JP5920110B2 - エジェクタ - Google Patents

エジェクタ Download PDF

Info

Publication number
JP5920110B2
JP5920110B2 JP2012184950A JP2012184950A JP5920110B2 JP 5920110 B2 JP5920110 B2 JP 5920110B2 JP 2012184950 A JP2012184950 A JP 2012184950A JP 2012184950 A JP2012184950 A JP 2012184950A JP 5920110 B2 JP5920110 B2 JP 5920110B2
Authority
JP
Japan
Prior art keywords
refrigerant
passage
space
diffuser
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012184950A
Other languages
English (en)
Other versions
JP2013177879A (ja
Inventor
山田 悦久
悦久 山田
西嶋 春幸
春幸 西嶋
達博 鈴木
達博 鈴木
高野 義昭
義昭 高野
秀也 松井
秀也 松井
佳之 横山
佳之 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012184950A priority Critical patent/JP5920110B2/ja
Priority to PCT/JP2013/000453 priority patent/WO2013114856A1/ja
Priority to DE112013000817.3T priority patent/DE112013000817B4/de
Priority to US14/373,862 priority patent/US9394921B2/en
Priority to CN201380007138.8A priority patent/CN104081064B/zh
Publication of JP2013177879A publication Critical patent/JP2013177879A/ja
Application granted granted Critical
Publication of JP5920110B2 publication Critical patent/JP5920110B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/463Arrangements of nozzles with provisions for mixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/462Arrangements of nozzles with provisions for cooling the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/48Control
    • F04F5/50Control of compressing pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0014Ejectors with a high pressure hot primary flow from a compressor discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Jet Pumps And Other Pumps (AREA)

Description

本発明は、流体を減圧するとともに、高速で噴出する作動流体の吸引作用によって流体輸送を行う運動量輸送式ポンプであるエジェクタに関する。
従来のエジェクタとして、例えば、特許文献1、2に示されたものが知られている。この種のエジェクタは、冷凍サイクルに適用された際に圧縮機によって高圧に圧縮された後に冷媒凝縮器によって凝縮液化された冷媒を減圧させるノズル部と、冷媒蒸発器から流出される低圧側の冷媒を吸引する吸引部と、ノズル部から噴出された冷媒と、吸引部から吸引された冷媒とを混合して昇圧するディフューザ部とを備えている。
さらに、特許文献1のエジェクタのノズル部は、冷媒凝縮器から流入した液冷媒を減圧膨張させる第1ノズルと、第1ノズルで気液二相となった冷媒を再度、減圧膨張させて噴出する第2ノズルとを有して構成されている。これにより、第1ノズルによって冷媒を膨張させて気液二相とし、第2ノズルによって更に減圧膨張させることで、第2ノズルより流出する冷媒の出口速度を増大させることができ、ノズル効率を向上させることができるようになっている。
また、一般的なエジェクタでは、ノズル部の軸線方向の延長線上にディフューザ部(昇圧部)が同軸上に配置されている。さらに、特許文献2には、このように配置されたディフューザ部の広がり角度を比較的小さくすることで、エジェクタ効率を向上できることが記載されている。なお、ノズル効率とは、ノズル部において冷媒の圧力エネルギを運動エネルギに変換する際のエネルギ変換効率であり、エジェクタ効率は、エジェクタ全体としてのエネルギ変換効率である。
特許第3331604号公報 特開2003−14318号公報
しかしながら、特許文献1のエジェクタでは、例えば冷凍サイクルの低負荷時において、高圧側と低圧側との冷媒圧力差が小さいときに、第1ノズルによって冷媒圧力差分の大半が減圧されてしまう形となり、第2ノズルにおいてはほとんど冷媒を減圧させることができなくなってしまうことがある。その結果、冷凍サイクルの低負荷時には、ディフューザ部にて冷媒を充分に昇圧させることができなくなってしまうという問題があった。つまり、特許文献1のエジェクタでは、冷凍サイクルの負荷に見合った充分なエジェクタの作動が得られないものとなっていた。
これに対して、特許文献1のエジェクタに特許文献2に開示されている比較的小さい広がり角度のディフューザ部を適用することで、エジェクタ効率を向上させ、冷凍サイクルの低負荷時にもディフューザ部にて冷媒を充分に昇圧させる手段が考えられる。ところが、このようなディフューザ部を適用すると、エジェクタ全体としてノズル部の軸線方向の長さが長くなってしまうので、冷凍サイクルの通常負荷時においてはエジェクタの体格が不必要に大きくなってしまう。
上記点に鑑み、本発明の第1の目的は、体格の大型化を招くことなく、冷凍サイクルの負荷変動によらず高いノズル効率を発揮可能なエジェクタを提供することにある。
また、本発明の第2の目的は、ノズル効率を向上させるとともに、冷凍サイクルの負荷に見合った作動が可能となるエジェクタを提供することにある。
本発明は上記目的を達成するために、以下の技術的手段を採用する。
請求項1に記載の発明では、蒸気圧縮式の冷凍サイクル(10D)に適用されるエジェクタであって、
冷媒を流入させる冷媒流入口(211)から流入した冷媒を旋回させる旋回空間(140)、旋回空間(140)から流出した冷媒を減圧させる減圧用空間(202)、減圧用空間(202)の冷媒流れ下流側に連通して外部から冷媒を吸引する吸引用通路(120)、および減圧用空間(202)から噴射された噴射冷媒と吸引用通路(120)から吸引された吸引冷媒とを混合させて昇圧させる昇圧用空間(205)が形成されたボデー(200)と、少なくとも一部が減圧用空間(202)の内部および昇圧用空間(205)の内部に配置される通路形成部材(151)とを備え、
ボデー(200)のうち減圧用空間(202)を形成する部位の内周面と通路形成部材(151)の外周面との間に形成される冷媒通路は、旋回空間(140)から流出した冷媒を減圧させて噴射するノズルとして機能するノズル通路(110)であり、ボデー(200)のうち昇圧用空間(205)を形成する部位の内周面と通路形成部材(151)の外周面との間に形成される冷媒通路は、噴射冷媒および吸引冷媒を混合して昇圧させるディフューザとして機能するディフューザ通路(130)であり、
通路形成部材(151)は、前記減圧用空間(202)から離れるに伴って断面積が拡大する形状に形成されていることを特徴とする。
これによれば、旋回空間(140)にて冷媒を旋回させることで、旋回空間(140)内の旋回中心側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(キャビテーションを生じる)圧力まで低下させて、この圧力の低下した冷媒を減圧用空間(30b)内へ流入させることができる。
従って、冷凍サイクル(10D)の負荷変動が生じても、ノズル通路(110)内の最小通路面積部近傍で冷媒を確実に減圧沸騰させることができ、ノズル通路(110)におけるエネルギ変換効率(ノズル効率に相当)を向上させることができる。
さらに、通路形成部材(151)が減圧用空間(202)から離れるに伴って断面積が拡大する形状に形成されているので、ディフューザ通路(130)の形状を減圧用空間(202)から離れるに伴って通路形成部材(151)の外周に沿って広がる形状とすることができる。従って、従来技術のノズル部の軸方向に相当する方向の寸法の拡大を抑制して、エジェクタ全体としての体格の大型化を抑制できる。
つまり、この発明によれば、体格の大型化を招くことなく、冷凍サイクル(10D)の負荷変動によらず高いノズル効率を発揮可能なエジェクタを提供することができる。
なお、本請求項における通路形成部材(151)は、厳密に減圧用空間(202)から離れるに伴って断面積が拡大する形状のみから形成されているものに限定されず、少なくとも一部に減圧用空間(202)から離れるに伴って断面積が拡大する形状を含んでいることによって、ディフューザ通路(130)の形状を減圧用空間(202)から離れるに伴って外側へ広がる形状とすることができるものを含む。
請求項2に記載の発明では、請求項1に記載のエジェクタにおいて、通路形成部材(151)は、減圧用空間(202)から離れるに伴って断面積が拡大する円錐状に形成されており、ノズル通路(110)、吸引用通路(120)およびディフューザ通路(130)は、通路形成部材(151)の軸方向に垂直な断面における断面形状が環状に形成されていることを特徴とする。
これによれば、ノズル通路(110)、吸引用通路(120)およびディフューザ通路(130)の断面形状が環状に形成されているので、これらの通路を通路形成部材(151)の軸の外周側から内周側へ冷媒が流れる形状、あるいは、内周側から外周側へ冷媒が流れる形状に形成することができる。従って、ボデー(200)の内部スペースを有効に活用した通路配置が可能となり、より一層、エジェクタ全体としての体格の大型化を抑制できる。
請求項3に記載の発明では、請求項1または2に記載のエジェクタにおいて、通路形成部材(151)は、減圧用空間(202)から離れるに伴って断面積が拡大する円錐状に形成されており、ディフューザ通路(130)は、通路形成部材(151)の軸方向に垂直な断面における断面形状が環状に形成されており、ディフューザ通路(130)を流通する冷媒は、旋回空間(140)にて旋回する冷媒と同方向に旋回していることを特徴とする。
これによれば、ディフューザ通路(130)の断面形状が環状に形成され、さらに、ディフューザ通路(130)を流通する冷媒が旋回しながら流れるので、冷媒を昇圧させるための流路を螺旋状に形成することができる。従って、通路形成部材(151)の軸方向の拡大を抑制して、より一層、エジェクタ全体としての体格の大型化を抑制できる。
請求項4に記載の発明では、請求項1ないし3のいずれか1つに記載のエジェクタにおいて、通路形成部材(151)を変位させる駆動手段(160)を備え、通路形成部材(151)は、減圧用空間(202)から離れるに伴って断面積が拡大する円錐状に形成されており、吸引用通路(120)およびディフューザ通路(130)は、通路形成部材(151)の軸方向に垂直な断面における断面形状が環状に形成されており、吸引用通路(120)は、通路形成部材(151)の軸の外周側から内周側へ向かって冷媒が流れる形状に形成されており、ディフューザ通路(130)は、通路形成部材(151)の軸の内周側から外周側へ向かって冷媒が流れる形状に形成されており、駆動手段(160)の少なくとも一部は、吸引用通路(120)およびディフューザ通路(130)に挟まれる位置に配置されていることを特徴とする。
これによれば、駆動手段(160)を備えているので、冷凍サイクル(10D)の負荷変動に応じて通路形成部材(151)を変位させて、ノズル通路(110)およびディフューザ通路(130)の冷媒通路面積を調整することができる。従って、冷凍サイクル(10D)の負荷に見合った冷媒量を流すことが可能となり、冷凍サイクル(10D)の負荷に見合った作動が可能となるエジェクタを提供することができる。
また、駆動手段(160)の少なくとも一部が、吸引用通路(120)およびディフューザ通路(130)に挟まれる位置に配置されているので、吸引用通路(120)とディフューザ通路(130)との間に形成されるスペースを有効に活用することができる。その結果、より一層エジェクタ全体としての体格の大型化を抑制できる。
なお、上記請求項における「円錐状に形成されている」とは、通路形成部材(151)が完全な円錐形状に形成されているという意味に限定されず、円錐に近い形状、あるいは一部に円錐形状を含んで形成されているという意味も含んでいる。具体的には、軸方向断面形状が二等辺三角形となるものに限定されず、頂点を挟む二辺が内周側に凸となる形状、二辺が外周側に凸となる形状、さらに断面形状が半円形状となるもの等も含む意味である。
さらに、請求項5に記載の発明のように、請求項4に記載のエジェクタにおいて、駆動手段(160)は、温度変化に伴って圧力変化する感温媒体が封入された封入空間(162)および封入空間(162)内の感温媒体の圧力に応じて変位する圧力応動部材(161)を有して構成され、圧力応動部材(161)は、通路形成部材(151)に連結されており、感温媒体は、吸引用通路(120)を流通する冷媒の温度およびディフューザ通路(130)を流通する冷媒の温度が伝達されることによって圧力変化するものであってもよい。
これによれば、駆動手段(160)を構成する封入空間(162)を、吸引用通路(120)およびディフューザ通路(130)に挟まれる位置に配置することで、吸引用通路(120)を流通する冷媒の温度およびディフューザ通路(130)を流通する冷媒の温度を感温媒体に良好に伝達して、封入空間(162)内の圧力を変化させることができる。
そして、吸引用通路(120)を流通する冷媒の温度およびディフューザ通路(130)を流通する冷媒の温度に応じて通路形成部材(151)を変位させて、ノズル通路(110)およびディフューザ通路(130)の冷媒通路面積を変化させることができる。その結果、冷凍サイクル(10D)の負荷に見合った作動が可能となるエジェクタを提供することができる。
請求項6に記載の発明では、請求項1ないし5のいずれか1つに記載のエジェクタにおいて、減圧用空間(202)、吸引用通路(120)、昇圧用空間(205)、および通路形成部材(151)は、いずれも回転体形状で形成されており、互いの軸線が同軸上に配置されていることを特徴とする。
これによれば、回転体形状で形成された減圧用空間(202)、吸引用通路(120)、昇圧用空間(205)、および通路形成部材(151)が互いに同軸上に配置されているので、軸方向垂直断面が環状に形成されるノズル通路(110)、吸引用通路(120)およびディフューザ通路(130)を容易に形成することができる。
請求項7に記載の発明では、請求項1ないし6のいずれか1つに記載のエジェクタにおいて、ボデー(200)には、ディフューザ通路(130)から流出した冷媒の気液を分離する気液分離空間(206)が形成されていることを特徴とする。
これによれば、気液分離空間(206)にてディフューザ通路(130)から流出した冷媒の気液を分離するので、ボデー(200)の外部に気液分離手段を配置する場合に対して、気液分離空間(206)の容積を小さくすることができる。つまり、ディフューザ通路(130)から流出して、気液分離空間(206)へ流入する冷媒は既に旋回しているので、この旋回流れの遠心力の作用によって効率的な気液分離を行うことができる。従って、気液分離機能を有するエジェクタの体格の大型化を抑制できる。
請求項8に記載の発明では、蒸気圧縮式の冷凍サイクル(10、10A〜10C)に適用されて、
冷凍サイクル(10、10A〜10C)の高圧側から流入する高圧冷媒を減圧膨張させるノズル部(110)と、高圧冷媒よりも低圧である低圧冷媒を、ノズル部(110)から噴出される噴出冷媒の吸引力によって吸引する吸引部(120)と、ノズル部(110)の下流側に配設されて、流路断面積が下流側に向けて徐々に拡大され、ノズル部(110)から噴出される噴出冷媒と吸引部(120)から吸引される低圧冷媒とが混合された混合冷媒を減速して圧力上昇させるディフューザ部(130)とを備えるエジェクタにおいて、
ノズル部(110)の上流側に配設されて、高圧冷媒を旋回させ、仮想される旋回中心線の外周側よりも内周側に気相冷媒が多く存在するようにして、気液混相状態の冷媒をノズル部(110)に流入させる旋回空間(140)と、ノズル部(110)とディフューザ部(130)との流路面積を変更可能とする流路面積可変機構(150)とを設けたことを特徴としている。
この発明によれば、旋回空間(140)にて、高圧冷媒を旋回させ、旋回中心線の外周側よりも内周側に気相冷媒が多く存在するようにする。実際には、旋回流路(140)において、旋回中心線近傍はガス単相、その周りは液単相の二相分離状態となる。つまり、旋回中心側の冷媒圧力が、冷媒が減圧沸騰する(キャビテーションを生じる)圧力まで低下する。
この「二相分離状態により生成する気液界面」での液冷媒の沸騰(ガス化)促進により、ノズル部(110)の最小流路面積部近傍においては、流れが二相噴霧状態となり、二相音速まで加速する。さらに、二相音速まで加速した冷媒は、そのノズル部(110)の最小流路面積部から末広流路部出口にかけて理想的な二相噴霧流れを継続でき、末広流路部出口で噴射される冷媒の流速を増大させることができる。その結果、ノズル部(110)のノズル効率を向上させて、エジェクタ効率を向上させることができる。
また、ノズル部(110)は従来技術のような2段式のノズルではなく、1つのノズルによって冷媒の減圧膨張を行うので、エジェクタ(100)に流入する液相冷媒の圧力エネルギを全て活用して、ディフューザ部(130)による昇圧エネルギを得ることができる。
また、ノズル部(110)とディフューザ部(130)との流路面積を変更可能とする流路面積可変機構(150)を設けているので、冷凍サイクル(10、10A〜10C)の負荷に応じて流路面積を変更することで、冷凍サイクル(10、10A〜10C)の負荷に見合った冷媒量を流すことが可能となり、効果的なエジェクタの作動を引き出すことができる。
請求項9に記載の発明では、請求項8に記載のエジェクタにおいて、高圧冷媒は、液相冷媒であることを特徴としている。
この発明によれば、高圧冷媒が液相冷媒であると、上記のように冷媒は旋回流路(140)において、旋回中心線近傍はガス単相、その周りは液単相の二相分離状態とされるので、この「二相分離状態により生成される気液界面」での液冷媒の沸騰(ガス化)促進により、ノズル部(110)の最小流路面積部から末広流路部出口にかけての流れが二相噴霧状態となり、末広流路部出口における冷媒流速増大の効果を確実に得られる。この効果は、高圧冷媒が気液二相である場合に比べより大きい。
請求項10に記載の発明では、請求項8または9に記載のエジェクタにおいて、流路面積可変機構(150)は、ノズル部(110)とディフューザ部(130)との流路面積を同時に変更可能とすることを特徴としている。
この発明によれば、流路面積を変更する際に、ノズル部(110)とディフューザ部(130)との流路面積が同時に変更されるので、ノズル部(110)とディフューザ部(130)とを流通する冷媒の流れを乱すことがない。また、ノズル部(110)とディフューザ部(130)との流路面積を変更する部材を、1つの部材で形成することが可能となり、流路面積可変機構(150)の構成を簡素にすることができる。
請求項11に記載の発明では、請求項8ないし10のいずれか1つに記載のエジェクタにおいて、ディフューザ部(130)の流路断面積の拡大率は、下流側に向けて順次大きくなるように設定されており、流路面積可変機構(150)は、ノズル部(110)およびディフューザ部(130)の内壁に沿う曲面を有する通路形成部材(151)を備えており、通路形成部材151)によって形成されるディフューザ部(130)の内部流路は、ディフューザ部(130)の軸線方向に対して交差する方向に拡がるように設けられていることを特徴としている。
この発明によれば、ディフューザ部(130)の軸線方向の長さを小さくすることができ、従来にないコンパクトなエジェクタを実現することができる。
また、旋回空間(140)によって旋回された高圧冷媒は、ノズル部(110)およびディフューザ部(130)においても旋回状態が維持され、ディフューザ部(130)の軸線方向に対して交差する方向に流出されることになる。よって、ディフューザ部(130)から流出される混合冷媒は、旋回流れによって遠心分離の作用を受けて、密度の大きい液相冷媒が、密度の小さい気相冷媒に対して、軸線からより遠い側に流出される。つまり、エジェクタ自体に効果的な気液分離機能を持たせることができる。
請求項12に記載の発明では、請求項8ないし11のいずれか1つに記載のエジェクタにおいて、ディフューザ部(130)から流出される混合冷媒の気液を分離する気液分離器(13)を備えることを特徴とする。
この発明によれば、気液分離器(13)が一体的に形成されたコンパクトなエジェクタを実現することができる。ここで、旋回空間(140)における冷媒の旋回流れは、ノズル部(110)およびディフューザ部(130)においても維持される。そのため、ディフューザ部(130)から流出される混合冷媒は、旋回流れによって遠心分離の作用を受けて、密度の大きい液相冷媒が、密度の小さい気相冷媒に対して、軸線からより遠い側に流出される。
従って、ディフューザ部(130)から流出される混合冷媒の気液を分離する気液分離器(13)を備えることによって、ディフューザ部(130)にて気液分離された冷媒をすぐに気液分離器(13)内に流入させることができ、効果的な気液分離を行うことができる。
請求項13に記載の発明では、請求項12に記載のエジェクタにおいて、気液分離器(13)によって気液分離された冷媒を溜める貯液部(14)を備え、貯液部(14)は、気液分離器(13)と一体的に形成されたことを特徴としている。
この発明によれば、気液分離器(13)および貯液部(14)を一体的に備えるコンパクトなエジェクタを実現することができる。また、貯液部(14)を気液分離器(13)と一体的にすることで、気液分離器(13)で気液分離された冷媒を効率的に貯液部(15)に溜めることができる。
なお、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。
第1実施形態の冷凍サイクルの全体構成を示す概略図である。 エジェクタの概略を示す断面図である。 第2実施形態の冷凍サイクルの全体構成を示す概略図である。 第2実施形態の動力回収装置を示す断面図である。 第3実施形態の冷凍サイクルの全体構成を示す概略図である。 第4実施形態の冷凍サイクルの全体構成を示す概略図である。 第4実施形態の動力回収装置を示す断面図である。 第5実施形態の冷凍サイクルの全体構成を示す概略図である。 第5実施形態のエジェクタの軸方向断面図である。 第5実施形態のエジェクタの各冷媒通路の機能を説明するための模式的な断面図である。 図10のXI−XI断面図である。 図10のXII−XII断面図である。 図10のXIII−XIII断面図である。 第5実施形態のエジェクタの小型化効果を説明するための説明図である。
以下に、図面を参照しながら本発明を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても実施形態同士を部分的に組み合せることも可能である。
(第1実施形態)
図1、図2は、第1実施形態のエジェクタ100を蒸気圧縮式冷凍サイクル(以下、冷凍サイクル)10に適用したものを示している。この冷凍サイクル10は、空調装置用として車両に搭載されるものであって、圧縮機11、凝縮器12、エジェクタ100、気液分離器13、貯液部14、および蒸発器16が、冷媒配管によって接続されて形成されている。
圧縮機11は、図示しない制御装置によってその作動が制御されるようになっている。圧縮機11は、気液分離器13内の気相冷媒を吸入し、高温高圧に圧縮して凝縮器12側へ吐出する流体機械であり、図示しない電磁クラッチおよびベルトを介して車両走行用エンジンにより回転駆動されるようになっている。圧縮機11は、例えば、電磁式容量制御弁に制御装置からの制御信号が入力されることにより、吐出容量が可変される斜板式可変容量型圧縮機となっている。なお、圧縮機11は、電動モータによって回転駆動される電動圧縮機としても良い。電動圧縮機の場合は、電動モータの回転数によって吐出容量が可変される。
凝縮器12は、圧縮機11から吐出された高圧冷媒と、図示しない冷却ファンにより強制的に送風される車室外空気(以下、外気)との間で熱交換を行うことにより、高圧冷媒の熱を外気に放出(冷却)させて、冷媒を凝縮液化する熱交換器である。なお、圧縮機11によって圧縮された冷媒の圧力が臨界圧力を超える場合は、冷媒は冷却されても凝縮液化することはなく、この場合は、凝縮器12は高圧冷媒を冷却する放熱器として機能する。凝縮器12の冷媒流出側は、エジェクタ100の流入部141(詳細後述)に接続されている。
エジェクタ100は、凝縮器12から流出される液相冷媒(高圧冷媒)を減圧する減圧手段であるとともに、高速で噴出する冷媒流の吸引作用(巻き込み作用)によって冷媒の循環を行う流体輸送用の冷媒循環手段でもある。図2に示すように、エジェクタ100は、ノズル部110、吸引部120、ディフューザ部130、旋回空間140、および流路面積可変機構150を備えている。
ノズル部110は、凝縮器12から流出される液相冷媒を、後述する旋回空間140を介して取り入れ、冷媒流れの下流側に向けて通路面積を小さく絞って冷媒の圧力エネルギを速度エネルギに変換して等エントロピ的に減圧膨張させるものである。ノズル部110は、下流側に向かうほど流路が先細りとなる先細部111と、この先細部111の下流側に配設されて下流側に向かうほど流路が拡大する末広部112とを備えている。先細部111と末広部112とが接続される部位が、最も流路面積が縮小されたノズル喉部(最小通路面積部)113となっている。なお、ノズル部110の冷媒流れ方向に沿う仮想軸線を、軸線114と定義する。
吸引部120は、ノズル部110に対して交差する方向に形成された流路であり、エジェクタ100の外部からノズル部110の冷媒噴出口(末広部112の出口部)と連通するように配置されている。吸引部120の冷入口側には、蒸発器16の冷媒流出側と接続されている。
ディフューザ部130は、ノズル部110および吸引部120の下流側で、ノズル部110から噴出される高速度の冷媒(噴射冷媒)と、吸引部120(蒸発器16)から吸引された気相冷媒(吸引冷媒)とを混合するとともに、混合された混合冷媒の流れを減速し、速度エネルギを圧力エネルギに変換して昇圧させるものである。
ディフューザ部130は、冷媒の流路断面積を下流側に向けて徐々に大きくする形状(いわゆるディフューザ形状)に形成されることで、上記の昇圧機能を有するようになっている。ディフューザ部130の流路断面積の拡大率は、下流側に向けて順次大きくなるように、例えばラッパ状に設定されている。そして、ディフューザ部130の冷媒出口側には、気液分離器13が接続されている。
旋回空間140は、ノズル部110の上流側に配設されており、凝縮器12から流出される液相冷媒を旋回させ、仮想される旋回流の中心線(以下、旋回中心線)の外周側よりも内周側に気相冷媒が多く存在するようにして、気液混相状態の冷媒をノズル部110に流入させる流路である。旋回空間140は、例えば、扁平円筒状の空間によって形成されている。そして、旋回空間140には、円筒状の外周に対して接線方向から接続されて、旋回空間140内部に連通するパイプ状の流入部141が設けられている。
ここで、旋回空間140の円筒状の仮想軸線を軸線142と定義したとき、軸線142は、ノズル部の仮想の軸線114と平行となるように、さらに具体的には、軸線142と軸線114とが一致するように、ノズル部110に対して旋回空間140が配置されて、旋回空間140は、ノズル部110に連通するように接続されている。なお、流入部141の冷媒入口側には、凝縮器12の冷媒出口側が接続されている。
ここで、旋回空間140において、旋回中心線の内周側に気相冷媒が多く存在するようにするためには、冷媒の旋回流速を充分に増速させることが必要となる。そのために、ノズル喉部113の流路断面積に対する流入部141の流路断面積の比率A、およびノズル喉部113の流路断面積に対する旋回空間140の流路断面積の比率Bが、予め定めた所定値となるように設定されている。
流路面積可変機構150は、ノズル部110とディフューザ部130との流路面積を変更する機構部であり、通路形成部材151と、これを駆動する図示しない駆動部(駆動手段)とを備えている。通路形成部材151は、円錐状に形成されており、その外周面として末広部112およびディフューザ部130の内周面に沿う曲面を有する部材であり、先端側がノズル部110側を向くように配置され、末広部112およびディフューザ部130の内部に挿入されている。
換言すると、通路形成部材151は、少なくとも一部がノズル部110を形成する空間(減圧用空間)の内部およびディフューザ部130を形成する空間(昇圧用空間)の内部に配置されている。また、通路形成部材151の外周面と、末広部112およびディフューザ部130の内周面との間には隙間が形成されて、この隙間がノズル部110(末広部112)およびディフューザ部130の内部流路として形成されるようになっている。
つまり、ノズル部110を形成する空間(減圧用空間)の内周面と通路形成部材151の外周面との間に形成される冷媒通路が、冷媒を減圧させて噴射するノズル部として機能する内部流路(ノズル通路)を構成し、ディフューザ部130を形成する空間(昇圧用空間)の内周面と通路形成部材151の外周面との間に形成される冷媒通路が、噴射冷媒および吸引冷媒を混合して昇圧させるディフューザ部として機能する内部流路(ディフューザ通路)を構成している。
さらに、ディフューザ部130が上記のようにラッパ状に形成されており、また、通路形成部材151がディフューザ部130の内周面に沿う曲面を有して形成されていることから、ディフューザ部130の内部流路は、ディフューザ部130の軸線方向に対して交差する方向に拡がるように形成されている。つまり、ディフューザ部130の内部流路は、上流側から下流側に向けて軸線方向から遠心方向を向くような流路となっている。なお、ディフューザ部130の内部流路の下流側は、軸線に対して完全に直交する遠心方向に限定されるものではない。
駆動部は、通路形成部材151を軸線114方向に摺動させるものであり、感温部と作動棒と弾性部材とを備えている。感温部は、凝縮器12から流入部141を介してエジェクタ100に供給される液相冷媒の温度および圧力、あるいは蒸発器16から吸引部120を介してエジェクタ100に供給される気相冷媒の温度および圧力に応じて、例えばダイヤフラムによって区画された圧力室内の体積が膨張収縮するようにしたものである。
作動棒は、軸線114と平行になるように配置された棒状部材であり、一端側がダイヤフラムに接続され、他端側が通路形成部材151に接続されている。作動棒は、感温部(ダイヤフラム)の膨張収縮に伴って、軸線114の方向に移動し、通路形成部材151を軸線114の方向に摺動させるようになっている。弾性部材は、作動棒とは反対側から通路形成部材151を付勢するように配置されており、例えばバネが使用されている。
従って、エジェクタ100に供給される冷媒の温度および圧力が上昇すると、感温部が膨張して、このときの膨張力が弾性部材の付勢力に打ち勝つと、感温部は作動棒を移動させる。これによって、通路形成部材151は、ノズル部110およびディフューザ部130との隙間が大きくなる側に移動され、ノズル部110およびディフューザ部130の流路面積が大きくなるようになっている。
逆に、エジェクタ100に供給される冷媒の温度および圧力が低下すると、感温部が収縮して、弾性部材の付勢力によって、通路形成部材151は、ノズル部110およびディフューザ部130との隙間が小さくなる側に移動され、ノズル部110およびディフューザ部130の流路面積が小さくなるようになっている。なお、通路形成部材151は、ノズル部110およびディフューザ部130に対して1つの部材によって形成されているので、ノズル部110およびディフューザ部130の流路面積は、同時に変更されるようになっている。
図1に戻って、気液分離器13は、エジェクタ100のディフューザ部130から流出される混合冷媒を気液二相に分離する気液分離器である。上記で説明したエジェクタ100と、この気液分離器13は、ノズル部110によって冷媒が減圧される際の運動エネルギの損失を回収して、回収した運動エネルギを圧力エネルギに変換して圧縮機11の吸入冷媒の圧力を上昇させる動力回収装置15を形成していると表現することもできる。
気液分離器13は、圧縮機11および貯液部14に接続されている。気液分離器13によって気液二相に分離された冷媒のうち、気相冷媒は圧縮機11に吸入されるようになっている。また、気液分離器13によって気液二相に分離された冷媒のうち、液相冷媒は貯液部14に流出されるようになっている。
貯液部14は、気液分離器13によって分離された気液二相の冷媒のうち、液相冷媒を内部に貯留する容器体であり、例えば、貯液部14の内部には円筒状流路が形成されている。貯液部14の冷媒流出側は蒸発器16の冷媒流入側に接続されている。このように、貯液部14は、気液分離器13と蒸発器16との間、つまり、冷凍サイクル10の低圧側に配設されている。
蒸発器16は、送風機によって空調装置の空調ケース内に導入された外気、あるいは車室内空気(以下、内気)からの吸熱作用によって、内部を流通する冷媒を蒸発させる熱交換器である。蒸発器16の冷媒流出側は、冷媒配管によってエジェクタ100の吸引部120に接続されている。
図示しない制御装置は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。この制御装置には、乗員による操作パネル(図示せず)からの各種操作信号(空調作動スイッチ、設定温度スイッチ等)、各種センサ群からの検出信号等が入力されるようになっており、制御装置は、これらの入力信号を用いてROM内に記憶された制御プログラムに基づいて各種演算、処理を行って各種機器(主に圧縮機11)の作動を制御する。
次に、上述構成に基づく本実施形態の作動について説明する。
乗員からの空調作動スイッチ、設定温度スイッチ等が入力されると、制御装置から出力される制御信号が圧縮機11の電磁クラッチに通電され電磁クラッチが接続状態となり、圧縮機11に車両走行用エンジンから回転駆動力が伝達される。なお、圧縮機11が電動圧縮機の場合は、電動モータが作動され、圧縮機11に電動モータから回転駆動力が伝達される。
そして、制御装置から圧縮機11の電磁式容量制御弁に制御プログラムに基づいて制御電流In(制御信号)が出力されると、圧縮機11の吐出容量が調節され、圧縮機11は気液分離器13から気相冷媒を吸入、圧縮して吐出する。
圧縮機11から圧縮吐出された高温高圧の気相冷媒は凝縮器12に流入する。凝縮器12では高温高圧の冷媒が外気により冷却されて凝縮液化する。凝縮器12から流出された液相冷媒は、エジェクタ100の流入部141から旋回空間140内に流入する。
旋回空間140内に流入した液相冷媒は、流入部141が旋回空間140の円筒状の外周に対して接線方向を向くように接続されていることから、旋回空間140内において軸線142に対して旋回する旋回流となる。この場合、旋回中心線は、ほぼ、軸線142に一致する。このような旋回流においては、遠心力の作用によって、旋回中心線の近傍の圧力を、冷媒が減圧沸騰する(キャビテーションを生ずる)圧力まで低下させることで、旋回中心線近傍はガス単相、その周りは液単相の二相分離状態にできる。
そして、旋回空間140の軸線142とノズル部110の軸線114とが一致するように配置されていることから、ガス単相および液単相の冷媒は、気液混相状態の冷媒としてノズル部110内に流入していく。
ノズル部110においては、冷媒は減圧膨張される。この減圧膨張時に冷媒の圧力エネルギが速度エネルギに変換されるので、気液混相状態の冷媒はノズル部110から高速度となって噴出される。そして、この冷媒噴出流の冷媒吸引作用により、貯液部14内の液相冷媒が蒸発器16内を流通して、気相冷媒となって吸引部120に吸引されることになる。
ここで、上記のように旋回空間140において、旋回中心線近傍はガス単相、その周りは液単相の二相分離状態とされるので。この「二相分離状態により生成される気液界面」での液冷媒の沸騰(ガス化)促進により、ノズル部110の先細部111から末広部112の出口にかけての流れが二相噴霧状態となり、末広部112の出口から噴射される冷媒の流速は増大されることになる。
ノズル部110から噴出された冷媒と吸引部120に吸引された冷媒は、混合冷媒となってノズル部110の下流側のディフューザ部130に流入する。このディフューザ部130では下流側に向かう通路面積の拡大により、冷媒の速度エネルギが圧力エネルギに変換されるため、冷媒の圧力が上昇する。
上記のようにノズル部110とディフューザ部130とを通過する冷媒の流量は、流路面積可変機構150によって調整される。即ち、エジェクタ100に供給される冷媒(高圧の液相冷媒あるいは低圧の気相冷媒)の温度および圧力が上昇すると、ノズル部110およびディフューザ部130の流路面積が大きくなる側に可変され、逆に、エジェクタ100に供給される冷媒の温度および圧力が低下すると、ノズル部110およびディフューザ部130の流路面積が小さくなる側に可変される。
つまり、冷媒の温度および圧力が高い場合は、冷凍サイクル10の負荷が高い場合であり、流路面積が大きくなる側に可変された分、冷凍サイクル10内を循環する冷媒量が増加され、逆に、冷媒の温度および圧力が低い場合は、冷凍サイクル10の負荷が低い場合であり、流路面積が小さくなる側に可変された分、冷凍サイクル10内を循環する冷媒量が減少される。
そして、ディフューザ部130から流出された冷媒は気液分離器13に流入する。気液分離器13にて気液二相に分離された冷媒のうち、気相冷媒は圧縮機11に吸入され、再び圧縮される。このとき、圧縮機11に吸入される冷媒の圧力は、エジェクタ100のディフューザ部130によって上昇されているので、圧縮機11の駆動動力を低減することが可能となる。
また、気液分離器13にて気液二相に分離された冷媒のうち、液相冷媒は貯液部14に流入し、エジェクタ100の冷媒吸引作用により、貯液部14から蒸発器16に流入される。蒸発器16では、低圧の液相冷媒が空調ケース内の空気(外気あるいは内気)から吸熱して蒸発気化する。つまり、空調ケース内の空気が冷却されることになる。そして、蒸発器16を通過した後の気相冷媒はエジェクタ100に吸引され、ディフューザ部130から流出される。
以上のように、本実施形態では、エジェクタ100に旋回空間140を設けているので、液相冷媒を旋回させ、旋回空間140において、旋回中心線近傍はガス単相、その周りは液単相の二相分離状態とされる。つまり、旋回中心側の冷媒圧力が、冷媒が減圧沸騰する(キャビテーションを生じる)圧力まで低下する。
この「二相分離状態により生成される気液界面」での液冷媒の沸騰(ガス化)促進により、ノズル部110の先細部111(最小流路面積部)から末広部112(末広流路部)の出口にかけての流れが二相噴霧状態となり、末広部112の出口から噴射される冷媒の流速は増大されることになる。エジェクタ100のノズル部110の効率(ノズル効率)は、噴出される冷媒の速度に比例するため、その結果、ノズル部110のノズル効率を向上させることができ、ひいては、エジェクタ効率を向上させることができる。
また、ノズル部110は従来技術のような2段式のノズルではなく、1つのノズルによって冷媒の減圧膨張を行うので、エジェクタ100に流入する液相冷媒の圧力エネルギを全て活用して、ディフューザ部130による昇圧エネルギを得ることができる。
また、ノズル部110とディフューザ部130との流路面積を変更可能とする流路面積可変機構150を設けているので、冷凍サイクル10の負荷に応じて流路面積を変更することができ、冷凍サイクル10の負荷に見合った冷媒量を流すことが可能となり、効果的なエジェクタ100の作動を引き出すことができる。
また、エジェクタ100(旋回空間140)に流入される高圧冷媒は、本実施形態では液相冷媒となっている。高圧冷媒が液相冷媒であると、上記のように冷媒は旋回空間140において、旋回中心線近傍はガス単相、その周りは液単相の二相分離状態となる。
そして、この「二相分離状態により生成される気液界面」での液冷媒の沸騰(ガス化)促進により、ノズル部110の先細部111から末広部112の出口にかけての流れが二相噴霧状態となり、末広部112の出口から噴射される冷媒の流速は増大されることになる。この結果、高圧冷媒が気液二相である場合に比べて、ノズル効率の向上がより大きく得られる。
また、流路面積可変機構150は、通路形成部材151によって、ノズル部110とディフューザ部130との流路面積を同時に変更することができるようになっている。これにより、流路面積を変更する際に、ノズル部110とディフューザ部130とを流通する冷媒の流れを乱すことがない。
また、ノズル部110とディフューザ部130との流路面積を変更する部材を、1つの部材(通路形成部材151)で形成することが可能となり、流路面積可変機構150の構成を簡素にすることができる。
また、通路形成部材151によって形成されるディフューザ部130の内部流路は、ディフューザ部130の軸線方向に対して交差する方向に拡がるように設けられている。これにより、ディフューザ部130の軸線方向の長さを小さくすることができ、従来にないコンパクトなエジェクタ100とすることができる。
また、旋回空間140によって旋回された液相冷媒は、ノズル部110およびディフューザ部130においても旋回状態が維持され、吸引部120からの気相冷媒とともにディフューザ部130の軸線方向に対して交差する方向に流出されることになる。よって、ディフューザ部130から流出される混合冷媒は、旋回流れによって遠心分離の作用を受けて、密度の大きい液相冷媒が、密度の小さい気相冷媒に対して、軸線からより遠い側に流出される。つまり、エジェクタ100に効果的な気液分離機能を持たせることができる。
(第2実施形態)
第2実施形態の冷凍サイクル10Aを図3、図4に示す。冷凍サイクル10Aは、上記第1実施形態に対して、エジェクタ100と気液分離器13とを一体的に形成したものである。具体的には、図4に示すように、本実施形態のエジェクタ100と気液分離器13は、円筒状の気液分離器13の上部にエジェクタ100が配置されていることによって一体的に形成されている。
この場合、ノズル部110の軸線114が気液分離器13の円筒状の軸線と同一方向となるようになっており、さらに、上側から下側に向けて旋回空間140、ノズル部110、ディフューザ部130、流路面積可変機構150が配置されるようになっている。そして、ディフューザ部130の下流側が気液分離器13の上側内部に連通するようになっている。
そして、旋回空間140によって旋回された冷媒は、ノズル部110およびディフューザ部130においても旋回状態が維持され、ディフューザ部130から流出される。よって、ディフューザ部130から流出される混合冷媒は、旋回流れによって遠心分離の作用を受けて、旋回流れの中心側に密度の小さい気相冷媒が集まり、旋回流れの外周側に密度の大きい液相冷媒が集まり、気液分離されることになる。
よって、気液分離器13にエジェクタ100を一体的に形成することで、コンパクトな気液分離器一体型のエジェクタ100を実現することができる。また、エジェクタ100自体が、気液分離機能を備えるので、エジェクタ100によって気液分離された流体をすぐに気液分離器13内に流入させることができ、効果的な気液分離を行うことができる。
(第3実施形態)
第3実施形態の冷凍サイクル10Bを図5に示す。本実施形態では、上記第2実施形態に対して、凝縮器12から流出した液相冷媒を蓄えるレシーバ(受液部)12bを設けている。なお、気液分離器13によって気液二相に分離された冷媒のうち、液相冷媒は、直接、蒸発器16に流出されるようになっている。
レシーバ12bは、凝縮器12の冷媒流出側に配設されており、凝縮器12から流出された液相冷媒を溜めるようになっている。そして、レシーバ12bから液相冷媒がエジェクタ100(流入部141)に供給される。これにより、上記第2実施形態と同様の効果を得ることができる。
(第4実施形態)
第4実施形態の冷凍サイクル10Cを図6、図7に示す。冷凍サイクル10Cは、第2実施形態のように気液分離器13が一体的に形成されたエジェクタ100に対して、さらに、貯液部14を一体的に設けたものである。
これにより、気液分離器13および貯液部14を一体的に備えるコンパクトなエジェクタ100を実現することができる。また、貯液部14を気液分離器13と一体的にすることで、気液分離器13で気液分離された冷媒を効率的に貯液部14に溜めることができる。
(第5実施形態)
本実施形態では、第4実施形態にて説明した気液分離器13および貯液部14を一体的に設けたエジェクタ100を、図8に示す冷凍サイクル10Dに適用し、具体的に図9の断面図に示すように構成した例を説明する。この冷凍サイクル10Dでは、圧縮機11、凝縮器12、エジェクタ100、および蒸発器16が、冷媒配管によって接続されて形成されている。
さらに、冷凍サイクル10Dでは、凝縮器12として、圧縮機11から吐出された高圧気相冷媒を冷却ファンから送風された外気と熱交換させて凝縮させる凝縮部12a、凝縮部12aから流出した冷媒の気液を分離して余剰液相冷媒を蓄えるレシーバ12b、およびレシーバ12bから流出した液相冷媒を冷却ファンから送風される外気と熱交換させて過冷却する過冷却部12cを有して構成される、いわゆるサブクール型の凝縮器を採用している。
また、この冷凍サイクル10Dでは、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。もちろん、亜臨界冷凍サイクルを構成する冷媒であれば、HFO系冷媒(具体的には、R1234yf)等を採用してもよい。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
次に、図9〜図13を用いて、本実施形態のエジェクタ100の具体的構成について説明する。なお、図9における上下の各矢印は、冷凍サイクル10Dを車両に搭載した状態における上下の各方向を示している。また、図10は、エジェクタ100の各冷媒通路の機能を説明するための模式的な断面図であって、第1実施形態の図2に対応する図面であり、図2と同一部分には同一の符号を付している。
まず、本実施形態のエジェクタ100は、図9に示すように、複数の構成部材を組み合わせることによって構成されたボデー200を備えている。具体的には、このボデー200は、角柱状あるいは円柱状の金属にて形成されてエジェクタ100の外殻を形成するハウジングボデー210を有し、このハウジングボデー210の内部に、ノズルボデー220、ミドルボデー230、ロワーボデー240等を固定して構成されたものである。
ハウジングボデー210には、放熱器12から流出した冷媒を内部へ流入させる冷媒流入口211、蒸発器16から流出した冷媒を吸引する冷媒吸引口212、ボデー200の内部に形成された気液分離空間206にて分離された液相冷媒を蒸発器16の冷媒入口側へ流出させる液相冷媒流出口213、および気液分離空間206にて分離された気相冷媒を圧縮機11の吸入側へ流出させる気相冷媒流出口214等が形成されている。
ノズルボデー220は、冷媒流れ方向に先細る略円錐形状の金属部材で形成されており、その軸方向が鉛直方向(図9の上下方向)と平行になるように、ハウジングボデー210の内部に圧入等の手段によって固定されている。ノズルボデー220の上方側とハウジングボデー210との間には、冷媒流入口211から流入した冷媒を旋回させる旋回空間140が形成されている。
旋回空間140は、回転体形状に形成され、その中心軸が鉛直方向に延びている。なお、回転体形状とは、平面図形を同一平面上の1つの直線(中心軸)の周りに回転させた際に形成される立体形状である。より具体的には、本実施形態の旋回空間140は、略円柱状に形成されている。もちろん、円錐あるいは円錐台と円柱とを結合させた形状等に形成されていてもよい。
さらに、冷媒流入口211と旋回空間140とを接続する流入部(冷媒流入通路)141は、旋回空間140の中心軸方向から見たときに旋回空間140の内壁面の接線方向に延びている。これにより、流入部141から旋回空間140へ流入した冷媒は、旋回空間140の内壁面に沿って流れ、旋回空間140内を旋回する。
なお、流入部141は、旋回空間140の中心軸方向から見たときに、旋回空間140の接線方向と完全に一致するように形成されている必要はなく、少なくとも旋回空間140の接線方向の成分を含んでいれば、その他の方向の成分(例えば、旋回空間140の軸方向の成分)を含んで形成されていてもよい。
ここで、旋回空間140内で旋回する冷媒には遠心力が作用するので、旋回空間140内では中心軸側の冷媒圧力が外周側の冷媒圧力よりも低下する。そこで、本実施形態では、冷凍サイクル10Dの作動時に、旋回空間140内の中心軸側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(キャビテーションを生じる)圧力まで低下させるようにしている。
このような旋回空間140内の中心軸側の冷媒圧力の調整は、第1実施形態にて説明したように、旋回空間140内で旋回する冷媒の旋回流速を調整することによって実現することができる。さらに、旋回流速の調整は、例えば、流入部141の通路断面積と旋回空間140の軸方向垂直断面積との流路断面積の比率を調整すること等によって行うことができる。なお、本実施形態の旋回流速とは、旋回空間140の最外周部近傍における冷媒の旋回方向の流速を意味している。
また、ノズルボデー220の内部には、旋回空間140から流出した冷媒を減圧させて下流側へ流出させる減圧用空間202が形成されている。この減圧用空間202は、円柱状空間とこの円柱状空間の下方側から連続して冷媒流れ方向に向かって徐々に広がる円錐台形状空間とを結合させた回転体形状に形成されており、減圧用空間202の中心軸は旋回空間140の中心軸と同軸上に配置されている。
さらに、減圧用空間202の内部には、減圧用空間202内に冷媒通路面積が最も縮小したノズル喉部(最小通路面積部)113を形成するとともに、ノズル喉部113の通路面積を変化させる通路形成部材151が配置されている。この通路形成部材151は、冷媒流れ下流側に向かって径方向に徐々に広がる略円錐形状に形成されており、その中心軸が減圧用空間202の中心軸と同軸上に配置されている。換言すると、通路形成部材151は、減圧用空間202から離れるに伴って断面積が拡大する円錐状に形成されている。
そして、ノズルボデー220の減圧用空間202を形成する部位の内周面と通路形成部材151の上方側の外周面との間に形成される冷媒通路として、図10に示すように、ノズル喉部(最小通路面積部)113よりも冷媒流れ上流側に形成されてノズル喉部113に至るまでの冷媒通路面積が徐々に縮小する先細部111、およびノズル喉部113から冷媒流れ下流側に形成されて冷媒通路面積が徐々に拡大する末広部112が形成される。
この末広部112では、ノズル部の軸線114(通路形成部材151の中心軸)の径方向から見たときに減圧用空間202と通路形成部材151の上方側が重合(オーバーラップ)しているので、軸線114の垂直断面形状は、図11の断面図に示すように円環状(円形状から同軸上に配置された小径の円形状を除いたドーナツ形状)となる。
本実施形態では、この通路形状によってノズルボデー220の減圧用空間202を形成する部位の内周面と通路形成部材151の上方側の外周面との間に形成される冷媒通路をノズルとして機能するノズル通路110(上述の実施形態で説明したノズル部110に相当)とし、このノズル通路110にて減圧される冷媒の流速を音速となるように増速させている。さらに、ノズル通路110では、図10、図11に太実線矢印で示すように、冷媒が断面円環状の冷媒通路に沿って旋回しながら流れる。
次に、ミドルボデー230は、図9に示すように、その中心部に表裏を貫通する回転体形状の貫通穴が設けられているとともに、この貫通穴の外周側に通路形成部材151を変位させる駆動手段160を収容した金属製の円板状部材で形成されている。なお、貫通穴の中心軸は旋回空間140および減圧用空間202の中心軸と同軸上に配置されている。また、ミドルボデー230は、ハウジングボデー210の内部であって、かつ、ノズルボデー220の下方側に圧入等の手段によって固定されている。
さらに、ミドルボデー230の上面とこれに対向するハウジングボデー210の内壁面との間には、冷媒吸引口212から流入した冷媒を滞留させる流入空間203が形成されている。なお、本実施形態では、ノズルボデー220の下方側の先細先端部がミドルボデー230の貫通穴の内部に位置付けられるため、流入空間203は、旋回空間140および減圧用空間202の中心軸方向(ノズル通路110の軸線114方向)からみたときに、断面円環状に形成される。
また、ミドルボデー230の貫通穴のうち、ノズルボデー220の下方側が挿入される範囲、すなわち径方向から見たときにミドルボデー230とノズルボデー220が重合する範囲では、ノズルボデー220の先細先端部の外周形状に適合するように冷媒通路断面積が冷媒流れ方向に向かって徐々に縮小している。
これにより、貫通穴の内周面とノズルボデー220の下方側の外周面との間には、流入空間203と減圧用空間202の冷媒流れ下流側とを連通させる吸引通路204が形成される。つまり、本実施形態では、流入空間203および吸引通路204によって、中心軸の外周側から内周側へ向かって吸引冷媒が流れる吸引部(吸引用通路)120が形成されることになる。さらに、この吸引部(吸引用通路)120の中心軸垂直断面形状も、図12の断面図に示すように円環状となっている。
また、ミドルボデー230の貫通穴のうち、吸引通路204の冷媒流れ下流側には、図9に示すように、冷媒流れ方向に向かって徐々に広がる略円錐台形状に形成された昇圧用空間205が形成されている。この昇圧用空間205は、上述したノズル通路110から噴射された噴射冷媒と吸引部120から吸引された吸引冷媒とを混合させて昇圧させる空間である。
昇圧用空間205の内部には、前述の通路形成部材151の下方側が配置されている。昇圧用空間205内の通路形成部材151の円錐状側面の広がり角度は、昇圧用空間205の円錐台形状空間の広がり角度よりも小さくなっているので、この冷媒通路の冷媒通路面積は冷媒流れ下流側に向かって徐々に拡大している。
本実施形態では、このように冷媒通路面積を拡大させることによって、昇圧用空間205を形成するミドルボデー230の内周面と通路形成部材151の下方側の外周面との間に形成される冷媒通路をディフューザとして機能するディフューザ通路130(上述の実施形態で説明したディフューザ部130に相当)とし、噴射冷媒および吸引冷媒の速度エネルギを圧力エネルギに変換させている。
さらに、ディフューザ通路130の中心軸垂直断面形状は、図13の断面図に示すように円環状に形成されており、このディフューザ通路130では、図10、図13に太実線矢印で示すように、ノズルとして機能する冷媒通路から噴射された噴射冷媒の有する旋回方向の速度成分によって、冷媒が断面円環状の冷媒通路に沿って旋回しながら流れる。
次に、ミドルボデー230の内部に配置されて、通路形成部材151を変位させる駆動手段160について説明する。この駆動手段160は、圧力応動部材である円形薄板状のダイヤフラム161等を有して構成されている。より具体的には、図9に示すように、ダイヤフラム161はミドルボデー230の外周側に形成された円柱状の空間を上下の2つの空間に仕切るように、溶接等の手段によって固定されている。
ダイヤフラム161によって仕切られた2つの空間のうち上方側(流入空間203側)の空間は、蒸発器16流出冷媒の温度に応じて圧力変化する感温媒体が封入される封入空間162を構成している。この封入空間162には、冷凍サイクル10を循環する冷媒と同一組成の感温媒体が予め定めた密度となるように封入されている。従って、本実施形態における感温媒体は、R134aとなる。
一方、ダイヤフラム161によって仕切られた2つの空間のうち下方側の空間は、図示しない連通路を介して、蒸発器16流出冷媒を導入させる導入空間163を構成している。従って、封入空間162に封入された感温媒体には、流入空間203と封入空間162とを仕切る蓋部材164およびダイヤフラム161を介して、蒸発器16流出冷媒の温度が伝達される。
ここで、図9、図10から明らかなように、本実施形態のミドルボデー230の上方側には吸引部(吸引用通路)120が配置され、ミドルボデー230の下方側にはディフューザ通路130が配置されている。従って、駆動手段160の少なくとも一部は、軸線の径方向から見たときに吸引部120およびディフューザ通路130によって上下方向から挟まれる位置に配置されている。
より詳細には、駆動手段160の封入空間162は、軸線方向から見たときに吸引部120およびディフューザ通路130と重合する位置であって、吸引部120およびディフューザ通路130によって囲まれる位置に配置されている。これにより、封入空間162に蒸発器16流出冷媒の温度が伝達され、封入空間162の内圧は、蒸発器16流出冷媒の温度に応じた圧力となる。
さらに、ダイヤフラム161は、封入空間162の内圧と導入空間163へ流入した蒸発器16流出冷媒の圧力との差圧に応じて変形する。このため、ダイヤフラム161は弾性に富み、かつ熱伝導が良好で、強靱な材質にて形成することが好ましく、例えば、ステンレス(SUS304)等の金属薄板にて形成されることが望ましい。
また、ダイヤフラム161の中心部には、円柱状の作動棒165の上端側が溶接等の手段によって接合され、作動棒165の下端側には通路形成部材151の最下方側(底側)の外周側が固定されている。これにより、ダイヤフラム161と通路形成部材151が連結され、ダイヤフラム161の変位に伴って通路形成部材151が変位し、減圧用空間202のノズル喉部113における冷媒通路面積が調整される。
具体的には、蒸発器16流出冷媒の温度(過熱度)が上昇すると、封入空間162に封入された感温媒体の飽和圧力が上昇し、封入空間162の内圧から導入空間163の圧力を差し引いた差圧が大きくなる。これにより、ダイヤフラム161は、ノズル喉部113における冷媒通路面積を拡大させる方向(鉛直方向下方側)に通路形成部材151を変位させる。
一方、蒸発器16流出冷媒の温度(過熱度)が低下すると、封入空間162に封入された感温媒体の飽和圧力が低下して、封入空間162の内圧から導入空間163の圧力を差し引いた差圧が小さくなる。これにより、ダイヤフラム161は、ノズル喉部113における冷媒通路面積を縮小させる方向(鉛直方向上方側)に通路形成部材151を変位させる。
このように蒸発器16流出冷媒の過熱度に応じてダイヤフラム161が通路形成部材151を変位させることによって、蒸発器16出口側冷媒の過熱度が予め定めた所定値に近づくように、ノズル喉部113における冷媒通路面積を調整することができる。つまり、本実施形態では、通路形成部材151と駆動手段160によって流路面積可変機構150が構成されている。
なお、作動棒165とミドルボデー230との隙間は、図示しないO−リング等のシール部材によってシールされており、作動棒165が変位してもこの隙間から冷媒が漏れることはない。
また、通路形成部材151の底面は、ロワーボデー240に固定されたコイルバネ241の荷重を受けている。コイルバネ241は、通路形成部材151に対して、ノズル喉部113における冷媒通路面積を縮小する側に付勢する荷重をかけており、この荷重を調整することで、通路形成部材151の開弁圧を変更して、狙いの過熱度を変更することもできる。
さらに、本実施形態では、ミドルボデー230の外周側に複数(具体的には2つ)の円柱状の空間を設け、この空間の内部にそれぞれ円形薄板状のダイヤフラム161を固定して2つの駆動手段160を構成しているが、駆動手段160の数はこれに限定されない。なお、駆動手段160を複数箇所に設ける場合は、それぞれ中心軸に対して等角度間隔で配置されていることが望ましい。
また、軸方向からみたときに円環状に形成される空間内に、円環状の薄板で形成されたダイヤフラムを固定し、複数の作動棒でこのダイヤフラムと通路形成部材151とを連結する構成としてもよい。
次に、ロワーボデー240は、円柱状の金属部材で形成されており、ハウジングボデー210の底面を閉塞するように、ハウジングボデー210内にネジ止め等の手段によって固定されている。ロワーボデー240の上方側とミドルボデー230との間には、前述したディフューザ通路130から流出した冷媒の気液を分離する気液分離空間206が形成されている。
この気液分離空間206は、略円柱状の回転体形状の空間として形成されており、気液分離空間206の中心軸も、旋回空間140、減圧用空間202等の中心軸と同軸上に配置されている。
また、前述の如く、ディフューザ通路130では、冷媒が断面円環状の冷媒通路に沿って旋回しながら流れるので、このディフューザ通路130から気液分離空間206へ流入する冷媒も、旋回方向の速度成分を有している。従って、気液分離空間206内では遠心力の作用によって冷媒の気液が分離されることになる。
ロワーボデー240の中心部には、気液分離空間206に同軸上に配置されて、上方側へ向かって延びる円筒状のパイプ242が設けられている。そして、気液分離空間206にて分離された液相冷媒は、パイプ242の外周側に貯留される。また、パイプ242の内部には、気液分離空間206にて分離された気相冷媒をハウジングボデー210の気相冷媒流出口214へ導く気相冷媒流出通路243が形成されている。
さらに、パイプ242の上端部には、前述したコイルバネ241が固定されている。なお、このコイルバネ241は、冷媒が減圧される際の圧力脈動に起因する通路形成部材151の振動を減衰させる振動緩衝部材としての機能も果たしている。また、パイプ242の根本部(最下方部)には、液相冷媒中の冷凍機油を気相冷媒流出通路243を介して圧縮機11内へ戻すオイル戻し穴244が形成されている。
その他の冷凍サイクルの構成および作動は第4実施形態と同様である。従って、本実施形態のエジェクタ100においても第1実施形態と同様に旋回空間140にて冷媒を旋回させることで、ノズル通路110におけるエネルギ変換効率(ノズル効率に相当)を向上させることができ、ひいては、エジェクタ効率を向上させることができる。
このことをより詳細に説明すると、ノズル通路110の先細部111では、円環状の冷媒通路の外周側壁面から冷媒が剥離する際に生じる壁面沸騰と、円環状の冷媒通路の中心軸側の冷媒のキャビテーションによって生じた沸騰核による界面沸騰とによって過冷却冷媒の沸騰が促進されて、気相と液相が均質に混合した気液混合状態となる。
そして、ノズル喉部113の近傍で気液混合状態の冷媒の流れに閉塞(チョーキング)が生じ、チョーキングによって音速に到達した気液混合状態の冷媒が末広部112にて加速されて噴射される。このように、壁面沸騰および界面沸騰の双方による沸騰促進によって、気液混合状態の冷媒を音速となるまで効率よく加速できることで、ノズル通路110におけるエネルギ変換効率を向上させることができる。
さらに、本実施形態のエジェクタの100の通路形成部材151は、減圧用空間202から離れるに伴って断面積が拡大する略円錐形状に形成されているので、ディフューザ通路130の形状を減圧用空間202から離れるに伴って外周側へ広がる形状とすることができる。従って、通路形成部材151の軸方向(ノズル部110の軸線114方向)の寸法の拡大を抑制して、エジェクタ100全体としての体格の大型化を抑制できる。
また、本実施形態のエジェクタ100では、減圧用空間202、吸引部120を形成する流入空間203および吸引通路204、昇圧用空間205、並びに、通路形成部材151を、いずれも回転体形状で形成して、互いの軸線を同軸上に配置している。そして、ノズル通路110、吸引部120、およびディフューザ通路130の軸方向垂直断面における断面形状を円環状(ドーナツ形状)としている。
これにより、例えば、吸引部120を軸線の外周側から内周側へ冷媒が流れる形状とし、ディフューザ通路130を軸線の内周側から外周側へ冷媒が流れる形状とすることができる。つまり、ボデー200の内部スペースを有効に活用した通路配置が可能となり、より一層、エジェクタ全体としての体格の大型化を抑制できる。
さらに、ディフューザ通路130の断面形状を円環状とすることで、ディフューザ通路130を流通する冷媒を、旋回空間140にて旋回する冷媒と同方向に旋回させることができる。
これにより、冷媒を昇圧させるための流路を螺旋状に形成することができるので、図14に示すように、従来技術の如くディフューザ部がノズル部の軸線方向に延びる形状に形成されている場合に対して、ディフューザ部130の中心軸方向の寸法が拡大してしまうことを抑制できる。その結果、より一層、エジェクタ100全体としての体格の大型化を抑制できる。
また、本実施形態のエジェクタ100では、駆動手段160を備えているので、冷凍サイクル10Dの負荷変動に応じて通路形成部材151を変位させて、ノズル通路110およびディフューザ通路130の冷媒通路面積を調整することができる。従って、冷凍サイクル10Dの負荷に応じた冷媒量を流すことが可能となり、冷凍サイクル10Dの負荷に見合った効果的なエジェクタ100の作動を引き出すことができる。
さらに、駆動手段160のうち、感温媒体が封入された封入空間162が、吸引部120およびディフューザ通路130に挟まれる位置に配置されているので、吸引部120とディフューザ通路130との間に形成されるスペースを有効に活用することができる。その結果、より一層エジェクタ全体としての体格の大型化を抑制できる。
しかも、封入空間162が吸引部120およびディフューザ通路130によって囲まれる位置に配置されているので、外気温の影響等を受けることなく吸引部120を流通する冷媒の蒸発器16流出冷媒の温度を感温媒体に良好に伝達して、封入空間162内の圧力を変化させることができる。つまり、封入空間162内の圧力を蒸発器16流出冷媒の温度に応じて精度良く変化させることができる。
その結果、ノズル通路110およびディフューザ通路130の冷媒通路面積をより一層適切に変化させることができるとともに、封入空間162を小型化させて、流路面積可変機構150の小型化を図ることもできる。
また、本実施形態のエジェクタ100のボデー200には、ディフューザ通路130から流出した冷媒の気液を分離する気液分離空間206が形成されているので、エジェクタ100とは別に気液分離手段を設ける場合に対して、気液分離空間206の容積を効果的に小さくすることができる。
つまり、本実施形態の気液分離空間206では、断面円環状に形成されたディフューザ通路130から流出する冷媒が既に旋回しているので気液分離空間206内で冷媒の旋回流れを発生あるいは成長させるための空間を設ける必要がない。従って、エジェクタ100とは別に気液分離手段を設ける場合に対して、気液分離空間206の容積を効果的に小さくすることができる。
その結果、第4実施形態と同様に、気液分離器13および貯液部14を一体的に備えるコンパクトなエジェクタ100を実現することができる。
(他の実施形態)
以上、本発明の好ましい実施形態について説明したが、本発明は上述した実施形態に何ら制限されることなく、本発明の主旨を逸脱しない範囲において種々変形して実施することが可能である。
上記各実施形態では、旋回空間140に流入される高圧冷媒は、液相冷媒である場合を説明したが、これに限らず、気液二相冷媒の場合であっても良い。旋回空間140に流入される冷媒が気液二相状態であっても、旋回空間140においては、冷媒の旋回流によって旋回中心線の外周側よりも内周側に気相冷媒が多く存在するようにすることができ、ノズル効率向上について同様の効果が得られる。
また、上記各実施形態では、流路面積可変機構150によるノズル部110の流路面積およびディフューザ部130の流路面積の双方を同時に変更する例を説明したが、同時変更に限らず、それぞれ独立して変更されるものとしても良い。
また、ディフューザ部130の内部流路は、上流側から下流側に向けて、ディフューザ部130の軸線方向に対して交差する方向に拡がるようにしたが、これに限らず、主に、軸線方向に向けて拡がるものとしても良い。
また、上記各実施形態では、流路面積可変機構150を構成する通路形成部材151として、軸方向断面形状が完全に二等辺三角形となるものではなく、図2、図4等に示すように、頂点を挟む二辺が内周側に凸となる形状のものを採用しているが、もちろん外周側に凸となる形状であってもよいし、円錐に近い形状、あるいは一部に円錐形状を含んで形成される形状であってもよい。
また、上記第1実施形態の冷凍サイクル10において、第3実施形態のようにレシーバ12bを設けてもよい。
また、上記各実施形態における冷凍サイクル10、10A、10B、10C、10Dは、上記のような車両用空調装置に代えて、車両用冷凍車、あるいは家庭用の給湯器用または室内空調用のヒートポンプサイクルに適用することができる。
また、上記第1〜第4実施形態においては、特に冷媒の種類を特定していないが、フロン系冷媒、HC系冷媒、二酸化炭素冷媒等を用いるものであって、通常サイクルに加えて超臨界サイクルおよび亜臨界サイクルに適用されるものとすることができる。
また、上記第5実施形態では、通路形成部材151を変位させる駆動手段160として、温度変化に伴って圧力変化する感温媒体が封入された封入空間162および封入空間162内の感温媒体の圧力に応じて変位するダイヤフラム161を有して構成されたものを採用した例を説明したが、駆動手段はこれに限定されない。
例えば、感温媒体として温度によって体積変化するサーモワックスを採用してもよいし、駆動手段として形状記憶合金性の弾性部材を有して構成されたものを採用してもよいし、さらに、駆動手段として電動モータやソレノイド等の電気的機構によって通路形成部材151を変位させるものを採用してもよい。
10、10A、10B、10C、10D 蒸気圧縮式冷凍サイクル
13 気液分離器
14 貯液部
15 動力回収装置
100 エジェクタ(動力回収部)
110 ノズル部
120 吸引部
130 ディフューザ部
140 旋回流路
150 流路面積可変機構
151 通路形成部材

Claims (13)

  1. 蒸気圧縮式の冷凍サイクル(10D)に適用されるエジェクタであって、
    冷媒を流入させる冷媒流入口(211)から流入した冷媒を旋回させる旋回空間(140)、前記旋回空間(140)から流出した冷媒を減圧させる減圧用空間(202)、前記減圧用空間(202)の冷媒流れ下流側に連通して外部から冷媒を吸引する吸引用通路(120)、および前記減圧用空間(202)から噴射された噴射冷媒と前記吸引用通路(120)から吸引された吸引冷媒とを混合させて昇圧させる昇圧用空間(205)が形成されたボデー(200)と、
    少なくとも一部が前記減圧用空間(202)の内部および前記昇圧用空間(205)の内部に配置される通路形成部材(151)とを備え、
    前記ボデー(200)のうち前記減圧用空間(202)を形成する部位の内周面と前記通路形成部材(151)の外周面との間に形成される冷媒通路は、前記旋回空間(140)から流出した冷媒を減圧させて噴射するノズルとして機能するノズル通路(110)であり、
    前記ボデー(200)のうち前記昇圧用空間(205)を形成する部位の内周面と前記通路形成部材(151)の外周面との間に形成される冷媒通路は、前記噴射冷媒および前記吸引冷媒を混合して昇圧させるディフューザとして機能するディフューザ通路(130)であり、
    前記通路形成部材(151)は、前記減圧用空間(202)から離れるに伴って断面積が拡大する形状に形成されていることを特徴とするエジェクタ。
  2. 前記通路形成部材(151)は、前記減圧用空間(202)から離れるに伴って断面積が拡大する円錐状に形成されており、
    前記ノズル通路(110)、前記吸引用通路(120)および前記ディフューザ通路(130)は、前記通路形成部材(151)の軸方向に垂直な断面における断面形状が環状に形成されていることを特徴とする請求項1に記載のエジェクタ。
  3. 前記通路形成部材(151)は、前記減圧用空間(202)から離れるに伴って断面積が拡大する円錐状に形成されており、
    前記ディフューザ通路(130)は、前記通路形成部材(151)の軸方向に垂直な断面における断面形状が環状に形成されており、
    前記ディフューザ通路(130)を流通する冷媒は、前記旋回空間(140)にて旋回する冷媒と同方向に旋回していることを特徴とする請求項1または2に記載のエジェクタ。
  4. 前記通路形成部材(151)を変位させる駆動手段(160)を備え、
    前記通路形成部材(151)は、前記減圧用空間(202)から離れるに伴って断面積が拡大する円錐状に形成されており、
    前記吸引用通路(120)および前記ディフューザ通路(130)は、前記通路形成部材(151)の軸方向に垂直な断面における断面形状が環状に形成されており、
    前記吸引用通路(120)は、前記通路形成部材(151)の軸の外周側から内周側へ向かって冷媒が流れる形状に形成されており、
    前記ディフューザ通路(130)は、前記通路形成部材(151)の軸の内周側から外周側へ向かって冷媒が流れる形状に形成されており、
    前記駆動手段(160)の少なくとも一部は、前記吸引用通路(120)および前記ディフューザ通路(130)に挟まれる位置に配置されていることを特徴とする請求項1ないし3のいずれか1つに記載のエジェクタ。
  5. 前記駆動手段(160)は、温度変化に伴って圧力変化する感温媒体が封入された封入空間(162)および前記封入空間(162)内の前記感温媒体の圧力に応じて変位する圧力応動部材(161)を有して構成され、
    前記圧力応動部材(161)は、前記通路形成部材(151)に連結されており、
    前記感温媒体は、前記吸引用通路(120)を流通する冷媒の温度および前記ディフューザ通路(130)を流通する冷媒の温度が伝達されることによって圧力変化するものであることを特徴とする請求項4に記載のエジェクタ。
  6. 前記減圧用空間(202)、前記吸引用通路(120)、前記昇圧用空間(205)、および前記通路形成部材(151)は、いずれも回転体形状で形成されており、互いの軸線が同軸上に配置されていることを特徴とする請求項1ないし5のいずれか1つに記載のエジェクタ。
  7. 前記ボデー(200)には、前記ディフューザ通路(130)から流出した冷媒の気液を分離する気液分離空間(206)が形成されていることを特徴とする請求項1ないし6のいずれか1つに記載のエジェクタ。
  8. 蒸気圧縮式の冷凍サイクル(10、10A〜10C)に適用されて、
    前記冷凍サイクル(10、10A〜10C)の高圧側から流入する高圧冷媒を減圧膨張させるノズル部(110)と、
    前記高圧冷媒よりも低圧である低圧冷媒を、前記ノズル部(110)から噴出される噴出冷媒の吸引力によって吸引する吸引部(120)と、
    前記ノズル部(110)の下流側に配設されて、流路断面積が下流側に向けて徐々に拡大され、前記ノズル部(110)から噴出される前記噴出冷媒と前記吸引部(120)から吸引される前記低圧冷媒とが混合された混合冷媒を減速して圧力上昇させるディフューザ部(130)と、を備えるエジェクタにおいて、
    前記ノズル部(110)の上流側に配設されて、前記高圧冷媒を旋回させ、仮想される旋回中心線の外周側よりも内周側に気相冷媒が多く存在するようにして、気液混相状態の冷媒を前記ノズル部(110)に流入させる旋回空間(140)と、
    前記ノズル部(110)と前記ディフューザ部(130)との流路面積を変更可能とする流路面積可変機構(150)とを設けたことを特徴とするエジェクタ。
  9. 前記高圧冷媒は、液相冷媒であることを特徴とする請求項8に記載のエジェクタ。
  10. 前記流路面積可変機構(150)は、前記ノズル部(110)と前記ディフューザ部(130)との流路面積を同時に変更可能とすることを特徴とする請求項8または9に記載のエジェクタ。
  11. 前記ディフューザ部(130)の前記流路断面積の拡大率は、下流側に向けて順次大きくなるように設定されており、
    前記流路面積可変機構(150)は、前記ノズル部(110)および前記ディフューザ部(130)の内周面に沿う曲面を有する通路形成部材(151)を備えており、
    前記通路形成部材(151)によって形成される前記ディフューザ部(130)の内部流路は、前記ディフューザ部(130)の軸線方向に対して交差する方向に拡がるように設けられていることを特徴とする請求項8ないし10のいずれか1つに記載のエジェクタ。
  12. 前記ディフューザ部(130)から流出される前記混合冷媒の気液を分離する気液分離器(13)を備えることを特徴とする請求項8ないし11のいずれか1つに記載のエジェクタ。
  13. 前記気液分離器(13)によって気液分離された冷媒を溜める貯液部(14)を備え、
    前記貯液部(14)は、前記気液分離器(13)と一体的に形成されたことを特徴とする請求項12に記載のエジェクタ。
JP2012184950A 2012-02-02 2012-08-24 エジェクタ Expired - Fee Related JP5920110B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012184950A JP5920110B2 (ja) 2012-02-02 2012-08-24 エジェクタ
PCT/JP2013/000453 WO2013114856A1 (ja) 2012-02-02 2013-01-29 エジェクタ
DE112013000817.3T DE112013000817B4 (de) 2012-02-02 2013-01-29 Ejektor
US14/373,862 US9394921B2 (en) 2012-02-02 2013-01-29 Ejector
CN201380007138.8A CN104081064B (zh) 2012-02-02 2013-01-29 喷射器

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012020882 2012-02-02
JP2012020882 2012-02-02
JP2012184950A JP5920110B2 (ja) 2012-02-02 2012-08-24 エジェクタ

Publications (2)

Publication Number Publication Date
JP2013177879A JP2013177879A (ja) 2013-09-09
JP5920110B2 true JP5920110B2 (ja) 2016-05-18

Family

ID=48904903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012184950A Expired - Fee Related JP5920110B2 (ja) 2012-02-02 2012-08-24 エジェクタ

Country Status (5)

Country Link
US (1) US9394921B2 (ja)
JP (1) JP5920110B2 (ja)
CN (1) CN104081064B (ja)
DE (1) DE112013000817B4 (ja)
WO (1) WO2013114856A1 (ja)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6079552B2 (ja) * 2012-11-20 2017-02-15 株式会社デンソー エジェクタ
JP6090104B2 (ja) 2012-12-13 2017-03-08 株式会社デンソー エジェクタ
JP5999071B2 (ja) 2012-12-27 2016-09-28 株式会社デンソー エジェクタ
JP6119566B2 (ja) 2012-12-27 2017-04-26 株式会社デンソー エジェクタ
JP6064862B2 (ja) * 2013-01-11 2017-01-25 株式会社デンソー エジェクタ
JP5949641B2 (ja) * 2013-04-05 2016-07-13 株式会社デンソー エジェクタ
JP5962571B2 (ja) * 2013-04-16 2016-08-03 株式会社デンソー エジェクタ
JP6119489B2 (ja) 2013-07-30 2017-04-26 株式会社デンソー エジェクタ
JP6011484B2 (ja) * 2013-07-31 2016-10-19 株式会社デンソー エジェクタ
JP6070465B2 (ja) * 2013-07-31 2017-02-01 株式会社デンソー エジェクタ
JP6052156B2 (ja) * 2013-08-01 2016-12-27 株式会社デンソー エジェクタ
JP6048339B2 (ja) 2013-08-01 2016-12-21 株式会社デンソー エジェクタ
JP6003844B2 (ja) * 2013-08-09 2016-10-05 株式会社デンソー エジェクタ
JP5999050B2 (ja) * 2013-08-29 2016-09-28 株式会社デンソー エジェクタ式冷凍サイクルおよびエジェクタ
JP6248499B2 (ja) * 2013-09-23 2017-12-20 株式会社デンソー エジェクタ式冷凍サイクル
JP6176127B2 (ja) * 2014-01-21 2017-08-09 株式会社デンソー エジェクタ
JP2015137566A (ja) * 2014-01-21 2015-07-30 株式会社デンソー エジェクタ
JP6191491B2 (ja) * 2014-02-07 2017-09-06 株式会社デンソー エジェクタ
JP2016035376A (ja) * 2014-08-04 2016-03-17 株式会社デンソー 蒸発器
JP6350108B2 (ja) 2014-08-21 2018-07-04 株式会社デンソー エジェクタ、およびエジェクタ式冷凍サイクル
JP2016048156A (ja) * 2014-08-28 2016-04-07 株式会社デンソー エジェクタ式冷凍サイクル
JP6459807B2 (ja) 2014-08-28 2019-01-30 株式会社デンソー エジェクタ式冷凍サイクル
JP2016050761A (ja) * 2014-08-28 2016-04-11 株式会社デンソー エジェクタ式冷凍サイクル
JP6327088B2 (ja) * 2014-09-29 2018-05-23 株式会社デンソー エジェクタ式冷凍サイクル
GR20140100517A (el) * 2014-10-13 2016-06-01 Εμμανουηλ Αριστειδη Δερμιτζακης Υβριδικος διανεμητης και μεθοδος ενσωματωσης σταλακτων και εξαρτηματων σε αρδευτικο αγωγο
JP6319042B2 (ja) * 2014-10-24 2018-05-09 株式会社デンソー エジェクタ式冷凍サイクル
JP6319041B2 (ja) * 2014-10-24 2018-05-09 株式会社デンソー エジェクタ式冷凍サイクル
JP2016084966A (ja) * 2014-10-24 2016-05-19 株式会社デンソー エジェクタ式冷凍サイクル
JP6319043B2 (ja) 2014-10-24 2018-05-09 株式会社デンソー エジェクタ式冷凍サイクル
KR102303676B1 (ko) 2014-12-30 2021-09-23 삼성전자주식회사 이젝터 및 이를 갖는 냉동장치
JP2016142189A (ja) * 2015-02-03 2016-08-08 株式会社デンソー エジェクタ
JP6511873B2 (ja) 2015-03-09 2019-05-15 株式会社デンソー エジェクタ、およびエジェクタ式冷凍サイクル
JP6398802B2 (ja) 2015-03-09 2018-10-03 株式会社デンソー エジェクタ、およびエジェクタ式冷凍サイクル
JP6610313B2 (ja) 2015-03-09 2019-11-27 株式会社デンソー エジェクタ、エジェクタの製造方法、およびエジェクタ式冷凍サイクル
JP6384374B2 (ja) * 2015-03-23 2018-09-05 株式会社デンソー エジェクタ式冷凍サイクル
KR102379642B1 (ko) 2015-10-12 2022-03-28 삼성전자주식회사 선회류를 이용한 이젝터
JP6481678B2 (ja) 2016-02-02 2019-03-13 株式会社デンソー エジェクタ
JP6481679B2 (ja) 2016-02-02 2019-03-13 株式会社デンソー エジェクタ
WO2017135093A1 (ja) * 2016-02-02 2017-08-10 株式会社デンソー エジェクタ
WO2017135092A1 (ja) * 2016-02-02 2017-08-10 株式会社デンソー エジェクタ
JP2017190707A (ja) * 2016-04-13 2017-10-19 株式会社デンソー エジェクタ
JP6540609B2 (ja) 2016-06-06 2019-07-10 株式会社デンソー エジェクタ
JP6638607B2 (ja) * 2016-09-12 2020-01-29 株式会社デンソー エジェクタ
JP2018044442A (ja) * 2016-09-12 2018-03-22 株式会社デンソー エジェクタ
DE102017215085A1 (de) * 2017-08-29 2019-02-28 Efficient Energy Gmbh Wärmepumpe mit einer Kühlvorrichtung zum Kühlen eines Leitraums oder eines Saugmunds
WO2019060752A1 (en) 2017-09-25 2019-03-28 Johnson Controls Technology Company TWO STEP OIL ENGINE EJECTOR SYSTEM
DE102019126302A1 (de) * 2019-09-30 2021-04-01 Audi Ag Ejektor sowie Brennstoffzellensystem und Kraftfahrzeug mit einem solchen

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104767A (ja) 1981-12-16 1983-06-22 Matsushita Electric Ind Co Ltd 磁性流動体記録装置
JPS59123700U (ja) * 1983-02-10 1984-08-20 株式会社日立製作所 エジエクタ−
JPS6176800A (ja) * 1984-09-25 1986-04-19 Sakou Giken:Kk 蒸気エゼクタ−
JPH01250000A (ja) * 1988-03-30 1989-10-05 Kobe Steel Ltd エジェクター装置
JP3331604B2 (ja) 1991-11-27 2002-10-07 株式会社デンソー 冷凍サイクル装置
US5343711A (en) * 1993-01-04 1994-09-06 Virginia Tech Intellectual Properties, Inc. Method of reducing flow metastability in an ejector nozzle
JPH11257299A (ja) 1998-03-13 1999-09-21 Daikin Ind Ltd 抽気用エジェクタ
JP3322263B1 (ja) 2000-03-15 2002-09-09 株式会社デンソー エジェクタサイクル、これに用いる気液分離器、並びにこのエジェクタサイクルを用いた給湯器及び熱管理システム
EP1134517B1 (en) 2000-03-15 2017-07-26 Denso Corporation Ejector cycle system with critical refrigerant pressure
JP2003014318A (ja) 2000-06-01 2003-01-15 Denso Corp エジェクタサイクル
EP1553364A3 (en) 2000-06-01 2006-03-22 Denso Corporation Ejector cycle system
AU2001270167A1 (en) * 2000-06-30 2002-01-14 Fmc Corporation Steam injection heater and method
JP3589194B2 (ja) * 2001-05-11 2004-11-17 Jfeエンジニアリング株式会社 エジェクタおよび冷凍システム
JP4110830B2 (ja) * 2002-05-20 2008-07-02 株式会社日本自動車部品総合研究所 エジェクタ方式の減圧装置
JP3966157B2 (ja) * 2002-10-25 2007-08-29 株式会社デンソー エジェクタ
JP4232484B2 (ja) * 2003-03-05 2009-03-04 株式会社日本自動車部品総合研究所 エジェクタおよび蒸気圧縮式冷凍機
JP2006170051A (ja) * 2004-12-15 2006-06-29 Tlv Co Ltd エゼクタ
JP4609388B2 (ja) * 2006-06-30 2011-01-12 株式会社デンソー 気液二相流体の分配器
JP4306739B2 (ja) 2007-02-16 2009-08-05 三菱電機株式会社 冷凍サイクル装置
JP4812665B2 (ja) * 2007-03-16 2011-11-09 三菱電機株式会社 エジェクタ及び冷凍サイクル装置
US7922161B2 (en) 2007-06-19 2011-04-12 Kabushiki Kaisha Toshiba Sheet finisher, image forming apparatus using the same, and sheet finishing method
IL187911A0 (en) * 2007-12-05 2008-11-03 Bron Dan An automatic vacuum pump
JP2009144607A (ja) * 2007-12-14 2009-07-02 Tlv Co Ltd 蒸気エゼクタ
DE102008016056A1 (de) * 2008-03-28 2009-10-01 Voith Patent Gmbh Strahlpumpe zum Fördern von Arbeitsmedium in einem Arbeitsmediumkreislauf einer hydrodynamischen Maschine
JP5493769B2 (ja) * 2009-01-12 2014-05-14 株式会社デンソー 蒸発器ユニット
JP5182159B2 (ja) 2009-03-06 2013-04-10 株式会社デンソー エジェクタ方式の減圧装置およびこれを備えた冷凍サイクル
JP5316465B2 (ja) * 2010-04-05 2013-10-16 株式会社デンソー 蒸発器ユニット
JP5816890B2 (ja) 2011-03-03 2015-11-18 株式会社 カロリアジャパン 汚泥の分析要素量測定方法及び汚泥の分析要素量測定装置

Also Published As

Publication number Publication date
US20150033790A1 (en) 2015-02-05
JP2013177879A (ja) 2013-09-09
WO2013114856A1 (ja) 2013-08-08
CN104081064A (zh) 2014-10-01
CN104081064B (zh) 2016-08-24
DE112013000817B4 (de) 2019-05-09
US9394921B2 (en) 2016-07-19
DE112013000817T5 (de) 2014-12-04

Similar Documents

Publication Publication Date Title
JP5920110B2 (ja) エジェクタ
JP5999050B2 (ja) エジェクタ式冷凍サイクルおよびエジェクタ
JP6048339B2 (ja) エジェクタ
JP6119566B2 (ja) エジェクタ
WO2015015782A1 (ja) エジェクタ
JP6090104B2 (ja) エジェクタ
JP5962571B2 (ja) エジェクタ
JP5817663B2 (ja) エジェクタ
JP5929814B2 (ja) エジェクタ
WO2014185069A1 (ja) エジェクタ
WO2014080596A1 (ja) エジェクタ
WO2014108974A1 (ja) エジェクタ
JP6176127B2 (ja) エジェクタ
WO2015111113A1 (ja) エジェクタ
JP6036592B2 (ja) エジェクタ
WO2017135093A1 (ja) エジェクタ
WO2017135092A1 (ja) エジェクタ
WO2016185664A1 (ja) エジェクタ、およびエジェクタ式冷凍サイクル
JP6481679B2 (ja) エジェクタ
JP6485550B2 (ja) エジェクタ
WO2015015755A1 (ja) エジェクタ
JP6011484B2 (ja) エジェクタ
JP6481678B2 (ja) エジェクタ
JP6032122B2 (ja) エジェクタ
JP2017053297A (ja) エジェクタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160328

R151 Written notification of patent or utility model registration

Ref document number: 5920110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees