperatures, and the case has good storage properties. Become. Furthermore, if the tensile strength after heat treatment at 180 ° C. × 30 minutes exceeds 200 MPa, the tensile strength when heat-treated at a temperature lower than 200 MPa does not fall below 200 MPa and prevents cracking. Sufficient strength can be obtained.

B.アルミニウム合金箔の製造方法
本発明に係るリチウムイオン二次電池用アルミニウム合金は、上記合金組成のアルミニウム鋳塊を用いて、以下の工程で製造する。
B. Manufacturing method of aluminum alloy foil The aluminum alloy for lithium ion secondary batteries which concerns on this invention is manufactured at the following processes using the aluminum ingot of the said alloy composition.

アルミニウム鋳塊は常法により溶解鋳造することができ、半連続鋳造法や連続鋳造圧延法を用いることができる。半連続鋳造法では520〜620℃で1〜20時間の均質化処理を行う。均質化処理温度が520℃未満であると、Mn析出物の分布密度が大きくなり、冷間圧延中の加工硬化が増加して耐力の上昇を招くので好ましくない。また、620℃を超えると局部的な溶融が起こり、表面性状が悪化したり強度が低下したりして、アルミニウム合金箔としての利用が最早困難になるので好ましくない。均質化保持時間については1時間未満であると均質化効果が十分ではなく、析出物の分布密度が高くなるため、冷間圧延中の加工硬化が増加して耐力の上昇を招くので好ましくない。一方、20時間を超えるとMn析出物の分布密度が小さくなり、素板強度が低下するのに伴い、熱処理後の強度も低下するので好ましくない。   The aluminum ingot can be melt cast by a conventional method, and a semi-continuous casting method or a continuous casting rolling method can be used. In the semi-continuous casting method, homogenization is performed at 520 to 620 ° C. for 1 to 20 hours. When the homogenization temperature is less than 520 ° C., the distribution density of Mn precipitates is increased, and work hardening during cold rolling is increased, resulting in an increase in yield strength. Moreover, when it exceeds 620 degreeC, local melting | dissolving will occur, surface property will deteriorate or intensity | strength will fall, and since utilization as an aluminum alloy foil becomes difficult once, it is unpreferable. If the homogenization holding time is less than 1 hour, the homogenizing effect is not sufficient, and the distribution density of precipitates is increased, so that the work hardening during cold rolling is increased and the yield strength is increased, which is not preferable. On the other hand, if the time exceeds 20 hours, the distribution density of Mn precipitates is reduced, and the strength after heat treatment is reduced as the base plate strength is lowered.

均質化処理工程に続く熱間圧延工程においては、均質化処理後に圧延開始温度以下に冷却を行わずに、圧延開始温度を400〜600℃として熱間圧延を実施する。均質化処理後に熱間圧延開始温度よりも低温まで冷却すると、Mn系析出物が微細に生じる。その結果、熱間圧延工程後の冷間圧延工程及び箔圧延工程中での加工硬化量が大きくなり、耐力の上昇を招くため好ましくない。乾燥工程の加熱条件によっては軟化量が小さい場合があるので、アルミニウム箔段階で耐力が大き過ぎないように制御することが重要となる。   In the hot rolling process following the homogenization process, hot rolling is performed at a rolling start temperature of 400 to 600 ° C. without cooling below the rolling start temperature after the homogenization process. When the alloy is cooled to a temperature lower than the hot rolling start temperature after the homogenization treatment, Mn-based precipitates are finely generated. As a result, the work hardening amount in the cold rolling process and the foil rolling process after the hot rolling process is increased, which increases the yield strength, which is not preferable. Depending on the heating conditions of the drying process, the amount of softening may be small, so it is important to control the yield strength not to be too high at the aluminum foil stage.

圧延開始温度は、400〜600℃である。400℃未満では、均質化終了からの冷却時間が長くなるため、冷却中にMn析出物が多く生じ、冷間圧延中の加工硬化が増加して耐力の上昇を招く。一方、600℃を超えると、表面性状が悪化するので好ましくなく、均質化温度が520〜620℃なので現実的には圧延開始温度が600℃を超えることはない。生じる析出物の分布密度は小さいほうが良いので、好ましくは450〜600℃とする。   Rolling start temperature is 400-600 degreeC. If it is less than 400 degreeC, since the cooling time after completion | finish of homogenization will become long, many Mn precipitates will arise during cooling, the work hardening in cold rolling will increase, and it will raise a yield strength. On the other hand, when the temperature exceeds 600 ° C., the surface properties are deteriorated, which is not preferable. Since the homogenization temperature is 520 to 620 ° C., the rolling start temperature does not actually exceed 600 ° C. Since the distribution density of the generated precipitate is preferably small, it is preferably set to 450 to 600 ° C.

このように均質化条件及び熱間圧延条件を制御することで冷間加工時の強度上昇を抑制するため、最終的にケース収納性に優れたアルミニウム箔とすることができ、乾燥工程においても軟化量を適正にすることができる。   By controlling the homogenization conditions and hot rolling conditions in this way, the strength increase during cold working is suppressed, so that it is finally possible to obtain an aluminum foil with excellent case storage and softening even in the drying process. The amount can be made appropriate.

熱間圧延によって得られたアルミニウム合金板は、冷間圧延及び箔圧延が順次施され、箔厚5〜30μmのアルミニウム箔を得る。冷間圧延は上がり温度150℃以下で行われ、中間焼鈍後の最終圧延率は45〜75%で実施される。中間焼鈍後の最終圧延率は、下記式で示される。すなわち、最終圧延率R={(t−t)/t}×100(%)である。ここで、tは中間焼鈍時の板厚、tは最終圧延後の板厚を示す。箔圧延は箔地として供給された板を一回の圧延で約50%の圧下率で圧延し、薄箔を製造する際に行う圧延のことである。箔圧延の圧下率は、下記式で示される。すなわち、箔圧延の圧下率R={(t−t)/t}×100(%)である。ここで、tは1回の箔圧延後の箔厚を示し、tは上述の通りである。なお、アルミニウム合金箔の強度の調整や結晶粒径制御の目的で、冷間圧延の途中に中間焼鈍を施してもよく、中間焼鈍は、バッチ炉又は連続炉において300〜550℃で1分間〜3時間行なわれる。 The aluminum alloy plate obtained by hot rolling is sequentially subjected to cold rolling and foil rolling to obtain an aluminum foil having a foil thickness of 5 to 30 μm. Cold rolling is performed at a temperature of 150 ° C. or lower, and the final rolling rate after intermediate annealing is 45 to 75%. The final rolling rate after the intermediate annealing is expressed by the following formula. That is, the final rolling rate R 1 = {(t 0 −t 1 ) / t 0 } × 100 (%). Here, t 0 is the thickness at the time of intermediate annealing, t 1 denotes the sheet thickness after the final rolling. Foil rolling is rolling performed when a sheet supplied as a foil is rolled at a rolling reduction of about 50% by one rolling to produce a thin foil. The rolling reduction of foil rolling is expressed by the following formula. That is, the rolling reduction ratio R 2 = {(t 1 −t 2 ) / t 1 } × 100 (%). Here, t 2 denotes the foil thickness after one foil rolling, t 1 is as described above. For the purpose of adjusting the strength of the aluminum alloy foil and controlling the crystal grain size, intermediate annealing may be performed during the cold rolling, and the intermediate annealing is performed at 300 to 550 ° C. for 1 minute in a batch furnace or a continuous furnace. It takes 3 hours.

C.アルミニウム合金箔の厚さ
アルミニウム合金箔の最終的な厚みは5〜30μmとする。厚みが5μm未満の場合、製造工程中に破断や亀裂が生じる虞があり、30μmを超えると体積及び重量が増加することでリチウムイオン二次電池として好ましくない。
C. The thickness of the aluminum alloy foil The final thickness of the aluminum alloy foil is 5 to 30 μm. If the thickness is less than 5 μm, breakage or cracks may occur during the manufacturing process, and if it exceeds 30 μm, the volume and weight increase, which is not preferable as a lithium ion secondary battery.

実施例1〜11及び比較例12〜24
表1に示す組成の合金を半連続鋳造法により溶解鋳造し、厚さ500mmの鋳塊を作製した。次にこの鋳塊を面削後、表2に示す条件で均質化処理を行い、圧延温度まで冷却して熱間圧延を行い、板厚を2.5mmとした。なお、比較例22及び23では、均質化処理後に室温まで冷却した。均質化処理後の冷却に続いて、冷間圧延により板厚0.5mmとして表2に示す条件で中間焼鈍(バッチ炉370℃で2時間、又は連続炉400℃で30秒)を行い、さらに冷間圧延(条件:上がり温度110℃)及び箔圧延(条件:上がり温度110℃)を行い、箔厚15μmのアルミニウム合金箔試料を得た。
Examples 1-11 and Comparative Examples 12-24
An alloy having a composition shown in Table 1 was melt cast by a semi-continuous casting method to produce an ingot having a thickness of 500 mm. Next, the ingot was subjected to a homogenization treatment under the conditions shown in Table 2 after being chamfered, cooled to a rolling temperature, and hot-rolled to a thickness of 2.5 mm. In Comparative Examples 22 and 23, the mixture was cooled to room temperature after the homogenization treatment. Following cooling after the homogenization treatment, intermediate annealing (batch furnace at 370 ° C. for 2 hours or continuous furnace at 400 ° C. for 30 seconds) is performed under the conditions shown in Table 2 with a sheet thickness of 0.5 mm by cold rolling. Cold rolling (condition: rising temperature 110 ° C.) and foil rolling (condition: rising temperature 110 ° C.) were performed to obtain an aluminum alloy foil sample having a foil thickness of 15 μm.

Figure 0005495694
Figure 0005495694

Figure 0005495694
Figure 0005495694

上記のようにして製造したアルミニウム合金箔試料を用いて、リチウムイオン二次電池の正極材を以下のようにして製造した。LiCoOを主体とする活物質に、バインダーを加えて正極スラリーとした。正極スラリーを、幅30mmとした試料の両面に塗布し、150℃で30分の条件で乾燥した後、ローラープレス機により圧延して正極材試料を得た。 Using the aluminum alloy foil sample produced as described above, a positive electrode material for a lithium ion secondary battery was produced as follows. A positive electrode slurry was prepared by adding a binder to an active material mainly composed of LiCoO 2 . The positive electrode slurry was applied to both surfaces of a sample having a width of 30 mm, dried at 150 ° C. for 30 minutes, and then rolled by a roller press to obtain a positive electrode material sample.

各アルミニウム合金箔試料について、引張強さ、100℃で30分間の熱処理後の0.2%耐力及び180℃で30分間の熱処理後の引張強さを測定して評価した。更に、各正極材試料について、活物質塗布工程における切れ発生の有無、活物質剥離の有無、ケースへの収納性を評価した。結果を表3に示す。   Each aluminum alloy foil sample was evaluated by measuring the tensile strength, 0.2% proof stress after heat treatment at 100 ° C. for 30 minutes, and tensile strength after heat treatment at 180 ° C. for 30 minutes. Furthermore, about each positive electrode material sample, the presence or absence of cutting | disconnection generation | occurrence | production in an active material application | coating process, the presence or absence of active material peeling, and the accommodation property to a case were evaluated. The results are shown in Table 3.

Figure 0005495694
Figure 0005495694

引張強さ
圧延方向に切り出したアルミニウム合金箔試料の引張強さを、島津製作所製インストロン型引張試験機AG−10kNXを使用して測定した。測定条件は、チャック間距離50mm、クロスヘッド速度10mm/分とした。また、180℃で30分間熱処理したアルミニウム合金箔試料を圧延方向に切り出し、上記と同じく引張強さを測定した。
Tensile strength The tensile strength of the aluminum alloy foil sample cut out in the rolling direction was measured using an Instron type tensile tester AG-10kNX manufactured by Shimadzu Corporation. The measurement conditions were a distance between chucks of 50 mm and a crosshead speed of 10 mm / min. Moreover, the aluminum alloy foil sample heat-processed for 30 minutes at 180 degreeC was cut out in the rolling direction, and the tensile strength was measured similarly to the above.

耐力
100℃で30分間熱処理したアルミニウム合金箔試料を圧延方向に切り出し、上記と同じく引張強さを測定して、応力/歪曲線から0.2%耐力を求めた。
Yield strength An aluminum alloy foil sample heat-treated at 100 ° C. for 30 minutes was cut in the rolling direction, the tensile strength was measured in the same manner as described above, and 0.2% yield strength was obtained from the stress / strain curve.

ケースへの収納性
100℃×30分間の熱処理後の0.2%耐力が270MPa以下の場合を、ケースへの収納性が合格(○)とし、それを超える場合を不合格(×)とした。
Storability in case When the 0.2% proof stress after heat treatment at 100 ° C. for 30 minutes is 270 MPa or less, the storability in the case is acceptable (O), and the case where it exceeds it is determined as unacceptable (X). .

活物質塗布工程における切れ発生の有無
活物質塗布工程において塗布した正極材に、切れが発生したか否かを目視で観察した。切れが発生しなかった場合を合格とし、発生した場合を不合格とした。
Presence / absence of breakage in the active material application process Whether the breakage occurred in the positive electrode material applied in the active material application process was visually observed. The case where cut did not occur was determined to be acceptable, and the case where it occurred was determined to be unacceptable.

活物質剥離の有無
活物質剥離の有無は、目視で観察を行った。剥離が発生しなかった場合を合格とし、少なくとも一部発生した場合を不合格とした。
Existence of active material peeling The presence or absence of active material peeling was observed visually. The case where peeling did not occur was determined to be acceptable, and the case where at least a portion occurred was regarded as unacceptable.

実施例1〜11では、活物質塗布工程における切れの発生が無く、活物質剥離も無く、ケースへの収納性も良好であった。   In Examples 1 to 11, there was no breakage in the active material application process, no active material peeling, and good storage in the case.

比較例12では、合金組成が本発明の範囲外であり、Siの添加量が多い。その結果、100℃×30分間の熱処理後の0.2%耐力は高くなり、ケース収納性が悪化した。
比較例13では、合金組成が本発明の範囲外であり、Feの添加量が多い。その結果、100℃×30分間の熱処理後の0.2%耐力は高くなり、ケース収納性が悪化した。
比較例14では、合金組成が本発明の範囲外であり、Feの添加量が少ない。その結果、熱処理前の引張強さが低くなり、活物質塗布工程で切れが発生した。また、180℃×30分間の熱処理後の引張強さが低く、乾燥工程後の引張強さが低くなったため、一部で活物質との剥離が発生した。
比較例15では、合金組成が本発明の範囲外であり、Cuの添加量が多い。その結果、100℃×30分間の熱処理後の0.2%耐力が高くなり、ケース収納性が悪化した。
比較例16では、合金組成が本発明の範囲外であり、Cuの添加量が低い。その結果、熱処理前の引張強さが低くなり、活物質塗布工程で切れが発生した。また、180℃×30分間の熱処理後の引張強さが低く、乾燥工程での軟化量が大きく、乾燥工程後の引張強さが低くなったため、一部で活物質との剥離が発生した。
比較例17では、合金組成が本発明の範囲外であり、Mnの添加量が多い。その結果、100℃×30分間の熱処理後の0.2%耐力は高くなり、ケース収納性が悪化した。
比較例18では、合金組成が本発明の範囲外であり、Mnの添加量が低い。その結果、熱処理前の引張強さが低くなり、活物質塗布で切れが発生した。また、180℃×30分間の熱処理後の引張強さが低く、乾燥工程後の引張強さが低くなったため、一部で活物質との剥離が発生した。
比較例19では、均質化温度が低いためMn系析出物の分布密度が高い。その結果、100℃×30分間の熱処理後の0.2%耐力は高くなり、ケース収納性が悪化した。
比較例20では、均質化処理時間が短いため、Mn系析出物の分布密度が高い。その結果、100℃×30分間の熱処理後の0.2%耐力は高くなり、ケース収納性が悪化した。
比較例21では、均質化処理時間が長いため、Mn系析出物の分布密度が低い。その結果、熱処理前の引張強さが低くなり、製造工程で切れが発生した。また、180℃×30分間の熱処理後の引張強さが低く、乾燥工程後の引張強さが低くなったため、一部で活物質との剥離が発生した。
比較例22では、均質化処理後に室温まで冷却されたため、Mn系析出物の分布密度が高い。その結果、箔地の冷間圧延および箔圧延中の加工硬化量が大きくなり、100℃×30分間の熱処理後の0.2%耐力は高くなり、ケース収納性が悪化した。
比較例23では、均質化処理後に室温まで冷却されたため、Mn系析出物の分布密度が高い。その結果、箔地の冷間圧延および箔圧延中の加工硬化量が大きくなり、100℃×30分間の熱処理後の0.2%耐力は高くなり、ケース収納性が悪化した。
比較例24では、熱間圧延開始温度が低いため、冷却中にMn析出物が多く生じる。その結果、100℃×30分間の熱処理後の0.2%耐力は高くなり、ケース収納性が悪化した。
In Comparative Example 12, the alloy composition is outside the range of the present invention, and the amount of Si added is large. As a result, the 0.2% yield strength after heat treatment at 100 ° C. for 30 minutes was increased, and the case storage property was deteriorated.
In Comparative Example 13, the alloy composition is outside the range of the present invention, and the amount of Fe added is large. As a result, the 0.2% yield strength after heat treatment at 100 ° C. for 30 minutes was increased, and the case storage property was deteriorated.
In Comparative Example 14, the alloy composition is outside the range of the present invention, and the amount of Fe added is small. As a result, the tensile strength before heat treatment became low, and breakage occurred in the active material application process. Moreover, since the tensile strength after the heat treatment at 180 ° C. for 30 minutes was low and the tensile strength after the drying step was low, some peeling from the active material occurred.
In Comparative Example 15, the alloy composition is outside the scope of the present invention, and the amount of Cu added is large. As a result, the 0.2% yield strength after heat treatment at 100 ° C. for 30 minutes was increased, and the case storage property was deteriorated.
In Comparative Example 16, the alloy composition is outside the range of the present invention, and the amount of Cu added is low. As a result, the tensile strength before heat treatment became low, and breakage occurred in the active material application process. Further, since the tensile strength after heat treatment at 180 ° C. for 30 minutes was low, the amount of softening in the drying step was large, and the tensile strength after the drying step was low, some peeling from the active material occurred.
In Comparative Example 17, the alloy composition is outside the scope of the present invention, and the amount of Mn added is large. As a result, the 0.2% yield strength after heat treatment at 100 ° C. for 30 minutes was increased, and the case storage property was deteriorated.
In Comparative Example 18, the alloy composition is outside the range of the present invention, and the amount of Mn added is low. As a result, the tensile strength before heat treatment became low, and breakage occurred when the active material was applied. Moreover, since the tensile strength after the heat treatment at 180 ° C. for 30 minutes was low and the tensile strength after the drying step was low, some peeling from the active material occurred.
In Comparative Example 19, since the homogenization temperature is low, the distribution density of the Mn-based precipitates is high. As a result, the 0.2% yield strength after heat treatment at 100 ° C. for 30 minutes was increased, and the case storage property was deteriorated.
In Comparative Example 20, since the homogenization time is short, the distribution density of Mn-based precipitates is high. As a result, the 0.2% yield strength after heat treatment at 100 ° C. for 30 minutes was increased, and the case storage property was deteriorated.
In Comparative Example 21, since the homogenization time is long, the distribution density of Mn-based precipitates is low. As a result, the tensile strength before heat treatment became low, and cuts occurred in the manufacturing process. Moreover, since the tensile strength after the heat treatment at 180 ° C. for 30 minutes was low and the tensile strength after the drying step was low, some peeling from the active material occurred.
In Comparative Example 22, since it was cooled to room temperature after the homogenization treatment, the distribution density of the Mn-based precipitates is high. As a result, the amount of work hardening during cold rolling and foil rolling of the foil increased, the 0.2% proof stress after heat treatment at 100 ° C. × 30 minutes increased, and the case storage property deteriorated.
In Comparative Example 23, since it was cooled to room temperature after the homogenization treatment, the distribution density of the Mn-based precipitates is high. As a result, the amount of work hardening during cold rolling and foil rolling of the foil increased, the 0.2% proof stress after heat treatment at 100 ° C. × 30 minutes increased, and the case storage property deteriorated.
In Comparative Example 24, since the hot rolling start temperature is low, many Mn precipitates are generated during cooling. As a result, the 0.2% yield strength after heat treatment at 100 ° C. for 30 minutes was increased, and the case storage property was deteriorated.

本発明により、活物質塗布時に活物質の切れや剥離が発生せず、捲回体としてケースに収納する際の収納性が良好なリチウム二次電池用アルミニウム合金箔を提供できる。   According to the present invention, it is possible to provide an aluminum alloy foil for a lithium secondary battery that does not cause breakage or peeling of the active material during application of the active material, and has good storage properties when stored in a case as a wound body.

Claims (2)

Si0.01〜0.60mass%、Fe0.2〜1.0mass%、Cu0.05〜0.50mass%、Mn0.5〜1.5mass%を含有し、残部がAlと不可避不純物からなり、引張強さが240MPa以上であり、100℃で30分間の熱処理後の0.2%耐力が270MPa以下であり、かつ、180℃で30分間の熱処理後の引張強さが200MPa以上であり、厚さが5〜30μmであることを特徴とするリチウムイオン二次電池用アルミニウム合金箔。 Si 0.01 to 0.60 mass%, Fe 0.2 to 1.0 mass%, Cu 0.05 to 0.50 mass%, Mn 0.5 to 1.5 mass%, the balance consisting of Al and inevitable impurities, tensile strength Saga and at 240MPa or more, 0.2% proof stress after the heat treatment for 30 minutes at 100 ° C. is not more than 270 MPa, and state, and are at least 200MPa tensile strength after heat treatment for 30 minutes at 180 ° C., the thickness There aluminum alloy foil for a lithium ion secondary battery, characterized 5~30μm der Rukoto. Si0.01〜0.60mass%、Fe0.2〜1.0mass%、Cu0.05〜0.50mass%、Mn0.5〜1.5mass%を含有し、残部がAlと不可避不純物からなるアルミニウム鋳塊を520〜620℃で1〜20時間均質化処理する段階と、熱間圧延段階であって、均質化処理後に圧延開始温度以下に冷却を行わずに圧延開始温度を400〜600℃とする熱間圧延段階と、冷間圧延段階と、冷間圧延段階の途中の中間焼鈍段階と、箔圧延段階とを含み、前記冷間圧延段階において、上がり温度が150℃以下であり、中間焼鈍段階後の最終圧延率が45〜75%であり、前記中間焼鈍段階において、冷間圧延材がバッチ炉において300〜550℃で1分〜3時間焼鈍処理され、前記箔圧延段階において、一回の圧延での圧下率が50%であることを特徴とする5〜30μmの厚さを有するリチウムイオン二次電池用アルミニウム合金箔の製造方法。 Aluminum ingot containing Si 0.01 to 0.60 mass%, Fe 0.2 to 1.0 mass%, Cu 0.05 to 0.50 mass%, Mn 0.5 to 1.5 mass%, the balance being Al and inevitable impurities Is a step of homogenizing at 520 to 620 ° C. for 1 to 20 hours, and a hot rolling step, and the heat at which the rolling start temperature is 400 to 600 ° C. without cooling below the rolling start temperature after the homogenization treatment Including a cold rolling step, a cold rolling step, an intermediate annealing step in the middle of the cold rolling step, and a foil rolling step , wherein the rising temperature is 150 ° C. or less in the cold rolling step, and after the intermediate annealing step In the intermediate annealing stage, the cold rolled material is annealed in a batch furnace at 300 to 550 ° C. for 1 minute to 3 hours, and in the foil rolling stage, the rolling is performed once. A method for producing an aluminum alloy foil for a lithium ion secondary battery having a thickness of 5 to 30 μm, wherein the rolling reduction is 50% .
JP2009225766A 2009-09-30 2009-09-30 Aluminum alloy foil for lithium ion secondary battery and method for producing the same Active JP5495694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009225766A JP5495694B2 (en) 2009-09-30 2009-09-30 Aluminum alloy foil for lithium ion secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009225766A JP5495694B2 (en) 2009-09-30 2009-09-30 Aluminum alloy foil for lithium ion secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011074433A JP2011074433A (en) 2011-04-14
JP5495694B2 true JP5495694B2 (en) 2014-05-21

Family

ID=44018714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009225766A Active JP5495694B2 (en) 2009-09-30 2009-09-30 Aluminum alloy foil for lithium ion secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP5495694B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748713B (en) * 2011-07-29 2016-03-16 株式会社Uacj Electrode collector alloy foil and manufacture method thereof
WO2013161726A1 (en) * 2012-04-24 2013-10-31 古河スカイ株式会社 Aluminum alloy foil for electrode current collector, method for producing same, and lithium ion secondary battery
KR20150022906A (en) * 2012-05-25 2015-03-04 가부시키가이샤 유에이씨제이 Aluminum alloy foil for electrode collector, method for manufacturing same, and electrode material
JP5567719B2 (en) * 2012-07-26 2014-08-06 三菱アルミニウム株式会社 Method for producing aluminum alloy foil for positive electrode current collector of lithium ion secondary battery, aluminum alloy foil for lithium ion secondary battery positive electrode current collector and lithium ion secondary battery
JP5959423B2 (en) * 2012-12-03 2016-08-02 株式会社Uacj Aluminum alloy foil
JP6974930B2 (en) * 2015-10-09 2021-12-01 マクセル株式会社 Non-aqueous electrolyte secondary battery
CN108441743A (en) * 2018-01-24 2018-08-24 云南浩鑫铝箔有限公司 A kind of anode current collector of lithium ion battery aluminium foil
CN114277286B (en) * 2021-12-29 2022-08-02 江苏鼎胜新能源材料股份有限公司 High-tensile-strength and high-extensibility aluminum foil for power lithium battery and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2238584T3 (en) * 2001-07-09 2005-09-01 Corus Aluminium Walzprodukte Gmbh HIGH-RESISTANCE AL-MG-SI ALLOY.
JP4870359B2 (en) * 2004-01-09 2012-02-08 昭和電工株式会社 Degreasing method of aluminum foil
CA2625847C (en) * 2005-10-28 2012-01-24 Novelis Inc. Homogenization and heat-treatment of cast metals
JP5160839B2 (en) * 2006-08-29 2013-03-13 東洋アルミニウム株式会社 Aluminum alloy foil for current collector
JP5083799B2 (en) * 2006-12-15 2012-11-28 三菱アルミニウム株式会社 Aluminum alloy foil for lithium ion battery electrode material excellent in bending resistance and method for producing the same
JP5495649B2 (en) * 2009-07-24 2014-05-21 株式会社Uacj製箔 Aluminum alloy foil for lithium ion secondary battery and method for producing the same

Also Published As

Publication number Publication date
JP2011074433A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP5495694B2 (en) Aluminum alloy foil for lithium ion secondary battery and method for producing the same
JP5856076B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP6174012B2 (en) Aluminum alloy foil for electrode current collector, method for producing the same, and lithium ion secondary battery
US9543588B2 (en) Aluminum alloy foil for electrode collectors and production method therefor
JP5495649B2 (en) Aluminum alloy foil for lithium ion secondary battery and method for producing the same
US10367204B2 (en) Aluminum alloy foil for electrode current collectors and manufacturing method thereof
JP6475404B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP6220773B2 (en) Method for producing aluminum alloy foil for electrode current collector
WO2013176038A1 (en) Aluminum alloy foil for electrode collector, method for manufacturing same, and electrode material
JP2014114480A (en) Electrode collector aluminum alloy foil and method for manufacturing the same
US9666867B2 (en) Aluminum alloy foil for electrode collector and production method therefor
JP2012052204A (en) Aluminum alloy foil for lithium-ion battery electrode material, and electrode material using the same
JP6280738B2 (en) Aluminum alloy for hard foil, aluminum alloy hard foil, aluminum alloy foil for positive electrode current collector of lithium ion secondary battery, and method for producing aluminum alloy hard foil
JP2018076590A (en) Aluminum alloy foil for electrode collector body and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140304

R150 Certificate of patent or registration of utility model

Ref document number: 5495694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350