JP5935074B2 - Mounting board and light emitting module - Google Patents

Mounting board and light emitting module Download PDF

Info

Publication number
JP5935074B2
JP5935074B2 JP2011165688A JP2011165688A JP5935074B2 JP 5935074 B2 JP5935074 B2 JP 5935074B2 JP 2011165688 A JP2011165688 A JP 2011165688A JP 2011165688 A JP2011165688 A JP 2011165688A JP 5935074 B2 JP5935074 B2 JP 5935074B2
Authority
JP
Japan
Prior art keywords
light emitting
heat transfer
transfer plate
film
emitting module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011165688A
Other languages
Japanese (ja)
Other versions
JP2013030621A (en
Inventor
浦野 洋二
洋二 浦野
畠 一志
一志 畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2011165688A priority Critical patent/JP5935074B2/en
Priority to PCT/JP2012/058065 priority patent/WO2013014978A1/en
Publication of JP2013030621A publication Critical patent/JP2013030621A/en
Application granted granted Critical
Publication of JP5935074B2 publication Critical patent/JP5935074B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • H01L2224/48228Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item the bond pad being disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/10553Component over metal, i.e. metal plate in between bottom of component and surface of PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0061Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、実装基板および発光モジュールに関するものである。   The present invention relates to a mounting substrate and a light emitting module.

従来から、図11に示すように、LED素子108を搭載するための基板であるLED基板101を備えたLEDパッケージ102が提案されている(特許文献1)。   Conventionally, as shown in FIG. 11, an LED package 102 including an LED substrate 101 that is a substrate on which an LED element 108 is mounted has been proposed (Patent Document 1).

ここにおいて、LED基板101は、配線板105と反射板103とを接着剤104を介して貼り合わせたものである。   Here, the LED substrate 101 is obtained by bonding a wiring board 105 and a reflection plate 103 with an adhesive 104 interposed therebetween.

配線板105は、反射板103側となる一方の面に、ボンディングパッド106を含む導体回路115を備え、他方の面に、ボンディングパッド106に層間接続120により電気的に接続された下面電極111を含む導体回路を備えている。ここにおいて、配線板105は、両面配線板または多層配線板である。   The wiring board 105 includes a conductor circuit 115 including a bonding pad 106 on one surface on the reflective plate 103 side, and a lower surface electrode 111 electrically connected to the bonding pad 106 by an interlayer connection 120 on the other surface. Including a conductor circuit. Here, the wiring board 105 is a double-sided wiring board or a multilayer wiring board.

配線板105は、ボンディングパッド106を除く所定の位置にソルダーレジスト124が形成されている。   The wiring board 105 has a solder resist 124 formed at a predetermined position excluding the bonding pad 106.

反射板103は、配線板105のボンディングパッド106を露出させる接続用開口112を有している。また、反射板103は、LED素子108からの光を反射する機能と、LED素子108で生じた熱を放熱する機能とを有している。   The reflection plate 103 has a connection opening 112 that exposes the bonding pad 106 of the wiring board 105. The reflector 103 has a function of reflecting light from the LED element 108 and a function of radiating heat generated by the LED element 108.

また、接着剤104としては、例えば、エポキシ系接着剤に無機系フィラーを充填した接着剤などの高熱伝導性接着剤が用いられている。これにより、LEDパッケージ102では、LED素子108から反射板103を介して接着剤104に伝わる熱を、より効率よく放熱することができる。   In addition, as the adhesive 104, for example, a highly heat conductive adhesive such as an adhesive in which an epoxy-based adhesive is filled with an inorganic filler is used. Thereby, in the LED package 102, the heat transmitted from the LED element 108 to the adhesive 104 via the reflecting plate 103 can be radiated more efficiently.

LED素子108としては、青色LEDが用いられている。また、LED素子108は、反射板103のLED搭載部107に、シリコーン樹脂とエポキシ樹脂との混合タイプのダイボンドペーストを用いて実装してある。   A blue LED is used as the LED element 108. Further, the LED element 108 is mounted on the LED mounting portion 107 of the reflection plate 103 using a die bond paste of a mixed type of silicone resin and epoxy resin.

LEDパッケージ102は、反射板103上に形成されてLED素子108およびボンディングワイヤ109を覆うモールド用の樹脂として、青色光を白色光に変換するための蛍光材を含むモールド樹脂114aと、透明なモールド樹脂114bとを備えている。   The LED package 102 includes a mold resin 114a including a fluorescent material for converting blue light into white light as a mold resin that is formed on the reflection plate 103 and covers the LED elements 108 and the bonding wires 109, and a transparent mold. Resin 114b.

特開2011−44593号公報JP 2011-44593 A

特許文献1には、LED基板101は、LED素子108を搭載してLEDパッケージ102を形成するための部材であって、ボンディングパッド106を除いて反射板103で被覆されているので、LED素子108から出る熱・紫外線から配線板105を保護できる旨が記載されている。また、特許文献1には、接続用開口112からボンディングパッド106のみが露出するようにすると、配線板105の樹脂により形成される部分が反射板103の表面側に露出しないため、LED素子108からの光による配線板105の劣化を抑制できる点で望ましい旨が記載されている。ここにおいて、このLED基板101では、LED素子108で発生した熱が反射板103を介して接着剤104に伝わり、更に配線板105に伝わりやすくなるものと推考される。   In Patent Document 1, the LED substrate 101 is a member for mounting the LED element 108 to form the LED package 102 and is covered with the reflector 103 except for the bonding pad 106. It is described that the wiring board 105 can be protected from heat and ultraviolet rays emitted from it. Further, in Patent Document 1, when only the bonding pad 106 is exposed from the connection opening 112, a portion formed of the resin of the wiring board 105 is not exposed on the surface side of the reflecting plate 103. It describes that it is desirable in that it can suppress the deterioration of the wiring board 105 due to the light. Here, in this LED substrate 101, it is assumed that heat generated in the LED element 108 is transmitted to the adhesive 104 through the reflection plate 103, and more easily transmitted to the wiring board 105.

しかしながら、配線板105として両面配線板を用いている場合、配線板105の厚み方向の熱抵抗が大きいので、LED素子108の光出力の高出力化を図った場合に、LED素子108の温度上昇を十分に抑制できなくなる懸念がある。このため、上述のLED基板101を用いたLEDパッケージ102では、光出力の高出力化が制限されてしまう懸念がある。また、LEDパッケージ102を照明器具の光源として用いる場合には、LEDパッケージ102を別途の回路基板に表面実装して用いる必要があり、LED素子108から器具本体までの熱抵抗が高くなってしまう。   However, when a double-sided wiring board is used as the wiring board 105, the thermal resistance in the thickness direction of the wiring board 105 is large. Therefore, when the light output of the LED element 108 is increased, the temperature of the LED element 108 increases. There is a concern that it will not be possible to sufficiently suppress the above. For this reason, in the LED package 102 using the above-mentioned LED substrate 101, there is a concern that the increase in the light output is limited. Further, when the LED package 102 is used as a light source of a lighting fixture, the LED package 102 needs to be mounted on the surface of a separate circuit board, and the thermal resistance from the LED element 108 to the fixture main body is increased.

本発明は上記事由に鑑みて為されたものであり、その目的は、放熱性を向上させることが可能な実装基板および発光モジュールを提供することにある。   This invention is made | formed in view of the said reason, The objective is to provide the mounting substrate and light emitting module which can improve heat dissipation.

本発明の実装基板は、電子部品を実装可能な実装基板であって、金属板により形成され前記電子部品を一面側に搭載可能な伝熱板と、前記電子部品を電気的に接続可能な配線パターンが有機系絶縁基板の片面に設けられ前記伝熱板の他面側に配置された配線基板と、前記伝熱板と前記配線基板との間に介在する絶縁層とを備え、前記伝熱板は、前記配線パターンにおける、前記電子部品の接続用部位を露出させる貫通孔が形成されてなり、前記配線基板の平面サイズが前記伝熱板の平面サイズよりも大きく、前記配線基板は、前記配線パターンが、前記伝熱板に重ならない領域まで広がっていることを特徴とする。   The mounting board of the present invention is a mounting board on which an electronic component can be mounted, and is formed of a metal plate and can mount the electronic component on one side, and a wiring that can electrically connect the electronic component. A wiring board provided with a pattern on one side of the organic insulating substrate and disposed on the other side of the heat transfer plate, and an insulating layer interposed between the heat transfer plate and the wiring substrate, the heat transfer The board is formed with a through hole that exposes the connection part of the electronic component in the wiring pattern, the plane size of the wiring board is larger than the plane size of the heat transfer plate, The wiring pattern extends to a region that does not overlap the heat transfer plate.

この実装基板において、前記配線基板は、前記有機系絶縁基板の前記片面において前記伝熱板に重ならない部位を覆うレジストからなる保護層を備え、前記保護層に、前記配線パターンの一部を端子部として露出させる露出部が形成されてなることが好ましい。   In this mounting board, the wiring board includes a protective layer made of a resist that covers a portion of the one side of the organic insulating substrate that does not overlap the heat transfer plate, and a part of the wiring pattern is connected to the protective layer as a terminal. It is preferable that an exposed portion to be exposed as a portion is formed.

この実装基板において、前記保護層の色が白色であることが好ましい。   In this mounting board, it is preferable that the color of the protective layer is white.

この実装基板において、前記配線基板は、前記配線パターンにおいて前記保護層により覆われた領域以外に、めっき層が形成されてなり、前記配線パターンの材料がCuであり、前記めっき層は、Ni膜とPd膜とAu膜との積層膜もしくはNi膜とAu膜との積層膜からなることが好ましい。   In this mounting substrate, the wiring substrate is formed by forming a plating layer in a region other than the region covered with the protective layer in the wiring pattern, and the material of the wiring pattern is Cu, and the plating layer is a Ni film. It is preferably made of a laminated film of Ni and Pd film and Au film or a laminated film of Ni film and Au film.

この実装基板において、前記絶縁層は、熱硬化性樹脂からなり、前記熱硬化性樹脂に比べて熱伝導率の高いフィラーを含有していることが好ましい。   In this mounting board, the insulating layer is preferably made of a thermosetting resin and contains a filler having a higher thermal conductivity than the thermosetting resin.

この実装基板において、前記伝熱板は、前記第1金属板がアルミニウム板であり、前記アルミニウム板における前記絶縁層側とは反対側に前記アルミニウム板よりも高純度のアルミニウム膜が積層され、前記アルミニウム膜に屈折率の異なる2種類の誘電体膜からなる増反射膜が積層されてなることが好ましい。   In this mounting substrate, the heat transfer plate is such that the first metal plate is an aluminum plate, and an aluminum film having a higher purity than the aluminum plate is laminated on the side opposite to the insulating layer side of the aluminum plate, It is preferable that an aluminum film is laminated with a reflection enhancing film made of two kinds of dielectric films having different refractive indexes.

この実装基板において、前記伝熱板は、長尺状の形状であって、複数の前記電子部品を前記伝熱板の長手方向に沿って並べて搭載可能であり、前記有機系絶縁基板は、前記伝熱板よりも幅寸法の大きな長尺状の形状であって、樹脂に前記樹脂よりも熱伝導率の高いフィラーを混合した樹脂基板からなり、前記配線パターンよりも前記金属板との線膨張率差が小さいことが好ましい。 In this mounting board, the heat transfer plate is a long shape, it can be mounted side by side along a plurality of the electronic component in the longitudinal direction of the heat transfer plate, wherein the organic insulating base plate, It is a long shape having a larger width dimension than the heat transfer plate, and is made of a resin substrate in which a filler having a higher thermal conductivity than the resin is mixed with the resin, and the wire with the metal plate rather than the wiring pattern It is preferable that the difference in expansion coefficient is small.

本発明の発光モジュールは、前記実装基板と、前記実装基板に実装された前記電子部品とを備え、前記電子部品が固体発光素子からなることを特徴とする。   The light-emitting module of the present invention includes the mounting substrate and the electronic component mounted on the mounting substrate, and the electronic component includes a solid light-emitting element.

この発光モジュールにおいて、前記固体発光素子は、LEDチップであることが好ましい。   In the light emitting module, the solid light emitting element is preferably an LED chip.

この発光モジュールにおいて、前記LEDチップから放射された光によって励起されて前記LEDチップの発光色とは異なる色の光を放射する蛍光体および透光性材料を含む色変換部を備え、前記色変換部は、前記伝熱板に接していることが好ましい。   The light emitting module includes a color conversion unit including a phosphor and a translucent material that is excited by light emitted from the LED chip and emits light of a color different from the emission color of the LED chip, and the color conversion The part is preferably in contact with the heat transfer plate.

この発光モジュールにおいて、前記各固体発光素子は、厚み方向の一面側に第1電極と第2電極とが設けられたものであり、前記第1電極および前記第2電極の各々が前記貫通孔を通るワイヤを介して前記配線パターンと電気的に接続されてなることが好ましい。 In this light emitting module, each of the solid light emitting elements is provided with a first electrode and a second electrode on one surface side in a thickness direction, and each of the first electrode and the second electrode has the through hole. It is preferable that the wiring pattern is electrically connected through a wire passing therethrough.

本発明の実装基板においては、放熱性を向上させることが可能となる。   In the mounting board of the present invention, it is possible to improve heat dissipation.

本発明の発光モジュールにおいては、放熱性を向上させることが可能となる。   In the light emitting module of the present invention, heat dissipation can be improved.

(a)は実施形態における実装基板の概略分解斜視図であり、(b)は(a)の要部拡大図である。(A) is a general | schematic disassembled perspective view of the mounting substrate in embodiment, (b) is the principal part enlarged view of (a). 実施形態における実装基板の概略斜視図である。It is a schematic perspective view of the mounting board in an embodiment. 実施形態における実装基板の他の構成例の概略分解斜視図である。It is a general | schematic disassembled perspective view of the other structural example of the mounting board | substrate in embodiment. 実施形態における実装基板の他の構成の概略斜視図である。It is a schematic perspective view of the other structure of the mounting board | substrate in embodiment. (a)は実施形態における発光モジュールの要部概略斜視図、(b)は実施形態における発光モジュールの一部破断した要部概略斜視図である。(A) is a principal part schematic perspective view of the light emitting module in embodiment, (b) is a principal part schematic perspective view in which the light emitting module in embodiment was partially fractured. 実施形態における発光モジュールの要部概略断面図である。It is a principal part schematic sectional drawing of the light emitting module in embodiment. 実施形態における発光モジュールの他の構成例の要部概略断面図である。It is a principal part schematic sectional drawing of the other structural example of the light emitting module in embodiment. 実施形態における発光モジュールの更に他の構成例の要部概略断面図である。It is a principal part schematic sectional drawing of the further another structural example of the light emitting module in embodiment. 実施形態における発光モジュールの別の構成例の要部概略断面図である。It is a principal part schematic sectional drawing of another structural example of the light emitting module in embodiment. 実施形態における発光モジュールの更に別の構成例の要部概略断面図である。It is a principal part schematic sectional drawing of another structural example of the light emitting module in embodiment. 従来のLEDパッケージの概略断面図である。It is a schematic sectional drawing of the conventional LED package.

以下では、まず、図1〜図4に基づいて、電子部品を実装可能な実装基板2について説明し、その後、図5〜図10に基づいて、実装基板2を備えた発光モジュールについて説明する。   Below, based on FIGS. 1-4, the mounting board | substrate 2 which can mount an electronic component is demonstrated first, Then, the light emitting module provided with the mounting board | substrate 2 is demonstrated based on FIGS.

実装基板2は、電子部品を一面側に搭載可能な伝熱板21と、伝熱板21の他面側に配置され電子部品を電気的に接続可能な配線パターン22bを有する配線基板22と、伝熱板21と配線基板22との間に介在する絶縁層23とを備えている。ここで、伝熱板21は、金属板により形成されている。また、配線基板22は、配線パターン22bが有機系絶縁基板22aの片面に設けられている。この配線基板22としては、片面プリント配線板を用いることができる。   The mounting substrate 2 has a heat transfer plate 21 on which electronic components can be mounted on one surface side, a wiring substrate 22 having a wiring pattern 22b disposed on the other surface side of the heat transfer plate 21 and capable of electrically connecting electronic components, An insulating layer 23 is provided between the heat transfer plate 21 and the wiring board 22. Here, the heat transfer plate 21 is formed of a metal plate. Further, the wiring substrate 22 has a wiring pattern 22b provided on one side of the organic insulating substrate 22a. As the wiring board 22, a single-sided printed wiring board can be used.

伝熱板21は、配線パターン22bにおける、電子部品の接続用部位を露出させる貫通孔21bが形成されている。   The heat transfer plate 21 is formed with a through hole 21b that exposes a connection part for an electronic component in the wiring pattern 22b.

実装基板2は、配線基板22の平面サイズが伝熱板21の平面サイズよりも大きい。また、配線基板22は、配線パターン22bが、伝熱板21に重ならない領域まで広がっている。   In the mounting substrate 2, the planar size of the wiring substrate 22 is larger than the planar size of the heat transfer plate 21. Further, the wiring board 22 extends to a region where the wiring pattern 22 b does not overlap the heat transfer plate 21.

実装基板2は、全体として長尺状に形成されており、伝熱板21の上記一面側において、複数個(図1の例では、12×6=72個)の電子部品を伝熱板21の長手方向に沿って配置可能となっている。   The mounting substrate 2 is formed in an elongated shape as a whole, and a plurality of (12 × 6 = 72 pieces in the example of FIG. 1) electronic components are arranged on the one surface side of the heat transfer plate 21. It can be arranged along the longitudinal direction.

伝熱板21は、長尺状(ここでは、細長の矩形板状)の形状に形成されており、複数の電子部品を伝熱板21の長手方向に沿って並べて搭載可能となっている。伝熱板21の基礎となる金属板の材料としては、アルミニウム、銅などの熱伝導率の高い金属が好ましい。ただし、金属板の材料は、これらに限らず、例えば、ステンレスやスチールなどでもよい。   The heat transfer plate 21 is formed in an elongated shape (here, an elongated rectangular plate shape), and a plurality of electronic components can be mounted side by side along the longitudinal direction of the heat transfer plate 21. As a material of the metal plate which is the basis of the heat transfer plate 21, a metal having high thermal conductivity such as aluminum and copper is preferable. However, the material of the metal plate is not limited to these, and may be stainless steel or steel, for example.

伝熱板21には、電子部品と配線パターン22bとを電気的に接続する配線(例えば、ワイヤなど)の各々を通す貫通孔21bが形成されている。貫通孔21bは、伝熱板21の幅方向において電子部品の搭載領域の両側に形成してある。   The heat transfer plate 21 is formed with a through hole 21b through which each of wirings (for example, wires) that electrically connect the electronic component and the wiring pattern 22b are passed. The through holes 21 b are formed on both sides of the electronic component mounting region in the width direction of the heat transfer plate 21.

貫通孔21bは、開口形状を円形状としてある。貫通孔21bの内径は、0.5mmに設定してあるが、この値は一例であり、特に限定するものではない。貫通孔21bの形状は、円形状に限らず、例えば、矩形状、楕円形状などでもよい。   The through hole 21b has a circular opening shape. The inner diameter of the through hole 21b is set to 0.5 mm, but this value is an example and is not particularly limited. The shape of the through hole 21b is not limited to a circular shape, and may be, for example, a rectangular shape or an elliptical shape.

配線基板22は、長尺状(ここでは、細長の矩形板状)に形成されている。配線基板22は、有機系絶縁基板22aが長尺状の形状に形成されている。実装基板2は、配線基板22の長手方向の寸法と伝熱板21の長手方向の寸法とを同じ値に設定し、また、配線基板22の幅寸法を伝熱板21の幅寸法よりも大きく設定してある。これにより、実装基板2は、配線基板22の平面サイズが伝熱板21の平面サイズよりも大きくなっている。ただし、これらの寸法の関係は、特に限定するものではない。また、配線基板22は、有機系絶縁基板22aの片面の大部分を覆うように当該片面の全体に配線パターン22bが形成されている。有機系絶縁基板22aは、樹脂に当該樹脂よりも熱伝導率の高いフィラーを混合した樹脂基板により構成してある。樹脂基板の樹脂としては、配線パターン22bよりも上述の金属板との線膨張率が小さいことが好ましい。   The wiring board 22 is formed in a long shape (here, an elongated rectangular plate shape). The wiring substrate 22 has an organic insulating substrate 22a formed in a long shape. In the mounting substrate 2, the longitudinal dimension of the wiring substrate 22 and the longitudinal dimension of the heat transfer plate 21 are set to the same value, and the width dimension of the wiring substrate 22 is larger than the width dimension of the heat transfer plate 21. It is set. Thereby, the mounting substrate 2 has a planar size of the wiring substrate 22 larger than that of the heat transfer plate 21. However, the relationship between these dimensions is not particularly limited. In addition, the wiring substrate 22 has a wiring pattern 22b formed on the entire surface of one side of the organic insulating substrate 22a so as to cover most of the surface. The organic insulating substrate 22a is composed of a resin substrate obtained by mixing a filler having a higher thermal conductivity than that of the resin. It is preferable that the resin of the resin substrate has a smaller linear expansion coefficient with the above-described metal plate than the wiring pattern 22b.

これにより、実装基板2は、金属板および配線パターン22bそれぞれの材料が、アルミニウム、銅であって、有機系絶縁基板22aの樹脂が例えばガラスエポキシ樹脂であり、フィラーが混合されていない場合に比べて、有機系絶縁基板22aの熱抵抗を低減することが可能となり、また、長尺状の伝熱板21の反りを抑制することが可能となる。   As a result, the mounting substrate 2 is made of a metal plate and a wiring pattern 22b made of aluminum or copper, and the resin of the organic insulating substrate 22a is, for example, a glass epoxy resin and is not mixed with a filler. Thus, the thermal resistance of the organic insulating substrate 22a can be reduced, and the warpage of the long heat transfer plate 21 can be suppressed.

例えば、金属板の材料がアルミニウム、配線パターン22bの材料が銅である場合、樹脂基板の樹脂としては、ビニルエステル樹脂、不飽和ポリエステル樹脂などを用いることが好ましい。また、フィラーとしては、例えば、酸化マグネシウム、窒化ホウ素、水酸化アルミニウム、ガラス繊維などを用いることが好ましい。また、フィラーの充填率は、60体積パーセント〜75体積パーセント程度が好ましく、これにより、樹脂基板の熱伝導率を4W/mK〜10W/mK程度とすることが可能となる。一例として、樹脂基板は、樹脂としてビニルエステル樹脂を、フィラーの材料として酸化マグネシウムを、それぞれ採用し、フィラーの充填率を67体積パーセントとすれば、熱伝導率を5W/mK、線膨張率を18〜22ppm/K程度とすることが可能となる。アルミニウムおよび銅の熱伝導率は、それぞれ、23ppm/K程度、17ppm/K程度である。   For example, when the material of the metal plate is aluminum and the material of the wiring pattern 22b is copper, it is preferable to use vinyl ester resin, unsaturated polyester resin, or the like as the resin of the resin substrate. Moreover, as a filler, it is preferable to use magnesium oxide, boron nitride, aluminum hydroxide, glass fiber etc., for example. Further, the filling rate of the filler is preferably about 60 volume percent to 75 volume percent, and thereby the thermal conductivity of the resin substrate can be set to about 4 W / mK to 10 W / mK. As an example, if the resin substrate employs vinyl ester resin as the resin, magnesium oxide as the filler material, and the filler filling rate is 67 volume percent, the thermal conductivity is 5 W / mK and the linear expansion coefficient is It becomes possible to set it as about 18-22 ppm / K. The thermal conductivities of aluminum and copper are about 23 ppm / K and about 17 ppm / K, respectively.

配線パターン22bは、有機系絶縁基板22aの片面上で、組をなす第1パターン22b1と第2パターン22b2とが、有機系絶縁基板22aの幅方向において離間して並設されている。また、配線パターン22bは、第1パターン22b1および第2パターン22b2の各々を規定数(例えば、12個)ずつ備えており、第1パターン22b1および第2パターン22b2の各々が、有機系絶縁基板22aの片面上で、有機系絶縁基板22aの長手方向に並んで配置されている。第1パターン22b1および第2パターン22b2は、矩形状(ここでは、長方形状)に形成されており、有機系絶縁基板22aと長手方向が一致するように配置されている。ここで、配線パターン22bは、組をなす1個の第1パターン22b1と1個の第2パターン22b2とで、1つの単位パターン22uを構成している。したがって、配線パターン22bは、複数の単位パターン22uが有機系絶縁基板22aの長手方向に沿って並設されている。また、配線パターン22bは、有機系絶縁基板22aの長手方向において隣り合う単位パターン22u,22u同士において、一方の単位パターン22uの第1パターン22b1と他方の単位パターン22uの第2パターン22b2とが、有機系絶縁基板22aの幅方向に沿った接続部22b3(図1(b)参照)により電気的に接続されている。   In the wiring pattern 22b, a first pattern 22b1 and a second pattern 22b2 forming a pair are arranged side by side in the width direction of the organic insulating substrate 22a on one side of the organic insulating substrate 22a. In addition, the wiring pattern 22b includes a predetermined number (for example, 12) of the first pattern 22b1 and the second pattern 22b2, and each of the first pattern 22b1 and the second pattern 22b2 includes the organic insulating substrate 22a. Are arranged side by side in the longitudinal direction of the organic insulating substrate 22a. The first pattern 22b1 and the second pattern 22b2 are formed in a rectangular shape (in this case, a rectangular shape), and are arranged so that the longitudinal direction thereof coincides with the organic insulating substrate 22a. Here, in the wiring pattern 22b, one unit pattern 22u is constituted by one first pattern 22b1 and one second pattern 22b2 forming a set. Therefore, the wiring pattern 22b has a plurality of unit patterns 22u arranged in parallel along the longitudinal direction of the organic insulating substrate 22a. Further, the wiring pattern 22b includes unit patterns 22u and 22u adjacent to each other in the longitudinal direction of the organic insulating substrate 22a. The first pattern 22b1 of one unit pattern 22u and the second pattern 22b2 of the other unit pattern 22u are They are electrically connected by a connecting portion 22b3 (see FIG. 1B) along the width direction of the organic insulating substrate 22a.

絶縁層23の平面サイズは、伝熱板21の平面サイズと略同じ平面サイズに設定することが好ましい。絶縁層23は、伝熱板21の各貫通孔21bの各々に連通する貫通孔23bが形成されている。したがって、実装基板2に電子部品を実装する場合には、例えば、伝熱板21の貫通孔21bと絶縁層23の貫通孔23bとを通して、電子部品と配線パターン22bとを電気的に接続することができる。   The planar size of the insulating layer 23 is preferably set to be approximately the same as the planar size of the heat transfer plate 21. The insulating layer 23 is formed with through holes 23 b communicating with the respective through holes 21 b of the heat transfer plate 21. Therefore, when an electronic component is mounted on the mounting substrate 2, for example, the electronic component and the wiring pattern 22b are electrically connected through the through hole 21b of the heat transfer plate 21 and the through hole 23b of the insulating layer 23. Can do.

絶縁層23は、熱硬化型のシート状接着剤のエポキシ樹脂層を熱硬化させることにより形成されている。絶縁層23は、電気絶縁性を有するだけでなく、熱伝導性を有することが好ましい。要するに、絶縁層23は、伝熱板21と配線基板22とを電気的に絶縁する機能および熱結合する機能を有していることが好ましい。   The insulating layer 23 is formed by thermosetting an epoxy resin layer of a thermosetting sheet adhesive. The insulating layer 23 preferably has not only electrical insulation but also thermal conductivity. In short, the insulating layer 23 preferably has a function of electrically insulating the heat transfer plate 21 and the wiring board 22 and a function of thermally coupling them.

ここで、絶縁層23は、上述のシート状接着剤として、シリカやアルミナなどのフィラーからなる充填材を含有し且つ加熱時に低粘度化するとともに流動性が高くなる性質を有するBステージのエポキシ樹脂層(熱硬化性樹脂)とプラスチックフィルム(PETフィルム)とが積層されたシート状接着剤を用いることが好ましい。このようなシート状接着剤としては、例えば、東レ株式会社製の接着剤シートTSAなどがある。フィラーとしては、熱硬化性樹脂であるエポキシ樹脂よりも熱伝導率の高い電気絶縁性材料を用いればよい。上述のエポキシ樹脂層の厚みは、100μmに設定してあるが、この値は一例であり、特に限定するものではなく、例えば、50μm〜150μm程度の範囲で適宜設定すればよい。上述のエポキシ樹脂層の熱伝導率は、4W/mK以上であることが好ましい。また、シート状接着剤のプラスチックフィルムは、配線基板22と伝熱板21とを重ね合わせる前に、エポキシ樹脂層から剥離する。要するに、エポキシ樹脂層におけるプラスチックフィルム側とは反対側の一面を対象物に固着した後、プラスチックフィルムを剥離する。ここで、絶縁層23の形成にあたっては、伝熱板21とエポキシ樹脂層と配線パターン22bを有する配線基板22とを重ね合わせた状態で適宜加圧するようにしてもよい。   Here, the insulating layer 23 contains a filler made of a filler such as silica or alumina as the above-mentioned sheet-like adhesive, and has a property of lowering viscosity and increasing fluidity when heated. It is preferable to use a sheet-like adhesive in which a layer (thermosetting resin) and a plastic film (PET film) are laminated. An example of such a sheet-like adhesive is an adhesive sheet TSA manufactured by Toray Industries, Inc. As the filler, an electrically insulating material having higher thermal conductivity than the epoxy resin that is a thermosetting resin may be used. The thickness of the epoxy resin layer described above is set to 100 μm, but this value is merely an example, and is not particularly limited. For example, the thickness may be appropriately set in the range of about 50 μm to 150 μm. The thermal conductivity of the above-described epoxy resin layer is preferably 4 W / mK or more. The plastic film of the sheet adhesive is peeled off from the epoxy resin layer before the wiring board 22 and the heat transfer plate 21 are overlapped. In short, after fixing one surface of the epoxy resin layer opposite to the plastic film side to the object, the plastic film is peeled off. Here, in forming the insulating layer 23, the heat transfer plate 21, the epoxy resin layer, and the wiring substrate 22 having the wiring pattern 22b may be appropriately pressed.

上述のシート状接着剤のエポキシ樹脂層は、電気絶縁性を有するとともに熱伝導率が高く加熱時の流動性が高く凹凸面への密着性が高いという性質を有している。これにより、実装基板2は、絶縁層23と伝熱板21および配線基板22との間に空隙が発生するのを防止することができて密着信頼性が向上するとともに、密着不足による熱抵抗の増大やばらつきの発生を抑制することが可能となる。したがって、実装基板2では、伝熱板21と配線基板22の配線パターン22bとの間にゴムシート状の放熱シートなどを挟む場合に比べて、電子部品から配線基板22までの熱抵抗を低減できるとともに、熱抵抗のばらつきを低減できて、放熱性が向上し、電子部品の温度上昇を抑制できる。   The epoxy resin layer of the above-mentioned sheet-like adhesive has properties of being electrically insulating, having high thermal conductivity, high fluidity during heating, and high adhesion to the uneven surface. As a result, the mounting substrate 2 can prevent a gap from being generated between the insulating layer 23 and the heat transfer plate 21 and the wiring substrate 22, thereby improving adhesion reliability and reducing thermal resistance due to insufficient adhesion. It is possible to suppress the increase and the occurrence of variation. Therefore, in the mounting board 2, the thermal resistance from the electronic component to the wiring board 22 can be reduced as compared with a case where a rubber sheet-like heat radiation sheet is sandwiched between the heat transfer plate 21 and the wiring pattern 22 b of the wiring board 22. At the same time, variations in thermal resistance can be reduced, heat dissipation can be improved, and temperature rise of electronic components can be suppressed.

本実施形態の実装基板2では、配線基板22の配線パターン22bにおいて伝熱板21に重なる領域の全体が、絶縁層23と接している。これにより、実装基板2は、図11に示した従来のLED基板101のように接着剤104と導体回路115との間にソルダーレジスト124などがある場合に比べて、伝熱板21から配線パターン22bに伝熱された熱を配線パターン22bの厚み方向および横方向(面内方向)へ効率よく放熱させることが可能となり、放熱性を向上させることが可能となる。   In the mounting substrate 2 of the present embodiment, the entire region overlapping the heat transfer plate 21 in the wiring pattern 22 b of the wiring substrate 22 is in contact with the insulating layer 23. As a result, the mounting substrate 2 can be connected to the wiring pattern from the heat transfer plate 21 as compared to the case where the solder resist 124 is provided between the adhesive 104 and the conductor circuit 115 as in the conventional LED substrate 101 shown in FIG. The heat transferred to 22b can be efficiently dissipated in the thickness direction and the lateral direction (in-plane direction) of the wiring pattern 22b, and the heat dissipation can be improved.

ところで、伝熱板21の熱容量の大きさによっては、上述のエポキシ樹脂層の加熱温度を170℃程度まで上げて硬化させると、伝熱板21と配線基板22との固着性能が低下し、加熱温度を150℃程度まで下げて硬化させると伝熱板21と配線基板22との間の電気絶縁性が低下する懸念がある。すなわち、絶縁層23は、固着性能と電気絶縁性とがトレードオフの関係を有している。そこで、本実施形態における実装基板2の製造にあたっては、第1のシート状接着剤のエポキシ樹脂層(以下、第1エポキシ樹脂層と称する)と第2のシート状接着剤のエポキシ樹脂層(以下、第2エポキシ樹脂層と称する)とを重ね合わせるようにし、第1エポキシ樹脂層を170℃で硬化させることにより電気絶縁性および熱伝導性を確保し、第2エポキシ樹脂層を150℃で硬化させることにより固着性能および熱伝導性を確保するようにしている。さらに説明すれば、実装基板2の製造にあたっては、第1エポキシ樹脂層を対象物である伝熱板21に170℃で固着させた後、第2エポキシ樹脂層および配線基板22を重ね合わせて当該第2エポキシ樹脂層を150℃で硬化させることが好ましい。これにより、本実施形態の実装基板2の製造にあたっては、伝熱板21の熱容量に関わらず、絶縁層23の固着性能と電気絶縁性との両方の要求を満足させることが可能となる。   By the way, depending on the heat capacity of the heat transfer plate 21, if the heating temperature of the above-mentioned epoxy resin layer is raised to about 170 ° C. and cured, the fixing performance between the heat transfer plate 21 and the wiring board 22 is reduced, and heating is performed. When the temperature is lowered to about 150 ° C. and cured, there is a concern that the electrical insulation between the heat transfer plate 21 and the wiring board 22 is lowered. That is, the insulating layer 23 has a trade-off relationship between fixing performance and electrical insulation. Therefore, in manufacturing the mounting substrate 2 in the present embodiment, the epoxy resin layer (hereinafter referred to as the first epoxy resin layer) of the first sheet adhesive and the epoxy resin layer (hereinafter referred to as the first epoxy resin layer) of the second sheet adhesive. The second epoxy resin layer), and the first epoxy resin layer is cured at 170 ° C. to ensure electrical insulation and thermal conductivity, and the second epoxy resin layer is cured at 150 ° C. By doing so, securing performance and thermal conductivity are ensured. More specifically, in manufacturing the mounting substrate 2, the first epoxy resin layer is fixed to the heat transfer plate 21 as an object at 170 ° C., and then the second epoxy resin layer and the wiring substrate 22 are overlapped. The second epoxy resin layer is preferably cured at 150 ° C. Thereby, in manufacturing the mounting substrate 2 of the present embodiment, it is possible to satisfy both the requirements for the fixing performance and the electrical insulation of the insulating layer 23 regardless of the heat capacity of the heat transfer plate 21.

また、配線基板22は、図3および図4に示すように、有機系絶縁基板22aの片面において伝熱板21に重ならない部位を覆うレジストからなる保護層22cを備えることが好ましい。また、保護層22cは、配線パターン22bの一部を端子部22ba,22baとして露出させる露出部22d,22dが形成されてなることが好ましい。ここで、配線基板22は、配線基板22の長手方向の一端部(図3、図4における右端部)の第1パターン22b1、他端部(図3、図4における左端部)の第2パターン22b2それぞれを端子部22ba,22baとして露出させてある。要するに、実装基板2は、長手方向の両端部の各々に端子部22ba,22baを備えている。これにより、実装基板2は、端子部22ba,22baを通して外部から通電することが可能となる。また、実装基板2は、保護層22cを設けてあることにより、耐候性を高めることが可能となるとともに、配線パターン22bへの異物の付着による短絡などを防止することが可能となる。   Further, as shown in FIGS. 3 and 4, the wiring substrate 22 preferably includes a protective layer 22 c made of a resist that covers a portion that does not overlap the heat transfer plate 21 on one surface of the organic insulating substrate 22 a. The protective layer 22c is preferably formed with exposed portions 22d and 22d that expose part of the wiring pattern 22b as terminal portions 22ba and 22ba. Here, the wiring board 22 has a first pattern 22b1 at one end (the right end in FIGS. 3 and 4) in the longitudinal direction of the wiring board 22, and a second pattern at the other end (the left end in FIGS. 3 and 4). 22b2 is exposed as terminal portions 22ba and 22ba, respectively. In short, the mounting board 2 includes terminal portions 22ba and 22ba at both ends in the longitudinal direction. Thereby, the mounting substrate 2 can be energized from the outside through the terminal portions 22ba and 22ba. Further, since the mounting substrate 2 is provided with the protective layer 22c, it is possible to improve the weather resistance, and it is possible to prevent a short circuit due to adhesion of foreign matters to the wiring pattern 22b.

ここで、実装基板2は、伝熱板21に搭載する電子部品が、後述の固体発光素子3(図5〜図10参照)などの場合、保護層22cの色が白色であることが好ましい。白色の保護層22cの材料としては、例えば、白色系のレジスト(樹脂)などを用いることができる。保護層22cの色が白色であることにより、実装基板2は、電子部品が固体発光素子3である場合に、固体発光素子3などからの光を保護層22cの表面で効率よく反射することが可能となる。したがって、実装基板2は、配線基板22の平面サイズを伝熱板21の平面サイズよりも大きくした構成でありながら、固体発光素子3からの光が配線基板22に吸収されるのを抑制することが可能となり、有機系絶縁基板22aの劣化を抑制することが可能となる。   Here, when the electronic component mounted on the heat transfer plate 21 of the mounting substrate 2 is a solid light-emitting element 3 (see FIGS. 5 to 10) described later, the color of the protective layer 22c is preferably white. As a material for the white protective layer 22c, for example, a white resist (resin) can be used. Since the color of the protective layer 22c is white, when the electronic component is the solid light emitting element 3, the mounting substrate 2 can efficiently reflect light from the solid light emitting element 3 or the like on the surface of the protective layer 22c. It becomes possible. Therefore, the mounting substrate 2 has a configuration in which the planar size of the wiring substrate 22 is larger than the planar size of the heat transfer plate 21, and suppresses light from the solid light emitting element 3 from being absorbed by the wiring substrate 22. It becomes possible to suppress deterioration of the organic insulating substrate 22a.

また、配線基板22は、配線パターン22bにおいて保護層22cにより覆われた領域以外に、最表層がAu膜からなるめっき層(図示せず)が形成されていることが好ましい。このめっき層は、配線パターン22bに比べて、耐酸化性および耐腐食性が高く、絶縁層23との密着性の高いことが好ましい。ここにおいて、めっき層は、配線パターン22bの材料がCuである場合、Ni膜とPd膜とAu膜との積層膜もしくはNi膜とAu膜との積層膜からなることが好ましい。これにより、めっき層は、耐酸化性および耐腐食性が高く、絶縁層23との密着性の高いだけでなく、金ワイヤとの接合強度を高めることができ、また、配線パターン22bの材料であるCuがAu膜中へ拡散するのを抑制することが可能となる。   In addition, the wiring board 22 is preferably formed with a plating layer (not shown) whose outermost layer is made of an Au film, in addition to the region covered with the protective layer 22c in the wiring pattern 22b. The plating layer preferably has higher oxidation resistance and corrosion resistance than the wiring pattern 22b, and preferably has high adhesion to the insulating layer 23. Here, when the material of the wiring pattern 22b is Cu, the plating layer is preferably formed of a laminated film of a Ni film, a Pd film, and an Au film or a laminated film of a Ni film and an Au film. Thereby, the plating layer has high oxidation resistance and corrosion resistance, and not only high adhesion to the insulating layer 23, but also can increase the bonding strength with the gold wire. It becomes possible to suppress diffusion of certain Cu into the Au film.

配線基板22の製造にあたっては、めっき層を電解めっき法により形成する前に、保護層22cを形成しておけば、保護層22cがない場合に比べて、配線パターン22bに施すめっきの量を低減することが可能となり、低コスト化を図ることが可能となる。   When the wiring substrate 22 is manufactured, if the protective layer 22c is formed before the plating layer is formed by the electrolytic plating method, the amount of plating applied to the wiring pattern 22b is reduced as compared with the case where the protective layer 22c is not provided. It becomes possible to reduce the cost.

また、電子部品が固体発光素子3である場合、伝熱板21は、反射板としての機能を有することが好ましく、金属板の材料としてアルミニウムを採用することが、より好ましい。また、伝熱板21は、金属板がアルミニウム板であり、アルミニウム板における絶縁層23側とは反対側にアルミニウム板よりも高純度のアルミニウム膜が積層され、アルミニウム膜に屈折率の異なる2種類の誘電体膜からなる増反射膜が積層されていることが好ましい。ここで、2種類の誘電体膜としては、例えば、SiO膜とTiO膜とを採用することが好ましい。実装基板2は、このような伝熱板21を用いることにより、可視光に対する反射率を95%以上とすることが可能となる。要するに、実装基板2は、このような伝熱板21を用いることにより、電子部品である固体発光素子3などからの可視光を効率よく反射することが可能となる。このような伝熱板21としては、例えば、アラノッド(alanod)社のMIRO2、MIRO(登録商標)を用いることができる。上述のアルミニウム板としては、表面が陽極酸化処理されたものを用いてもよい。なお、伝熱板21の厚みは、例えば、0.2〜3mm程度の範囲で適宜設定すればよい。 Moreover, when an electronic component is the solid light emitting element 3, it is preferable that the heat exchanger plate 21 has a function as a reflecting plate, and it is more preferable to employ | adopt aluminum as a material of a metal plate. The heat transfer plate 21 is a metal plate made of an aluminum plate, and an aluminum plate is laminated with an aluminum film having a higher purity than the aluminum plate on the side opposite to the insulating layer 23 side. It is preferable that a reflection enhancing film made of a dielectric film is laminated. Here, as the two types of dielectric films, for example, an SiO 2 film and a TiO 2 film are preferably employed. By using such a heat transfer plate 21, the mounting substrate 2 can have a reflectance with respect to visible light of 95% or more. In short, the mounting substrate 2 by using such a heat transfer plate 21, it is possible to efficiently reflect visible light from such solid-state light-emitting element 3 is an electronic component. As such a heat transfer plate 21, for example, MIRO2 and MIRO (registered trademark) manufactured by alanod can be used. As the above-mentioned aluminum plate, an anodized surface may be used. In addition, what is necessary is just to set the thickness of the heat exchanger plate 21 suitably in the range of about 0.2-3 mm, for example.

以上説明した本実施形態の実装基板2は、上述のように、金属板により形成され電子部品を一面側に搭載可能な伝熱板21と、電子部品を電気的に接続可能な配線パターン22bが有機系絶縁基板22aの片面に設けられ伝熱板21の他面側に配置された配線基板22と、伝熱板21と配線基板22との間に介在する絶縁層23とを備えている。そして、伝熱板21は、配線パターン22bにおける、電子部品の接続用部位を露出させる貫通孔21bが形成されている。また、実装基板2は、配線基板22の平面サイズが伝熱板21の平面サイズよりも大きく、配線基板22の配線パターン22bが、伝熱板21に重ならない領域まで広がっている。しかして、本実施形態の実装基板2では、放熱性を向上させることが可能となる。すなわち、実装基板2は、電子部品で発生した熱を、伝熱板21により横方向に効率よく伝熱させて放熱させることが可能となり、また、実装基板2は、電子部品で発生した熱を、伝熱板21の厚み方向へも伝熱させ、配線基板22の配線パターン22bの厚み方向および横方向に効率よく放熱させることが可能となる。配線基板22の配線パターン22bは、有機系絶縁基板22aの平面視における外周線の位置まで広げてもよいが、実装基板2を搭載する部材(例えば、照明器具の器具本体など)が導電性材料により形成されているような場合には、上述の外周線よりも内側の位置まで広げるにとどめて、この部材との所望の沿面距離を確保できるようにしてもよい。   As described above, the mounting board 2 of the present embodiment described above includes the heat transfer plate 21 formed of a metal plate and capable of mounting electronic components on one side, and the wiring pattern 22b capable of electrically connecting the electronic components. The wiring board 22 is provided on one surface of the organic insulating substrate 22 a and disposed on the other surface side of the heat transfer plate 21, and the insulating layer 23 is interposed between the heat transfer plate 21 and the wiring substrate 22. The heat transfer plate 21 is formed with a through hole 21b that exposes a connection part for an electronic component in the wiring pattern 22b. Further, the mounting substrate 2 has a planar size of the wiring substrate 22 larger than that of the heat transfer plate 21, and the wiring pattern 22 b of the wiring substrate 22 extends to a region that does not overlap the heat transfer plate 21. Therefore, in the mounting substrate 2 of this embodiment, it is possible to improve heat dissipation. That is, the mounting board 2 can efficiently transfer the heat generated in the electronic component in the lateral direction by the heat transfer plate 21 to dissipate the heat, and the mounting board 2 can transfer the heat generated in the electronic component. Heat can be transferred also in the thickness direction of the heat transfer plate 21, and heat can be efficiently radiated in the thickness direction and the lateral direction of the wiring pattern 22 b of the wiring board 22. The wiring pattern 22b of the wiring substrate 22 may be extended to the position of the outer peripheral line in plan view of the organic insulating substrate 22a. However, a member (for example, a fixture main body of a lighting fixture) on which the mounting substrate 2 is mounted is a conductive material. In such a case, it may be possible to ensure a desired creepage distance with this member by expanding only to a position inside the above-described outer peripheral line.

また、実装基板2は、絶縁層23が、熱硬化性樹脂からなり、この熱硬化性樹脂に比べて熱伝導率の高いフィラーを含有していることにより、放熱性を、より向上させることが可能となる。   Moreover, the mounting substrate 2 can further improve heat dissipation by including the insulating layer 23 made of a thermosetting resin and containing a filler having a higher thermal conductivity than the thermosetting resin. It becomes possible.

また、実装基板2は、伝熱板21が、長尺状の形状であって、複数の電子部品を伝熱板21の長手方向に沿って並べて搭載可能であり、有機系絶縁基板22aが、伝熱板21よりも幅寸法の大きな長尺状の形状であって、樹脂に当該樹脂よりも熱伝導率の高いフィラーを混合した樹脂基板からなり、配線パターン22bよりも金属板との線膨張率差が小さいので、実装基板2の反りを抑制することが可能となる。 Further, the mounting substrate 2, heat transfer plate 21, a long shape, it can be mounted side by side along a plurality of electronic components in the longitudinal direction of the heat transfer plate 21, the organic insulating board 22a The heat transfer plate 21 has a long shape with a width that is larger than that of the heat transfer plate 21 and is made of a resin substrate in which a filler having a higher thermal conductivity than the resin is mixed with the resin, and is connected to the metal plate rather than the wiring pattern 22b. Since the difference in expansion coefficient is small, it is possible to suppress warping of the mounting substrate 2.

実装基板2は、長尺状の形状に限らず、矩形状、矩形以外の多角形状、円形状、楕円形状などでもよい。同様に、伝熱板21および配線基板22の形状も長尺状の形状に限らず、矩形状、矩形以外の多角形状、円形状、楕円形状などでもよい。また、実装基板2に実装可能とする電子部品の個数も複数個に限らず、1個でもよい。また、電子部品は、固体発光素子に限らず、発熱を伴う電子部品(いわゆる発熱部品)であればよい。いずれにしても、実装基板2は、電子部品の電極(端子)の数や配置に基づいて、貫通孔21bの配置や個数を適宜設定すればよい。また、実装基板2は、複数個の電子部品を実装して用いる場合、必ずしも、全ての電子部品が同じ機能を有する電子部品である必要はなく、また、必ずしも、全ての電子部品が発熱部品である必要もない。   The mounting substrate 2 is not limited to a long shape, but may be a rectangular shape, a polygonal shape other than a rectangular shape, a circular shape, an elliptical shape, or the like. Similarly, the shape of the heat transfer plate 21 and the wiring board 22 is not limited to a long shape, and may be a rectangular shape, a polygonal shape other than a rectangular shape, a circular shape, an elliptical shape, or the like. Further, the number of electronic components that can be mounted on the mounting substrate 2 is not limited to a plurality, and may be one. Further, the electronic component is not limited to a solid light emitting element, and may be an electronic component that generates heat (so-called heat generating component). In any case, the mounting substrate 2 may set the arrangement and number of the through holes 21b as appropriate based on the number and arrangement of the electrodes (terminals) of the electronic component. Further, when a plurality of electronic components are mounted and used, the mounting substrate 2 does not necessarily have to be electronic components having the same function, and all the electronic components are not necessarily heat generating components. There is no need.

次に、図3および図4に示した実装基板2を備えた発光モジュール1について図5〜図10に基づいて説明するが、これに代えて図1および図2に示した実装基板2を備えたものでもよい。   Next, the light emitting module 1 provided with the mounting substrate 2 shown in FIGS. 3 and 4 will be described based on FIGS. 5 to 10, but instead, the mounting substrate 2 shown in FIGS. 1 and 2 is provided. May be good.

発光モジュール1は、実装基板2と、実装基板2に実装された複数の固体発光素子3とを備えている。ここで、固体発光素子3が、上述の電子部品を構成している。   The light emitting module 1 includes a mounting substrate 2 and a plurality of solid state light emitting elements 3 mounted on the mounting substrate 2. Here, the solid state light emitting device 3 constitutes the electronic component described above.

固体発光素子3としては、LEDチップを用いているが、これに限らず、例えば、LEDチップがパッケージに収納されたものでもよい。また、固体発光素子3としては、例えば、レーザダイオード(半導体レーザ)や、有機EL素子などを用いてもよい。   Although the LED chip is used as the solid state light emitting device 3, the present invention is not limited to this, and for example, an LED chip may be housed in a package. Moreover, as the solid light emitting element 3, for example, a laser diode (semiconductor laser), an organic EL element, or the like may be used.

固体発光素子3は、図6に示すように、厚み方向の一面側に第1電極(アノード電極)31と第2電極(カソード電極)32とが設けられており、厚み方向の他面側が接合部35を介して伝熱板21に接合されている。そして、固体発光素子3は、第1電極31および第2電極32の各々がワイヤ(ボンディングワイヤ)26を介して配線パターン22bと電気的に接続されている。ここにおいて、伝熱板21は、各ワイヤ26の各々を通すことが可能な上述の貫通孔21bが形成されている。貫通孔21bは、伝熱板21の幅方向において各固体発光素子3ごとの搭載領域の両側に形成してある。固体発光素子3がLEDチップの場合、接合部35は、ダイボンド材により形成すればよい。   As shown in FIG. 6, the solid-state light emitting element 3 is provided with a first electrode (anode electrode) 31 and a second electrode (cathode electrode) 32 on one surface side in the thickness direction, and the other surface side in the thickness direction is joined. It is joined to the heat transfer plate 21 via the part 35. In the solid state light emitting device 3, each of the first electrode 31 and the second electrode 32 is electrically connected to the wiring pattern 22 b through a wire (bonding wire) 26. Here, the heat transfer plate 21 is formed with the above-described through-holes 21 b through which the wires 26 can pass. The through holes 21 b are formed on both sides of the mounting region for each solid state light emitting element 3 in the width direction of the heat transfer plate 21. In the case where the solid light emitting element 3 is an LED chip, the bonding portion 35 may be formed of a die bond material.

LEDチップは、青色光を放射するGaN系青色LEDチップであり、基板としてサファイア基板を備えたものを用いている。ただし、LEDチップの基板は、サファイア基板に限らず、例えば、GaN基板、SiC基板、Si基板などでもよい。なお、LEDチップの構造は特に限定するものではない。   The LED chip is a GaN-based blue LED chip that emits blue light, and uses a sapphire substrate as a substrate. However, the substrate of the LED chip is not limited to the sapphire substrate, and may be a GaN substrate, a SiC substrate, a Si substrate, or the like. The structure of the LED chip is not particularly limited.

LEDチップのチップサイズは、特に限定するものではなく、例えば、チップサイズが0.3mm□や0.45mm□や1mm□のものなどを用いることができる。   The chip size of the LED chip is not particularly limited, and for example, those having a chip size of 0.3 mm □, 0.45 mm □, or 1 mm □ can be used.

また、LEDチップの発光層の材料や発光色は特に限定するものではない。すなわち、LEDチップとしては、青色LEDチップに限らず、例えば、紫色光LEDチップ、紫外光LEDチップ、赤色LEDチップ、緑色LEDチップなどを用いてもよい。   Moreover, the material and luminescent color of the light emitting layer of the LED chip are not particularly limited. That is, the LED chip is not limited to the blue LED chip, and for example, a violet light LED chip, an ultraviolet light LED chip, a red LED chip, a green LED chip, or the like may be used.

ダイボンド材としては、例えば、シリコーン系のダイボンド材、エポキシ系のダイボンド材、銀ペーストなどを用いることができる。   As the die bond material, for example, a silicone die bond material, an epoxy die bond material, a silver paste, or the like can be used.

また、ワイヤ26としては、例えば、金ワイヤ、アルミニウムワイヤなどを用いることができる。ここで、発光モジュール1は、固体発光素子3の第1電極31が、ワイヤ26を介して配線パターン22bの第2パターン22b2と電気的に接続され、第2電極32が、ワイヤ26を介して配線パターン22bの第1パターン22b1と電気的に接続されている。なお、発光モジュール1は、固体発光素子3の第1電極31が、ワイヤ26を介して配線パターン22bの第1パターン22b1と電気的に接続され、第2電極32が、ワイヤ26を介して配線パターン22bの第2パターン22b2と電気的に接続されているようにしてもよい。   Moreover, as the wire 26, a gold wire, an aluminum wire, etc. can be used, for example. Here, in the light emitting module 1, the first electrode 31 of the solid state light emitting device 3 is electrically connected to the second pattern 22 b 2 of the wiring pattern 22 b through the wire 26, and the second electrode 32 is connected through the wire 26. The wiring pattern 22b is electrically connected to the first pattern 22b1. In the light emitting module 1, the first electrode 31 of the solid state light emitting device 3 is electrically connected to the first pattern 22 b 1 of the wiring pattern 22 b via the wire 26, and the second electrode 32 is wired via the wire 26. The pattern 22b may be electrically connected to the second pattern 22b2.

配線パターン22bは、単位パターン22uごとに、伝熱板21の長手方向に並んで配置される所定数(例えば、12個)の固体発光素子3を並列接続して並列回路を構成できるようになっており、隣り合う単位パターン22uごとに形成される並列回路を直列接続できるようになっている。したがって、配線基板22の長手方向の一端部(図4における左端部)の端子部22baと他端部(図4における右端部)の端子部22baとの間に給電することにより、全ての固体発光素子3に対して給電することができる。   The wiring pattern 22b can configure a parallel circuit by connecting in parallel a predetermined number (for example, 12) of solid light emitting elements 3 arranged in the longitudinal direction of the heat transfer plate 21 for each unit pattern 22u. A parallel circuit formed for each adjacent unit pattern 22u can be connected in series. Therefore, by supplying power between the terminal portion 22ba at one end portion (left end portion in FIG. 4) in the longitudinal direction of the wiring substrate 22 and the terminal portion 22ba at the other end portion (right end portion in FIG. 4), all solid state light emission is performed. Power can be supplied to the element 3.

ところで、発光モジュール1は、固体発光素子3としてLEDチップを用いている場合、例えば図6に示すように、伝熱板21の上記一面側において固体発光素子3およびワイヤ26を封止した封止部36を備えることが好ましい。図6では、封止部36の材料として、第1透光性材料であるシリコーン樹脂を用いている。第1透光性材料は、シリコーン樹脂に限らず、例えば、エポキシ樹脂、アクリル樹脂、ガラスなどを用いてもよい。   By the way, when the light emitting module 1 uses an LED chip as the solid light emitting element 3, for example, as shown in FIG. 6, the solid light emitting element 3 and the wire 26 are sealed on the one surface side of the heat transfer plate 21. A portion 36 is preferably provided. In FIG. 6, a silicone resin that is a first light transmissive material is used as the material of the sealing portion 36. The first light transmissive material is not limited to a silicone resin, and for example, an epoxy resin, an acrylic resin, glass, or the like may be used.

また、発光モジュール1は、固体発光素子3としてLEDチップを用いている場合、高出力の白色光を得るためには、LEDチップの発光色とは異なる色の光を放射する波長変換材料を有する色変換部37を備えていることが好ましい。このような色変換部37としては、例えば、LEDチップから放射された光によって励起されてLEDチップの発光色とは異なる色の光を放射する蛍光体を波長変換材料として用い、蛍光体および第2透光性材料を含むものが好ましい。   Further, when the LED chip is used as the solid state light emitting element 3, the light emitting module 1 has a wavelength conversion material that emits light of a color different from the emission color of the LED chip in order to obtain high output white light. A color conversion unit 37 is preferably provided. As such a color conversion unit 37, for example, a phosphor that is excited by light emitted from the LED chip and emits light of a color different from the emission color of the LED chip is used as the wavelength conversion material. Those containing two light-transmitting materials are preferred.

発光モジュール1は、例えば、LEDチップとして青色LEDチップを用い、色変換部37の蛍光体として黄色蛍光体を用いれば、白色光を得ることが可能となる。すなわち、発光モジュール1は、LEDチップから放射された青色光と黄色蛍光体から放射された光とが色変換部37の表面を通して放射されることとなり、白色光を得ることができる。色変換部37の材料として用いる第2透光性材料として、シリコーン樹脂を用いているが、これに限らず、例えば、アクリル樹脂、ガラス、有機成分と無機成分とがnmレベルもしくは分子レベルで混合、結合した有機・無機ハイブリッド材料などを採用してもよい。また、色変換部37の材料として用いる蛍光体も黄色蛍光体に限らず、例えば、黄色蛍光体と赤色蛍光体とを用いたり、赤色蛍光体と緑色蛍光体とを用いることにより、演色性を高めることが可能となる。また、色変換部37の材料として用いる蛍光体は、1種類の黄色蛍光体に限らず、発光ピーク波長の異なる2種類の黄色蛍光体を用いてもよい。   For example, if the light emitting module 1 uses a blue LED chip as the LED chip and a yellow phosphor as the phosphor of the color conversion unit 37, white light can be obtained. That is, the light emitting module 1 emits the blue light emitted from the LED chip and the light emitted from the yellow phosphor through the surface of the color conversion unit 37, so that white light can be obtained. Silicone resin is used as the second translucent material used as the material of the color conversion unit 37, but is not limited to this. For example, acrylic resin, glass, organic component and inorganic component are mixed at the nm level or the molecular level. Alternatively, a combined organic / inorganic hybrid material may be employed. Further, the phosphor used as the material of the color conversion unit 37 is not limited to the yellow phosphor. For example, the color rendering can be achieved by using a yellow phosphor and a red phosphor, or using a red phosphor and a green phosphor. It becomes possible to raise. The phosphor used as the material of the color conversion unit 37 is not limited to one type of yellow phosphor, and two types of yellow phosphors having different emission peak wavelengths may be used.

また、LEDチップ単体で白色光を放射できる場合や、封止部36に蛍光体を分散させている場合や、発光モジュール1で得たい光の色がLEDチップの発光色と同じである場合には、色変換部37を備えていない構造を採用することができる。   Also, when the LED chip can emit white light alone, when the phosphor is dispersed in the sealing portion 36, or when the light color desired to be obtained by the light emitting module 1 is the same as the light emission color of the LED chip Can adopt a structure that does not include the color conversion unit 37.

発光モジュール1は、色変換部37が、伝熱板21に接していることが好ましい。これにより、発光モジュール1は、LEDチップで発生した熱だけでなく、色変換部37で発生した熱も伝熱板21を通して放熱させることが可能となり、光出力の高出力化を図ることが可能となる。図6に示した例では、色変換部37が、ドーム状の形状に形成されており、伝熱板21の上記一面側において伝熱板21との間にLEDチップおよび封止部36などを囲む形で配設されている。更に説明すれば、色変換部37は、伝熱板21の上記一面側において封止部36との間に気体層(例えば、空気層)38が形成されるように配設されている。また、図6に示した発光モジュール1では、固体発光素子3であるLEDチップの下方への一投影面において、配線パターン22bにおける第1パターン22b1および第2パターン22b2の各々の一部と、これらの間に入り込んだ絶縁層23の一部とがあるが、これに限らず、発光モジュール1は、図7に示すように、固体発光素子3であるLEDチップの下方への一投影面に、第1パターン22b1のみがあるようにしてもよく、これにより、LEDチップで発生した熱をより、効率よく放熱させることが可能となる。   In the light emitting module 1, the color conversion unit 37 is preferably in contact with the heat transfer plate 21. Thereby, the light emitting module 1 can dissipate not only the heat generated in the LED chip but also the heat generated in the color conversion unit 37 through the heat transfer plate 21, and can increase the light output. It becomes. In the example shown in FIG. 6, the color conversion part 37 is formed in a dome shape, and the LED chip and the sealing part 36 are disposed between the heat transfer plate 21 and the heat transfer plate 21 on the one surface side. It is arranged in a surrounding form. More specifically, the color conversion unit 37 is disposed such that a gas layer (for example, an air layer) 38 is formed between the heat transfer plate 21 and the sealing unit 36 on the one surface side. Further, in the light emitting module 1 shown in FIG. 6, a part of each of the first pattern 22b1 and the second pattern 22b2 in the wiring pattern 22b on one projection surface below the LED chip that is the solid light emitting element 3, However, the present invention is not limited to this, and as shown in FIG. 7, the light emitting module 1 is formed on one projection surface below the LED chip that is the solid light emitting element 3. Only the first pattern 22b1 may be provided, which makes it possible to dissipate heat generated in the LED chip more efficiently.

ところで、実装基板2の絶縁層23には、上述のように、伝熱板21の各貫通孔21bの各々に連通する貫通孔23bが形成されている。したがって、発光モジュール1の製造時には、ワイヤ26を伝熱板21の貫通孔21bと絶縁層23の貫通孔23bとを通して配線パターン22bにボンディングすることができる。ここで、発光モジュール1の製造時には、固体発光素子3の第1電極31および第2電極32それぞれと第2パターン22b2および第1パターン22b1とをワイヤ26を介して接続した後に、例えば、ディスペンサなどにより、貫通孔21bおよび貫通孔23bに封止部36(図6参照)の材料を充填してワイヤ26が伝熱板21に接触しないようにし、その後、封止部36を形成すればよい。 By the way, in the insulating layer 23 of the mounting substrate 2, as described above, the through holes 23 b communicating with the respective through holes 21 b of the heat transfer plate 21 are formed. Therefore, when manufacturing the light emitting module 1 may be bonded to the wiring pattern 2 2b the wire 26 through the through hole 23b of the through hole 21b and the insulating layer 23 of the heat transfer plate 21. Here, at the time of manufacturing the light emitting module 1, after connecting the first electrode 31 and the second electrode 32 of the solid light emitting element 3 with the second pattern 22 b 2 and the first pattern 22 b 1 via the wire 26, for example, a dispenser or the like Thus, the through hole 21b and the through hole 23b are filled with the material of the sealing portion 36 (see FIG. 6) so that the wire 26 does not contact the heat transfer plate 21, and then the sealing portion 36 is formed.

また、発光モジュール1は、図8に示すように、色変換部37を半球状の形状として、色変換部37により固体発光素子3であるLEDチップおよびワイヤ26を封止するようにしてもよい。また、発光モジュール1は、図9に示すように、色変換部37をドーム状の形状として、色変換部37により、固体発光素子3であるLEDチップおよびワイヤ26を封止するようにしてもよい。また、発光モジュール1は、図10に示すように、色変換部37を、層状の形状として、色変換部37により、固体発光素子3であるLEDチップおよびワイヤ26を封止するようにしてもよい。なお、図6や図7や図9のような色変換部37は、成形したものを用い、伝熱板21側の端縁(開口部の周縁)を伝熱板21に対して、例えば接着剤(例えば、シリコーン樹脂、エポキシ樹脂など)を用いて固着すればよい。また、図8に示すような色変換部37は、例えば、成形法により形成することができる。また、図10に示すような色変換部37は、例えば、ディスペンサを用いた塗布法や、スクリーン印刷法などにより形成することが可能である。   In the light emitting module 1, as shown in FIG. 8, the color conversion unit 37 may have a hemispherical shape, and the LED chip and the wire 26 that are the solid light emitting elements 3 may be sealed by the color conversion unit 37. . In addition, as shown in FIG. 9, the light emitting module 1 is configured such that the color conversion unit 37 has a dome shape and the color conversion unit 37 seals the LED chip and the wire 26 that are the solid light emitting elements 3. Good. In addition, as shown in FIG. 10, the light emitting module 1 is configured such that the color conversion unit 37 has a layered shape, and the LED chip and the wire 26 that are the solid light emitting elements 3 are sealed by the color conversion unit 37. Good. 6, 7, and 9, a molded color conversion unit 37 is used, and the edge (periphery of the opening) on the heat transfer plate 21 side is bonded to the heat transfer plate 21, for example. What is necessary is just to adhere using an agent (for example, a silicone resin, an epoxy resin, etc.). Moreover, the color conversion part 37 as shown in FIG. 8 can be formed by a shaping | molding method, for example. Further, the color conversion unit 37 as shown in FIG. 10 can be formed by, for example, a coating method using a dispenser, a screen printing method, or the like.

発光モジュール1の製造にあたっては、まず、実装基板2における伝熱板21の上記一面側に固体発光素子3を接合することで搭載してから、各固体発光素子3の第1電極31および第2電極32それぞれと第2パターン22b2および第1パターン22b1とをワイヤ26を介して電気的に接続する。その後、必要に応じて封止部36、色変換部37を伝熱板21の上記一面側に設ければよい。 In manufacturing the light emitting module 1, first, the solid light emitting element 3 is mounted on the mounting substrate 2 by bonding the solid light emitting element 3 to the one surface side, and then the first electrode 31 and the second electrode 2 of each solid light emitting element 3 are mounted. electrically connecting the electrode 32, respectively and the second pattern 22b2 and the first pattern 22 b1 via the wire 26. Then, the sealing part 36 and the color conversion part 37 should just be provided in the said one surface side of the heat exchanger plate 21 as needed.

以上説明した本実施形態の発光モジュール1は、上述の実装基板2と、実装基板2に実装された電子部品とを備え、電子部品が固体発光素子3からなるので、放熱性を向上させることが可能となる。   The light emitting module 1 according to the present embodiment described above includes the mounting substrate 2 and the electronic component mounted on the mounting substrate 2, and the electronic component includes the solid light emitting element 3. Therefore, heat dissipation can be improved. It becomes possible.

また、本実施形態の発光モジュール1では、各固体発光素子3および各色変換部37で発生した熱を、伝熱板21により横方向に効率よく伝熱させて放熱させることが可能となり、また、伝熱板21の厚み方向へも伝熱させて放熱させることが可能となる。したがって、発光モジュール1は、放熱性を向上させることが可能で各固体発光素子3の温度上昇を抑制でき、且つ、光出力の高出力化を図ることが可能となる。要するに、本実施形態の発光モジュール1は、各固体発光素子3および各色変換部37で発生した熱が、金属板を用いて形成された伝熱板21を通して放熱されるので、例えば、個々の固体発光素子3の光出力の増加などによって発光モジュール1全体の光出力の高出力化を図った場合でも、各固体発光素子3および色変換部37の温度上昇を抑制することが可能となり、光出力の高出力化を図ることが可能となる。   Further, in the light emitting module 1 of the present embodiment, the heat generated in each solid light emitting element 3 and each color conversion unit 37 can be efficiently transferred in the lateral direction by the heat transfer plate 21 to be dissipated. Heat can be transferred in the thickness direction of the heat transfer plate 21 to dissipate heat. Therefore, the light emitting module 1 can improve heat dissipation, can suppress the temperature rise of each solid light emitting element 3, and can achieve high output of light output. In short, in the light emitting module 1 of the present embodiment, the heat generated in each solid light emitting element 3 and each color conversion unit 37 is radiated through the heat transfer plate 21 formed using a metal plate. Even when the light output of the entire light emitting module 1 is increased by increasing the light output of the light emitting element 3 or the like, it is possible to suppress the temperature rise of each solid state light emitting element 3 and the color conversion unit 37, and the light output. The output can be increased.

また、本実施形態の発光モジュール1は、絶縁層23が、熱硬化性樹脂に当該熱硬化性樹脂に比べて熱伝導率の高いフィラーを含有しているので、固体発光素子3で発生した熱をより効率良く放熱させることが可能となる。   Further, in the light emitting module 1 of the present embodiment, since the insulating layer 23 contains a filler having a higher thermal conductivity than the thermosetting resin in the thermosetting resin, the heat generated in the solid light emitting element 3. Can be radiated more efficiently.

また、本実施形態の発光モジュール1では、固体発光素子3をLEDチップとすることにより、LEDチップで発生した熱を伝熱板21により横方向へ伝熱させて効率良く放熱させることが可能となる。   Further, in the light emitting module 1 of the present embodiment, by using the solid light emitting element 3 as an LED chip, it is possible to efficiently dissipate heat generated by the LED chip in the lateral direction by the heat transfer plate 21. Become.

また、本実施形態の発光モジュール1は、実装基板2に電子部品として固体発光素子3を実装してあるが、実装基板2が伝熱板21と配線基板22との間に上述の絶縁層23を備えており、絶縁層23と配線パターン22bとが接合されている。これにより、本実施形態の発光モジュールでは、図11に示したLED基板101のようにソルダーレジスト124が設けられている場合に比べて、熱抵抗を低減できるとともに、熱抵抗のばらつきを低減することが可能となる。これにより、発光モジュール1は、放熱性が向上し、固体発光素子3のジャンクション温度の温度上昇を抑制できるから、入力電力を大きくすることが可能となり、光出力の高出力化を図ることが可能となる。また、本実施形態の発光モジュール1は、実装基板2における配線基板22として片面プリント配線板を用いており、配線基板22において伝熱板21が配置される片面側に端子部22ba,22baを設けている。これにより、発光モジュール1は、図11に示したLEDパッケージ102のように配線板105として両面配線板を用いる場合に比べて、低コスト化を図ることが可能となる。また、発光モジュール1は、照明器具の光源として用いる場合でも、別途の回路基板に表面実装して用いる必要もないから、固体発光素子3から器具本体までの熱抵抗を低減でき、光出力の高出力化を図ることが可能となる。また、発光モジュール1は、配線基板22において有機系絶縁基板22aの片面上にのみしか配線パターン22bが形成されていないので、金属製の部材(例えば、照明器具における金属製の器具本体や放熱部材など)に対して設置して用いるような場合に、耐雷サージ性を高めることが可能となる。   In the light emitting module 1 of the present embodiment, the solid light emitting element 3 is mounted as an electronic component on the mounting board 2, but the mounting substrate 2 is between the heat transfer plate 21 and the wiring board 22, and the insulating layer 23 described above. The insulating layer 23 and the wiring pattern 22b are joined. Thereby, in the light emitting module according to the present embodiment, the thermal resistance can be reduced and the variation in the thermal resistance can be reduced as compared with the case where the solder resist 124 is provided as in the LED substrate 101 shown in FIG. Is possible. As a result, the light emitting module 1 has improved heat dissipation and can suppress an increase in the junction temperature of the solid state light emitting device 3, so that the input power can be increased and the light output can be increased. It becomes. In addition, the light emitting module 1 of the present embodiment uses a single-sided printed wiring board as the wiring board 22 in the mounting board 2, and the terminal portions 22 ba and 22 ba are provided on one side of the wiring board 22 where the heat transfer plate 21 is arranged. ing. Thereby, the light emitting module 1 can achieve cost reduction compared with the case where a double-sided wiring board is used as the wiring board 105 like the LED package 102 shown in FIG. In addition, even when the light emitting module 1 is used as a light source of a lighting fixture, it is not necessary to use it by mounting it on a separate circuit board. It is possible to achieve output. In the light emitting module 1, the wiring pattern 22 b is formed only on one side of the organic insulating substrate 22 a in the wiring board 22, so that a metal member (for example, a metal tool body or a heat dissipation member in a lighting fixture) is used. Etc.), it is possible to improve the lightning surge resistance.

また、本実施形態の発光モジュール1では、伝熱板21として、反射板としての機能を有するものを用いることにより、伝熱板21での光損失を低減することが可能となり、光出力の高出力化を図ることが可能となる。したがって、本実施形態の発光モジュール1は、低消費電力化を図ることも可能となる。ここで、発光モジュール1は、伝熱板21の基礎となる金属板がアルミニウム板であり、アルミニウム板における絶縁層23側とは反対側にアルミニウム板よりも高純度のアルミニウム膜が積層され、アルミニウム膜に屈折率の異なる2種類の誘電体膜からなる増反射膜が積層されている。これにより、発光モジュール1は、LEDチップから放射され伝熱板21の上記一面に入射した光を効率良く反射することが可能となり、光出力の高出力化を図ることが可能となる。特に、発光モジュール1は、固体発光素子3として、LEDチップを用いている場合に、LEDチップで発生した熱を効率よく放熱させることが可能となって光出力の高出力化を図れ、そのうえ、LEDチップから放射された光の利用効率の向上を図ることが可能となる。また、発光モジュール1は、色変換部37(図6〜図10など参照)を備えている場合、色変換部37の波長変換材料である蛍光体から伝熱板21側へ放射された光や、LEDチップから放射され蛍光体で伝熱板21側へ散乱された光などを反射させることが可能なので、光の利用効率の向上を図ることが可能となる。   Moreover, in the light emitting module 1 of this embodiment, it becomes possible by using what has a function as a reflecting plate as the heat exchanger plate 21, and it becomes possible to reduce the light loss in the heat exchanger plate 21, and high light output is high. It is possible to achieve output. Therefore, the light emitting module 1 of this embodiment can also achieve low power consumption. Here, in the light emitting module 1, the metal plate serving as the basis of the heat transfer plate 21 is an aluminum plate, and an aluminum film having a purity higher than that of the aluminum plate is laminated on the side opposite to the insulating layer 23 side of the aluminum plate. A reflection-enhancing film made of two types of dielectric films having different refractive indexes is laminated on the film. Thereby, the light emitting module 1 can efficiently reflect the light emitted from the LED chip and incident on the one surface of the heat transfer plate 21, and the light output can be increased. In particular, when the LED module is used as the solid state light emitting device 3, the light emitting module 1 can efficiently dissipate the heat generated in the LED chip, and the light output can be increased. It becomes possible to improve the utilization efficiency of the light emitted from the LED chip. Moreover, when the light emitting module 1 is provided with the color conversion part 37 (refer FIGS. 6-10 etc.), the light radiated | emitted from the fluorescent substance which is the wavelength conversion material of the color conversion part 37 to the heat-transfer plate 21 side, Since the light emitted from the LED chip and scattered by the phosphor to the heat transfer plate 21 side can be reflected, it is possible to improve the light utilization efficiency.

また、発光モジュール1は、上述のように実装基板2の反りが抑制されるとともに放熱性が向上するから、固体発光素子3の配列ピッチを短くすることにより、個々の固体発光素子3が点光源として粒々に光っているように見えるのを抑制することが可能となり、線状光源に見えるようにすることが可能となる。   Further, since the light emitting module 1 suppresses the warping of the mounting substrate 2 and improves the heat dissipation as described above, each solid light emitting element 3 can be converted into a point light source by shortening the arrangement pitch of the solid light emitting elements 3. As a result, it can be suppressed that it looks like it is shining, and it can be seen as a linear light source.

また、本実施形態の発光モジュール1では、固体発光素子3がLEDチップであり、厚み方向の一面側に第1電極31と第2電極32とが設けられており、第1電極31および第2電極32の各々が各貫通孔21bを通るワイヤ26を介して配線パターン22bと電気的に接続されているので、LEDチップを伝熱板21にダイボンドすることができ、LEDチップで発生した熱が伝熱板21の横方向へ伝熱されやすくなり、放熱性を向上させることが可能となる。   Further, in the light emitting module 1 of the present embodiment, the solid light emitting element 3 is an LED chip, and the first electrode 31 and the second electrode 32 are provided on one surface side in the thickness direction. Since each of the electrodes 32 is electrically connected to the wiring pattern 22b via the wire 26 passing through each through hole 21b, the LED chip can be die-bonded to the heat transfer plate 21, and the heat generated in the LED chip is Heat can be easily transferred in the lateral direction of the heat transfer plate 21, and heat dissipation can be improved.

固体発光素子3としてLEDチップを用いる場合、固体発光素子3と伝熱板21との線膨張率の差に起因してLEDチップに働く応力を緩和するサブマウント部材を介して伝熱板21にダイボンドするようにしてもよい。ここで、サブマウント部材は、LEDチップのチップサイズよりも大きな平面サイズに形成したものを用いることが好ましい。LEDチップがGaN系青色LEDチップであり、金属板がアルミニウム板の場合、サブマウント部材の材料としては、例えば、AlN、複合SiC、Si、CuWなどを採用することができる。また、サブマウント部材は、LEDチップが接合される側の表面におけるLEDチップとの接合部位(つまり、LEDチップに重なる部位)の周囲に、LEDチップから放射された光を反射する反射膜が形成されていることが好ましい。また、LEDチップとして厚み方向の両面に電極が設けられたものを用いる場合には、サブマウント部材に、LEDチップにおいてサブマウント部材側に配置される第1電極31あるいは第2電極32に電気的に接続される導体パターンを設けておき、当該導体パターンと第2パターン22b2あるいは第1パターン22b1とをワイヤ26を介して電気的に接続するようにすればよい。 When an LED chip is used as the solid light emitting element 3, the heat transfer plate 21 is attached to the heat transfer plate 21 via a submount member that relieves stress acting on the LED chip due to a difference in linear expansion coefficient between the solid light emitting element 3 and the heat transfer plate 21. You may make it die-bond. Here, it is preferable to use the submount member formed in a planar size larger than the chip size of the LED chip. When the LED chip is a GaN-based blue LED chip and the metal plate is an aluminum plate, for example, AlN, composite SiC, Si, CuW, or the like can be adopted as the material of the submount member. In addition, the submount member is formed with a reflective film that reflects light emitted from the LED chip around the bonding portion with the LED chip on the surface to which the LED chip is bonded (that is, the portion overlapping the LED chip). It is preferable that In addition, when an LED chip having electrodes provided on both sides in the thickness direction is used, the first electrode 31 or the second electrode 32 disposed on the submount member side of the LED chip is electrically connected to the submount member. may be provided a conductive pattern connected to may be a said conductor pattern and the second pattern 22b2 or the first pattern 2 2b1 so as to be electrically connected through a wire 26.

本実施形態の発光モジュール1は、種々の照明装置の光源として用いることが可能である。本実施形態の発光モジュール1を備えた照明装置の一例としては、例えば、発光モジュール1を光源として器具本体に配置した照明器具がある。ここにおいて、発光モジュール1は、器具本体が金属製で導電性を有しているような場合でも、配線基板22の幅寸法および配線パターン22bを広げる範囲を適宜設定することによって、伝熱板21や配線パターン22bと器具本体との間の所望の沿面距離を確保することが可能となる。照明器具では、器具本体を金属製とすれば、発光モジュール1で発生した熱をより効率良く放熱させることが可能となる。 The light emitting module 1 of this embodiment can be used as a light source of various illumination devices. As an example of the illuminating device provided with the light emitting module 1 of the present embodiment, for example, there is an illuminating device in which the light emitting module 1 is used as a light source and disposed on the fixture body. Here, even if the light emitting module 1 is made of metal and has conductivity, the heat transfer plate can be obtained by appropriately setting the width dimension of the wiring board 22 and the range in which the wiring pattern 22b is widened. 21 and a desired creepage distance between the wiring pattern 22b and the instrument main body can be secured. In the lighting fixture, if the fixture body is made of metal, the heat generated in the light emitting module 1 can be radiated more efficiently.

また、本実施形態の発光モジュール1を備えた照明装置の一例として、直管形LEDランプを構成することができる。なお、直管形LEDランプについては、例えば、社団法人日本電球工業会により、「L型ピン口金GX16t−5付直管形LEDランプシステム(一般照明用)」(JEL 801)が規格化されている。   Moreover, a straight tube | pipe type LED lamp can be comprised as an example of the illuminating device provided with the light emitting module 1 of this embodiment. As for straight tube LED lamps, for example, the Japan Light Bulb Industry Association has standardized “Straight tube LED lamp system with L-type pin cap GX16t-5 (for general lighting)” (JEL 801). Yes.

このような直管形LEDランプを構成する場合には、例えば、透光性材料(例えば、乳白色のガラス、乳白色の樹脂など)により形成された直管状の管本体と、管本体の長手方向の一端部および他端部それぞれに設けられた第1口金、第2口金とを備え、管本体内に発光モジュール1が収納された構成とすればよい。   When configuring such a straight tube type LED lamp, for example, a straight tubular tube body formed of a translucent material (for example, milky white glass, milky white resin, etc.) and a longitudinal direction of the tube body. What is necessary is just to set it as the structure provided with the 1st nozzle | cap | die and the 2nd nozzle | cap | die provided in each one end part and the other end part, and the light emitting module 1 being accommodated in the pipe | tube main body.

1 発光モジュール
2 実装基板
21b 貫通孔
3 固体発光素子(電子部品、LEDチップ)
21 伝熱板
22 配線基板
22a 有機系絶縁基板
22b 配線パターン
22ba 端子部
22c 保護層
23 絶縁層
26 ワイヤ
31 第1電極
32 第2電極
37 色変換部
DESCRIPTION OF SYMBOLS 1 Light emitting module 2 Mounting board 21b Through-hole 3 Solid light emitting element (electronic component, LED chip)
21 Heat Transfer Plate 22 Wiring Substrate 22a Organic Insulating Substrate 22b Wiring Pattern 22ba Terminal Unit 22c Protective Layer 23 Insulating Layer 26 Wire 31 First Electrode 32 Second Electrode 37 Color Conversion Unit

Claims (11)

電子部品を実装可能な実装基板であって、金属板により形成され前記電子部品を一面側に搭載可能な伝熱板と、前記電子部品を電気的に接続可能な配線パターンが有機系絶縁基板の片面に設けられ前記伝熱板の他面側に配置された配線基板と、前記伝熱板と前記配線基板との間に介在する絶縁層とを備え、前記伝熱板は、前記配線パターンにおける、前記電子部品の接続用部位を露出させる貫通孔が形成されてなり、前記配線基板の平面サイズが前記伝熱板の平面サイズよりも大きく、前記配線基板は、前記配線パターンが、前記伝熱板に重ならない領域まで広がっていることを特徴とする実装基板。   A mounting substrate capable of mounting electronic components, wherein a heat transfer plate formed of a metal plate and capable of mounting the electronic components on one side, and a wiring pattern capable of electrically connecting the electronic components are formed of an organic insulating substrate A wiring board provided on one side and disposed on the other side of the heat transfer plate, and an insulating layer interposed between the heat transfer plate and the wiring board, the heat transfer plate in the wiring pattern A through-hole exposing the connection part of the electronic component is formed, the plane size of the wiring board is larger than the plane size of the heat transfer plate, and the wiring pattern of the wiring board is the heat transfer plate A mounting board that extends to areas that do not overlap the board. 前記配線基板は、前記有機系絶縁基板の前記片面において前記伝熱板に重ならない部位を覆うレジストからなる保護層を備え、前記保護層に、前記配線パターンの一部を端子部として露出させる露出部が形成されてなることを特徴とする請求項1記載の実装基板。   The wiring board includes a protective layer made of a resist that covers a portion of the one side of the organic insulating substrate that does not overlap the heat transfer plate, and exposes a part of the wiring pattern as a terminal portion on the protective layer. The mounting substrate according to claim 1, wherein a portion is formed. 前記保護層の色が白色であることを特徴とする請求項2記載の実装基板。   The mounting substrate according to claim 2, wherein the color of the protective layer is white. 前記配線基板は、前記配線パターンにおいて前記保護層により覆われた領域以外に、めっき層が形成されてなり、前記配線パターンの材料がCuであり、前記めっき層は、Ni膜とPd膜とAu膜との積層膜もしくはNi膜とAu膜との積層膜からなることを特徴とする請求項2または請求項3記載の実装基板。   The wiring board has a plating layer formed in a region other than the region covered with the protective layer in the wiring pattern, and the material of the wiring pattern is Cu, and the plating layer includes a Ni film, a Pd film, and an Au film. 4. The mounting substrate according to claim 2, comprising a laminated film with a film or a laminated film with a Ni film and an Au film. 前記絶縁層は、熱硬化性樹脂からなり、前記熱硬化性樹脂に比べて熱伝導率の高いフィラーを含有していることを特徴とする請求項1ないし請求項4のいずれか1項に記載の実装基板。   The said insulating layer consists of a thermosetting resin, and contains the filler with high heat conductivity compared with the said thermosetting resin, The any one of Claim 1 thru | or 4 characterized by the above-mentioned. Mounting board. 前記伝熱板は、前記金属板がアルミニウム板であり、前記アルミニウム板における前記絶縁層側とは反対側に前記アルミニウム板よりも高純度のアルミニウム膜が積層され、前記アルミニウム膜に屈折率の異なる2種類の誘電体膜からなる増反射膜が積層されてなることを特徴とする請求項1ないし請求項5のいずれか1項に記載の実装基板。   In the heat transfer plate, the metal plate is an aluminum plate, an aluminum film having a higher purity than the aluminum plate is laminated on the side opposite to the insulating layer side of the aluminum plate, and the refractive index of the aluminum film is different. 6. The mounting substrate according to claim 1, wherein a reflection-increasing film made of two kinds of dielectric films is laminated. 前記伝熱板は、長尺状の形状であって、複数の前記電子部品を前記伝熱板の長手方向に沿って並べて搭載可能であり、前記有機系絶縁基板は、前記伝熱板よりも幅寸法の大きな長尺状の形状であって、樹脂に前記樹脂よりも熱伝導率の高いフィラーを混合した樹脂基板からなり、前記配線パターンよりも前記金属板との線膨張率差が小さいことを特徴とする請求項1ないし請求項6のいずれか1項に記載の実装基板。   The heat transfer plate has an elongated shape, and a plurality of the electronic components can be mounted side by side along the longitudinal direction of the heat transfer plate, and the organic insulating substrate is more than the heat transfer plate. It has a long shape with a large width dimension, and is made of a resin substrate in which a resin is mixed with a filler having a higher thermal conductivity than the resin, and has a smaller difference in linear expansion coefficient from the metal plate than the wiring pattern. The mounting substrate according to claim 1, wherein: 請求項1ないし請求項7のいずれか1項に記載の実装基板と、前記実装基板に実装された前記電子部品とを備え、前記電子部品が固体発光素子からなることを特徴とする発光モジュール。   A light emitting module comprising: the mounting substrate according to claim 1; and the electronic component mounted on the mounting substrate, wherein the electronic component is made of a solid light emitting element. 前記固体発光素子は、LEDチップであることを特徴とする請求項8記載の発光モジュール。   The light emitting module according to claim 8, wherein the solid state light emitting device is an LED chip. 前記LEDチップから放射された光によって励起されて前記LEDチップの発光色とは異なる色の光を放射する蛍光体および透光性材料を含む色変換部を備え、前記色変換部は、前記伝熱板に接していることを特徴とする請求項9記載の発光モジュール。 A color conversion unit including a phosphor and a translucent material that is excited by light emitted from the LED chip and emits light of a color different from the emission color of the LED chip; and light emitting module Motomeko 9 wherein you, characterized in that in contact with the hot plate. 前記各固体発光素子は、厚み方向の一面側に第1電極と第2電極とが設けられたものであり、前記第1電極および前記第2電極の各々が前記貫通孔を通るワイヤを介して前記配線パターンと電気的に接続されてなることを特徴とする請求項8ないし請求項10のいずれか1項に記載の発光モジュール。 Each of the solid-state light emitting devices is provided with a first electrode and a second electrode on one surface side in the thickness direction, and each of the first electrode and the second electrode is connected via a wire passing through the through hole. The light emitting module according to claim 8, wherein the light emitting module is electrically connected to the wiring pattern.
JP2011165688A 2011-07-28 2011-07-28 Mounting board and light emitting module Expired - Fee Related JP5935074B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011165688A JP5935074B2 (en) 2011-07-28 2011-07-28 Mounting board and light emitting module
PCT/JP2012/058065 WO2013014978A1 (en) 2011-07-28 2012-03-28 Mounting substrate and light-emitting module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011165688A JP5935074B2 (en) 2011-07-28 2011-07-28 Mounting board and light emitting module

Publications (2)

Publication Number Publication Date
JP2013030621A JP2013030621A (en) 2013-02-07
JP5935074B2 true JP5935074B2 (en) 2016-06-15

Family

ID=47600838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011165688A Expired - Fee Related JP5935074B2 (en) 2011-07-28 2011-07-28 Mounting board and light emitting module

Country Status (2)

Country Link
JP (1) JP5935074B2 (en)
WO (1) WO2013014978A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252732B2 (en) * 2013-08-07 2017-12-27 パナソニックIpマネジメント株式会社 Illumination light source and illumination device
TWM496848U (en) * 2014-07-30 2015-03-01 Yu-Yu Gao Phosphorescent composite resin substrate white light LED
CN104201276B (en) * 2014-08-15 2015-05-06 厦门市瀚锋光电科技有限公司 Peripherally light-emitting strip-shaped light source
JP2016162860A (en) * 2015-02-27 2016-09-05 シチズン電子株式会社 Led light-emitting device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004145239A (en) * 2002-08-29 2004-05-20 Mitsui Chemicals Inc Reflection sheet, and reflector, side light type back light device and liquid crystal display device using the same
JP2008140954A (en) * 2006-12-01 2008-06-19 Matsushita Electric Ind Co Ltd Heat dissipating wiring board, manufacturing method thereof, and light emitting module using it
CN101765923B (en) * 2007-07-26 2013-01-16 松下电器产业株式会社 LED illumination device
TW200923262A (en) * 2007-11-30 2009-06-01 Tysun Inc High heat dissipation optic module for light emitting diode and its manufacturing method
JP2010114144A (en) * 2008-11-04 2010-05-20 Fdk Module System Technology Corp Led mounting substrate, and illumination apparatus
JP2011044593A (en) * 2009-08-21 2011-03-03 Hitachi Chem Co Ltd Led substrate and led package
JP5320250B2 (en) * 2009-10-14 2013-10-23 株式会社日立製作所 Transparent structure, light source module, and illumination device, liquid crystal display device, and video display device using the same

Also Published As

Publication number Publication date
JP2013030621A (en) 2013-02-07
WO2013014978A1 (en) 2013-01-31

Similar Documents

Publication Publication Date Title
KR101495580B1 (en) Leadframe, wiring board, light emitting unit, and illuminating apparatus
JP5665160B2 (en) Light emitting device and lighting apparatus
JP5149601B2 (en) Light emitting device
WO2007004572A1 (en) Light emitting device
JP4808550B2 (en) Light emitting diode light source device, lighting device, display device, and traffic signal device
JP2013038018A (en) Lighting fixture
JP2007043125A (en) Light-emitting device
WO2011024861A1 (en) Light-emitting device and illuminating device
WO2012176491A1 (en) Mounting board and light-emitting module
JP2011035264A (en) Package for light emitting element and method of manufacturing light emitting element
JP2007116109A (en) Led lighting equipment
JP4976982B2 (en) LED unit
JP5935078B2 (en) LED module and method for manufacturing the same, lighting apparatus, and straight tube LED lamp
JP2011249737A (en) Lead frame, wiring board, and led unit using the same
JP5935074B2 (en) Mounting board and light emitting module
JP2009141219A (en) Light emitting device
JP2014007204A (en) Led module
JP5180564B2 (en) Light emitting device
JP4976895B2 (en) Light emitting device
JP2014049625A (en) Led module
JP5011442B1 (en) Light emitting unit and lighting device
JP5938623B2 (en) Mounting substrate, manufacturing method thereof, and LED module
JP5011441B1 (en) Light emitting unit and lighting device
JP2007165937A (en) Light-emitting device
JP2014007202A (en) Light source device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140415

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160408

R151 Written notification of patent or utility model registration

Ref document number: 5935074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees