JP5917140B2 - Fluid pressure buffer - Google Patents

Fluid pressure buffer Download PDF

Info

Publication number
JP5917140B2
JP5917140B2 JP2011287480A JP2011287480A JP5917140B2 JP 5917140 B2 JP5917140 B2 JP 5917140B2 JP 2011287480 A JP2011287480 A JP 2011287480A JP 2011287480 A JP2011287480 A JP 2011287480A JP 5917140 B2 JP5917140 B2 JP 5917140B2
Authority
JP
Japan
Prior art keywords
opening
diameter
small
valve
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011287480A
Other languages
Japanese (ja)
Other versions
JP2013137042A (en
Inventor
柴原 和晶
和晶 柴原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2011287480A priority Critical patent/JP5917140B2/en
Publication of JP2013137042A publication Critical patent/JP2013137042A/en
Application granted granted Critical
Publication of JP5917140B2 publication Critical patent/JP5917140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Safety Valves (AREA)
  • Fluid-Damping Devices (AREA)

Description

本発明は、鉄道車両等に使用される流体圧緩衝器に関するものである。   The present invention relates to a fluid pressure shock absorber used for a railway vehicle or the like.

従来から、鉄道車両には、台車が車両本体に対して水平方向に蛇行(ヨーイング)することを抑制する鉄道車両用ヨーダンパ(流体圧緩衝器)が備えられている(特許文献1参照)
ところで、従来の鉄道車両用ヨーダンパにあっては、台車の揺動を抑制するため、シリンダ内のピストンの摺動によって作動流体がシリンダ内からリザーバ室へ流れる流路にリリーフ弁を設け、ピストン速度が0のときに一定の減衰力を有し(オフセット荷重を有する)、開弁後は極低速で高い減衰力を発生するようリリーフ特性による減衰力特性とするヨーダンパが考慮された。しかしながら、この形態では、急激な減衰力の変動により、乗り心地が悪化してしまう、という懸念があった。
Conventionally, a railway vehicle has been provided with a railway vehicle yaw damper (fluid pressure damper) that suppresses the carriage from meandering (yawing) in the horizontal direction with respect to the vehicle body (see Patent Document 1).
By the way, in the conventional railway vehicle yaw damper, in order to suppress the swing of the carriage, a relief valve is provided in a flow path in which the working fluid flows from the inside of the cylinder to the reservoir chamber by sliding of the piston in the cylinder. A yaw damper having a damping force characteristic based on a relief characteristic was considered so as to have a constant damping force (having an offset load) when the valve was 0 and to generate a high damping force at a very low speed after the valve was opened. However, in this embodiment, there is a concern that the ride comfort deteriorates due to a sudden fluctuation in the damping force.

そのため、リリーフ弁に代えて弁にオリフィス構造を備えることで、ピストンの速度増加に伴って減衰力が二次曲線で増加する減衰力特性を発生させるヨーダンパが提案されている。しかしながら、この形態では、ピストン速度が0のときに一定の減衰力が発生しない(オフセット荷重がない)ために、台車の揺動を十分に抑制することが困難である、という懸念があった。   Therefore, a yaw damper that generates a damping force characteristic in which the damping force increases in a quadratic curve as the speed of the piston increases is proposed by providing the valve with an orifice structure instead of the relief valve. However, in this embodiment, there is a concern that it is difficult to sufficiently suppress the swing of the carriage because a constant damping force is not generated (no offset load) when the piston speed is zero.

特開平7−208531号公報JP 7-208531 A

そのため、上述した問題を解消できる安定した減衰力特性を発生させることができる鉄道車両用ヨーダンパの開発が求められている。
そして、本発明は、所望の減衰力特性を安定して発生させることが可能な流体圧緩衝器を提供することを目的とする。
Therefore, development of a railway vehicle yaw damper that can generate a stable damping force characteristic that can solve the above-described problems is demanded.
An object of the present invention is to provide a fluid pressure shock absorber capable of stably generating a desired damping force characteristic.

上記課題を解決するための手段として、本発明は、内部に作動流体が封入されたシリンダと、該シリンダ内に摺動可能に挿嵌されたピストンと、該ピストンに連結され前記シリンダから外部に延出されたピストンロッドと、前記シリンダ内の前記ピストンの摺動によって作動流体の流れが生じる流路と、該流路に設けられ、前記ピストンの移動に伴って開閉する弁機構を備えた流体圧緩衝器であって、前記流路は、上流側に小径流路、下流側に大径流路が設けられ、前記弁機構は、前記小径流路に嵌合する小径軸部と、該小径流路よりも大径で該小径流路を開閉する開閉部と、該開閉部の端部から一体的に接続される大径軸部と、からなるバルブ本体と、前記小径流路が閉状態となるように前記バルブ本体を前記小径流路側に付勢するスプリングと、から構成され、前記小径軸部にはオリフィス及び該オリフィスよりも前記小径流路側に配置されるリリーフ溝またはリリーフ切欠が形成され、前記弁機構は、第1の開弁圧で開弁して、開弁した後一定の開口面積の前記オリフィスが作用すると共に、前記第1の開弁圧よりも高い第2の開弁圧に達した後、前記ピストンの速度の増加に応じて前記リリーフ溝またはリリーフ切欠により開口面積が増加することを特徴とするものである。 As means for solving the above-mentioned problems, the present invention includes a cylinder in which a working fluid is sealed, a piston slidably inserted in the cylinder, and a piston connected to the piston to the outside. A fluid provided with an extended piston rod, a flow path in which a flow of working fluid is generated by sliding of the piston in the cylinder, and a valve mechanism provided in the flow path and opened and closed as the piston moves In the pressure buffer, the flow path is provided with a small diameter flow path on the upstream side and a large diameter flow path on the downstream side, and the valve mechanism includes a small diameter shaft portion fitted into the small diameter flow path, and the small diameter flow path. A valve main body comprising an opening / closing portion that opens and closes the small-diameter channel with a diameter larger than that of the path, and a large-diameter shaft portion that is integrally connected from an end of the opening / closing portion, and the small-diameter channel is in a closed state A spring that urges the valve body toward the small-diameter channel side Consists grayed and, in the small-diameter shaft portion relief grooves or the relief notch disposed in the small-diameter passage side of the orifice and the orifice is formed, the valve mechanism is opened by the first valve opening pressure to, together with the orifice acts in a constant opening area after opening, after reaching a high second valve opening pressure than the first valve opening pressure, in response to said increase in the speed of the piston The opening area is increased by the relief groove or the relief notch .

本発明の流体圧緩衝器は、所望の減衰力特性を安定して発生させることが可能である。   The fluid pressure shock absorber of the present invention can stably generate a desired damping force characteristic.

図1は、本発明の第1実施形態に係る流体圧緩衝器を示す断面図である。FIG. 1 is a cross-sectional view showing a fluid pressure shock absorber according to a first embodiment of the present invention. 図2は、第1実施形態に係る流体圧緩衝器に備えた弁機構の第1実施形態に係る制御弁の断面図である。FIG. 2 is a cross-sectional view of the control valve according to the first embodiment of the valve mechanism provided in the fluid pressure shock absorber according to the first embodiment. 図3は、第1及び第2実施形態に係る流体緩衝器に備えた弁機構の減衰力特性図である。FIG. 3 is a damping force characteristic diagram of the valve mechanism provided in the fluid shock absorber according to the first and second embodiments. 図4は、第1実施形態に係る流体圧緩衝器に備えた弁機構の第2実施形態に係る制御弁の断面図である。FIG. 4 is a cross-sectional view of the control valve according to the second embodiment of the valve mechanism provided in the fluid pressure shock absorber according to the first embodiment. 図5は、第1実施形態に係る流体圧緩衝器に備えた弁機構の第3実施形態に係る制御弁の断面図である。FIG. 5 is a cross-sectional view of a control valve according to a third embodiment of the valve mechanism provided in the fluid pressure shock absorber according to the first embodiment. 図6は、第1実施形態に係る流体圧緩衝器に備えた弁機構の第4実施形態に係る制御弁の断面図である。FIG. 6 is a cross-sectional view of a control valve according to a fourth embodiment of a valve mechanism provided in the fluid pressure shock absorber according to the first embodiment. 図7は、第2実施形態に係る流体圧緩衝器に備えた弁機構の図であり、(a)は軸直交断面図で、(b)は軸方向断面図である。7A and 7B are views of a valve mechanism provided in the fluid pressure shock absorber according to the second embodiment, in which FIG. 7A is an axial cross-sectional view and FIG. 7B is an axial cross-sectional view. 図8は、第2実施形態に係る流体圧緩衝器に備えた弁機構の他の実施形態を示す図であり、(a)は軸直交断面図で、(b)は軸方向断面図である。FIG. 8 is a view showing another embodiment of the valve mechanism provided in the fluid pressure shock absorber according to the second embodiment, wherein (a) is an axial orthogonal sectional view and (b) is an axial sectional view. .

以下、本発明を実施するための形態を図1〜図8に基づいて詳細に説明する。
なお、以下に、第1及び第2の実施形態に係る流体圧緩衝器1a、1bについて説明するが、そのうち、第2の実施形態に係る流体圧緩衝器1bが、特許請求の範囲に記載した発明に対応するものである。
図1及び図2に示すように、第1の実施形態に係る流体圧緩衝器1aは、台車と車体との間に横置き状態で取り付けられる鉄道車両用ヨーダンパとして採用される。
まず、第1実施形態に係る流体圧緩衝器1aを図1〜図6に基づいて説明する。
第1実施形態に係る流体圧緩衝器1aは、図1に示すように、外筒2と、該外筒2と同心状に配置されたシリンダ3とを備えている。これら外筒2及びシリンダ3の両端開口は後側端板5及び前側端板4によりそれぞれ閉鎖されている。外筒2の内壁面とシリンダ3の外壁面との間に環状のリザーバ室6が形成される。
なお、説明の便宜のため、以下では図中左側(符号を正立視した場合。以下同じ。)、つまりブラケット13側を前側、図中右側、つまりブラケット14側を後側としてそれぞれ説明する。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to FIGS.
In addition, although the fluid pressure shock absorbers 1a and 1b according to the first and second embodiments will be described below, the fluid pressure shock absorber 1b according to the second embodiment is described in the claims. This corresponds to the invention.
As shown in FIGS. 1 and 2, the fluid pressure shock absorber 1 a according to the first embodiment is employed as a railway vehicle yaw damper that is mounted horizontally between a carriage and a vehicle body.
First, the fluid pressure shock absorber 1a according to the first embodiment will be described with reference to FIGS.
As shown in FIG. 1, the fluid pressure shock absorber 1 a according to the first embodiment includes an outer cylinder 2 and a cylinder 3 disposed concentrically with the outer cylinder 2. Openings at both ends of the outer cylinder 2 and the cylinder 3 are closed by a rear end plate 5 and a front end plate 4, respectively. An annular reservoir chamber 6 is formed between the inner wall surface of the outer cylinder 2 and the outer wall surface of the cylinder 3.
For convenience of explanation, the following description will be made with the left side in the figure (when the sign is viewed upright; the same applies hereinafter), that is, the bracket 13 side as the front side and the right side in the figure, that is, the bracket 14 side as the rear side.

後側端板5は、外筒2の後端開口を閉鎖する主蓋部材11と、シリンダ3の後端開口を閉鎖する副蓋部材12とからなる分割構造となっている。なお、主蓋部材11には、車体側との連結用のブラケット14が固設されている。
一方、前側端板4は、外筒2及びシリンダ3の前端開口を閉鎖すると共にピストンロッド16のガイド機能も備えたロッドガイドとして構成される。
The rear end plate 5 has a divided structure including a main lid member 11 that closes the rear end opening of the outer cylinder 2 and a sub lid member 12 that closes the rear end opening of the cylinder 3. The main lid member 11 is fixedly provided with a bracket 14 for connection to the vehicle body side.
On the other hand, the front end plate 4 is configured as a rod guide that closes the front end openings of the outer cylinder 2 and the cylinder 3 and also has a guide function for the piston rod 16.

シリンダ3内には、ピストン15が摺動可能に配設されている。該ピストン15にはピストンロッド16の一端部が連結され、該ピストンロッド16の他端部は前側端板(ロッドガイド)4を液密的に挿通して外筒2の外部へ延びている。なお、ピストンロッド16の他端部には、台車側と連結する連結用のブラケット13が固設されている。   A piston 15 is slidably disposed in the cylinder 3. One end of a piston rod 16 is connected to the piston 15, and the other end of the piston rod 16 extends through the front end plate (rod guide) 4 in a liquid-tight manner to the outside of the outer cylinder 2. Note that a connecting bracket 13 is fixed to the other end portion of the piston rod 16 to be connected to the carriage side.

シリンダ3内は、ピストン15によってロッド側油室18と反ロッド側油室19とに区画されている。これらのロッド側油室18及び反ロッド側油室19に作動油(作動流体)がそれぞれ封入されている。ピストン15には、反ロッド側油室19からロッド側油室18への作動油の流通のみを許容する逆止弁20が配設される。また、後側端板5の副蓋部材12には、リザーバ室6から反ロッド側油室19への作動油の流通のみを許容する逆止弁21が配設されている。   The cylinder 3 is partitioned by a piston 15 into a rod side oil chamber 18 and an anti-rod side oil chamber 19. Working oil (working fluid) is sealed in each of the rod-side oil chamber 18 and the anti-rod-side oil chamber 19. The piston 15 is provided with a check valve 20 that allows only the flow of hydraulic oil from the non-rod side oil chamber 19 to the rod side oil chamber 18. Further, a check valve 21 that allows only the flow of hydraulic oil from the reservoir chamber 6 to the anti-rod-side oil chamber 19 is disposed on the sub-lid member 12 of the rear end plate 5.

また、前側端板4には、シリンダ3のロッド側油室18とリザーバ室6とを連通する流路30が設けられている。該流路30に、ピストン15の移動に伴って開閉する弁機構35aが備えられている。
該弁機構35aは、図1及び図2に示すように、第1の開弁圧で開弁して、開弁した後一定の開口面積のオリフィス50aが作用する第1の弁体としての第1実施形態に係る制御弁40aと、前記第1の開弁圧よりも高い第2の開弁圧に達した後、ピストン15の速度の増加に応じて開口面積が増加する第2の弁体としてのリリーフ弁41とから構成される。
The front end plate 4 is provided with a flow path 30 that communicates the rod-side oil chamber 18 of the cylinder 3 and the reservoir chamber 6. The flow path 30 is provided with a valve mechanism 35 a that opens and closes as the piston 15 moves.
As shown in FIGS. 1 and 2, the valve mechanism 35a is opened at a first valve opening pressure, and after opening, the valve mechanism 35a is a first valve body as a first valve body on which an orifice 50a having a certain opening area acts. The control valve 40a according to the first embodiment and the second valve body whose opening area increases in accordance with the increase in the speed of the piston 15 after reaching the second valve opening pressure higher than the first valve opening pressure. And a relief valve 41.

そこで、図1に示すように、シリンダ3のロッド側油室18とリザーバ室6とを連通する流路30は途中部位で第1流路30aと第2流路30bとに分岐される。第1流路30aに第1の実施形態に係る制御弁40aが備えられ、第2流路30bにリリーフ弁41が備えられている。また、第1流路30aには、図2に示すように、ロッド側油室18側と連通する小径流路31と、該小径流路31から連続して設けられ該小径流路31より大径でリザーバ室6側と連通する大径流路32とが設けられる。   Therefore, as shown in FIG. 1, the flow path 30 that connects the rod-side oil chamber 18 of the cylinder 3 and the reservoir chamber 6 is branched into a first flow path 30 a and a second flow path 30 b at an intermediate position. A control valve 40a according to the first embodiment is provided in the first flow path 30a, and a relief valve 41 is provided in the second flow path 30b. Further, as shown in FIG. 2, the first flow path 30 a is continuously provided from the small diameter flow path 31 and has a small diameter flow path 31 communicating with the rod side oil chamber 18 side, and is larger than the small diameter flow path 31. A large-diameter channel 32 having a diameter communicating with the reservoir chamber 6 side is provided.

第1の実施形態に係る制御弁40aは、図2に示すように、小径流路31及び大径流路32に沿って軸方向に移動自在に支持されるバルブ本体45と、該バルブ本体45を、小径流路31が常時閉状態となるように小径流路31側に付勢するスプリング46とから構成される。バルブ本体45は、小径流路31に嵌合する小径軸部47と、該小径軸部47の端部(リザーブ室6側)から一体的に接続され、小径流路31よりも大径で該小径流路31を開閉する板状の開閉部48と、該開閉部48の端部(リザーブ室6側)から一体的に接続される大径軸部49とから構成される。大径軸部49は小径軸部47よりも大径に形成され、開閉部48が大径軸部49より大径に設定される。   As shown in FIG. 2, the control valve 40 a according to the first embodiment includes a valve body 45 that is supported so as to be movable in the axial direction along the small diameter channel 31 and the large diameter channel 32, and the valve body 45. The spring 46 is biased toward the small-diameter channel 31 so that the small-diameter channel 31 is normally closed. The valve body 45 is integrally connected to a small-diameter shaft portion 47 that fits into the small-diameter channel 31 and an end portion (on the reserve chamber 6 side) of the small-diameter shaft portion 47, and has a larger diameter than the small-diameter channel 31. The plate-shaped opening / closing part 48 that opens and closes the small-diameter channel 31 and a large-diameter shaft part 49 that is integrally connected from the end part (the reserve chamber 6 side) of the opening / closing part 48 are configured. The large diameter shaft portion 49 is formed to have a larger diameter than the small diameter shaft portion 47, and the opening / closing portion 48 is set to have a larger diameter than the large diameter shaft portion 49.

バルブ本体45の小径軸部47にオリフィス50aが形成される。該オリフィス50aは、小径軸部47の端面(ロッド側油室18側)の略中心から軸方向に延びる大径開口部55と、該大径開口部55よりも小径で該大径開口部55の端部に連通して軸方向に延びる小径開口部56と、該小径開口部56の端部に連通して小径軸部47の径方向の全範囲を貫通するように延びる径方向開口部57とから構成される。なお、大径開口部55の開口径と径方向開口部57の開口径とはほぼ同じである。
そして、小径流路31内にバルブ本体45の小径軸部47が挿入され、開閉部48及び大径軸部49が大径流路32内に配置される。また、開閉部48と大径流路32の壁部59との間にスプリング46が配置される。この結果、スプリング46の付勢力によって開閉部48が常時小径流路31を塞ぐようになる。
ここで、オリフィス50a、径方向開口部57の形状について述べる。例えば、小径軸部47の外周側を削ることによりオリフィスを形成すること、小径流路31との摺動により磨耗し、オリフィス面積が経時変化することが考えられる。そのような構成と比して、本実施の形態では、オリフィス50aを小径軸部47の端面の略中心から軸方向に延びるよう構成するため、磨耗することなく、オリフィス面積を常に一定に保つことができ、安定した減衰力特性を発生することができる。
An orifice 50 a is formed in the small diameter shaft portion 47 of the valve body 45. The orifice 50a includes a large-diameter opening 55 that extends in the axial direction from the approximate center of the end surface (rod-side oil chamber 18 side) of the small-diameter shaft 47, and a large-diameter opening 55 that is smaller in diameter than the large-diameter opening 55. A small-diameter opening 56 that communicates with the end of the small-diameter opening, and a radial opening 57 that communicates with the end of the small-diameter opening 56 and extends through the entire radial range of the small-diameter shaft 47. It consists of. The opening diameter of the large-diameter opening 55 and the opening diameter of the radial opening 57 are substantially the same.
The small-diameter shaft portion 47 of the valve body 45 is inserted into the small-diameter channel 31, and the opening / closing portion 48 and the large-diameter shaft portion 49 are disposed in the large-diameter channel 32. A spring 46 is disposed between the opening / closing part 48 and the wall part 59 of the large-diameter channel 32. As a result, the opening / closing part 48 always closes the small-diameter channel 31 by the urging force of the spring 46.
Here, the shapes of the orifice 50a and the radial opening 57 will be described. For example, it is conceivable that an orifice is formed by scraping the outer peripheral side of the small diameter shaft portion 47, wear due to sliding with the small diameter flow path 31, and the orifice area changes over time. Compared to such a configuration, in the present embodiment, the orifice 50a is configured to extend in the axial direction from the approximate center of the end surface of the small-diameter shaft portion 47, so that the orifice area is always kept constant without being worn. And stable damping force characteristics can be generated.

次に、本発明の第1実施形態に係る流体圧緩衝器1aの作用を説明する。
第1実施形態に係る流体圧緩衝器1aは、台車と車体との間に横置き状態で取り付けられており、台車にピストンロッド16側のブラケット13が連結され、車体に外筒2側のブラケット14が連結される。
Next, the operation of the fluid pressure shock absorber 1a according to the first embodiment of the present invention will be described.
The fluid pressure shock absorber 1a according to the first embodiment is mounted horizontally between the carriage and the vehicle body, and the bracket 13 on the piston rod 16 side is connected to the carriage, and the bracket on the outer cylinder 2 side is connected to the vehicle body. 14 are connected.

そして、台車と車体とが水平方向へ相対移動すると、本流体圧緩衝器1aのピストンロッド16が伸縮動作する。その結果、ピストンロッド16の伸び行程時には、ロッド側油室18の作動油は、ピストン15に設けた逆止弁20により反ロッド側油室19には流れないために、流路30の第1流路30a内に備えた第1実施形態に係る制御弁40aを開弁させてリザーバ室6に流れ、これに応じて伸び側の減衰力が発生する。なお、この伸び行程時には、ピストンロッド16の退出分の作動油が後側端板5の副蓋部材12に設けた逆止弁21を経てリザーバ室6から反ロッド側油室19へ補給される。   When the carriage and the vehicle body move relative to each other in the horizontal direction, the piston rod 16 of the fluid pressure shock absorber 1a expands and contracts. As a result, during the extension stroke of the piston rod 16, the hydraulic oil in the rod-side oil chamber 18 does not flow into the anti-rod-side oil chamber 19 due to the check valve 20 provided in the piston 15. The control valve 40a according to the first embodiment provided in the flow path 30a is opened to flow into the reservoir chamber 6, and an expansion-side damping force is generated accordingly. During this extension stroke, the hydraulic oil for the withdrawal of the piston rod 16 is replenished from the reservoir chamber 6 to the anti-rod-side oil chamber 19 via a check valve 21 provided on the sub-cover member 12 of the rear end plate 5. .

一方、ピストンロッド16の縮み行程時には、反ロッド側油室19の作動油がピストン15に設けた逆止弁20を経由してロッド側油室18に流れ、反ロッド側油室19とロッド側油室18とがほぼ同し流体圧となり、ピストンロッド16の進入分の作動油が、流路30の第1流路30a内に備えた第1実施形態に係る制御弁50aを開弁させてリザーバ室6に流れ、これに応じて縮み側の減衰力が発生する。   On the other hand, during the contraction stroke of the piston rod 16, the hydraulic oil in the anti-rod side oil chamber 19 flows into the rod side oil chamber 18 via the check valve 20 provided in the piston 15, and the anti-rod side oil chamber 19 and the rod side The fluid pressure is almost the same as that of the oil chamber 18, and the hydraulic oil that has entered the piston rod 16 opens the control valve 50 a according to the first embodiment provided in the first flow path 30 a of the flow path 30. It flows into the reservoir chamber 6 and a contraction-side damping force is generated accordingly.

そこで、ピストンロッド16の伸び行程及び縮み行程時、ロッド側油室18の作動油が流路30の第1流路30a内の第1実施形態に係る制御弁50aを開弁させてリザーバ室6に流入するが、このとき、シリンダ3内の流体圧が第1の開弁圧(スプリング46の付勢力に対応)に到達すると、該制御弁50aのバルブ本体45がスプリング46の付勢力に抗して移動して、オリフィス50aの径方向開口部57が大径流路32内に臨むようになる。その結果、バルブ本体45のオリフィス50aを介して大径流路32と小径流路31とが連通することで、ロッド側油室18の作動油が小径流路31からオリフィス50aを介して大径流路32を経てリザーバ室6に流れ、この時、図3に示すような、オリフィス作用による二次曲線で減衰力が増加する所定の減衰力特性にて減衰力が発生する。しかも、第1実施形態に係る制御弁40aでは、図3に示すように、シリンダ3内の流体圧が第1の開弁圧まで到達しないと開弁しないので、ピストン速度が0のときに一定の減衰力が発生する(オフセット荷重有り)ために、台車の揺動を十分に抑制すること可能になる。   Therefore, during the expansion stroke and contraction stroke of the piston rod 16, the hydraulic oil in the rod side oil chamber 18 opens the control valve 50 a according to the first embodiment in the first flow path 30 a of the flow path 30, and the reservoir chamber 6. At this time, when the fluid pressure in the cylinder 3 reaches the first valve opening pressure (corresponding to the biasing force of the spring 46), the valve body 45 of the control valve 50a resists the biasing force of the spring 46. Thus, the radial opening 57 of the orifice 50a faces the large-diameter channel 32. As a result, the large-diameter channel 32 and the small-diameter channel 31 communicate with each other through the orifice 50a of the valve body 45, so that the hydraulic oil in the rod-side oil chamber 18 can be communicated from the small-diameter channel 31 through the orifice 50a. 32 flows into the reservoir chamber 6, and at this time, a damping force is generated with a predetermined damping force characteristic in which the damping force increases with a quadratic curve due to the orifice action as shown in FIG. Moreover, in the control valve 40a according to the first embodiment, as shown in FIG. 3, the valve does not open unless the fluid pressure in the cylinder 3 reaches the first valve opening pressure, so that it is constant when the piston speed is zero. Is generated (there is an offset load), so that the swing of the carriage can be sufficiently suppressed.

その後、シリンダ3内の流体圧が前記第1の開弁圧よりも大きい第2の開弁圧に到達した際には、流路30の第2流路30bに備えたリリーフ弁41(図1参照)が開弁されて、詳しくは、リリーフ弁41がピストン3の速度の増加に応じて開口面積が増加するように開弁されて、ロッド側油室18内の作動油が流路30の第1及び第2流路30a、30bを経由してリザーバ室6内に流れる。   Thereafter, when the fluid pressure in the cylinder 3 reaches a second valve opening pressure that is greater than the first valve opening pressure, the relief valve 41 (see FIG. 1) provided in the second channel 30b of the channel 30. Specifically, the relief valve 41 is opened so that the opening area increases as the speed of the piston 3 increases, and the hydraulic oil in the rod-side oil chamber 18 flows into the flow path 30. It flows into the reservoir chamber 6 via the first and second flow paths 30a and 30b.

次に、第1実施形態に係る流体圧緩衝器1aの弁機構35aに採用される第2実施形態に係る制御弁40bを図4に基づいて説明するが、第1実施形態に係る制御弁40aとはオリフィス50bの構成が相違するので、該オリフィス50bの構成を具体的に説明する。
第2実施形態に係る制御弁40bに備えたオリフィス50bは、小径軸部47の端面(ロッド側油室18側の面)の略中心から軸方向に延びる軸方向開口部65と、該軸方向開口部65の端部に連通して径方向に延び小径軸部47の外周の1箇所のみが開口される径方向開口部66とから構成される。なお、軸方向開口部65の開口径が径方向開口部66の開口径よりも大きく設定される。
Next, the control valve 40b according to the second embodiment employed in the valve mechanism 35a of the fluid pressure shock absorber 1a according to the first embodiment will be described with reference to FIG. 4, but the control valve 40a according to the first embodiment will be described. Since the configuration of the orifice 50b is different from that of the orifice 50b, the configuration of the orifice 50b will be specifically described.
The orifice 50b provided in the control valve 40b according to the second embodiment includes an axial opening 65 extending in the axial direction from the approximate center of the end surface (the surface on the rod side oil chamber 18 side) of the small diameter shaft portion 47, and the axial direction. It is comprised from the radial direction opening part 66 which is connected to the edge part of the opening part 65, and extends in the radial direction, and is opened only in one place of the outer periphery of the small diameter shaft part 47. The opening diameter of the axial opening 65 is set larger than the opening diameter of the radial opening 66.

次に、第1実施形態に係る流体圧緩衝器1aの弁機構35aに採用される第3実施形態に係る制御弁40cを図5に基づいて説明するが、第1及び2実施形態に係る制御弁40a、40bとはオリフィス50a、50bの構成が相違するので、該オリフィス50cの構成を具体的に説明する。
第3実施形態に係る制御弁40cに備えたオリフィス50cは、小径軸部47の端面(ロッド側油室18側の面)の略中心から軸方向に延びる軸方向開口部65と、該軸方向開口部65の端部に連通して径方向に延び小径軸部47の外周の1箇所のみが開口される径方向開口部67とからなり、径方向開口部67が、軸方向開口部65側に位置する小径開口部67aと、該小径開口部67aよりも大径で小径軸部47の外周側に位置する大径開口部67bとから構成される。なお、軸方向開口部65の開口径と径方向開口部67の大径開口部67bの開口径とは略同じである。
Next, the control valve 40c according to the third embodiment employed in the valve mechanism 35a of the fluid pressure shock absorber 1a according to the first embodiment will be described with reference to FIG. 5, but the control according to the first and second embodiments will be described. Since the configurations of the orifices 50a and 50b are different from those of the valves 40a and 40b, the configuration of the orifice 50c will be specifically described.
The orifice 50c provided in the control valve 40c according to the third embodiment includes an axial opening 65 extending in the axial direction from a substantial center of the end surface (the surface on the rod side oil chamber 18 side) of the small diameter shaft portion 47, and the axial direction. It is composed of a radial opening 67 that communicates with the end of the opening 65 and extends in the radial direction, and is opened at only one outer periphery of the small-diameter shaft 47. The radial opening 67 is on the axial opening 65 side. The small-diameter opening 67a is located on the outer diameter side of the small-diameter shaft portion 47 and has a larger diameter than the small-diameter opening 67a. The opening diameter of the axial opening 65 and the opening diameter of the large-diameter opening 67b of the radial opening 67 are substantially the same.

次に、第1実施形態に係る流体圧緩衝器1aの弁機構35aに採用される第4実施形態に係る制御弁40dを図6に基づいて説明するが、第1〜3実施形態に係る制御弁40a〜40cとはオリフィス50a〜50cの構成が相違するので、該オリフィス50dの構成を具体的に説明する。
第4実施形態に係る制御弁40dに備えたオリフィス50dは、小径軸部47の端面(ロッド側油室18側)の略中心から軸方向に延びる軸方向開口部65と、該軸方向開口部65の軸方向途中部位に連通して小径軸部47の径方向の全範囲を貫通するように延びる径方向開口部68とから構成される。なお、軸方向開口部65の開口径は径方向開口部68の開口径よりも大きく設定される。
Next, the control valve 40d according to the fourth embodiment employed in the valve mechanism 35a of the fluid pressure shock absorber 1a according to the first embodiment will be described based on FIG. 6, but the control according to the first to third embodiments will be described. Since the configurations of the orifices 50a to 50c are different from those of the valves 40a to 40c, the configuration of the orifice 50d will be specifically described.
The orifice 50d provided in the control valve 40d according to the fourth embodiment includes an axial opening 65 extending in the axial direction from the approximate center of the end surface (rod-side oil chamber 18 side) of the small diameter shaft portion 47, and the axial opening. It is comprised from the radial direction opening part 68 extended in such a way that it penetrates the whole radial range of the small diameter shaft part 47, communicating with the halfway part of 65 axial directions. The opening diameter of the axial opening 65 is set larger than the opening diameter of the radial opening 68.

そして、第2〜第4実施形態に係る制御弁40b〜40dにおいても、第1実施形態に係る制御弁40aと同様の作用を奏するようになる。   And also in the control valves 40b-40d which concern on 2nd-4th embodiment, there exists an effect | action similar to the control valve 40a which concerns on 1st Embodiment.

次に、本発明の第2実施形態に係る流体圧緩衝器1bを図7及び図8に基づいて説明する。該第2実施形態に係る流体圧緩衝器1bを説明する際には、第1実施形態に係る流体圧緩衝器1aとの相違点のみを説明する。
第2実施形態に係る流体圧緩衝器1bでは、シリンダ3のロッド側油室18とリザーバ室6とを連通する流路30は分岐しておらず、流路30に、ロッド側油室18側と連通する小径流路31と、該小径流路31から連続して設けられ該小径流路31より大径でリザーバ室6側と連通する大径流路32とが設けられる。該流路30に、ピストン15の移動に伴って開閉する弁機構35bが備えられている。
該弁機構35bは、第1の開弁圧で開弁して、開弁した後一定の開口面積のオリフィスが作用すると共に、前記第1の開弁圧よりも高い第2の開弁圧に達した後、ピストン15の速度の増加に応じて開口面積が増加する機能を有するものである。
Next, a fluid pressure shock absorber 1b according to a second embodiment of the present invention will be described with reference to FIGS. In describing the fluid pressure shock absorber 1b according to the second embodiment, only differences from the fluid pressure shock absorber 1a according to the first embodiment will be described.
In the fluid pressure shock absorber 1b according to the second embodiment, the flow path 30 that communicates the rod side oil chamber 18 and the reservoir chamber 6 of the cylinder 3 is not branched, and the flow path 30 is connected to the rod side oil chamber 18 side. A small-diameter channel 31 communicating with the small-diameter channel 31 and a large-diameter channel 32 having a larger diameter than the small-diameter channel 31 and communicating with the reservoir chamber 6 side. The flow path 30 is provided with a valve mechanism 35b that opens and closes as the piston 15 moves.
The valve mechanism 35b is opened at a first valve opening pressure, and after opening, an orifice having a certain opening area acts and a second valve opening pressure higher than the first valve opening pressure. After reaching the opening area, the opening area increases as the speed of the piston 15 increases.

具体的に、弁機構35bは、図7に示すように、小径流路31及び大径流路32に沿って軸方向に移動自在に支持されるバルブ本体45と、該バルブ本体45を、小径流路31が常時閉状態となるように付勢するスプリング46とから構成される。バルブ本体45は、小径流路31に嵌合する小径軸部47と、該小径軸部47の端部(リザーブ室6側)から一体的に接続され、小径流路31よりも大径で該小径流路31を開閉する板状の開閉部48と、該開閉部48の端部(リザーブ室6側)から一体的に接続される大径軸部49と、小径軸部47の端面(ロッド側油室18側)に形成される径方向に延びる所定深さのリリーフ溝70とから構成される。該リリーフ溝70は小径軸部47の径方向中心を跨ぐように所定幅で形成される。   Specifically, as shown in FIG. 7, the valve mechanism 35b includes a valve main body 45 that is supported so as to be movable in the axial direction along the small diameter flow path 31 and the large diameter flow path 32, and the valve main body 45 is connected to the small diameter flow path. It is comprised from the spring 46 which urges | biases so that the path 31 may be always closed. The valve body 45 is integrally connected to a small-diameter shaft portion 47 that fits into the small-diameter channel 31 and an end portion (on the reserve chamber 6 side) of the small-diameter shaft portion 47, and has a larger diameter than the small-diameter channel 31. A plate-shaped opening / closing part 48 for opening / closing the small-diameter channel 31, a large-diameter shaft part 49 integrally connected from an end part (the reserve chamber 6 side) of the opening / closing part 48, and an end surface (rod) of the small-diameter shaft part 47 And a relief groove 70 having a predetermined depth extending in the radial direction and formed on the side oil chamber 18 side). The relief groove 70 is formed with a predetermined width so as to straddle the radial center of the small-diameter shaft portion 47.

また、小径軸部47にオリフィス71が形成される。該オリフィス71は、リリーフ溝70の底部に臨むように開口して小径軸部47内を軸方向に延びる軸方向開口部65と、該軸方向開口部65の軸方向略中間部位に連通して径方向に延び小径軸部47の外周の1箇所が開口される径方向開口部66とから構成される。なお、軸方向開口部65の開口径が径方向開口部66の開口径よりも大きく設定される。   An orifice 71 is formed in the small diameter shaft portion 47. The orifice 71 is opened to face the bottom of the relief groove 70 and communicates with an axial opening 65 extending in the axial direction in the small-diameter shaft portion 47 and a substantially intermediate portion in the axial direction of the axial opening 65. It is comprised from the radial direction opening part 66 extended in radial direction and opened in one place of the outer periphery of the small diameter shaft part 47. As shown in FIG. The opening diameter of the axial opening 65 is set larger than the opening diameter of the radial opening 66.

そして、シリンダ3内の流体圧が第1の開弁圧に到達すると、まず、弁機構35bのバルブ本体45がスプリング46の付勢力に抗して移動して、オリフィス71の径方向開口部66が大径流路32内に臨むようになる。その結果、バルブ本体45のオリフィス71を介して大径流路32と小径流路31とが連通することで、ロッド側油室18の作動油が小径流路31からオリフィス71を介して大径流路32を経てリザーバ室6に流れる。その後、シリンダ3内の流体圧が第1の開弁圧よりも大きい第2の開弁圧に到達すると、さらに、バルブ本体45がスプリング46の付勢力に抗して移動して、リリーフ溝70が大径流路32内に臨むようになり、リリーフ溝70と大径流路32とが連通すると共にピストン15の速度の増加に応じてその開口面積が増加して、ロッド側油室18内の作動油が弁機構35bのオリフィス71及びリリーフ溝70を介してリザーバ室6内に流れる。これにより、本弁機構35bでも、図3に示すような、ピストン速度が0のときに一定の減衰力が発生する(オフセット荷重有り)と共に、オリフィス作用による二次曲線で減衰力が増加する所定の減衰力特性にて減衰力が発生する。   When the fluid pressure in the cylinder 3 reaches the first valve opening pressure, first, the valve body 45 of the valve mechanism 35b moves against the urging force of the spring 46, and the radial opening 66 of the orifice 71 is moved. Comes to the inside of the large-diameter channel 32. As a result, the large-diameter channel 32 and the small-diameter channel 31 communicate with each other via the orifice 71 of the valve body 45, so that the hydraulic oil in the rod-side oil chamber 18 flows from the small-diameter channel 31 through the orifice 71. It flows to the reservoir chamber 6 via 32. Thereafter, when the fluid pressure in the cylinder 3 reaches a second valve opening pressure that is greater than the first valve opening pressure, the valve body 45 further moves against the urging force of the spring 46, and the relief groove 70. The relief groove 70 and the large-diameter channel 32 communicate with each other, and the opening area thereof increases as the speed of the piston 15 increases, so that the operation in the rod-side oil chamber 18 is performed. Oil flows into the reservoir chamber 6 through the orifice 71 and the relief groove 70 of the valve mechanism 35b. As a result, also in the valve mechanism 35b, as shown in FIG. 3, a predetermined damping force is generated when the piston speed is 0 (with an offset load), and the damping force increases in a quadratic curve due to the orifice action. Damping force is generated with the damping force characteristic of.

次に、図7に示す弁機構35bの他の実施形態を図8に基づいて説明する。
該弁機構35b’は、小径軸部47の端面(ロッド側油室18側)に、その半円領域に端面から所定深さで外周壁を切り欠くリリーフ切欠80が形成される。また、小径軸部47の端面における残りの半円領域にオリフィス81が形成される。該オリフィス81は、小径軸部47の端面から軸方向に延びる軸方向開口部65と、該軸方向開口部65の軸方向の端部に連通して径方向に延びリリーフ切欠80の反対側の外周が1箇所開口される径方向開口部66とから構成される。なお、軸方向開口部65の開口径が径方向開口部66の開口径よりも大きく設定される。また、軸方向開口部65はリリーフ切欠80より深く形成され、径方向開口部66はリリーフ切欠80の底部よりも深い位置に形成される。
Next, another embodiment of the valve mechanism 35b shown in FIG. 7 will be described with reference to FIG.
In the valve mechanism 35 b ′, a relief notch 80 is formed in the semicircular region of the end surface (rod side oil chamber 18 side) of the small diameter shaft portion 47 by notching the outer peripheral wall at a predetermined depth from the end surface. An orifice 81 is formed in the remaining semicircular region on the end surface of the small diameter shaft portion 47. The orifice 81 includes an axial opening 65 extending in the axial direction from the end surface of the small-diameter shaft portion 47, and extending in the radial direction in communication with the axial end portion of the axial opening 65 on the opposite side of the relief notch 80. It is comprised from the radial direction opening part 66 by which the outer periphery is opened by one place. The opening diameter of the axial opening 65 is set larger than the opening diameter of the radial opening 66. The axial opening 65 is formed deeper than the relief notch 80, and the radial opening 66 is formed deeper than the bottom of the relief notch 80.

そして、シリンダ内の流体圧が第1の開弁圧に到達すると、まず、該弁機構35b’のバルブ本体45がスプリング46の付勢力に抗して移動して、オリフィス81の径方向開口部66が大径流路32内に臨むようになる。その結果、バルブ本体45のオリフィス81を介して大径流路32と小径流路31とが連通することで、ロッド側油室18の作動油が小径流路31からオリフィス81を介して大径流路32を経てリザーバ室6に流れる。その後、シリンダ3内の流体圧が第1の開弁圧よりも大きい第2の開弁圧に到達すると、弁機構35b’のリリーフ切欠80と大径流路32とが連通すると共にピストン3の速度の増加に応じてその開口面積が増加して、ロッド側油室18内の作動油が弁機構35b’のオリフィス81とリリーフ切欠80とを介してリザーバ室6内に流れる。   When the fluid pressure in the cylinder reaches the first valve opening pressure, first, the valve body 45 of the valve mechanism 35b ′ moves against the biasing force of the spring 46, and the radial opening of the orifice 81 66 comes into the large-diameter channel 32. As a result, the large-diameter channel 32 and the small-diameter channel 31 communicate with each other through the orifice 81 of the valve body 45, so that the hydraulic oil in the rod-side oil chamber 18 passes from the small-diameter channel 31 through the orifice 81. It flows to the reservoir chamber 6 via 32. Thereafter, when the fluid pressure in the cylinder 3 reaches a second valve opening pressure that is larger than the first valve opening pressure, the relief notch 80 of the valve mechanism 35b ′ and the large-diameter flow path 32 communicate with each other and the speed of the piston 3 In response to the increase, the opening area increases, and the hydraulic oil in the rod side oil chamber 18 flows into the reservoir chamber 6 through the orifice 81 and the relief notch 80 of the valve mechanism 35b ′.

以上説明した、第1及び第2実施形態に係る流体圧緩衝器1a、1bによれば、前側端板4に設けた、シリンダ3のロッド側油室18とリザーバ室6とを連通する流路30に、第1の開弁圧で開弁して、開弁した後一定の開口面積のオリフィスが作用すると共に、前記第1の開弁圧よりも高い第2の開弁圧に達した後、ピストン15の速度の増加に応じて開口面積が増加する弁機構35a、35b(35b’)を備えているので、図3に示すような、ピストン速度が0のときに一定の減衰力を有する(オフセット荷重有り)と共に、オリフィス作用による二次曲線で減衰力が増加する所定の減衰力特性を備えることができる。この結果、台車の揺動を十分に抑制することができ、しかも、急激な減衰力の変動を抑制することができるため、車両の安定性が良好となり乗り心地が向上するようになる。   According to the fluid pressure shock absorbers 1a and 1b according to the first and second embodiments described above, the flow path that is provided in the front end plate 4 and communicates with the rod-side oil chamber 18 of the cylinder 3 and the reservoir chamber 6. 30 is opened with the first valve opening pressure, and after opening, an orifice having a certain opening area acts and after reaching a second valve opening pressure higher than the first valve opening pressure. Since the valve mechanisms 35a and 35b (35b ′) whose opening area increases with the increase in the speed of the piston 15 are provided, the piston 15 has a constant damping force when the piston speed is zero as shown in FIG. Along with (with offset load), a predetermined damping force characteristic can be provided in which the damping force increases with a quadratic curve due to the orifice action. As a result, the swinging of the carriage can be sufficiently suppressed, and a rapid fluctuation in damping force can be suppressed, so that the stability of the vehicle is improved and the riding comfort is improved.

しかも、第1及び第2実施形態に係る流体圧緩衝器1a、1bに備えた弁機構35a、35b(35b’)のオリフィス50a〜50d、71及び81は、単なる円形状の開口部等を複数形成して構成されており、複雑な加工を必要としないので、その加工が容易で精度も高くなることから、所望の減衰力特性を安定して発生させることができると共に、コスト的にも安価にすることができる。   Moreover, the orifices 50a to 50d, 71 and 81 of the valve mechanisms 35a and 35b (35b ′) provided in the fluid pressure shock absorbers 1a and 1b according to the first and second embodiments have a plurality of simple circular openings or the like. Since it is formed and does not require complicated machining, the machining is easy and the accuracy is high, so that it is possible to stably generate a desired damping force characteristic and low cost. Can be.

1a 流体圧緩衝器(第1実施形態),1b 流体圧緩衝器(第2実施形態),2 外筒,3 シリンダ,6 リザーバ室,15 ピストン,16 ピストンロッド,18 ロッド側油室,19 反ロッド側油室,30 流路,30a 第1流路,30b 第2流路,35a 弁機構,35b、35b’ 弁機構,40a〜40d 制御弁(第1の弁体),41 リリーフ弁(第2の弁体),50a〜50d オリフィス,70 リリーフ溝,71 オリフィス,80 リリーフ切欠,81 オリフィス   1a Fluid pressure shock absorber (first embodiment), 1b Fluid pressure shock absorber (second embodiment), 2 outer cylinder, 3 cylinder, 6 reservoir chamber, 15 piston, 16 piston rod, 18 rod side oil chamber, 19 Rod side oil chamber, 30 flow path, 30a first flow path, 30b second flow path, 35a valve mechanism, 35b, 35b 'valve mechanism, 40a-40d control valve (first valve element), 41 relief valve (first 2), 50a to 50d orifice, 70 relief groove, 71 orifice, 80 relief notch, 81 orifice

Claims (2)

内部に作動流体が封入されたシリンダと、該シリンダ内に摺動可能に挿嵌されたピストンと、該ピストンに連結され前記シリンダから外部に延出されたピストンロッドと、前記シリンダ内の前記ピストンの摺動によって作動流体の流れが生じる流路と、該流路に設けられ、前記ピストンの移動に伴って開閉する弁機構を備えた流体圧緩衝器であって、
前記流路は、上流側に小径流路、下流側に大径流路が設けられ、
前記弁機構は、前記小径流路に嵌合する小径軸部と、該小径流路よりも大径で該小径流路を開閉する開閉部と、該開閉部の端部から一体的に接続される大径軸部と、からなるバルブ本体と、前記小径流路が閉状態となるように前記バルブ本体を前記小径流路側に付勢するスプリングと、から構成され、
前記小径軸部にはオリフィス及び該オリフィスよりも前記小径流路側に配置されるリリーフ溝またはリリーフ切欠が形成され、
前記弁機構は、第1の開弁圧で開弁して、開弁した後一定の開口面積の前記オリフィスが作用すると共に、前記第1の開弁圧よりも高い第2の開弁圧に達した後、前記ピストンの速度の増加に応じて前記リリーフ溝またはリリーフ切欠により開口面積が増加することを特徴とする流体圧緩衝器。
A cylinder in which a working fluid is sealed; a piston slidably inserted in the cylinder; a piston rod connected to the piston and extending outward from the cylinder; and the piston in the cylinder A fluid pressure shock absorber provided with a flow path in which a flow of the working fluid is generated by sliding, and a valve mechanism provided in the flow path that opens and closes as the piston moves.
The channel is provided with a small-diameter channel on the upstream side and a large-diameter channel on the downstream side,
The valve mechanism is integrally connected from a small-diameter shaft portion that fits into the small-diameter channel, an opening / closing unit that opens and closes the small-diameter channel with a larger diameter than the small-diameter channel, and an end of the opening / closing unit. A large-diameter shaft portion, and a spring that urges the valve body toward the small-diameter channel so that the small-diameter channel is closed,
The small-diameter shaft portion is formed with an orifice and a relief groove or a relief notch arranged on the small-diameter channel side with respect to the orifice,
The valve mechanism is opened by the first valve opening pressure, together with the orifice acts in a constant opening area after opening, the higher the second valve opening pressure than the first valve opening pressure After reaching, the opening area is increased by the relief groove or the relief notch according to the increase of the speed of the piston.
前記オリフィスは、前記リリーフ溝の底部に臨むように開口して前記小径軸部内を軸方向に延びる軸方向開口部と、該軸方向開口部に連通して径方向に延び前記小径軸部の外周に開口される径方向開口部とから構成され、前記軸方向開口部の開口径は前記径方向開口部の開口径よりも大きいことを特徴とする請求項1に記載の流体圧緩衝器。 The orifice opens so as to face the bottom of the relief groove and extends in the axial direction in the small-diameter shaft portion; and the outer periphery of the small-diameter shaft portion communicates with the axial opening and extends in the radial direction. The fluid pressure shock absorber according to claim 1, wherein an opening diameter of the axial opening is larger than an opening diameter of the radial opening .
JP2011287480A 2011-12-28 2011-12-28 Fluid pressure buffer Active JP5917140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011287480A JP5917140B2 (en) 2011-12-28 2011-12-28 Fluid pressure buffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011287480A JP5917140B2 (en) 2011-12-28 2011-12-28 Fluid pressure buffer

Publications (2)

Publication Number Publication Date
JP2013137042A JP2013137042A (en) 2013-07-11
JP5917140B2 true JP5917140B2 (en) 2016-05-11

Family

ID=48912922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011287480A Active JP5917140B2 (en) 2011-12-28 2011-12-28 Fluid pressure buffer

Country Status (1)

Country Link
JP (1) JP5917140B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103671677A (en) * 2013-12-24 2014-03-26 北京九州一轨隔振技术有限公司 Viscous damper
JP6489977B2 (en) * 2015-08-31 2019-03-27 日立オートモティブシステムズ株式会社 Shock absorber
JP2019143642A (en) * 2016-06-27 2019-08-29 日立オートモティブシステムズ株式会社 Shock absorber
CN110877530A (en) * 2019-12-12 2020-03-13 绍兴上虞渡进电子科技有限公司 Brake energy recovery device for railway locomotive

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148032Y2 (en) * 1971-06-02 1976-11-19
JPS5828163U (en) * 1981-08-18 1983-02-23 日本精工株式会社 Direct acting relief valve
JPS63147946U (en) * 1987-03-20 1988-09-29
JP3943240B2 (en) * 1998-04-24 2007-07-11 カヤバ工業株式会社 Oil damper
JP4795882B2 (en) * 2006-07-20 2011-10-19 カヤバ工業株式会社 Shock absorber
JP5466539B2 (en) * 2010-03-10 2014-04-09 カヤバ工業株式会社 Damping valve

Also Published As

Publication number Publication date
JP2013137042A (en) 2013-07-11

Similar Documents

Publication Publication Date Title
JP5152500B2 (en) Fluid pressure buffer
JP6279759B2 (en) Shock absorber
JP6654955B2 (en) Shock absorber
JP5917140B2 (en) Fluid pressure buffer
KR20150136488A (en) Damper and vehicle using same
JP5126509B2 (en) Hydraulic buffer
JP2015200404A (en) Shock absorber
JP2013133896A (en) Damping force adjustment type shock absorber
JP6462457B2 (en) Fluid pressure buffer
JP6305102B2 (en) Fluid pressure buffer
JP6214227B2 (en) Hydraulic shock absorber
JP2014126163A (en) Shock absorber, front fork, and straddle type vehicle
JP6565442B2 (en) Cylinder device
JP6489977B2 (en) Shock absorber
JP6442247B2 (en) valve
JP2017180706A (en) Shock absorber and attenuation force generation device
JP4858980B2 (en) Front fork
JP6116267B2 (en) Fluid pressure buffer
JP5897955B2 (en) Damping force adjustable shock absorber
JP6357067B2 (en) Front fork
JP6555968B2 (en) Shock absorber and method of manufacturing the shock absorber
JP6411272B2 (en) Hydraulic shock absorber
JPWO2019244287A1 (en) Valve mechanism and shock absorber
JP6444799B2 (en) Damping force generator
JP2018115684A (en) Attenuation force adjusting-type damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160406

R150 Certificate of patent or registration of utility model

Ref document number: 5917140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250