JP5906814B2 - Method and apparatus for predicting constraining breakout in continuous casting equipment - Google Patents

Method and apparatus for predicting constraining breakout in continuous casting equipment Download PDF

Info

Publication number
JP5906814B2
JP5906814B2 JP2012045554A JP2012045554A JP5906814B2 JP 5906814 B2 JP5906814 B2 JP 5906814B2 JP 2012045554 A JP2012045554 A JP 2012045554A JP 2012045554 A JP2012045554 A JP 2012045554A JP 5906814 B2 JP5906814 B2 JP 5906814B2
Authority
JP
Japan
Prior art keywords
thermometer
starting
adjacent
thermocouple
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012045554A
Other languages
Japanese (ja)
Other versions
JP2013180317A (en
Inventor
島崎 泰二
泰二 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012045554A priority Critical patent/JP5906814B2/en
Publication of JP2013180317A publication Critical patent/JP2013180317A/en
Application granted granted Critical
Publication of JP5906814B2 publication Critical patent/JP5906814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Continuous Casting (AREA)

Description

本発明は、連続鋳造設備における拘束性ブレークアウトの予知方法及び装置に関する。   The present invention relates to a method and apparatus for predicting constraining breakout in a continuous casting facility.

連続鋳造における拘束性ブレークアウトとは、モールド内表面に凝固シェルが焼付き、その状態で下方に鋳片を引き抜くことで凝固シェルが破断し、この凝固シェルの破断部がモールドの鋳込み方向及び幅方向に伝播し、最終的にモールド下端に到達することで溶鋼が漏出する事故のことである。ブレークアウトが発生すると設備復旧に多大に時間を要し、多大な減産が発生してしまう。   The constraining breakout in continuous casting means that the solidified shell is seized on the inner surface of the mold, and the solidified shell is broken by pulling the slab downward in this state. It is an accident that the molten steel leaks by propagating in the direction and finally reaching the lower end of the mold. When a breakout occurs, it takes a lot of time to restore the equipment, resulting in a significant reduction in production.

この対策として、モールド内でシェル破断を検知し、拘束性ブレークアウトを未然に防止する数々の発明が提案されている。一般的には、モールドの壁面に複数個の熱電対を埋め込み、熱電対の温度を判定装置に取り込み、判定ロジックによりブレークアウトを予知して非常減速を行うことで再凝固を促し、ブレークアウトを未然に防止する方法が採られている。   As a countermeasure against this, many inventions have been proposed in which shell breakage is detected in a mold and restraint breakout is prevented in advance. In general, multiple thermocouples are embedded in the mold wall, the temperature of the thermocouple is taken into the judgment device, breakout is predicted by judgment logic, and emergency deceleration is performed to promote re-solidification. The method of preventing it is taken.

拘束性ブレークアウトの判定ロジックは以下のとおりである。拘束性ブレークアウトの発生にあたっては、シェルの破断部が熱電対埋設位置を通過する際に、熱電対温度が一旦上昇した後に、遅れて下降するという温度変化をたどることが知られている。一つの熱電対でこの温度変化パターンを検出すれば、ブレークアウトを予知することができると考えられる。しかし、一つの熱電対で検出するだけでは、湯面変動に起因する温度変化とブレークアウトに起因する温度変化とを区別することが困難である。ブレークアウトの予知の精度を向上するために、シェルの破断部がモールドの幅方向及び鋳込み方向に伝播していく現象を利用し、上記の温度変化パターンが隣接する熱電対で検出されてはじめてブレークアウトの予知成立とするブレークアウトの予知方法が知られている(特許文献1及び特許文献2参照)。このブレークアウトの予知方法において、隣接する熱電対同士で出発側(from側)、到達側(to側)の関係を設定し、それぞれの検出温度がシェル破断の温度変化パターンに当て嵌まるかどうかを監視している。   The decision logic of the constraining breakout is as follows. It is known that in the occurrence of a constraining breakout, when the broken portion of the shell passes through the thermocouple embedding position, the temperature changes such that the thermocouple temperature rises once and then falls with a delay. It is considered that a breakout can be predicted by detecting this temperature change pattern with a single thermocouple. However, it is difficult to distinguish between a temperature change caused by a molten metal level fluctuation and a temperature change caused by a breakout only by detecting with one thermocouple. In order to improve the accuracy of breakout prediction, it is not until the above temperature change pattern is detected by an adjacent thermocouple that utilizes the phenomenon that the fracture portion of the shell propagates in the width direction and the casting direction of the mold. There is known a breakout prediction method for establishing out prediction (see Patent Document 1 and Patent Document 2). In this breakout prediction method, the relationship between the start side (from side) and the arrival side (to side) between adjacent thermocouples is set, and whether each detected temperature fits the temperature change pattern of the shell breakage. Monitoring.

特公昭63−47545号公報Japanese Examined Patent Publication No. 63-47545 特開2009−241099号公報JP 2009-2441099 A

しかし、温度計の温度はモールド内の流動状況やシェル凝固状況に応じて常時変動しており、この温度変化パターンがブレークアウト予知の成立条件であるシェル破断による温度変化パターンと偶然一致することは避けようがなく、ある程度の誤検知は避けられない。この誤検知が多いことは生産の阻害となる。   However, the temperature of the thermometer fluctuates constantly according to the flow condition in the mold and the shell solidification condition, and this temperature change pattern coincides with the temperature change pattern due to shell breakage, which is a condition for establishing breakout prediction. There is no way to avoid it, and some misdetections are inevitable. Many false detections hinder production.

シェル破断の伝播監視を行う温度計のfrom-toペア数をたくさん取るほど、未検知(予知すべきところの見逃し)を防止し易い反面、温度計のfrom-toペア数を過剰に増やすと、誤検知件数が増える恐れが大きくなる。特に、モールド壁面の水平方向及び垂直方向に複数の熱電対を埋め込んだ場合、水平方向にも垂直方向にも温度計のfrom-toペアが存在するので、from-toペア数が多くなる。特許文献1には、温度計のfrom-toペア数を最小限にするための工夫が開示されていない。   The more the number of from-to pairs of thermometers that monitor the propagation of shell breaks, the easier it is to prevent undetected (missing where to be predicted), but if you increase the number of from-to pairs of thermometers excessively, The risk of increasing the number of false detections increases. In particular, when a plurality of thermocouples are embedded in the horizontal and vertical directions of the mold wall surface, the number of from-to pairs increases because there are thermometer from-to pairs in both the horizontal and vertical directions. Patent Document 1 does not disclose a device for minimizing the number of from-to pairs of thermometers.

特許文献2には、ある出発側の温度計から見て、鉛直方向に隣接する温度計にfrom-toペアの関係を設定することが開示されている。特許文献2に記載の発明によれば、温度計のfrom-toペア数を最小限にすることができる。しかし、シェルの破断部は垂直方向に隣接する温度計よりも先に水平方向に隣接する温度計に伝播する場合があり、この場合、予知の判定タイミングが遅れるという新たな課題が生ずる。   Patent Document 2 discloses that a from-to pair relationship is set in a thermometer adjacent in the vertical direction as viewed from a certain starting thermometer. According to the invention described in Patent Document 2, the number of from-to pairs of thermometers can be minimized. However, the broken portion of the shell may propagate to the thermometer adjacent in the horizontal direction before the thermometer adjacent in the vertical direction, and in this case, a new problem arises that the prediction determination timing is delayed.

そこで、本発明は、温度計のfrom-toペア数を最小限にして誤動作件数を抑えることができ、かつブレークアウト予知の判定タイミングを最速にすることができる連続鋳造設備における拘束性ブレークアウトの予知方法及び装置を提供することを目的とする。   Therefore, the present invention can suppress the number of malfunctions by minimizing the number of from-to pairs of thermometers, and can provide a constraint breakout in a continuous casting facility that can make the judgment timing of breakout prediction the fastest. It is an object to provide a prediction method and apparatus.

上記課題を解決するために、請求項1に記載の発明は、連続鋳造設備の鋳型壁面の水平方向及び鉛直方向に複数の温度計を設け、温度計が検出した温度に基づいて拘束性ブレークアウトの予知を成立させる連続鋳造設備における拘束性ブレークアウトの予知方法において、出発側の温度計から鉛直方向に隣接する温度計までの鋳込み長さL1、及び前記出発側の温度計から水平方向に隣接する温度計までの鋳込み長さL2を下記の計算式に基づいて算出し、鋳込み長さL1と鋳込み長さL2とでどちらが短いかを割り出し、L1が短い場合には鉛直方向に隣接する温度計を、L2が短い場合には前記出発側の温度計の左右両方の温度計を到達側の温度計として選択し、前記出発側の温度計及び選択された前記到達側の温度計が検出した温度に基づいて、ブレークアウトの予知を成立させることを特徴とする連続鋳造設備における拘束性ブレークアウトの予知方法である。ここで、L1=y、L2=x×tanθ、yは前記出発側の温度計から鉛直方向に隣接する前記到達側の温度計までの距離であり、xは前記出発側の温度計から水平方向に隣接する前記到達側の温度計までの距離であり、θはシェル破断角である。 In order to solve the above problems, the invention described in claim 1 is provided with a plurality of thermometers in the horizontal direction and the vertical direction of the mold wall surface of the continuous casting equipment, and a constraining breakout based on the temperature detected by the thermometer. In the method of predicting a constraining breakout in a continuous casting facility that establishes the prediction of the casting length, the casting length L1 from the starting side thermometer to the thermometer adjacent in the vertical direction, and the starting side thermometer adjacent in the horizontal direction The casting length L2 to the thermometer to be calculated is calculated based on the following formula, and it is determined which is shorter between the casting length L1 and the casting length L2, and when L1 is short, the thermometer adjacent in the vertical direction When L2 is short, both the left and right thermometers of the starting-side thermometer are selected as reaching-side thermometers, and the temperatures detected by the starting-side thermometer and the selected reaching-side thermometer are In Zui by a prediction method restricted breakout in the continuous casting plant, characterized in that to establish a prediction of the breakout. Here, L1 = y, L2 = x × tan θ, y is a distance from the starting side thermometer to the reaching side thermometer adjacent in the vertical direction, and x is a horizontal direction from the starting side thermometer. Is the distance to the arrival-side thermometer adjacent to, and θ is the shell break angle.

請求項2に記載の発明は、請求項1に記載の連続鋳造設備における拘束性ブレークアウトの予知方法において、前記出発側の温度計に水平方向及び鉛直方向に隣接する温度計が正常に温度を検出できない場合、前記出発側の温度計から斜め下方向に隣接する温度計までの鋳込み長さL3、及び前記出発側の温度計から水平方向に隣接する温度計をスキップした次の温度計までの鋳込み長さL4を算出し、鋳込み長さL3と鋳込み長さL4のどちらが短いかを割り出し、鋳込み長さが短い方の温度計を前記到達側の温度計として選択することを特徴とする。ここで、L3=y+x×tanθ、L4=2x×tanθ、yは前記出発側の温度計から鉛直方向に隣接する温度計までの距離であり、xは前記出発側の温度計から水平方向に隣接する前記到達側の温度計までの距離であり、2xは前記出発側の温度計から水平方向に隣接する温度計をスキップした次の温度計までの距離であり、θはシェル破断角である。 According to a second aspect of the present invention, in the method for predicting a constraining breakout in the continuous casting facility according to the first aspect, the thermometer adjacent to the starting thermometer in the horizontal direction and the vertical direction has a normal temperature. If it cannot be detected, the casting length L3 from the starting thermometer to the thermometer adjacent in the diagonally downward direction, and the next thermometer skipping the horizontal adjacent thermometer from the starting thermometer The casting length L4 is calculated, the casting length L3 and the casting length L4 are calculated, and the thermometer having the shorter casting length is selected as the reaching-side thermometer. Here, L3 = y + x × tan θ, L4 = 2x × tan θ, y is a distance from the starting side thermometer to the thermometer adjacent in the vertical direction, and x is adjacent to the starting side thermometer in the horizontal direction. 2x is the distance from the starting-side thermometer to the next thermometer skipping the horizontally adjacent thermometer, and θ is the shell breaking angle.

請求項3に記載の発明は、連続鋳造設備の鋳型壁面の水平方向及び鉛直方向に設けられる複数の温度計と、温度計が検出した温度に基づいて、拘束性ブレークアウトの予知を成立させる判定装置と、を備える連続鋳造設備における拘束性ブレークアウトの予知装置において、前記判定装置は、出発側の温度計から鉛直方向に隣接する温度計までの鋳込み長さL1、及び前記出発側の温度計から水平方向に隣接する温度計までの鋳込み長さL2を下記の計算式に基づいて算出し、鋳込み長さL1と鋳込み長さL2とでどちらが短いかを割り出し、L1が短い場合には鉛直方向に隣接する温度計を、L2が短い場合には前記出発側の温度計の左右両方の温度計を到達側の温度計として選択し、前記出発側の温度計及び選択された前記到達側の温度計が検出した温度に基づいて、ブレークアウトの予知を成立させる連続鋳造設備における拘束性ブレークアウトの予知装置。ここで、L1=y、L2=x×tanθ、yは前記出発側の温度計から鉛直方向に隣接する前記到達側の温度計までの距離であり、xは前記出発側の温度計から水平方向に隣接する前記到達側の温度計までの距離であり、θはシェル破断角である。
The invention according to claim 3 is a determination that establishes the prediction of the constraining breakout based on a plurality of thermometers provided in the horizontal direction and the vertical direction of the mold wall surface of the continuous casting facility and the temperature detected by the thermometer. In the predictive device of the constraining breakout in the continuous casting facility comprising the apparatus, the determination device includes a casting length L1 from a starting thermometer to a thermometer adjacent in the vertical direction, and the starting thermometer Is calculated based on the following calculation formula to determine which is shorter between casting length L1 and casting length L2, and in the vertical direction when L1 is short When the L2 is short, both the left and right thermometers of the starting-side thermometer are selected as the reaching-side thermometers, and the starting-side thermometer and the selected reaching-side temperature are selected. There Based on the detected temperature, prediction apparatus restricted breakout in the continuous casting facilities to establish a prediction of the breakout. Here, L1 = y, L2 = x × tan θ, y is a distance from the starting side thermometer to the reaching side thermometer adjacent in the vertical direction, and x is a horizontal direction from the starting side thermometer. Is the distance to the arrival-side thermometer adjacent to, and θ is the shell break angle.

請求項4に記載の発明は、請求項3に記載の連続鋳造設備における拘束性ブレークアウトの予知装置において、前記出発側の温度計に水平方向及び鉛直方向に隣接する温度計が正常に温度を検出できない場合、前記出発側の温度計から斜め下方向に隣接する温度計までの鋳込み長さL3、及び前記出発側の温度計から水平方向に隣接する温度計をスキップした次の温度計までの鋳込み長さL4を算出し、鋳込み長さL3と鋳込み長さL4のどちらが短いかを割り出し、鋳込み長さが短い方の温度計を前記到達側の温度計として選択することを特徴とする。ここで、L3=y+x×tanθ、L4=2x×tanθ、yは前記出発側の温度計から鉛直方向に隣接する温度計までの距離であり、xは前記出発側の温度計から水平方向に隣接する前記到達側の温度計までの距離であり、2xは前記出発側の温度計から水平方向に隣接する温度計をスキップした次の温度計までの距離であり、θはシェル破断角である。 According to a fourth aspect of the present invention, in the predictive device for constraining breakout in the continuous casting facility according to the third aspect, the thermometer adjacent to the starting thermometer in the horizontal direction and the vertical direction has a normal temperature. If it cannot be detected, the casting length L3 from the starting thermometer to the thermometer adjacent in the diagonally downward direction, and the next thermometer skipping the horizontal adjacent thermometer from the starting thermometer The casting length L4 is calculated, the casting length L3 and the casting length L4 are calculated, and the thermometer having the shorter casting length is selected as the reaching-side thermometer. Here, L3 = y + x × tan θ, L4 = 2x × tan θ, y is a distance from the starting side thermometer to the thermometer adjacent in the vertical direction, and x is adjacent to the starting side thermometer in the horizontal direction. 2x is the distance from the starting-side thermometer to the next thermometer skipping the horizontally adjacent thermometer, and θ is the shell breaking angle.

請求項1に記載の発明によれば、シェル破断の伝播監視を行うfrom-toペア(出発側の温度計と到達側の温度計とのペア)が必要最小限になるので、誤検知を削減できる。また、シェルの破断部が最も早く伝播する相手を到達側の温度計として選択するので、ブレークアウト予知の判定タイミングを最速にすることができる。さらに、鋳込速度から予測されるシェル破断角に応じて、出発側の温度計から見て、次に最も早くシェルの破断部が伝播する相手を到達側の温度計として選択することが可能になる。 According to the first aspect of the present invention, since a from-to pair (a pair of a thermometer on the starting side and a thermometer on the reaching side) that monitors the propagation of the shell fracture is minimized, false detection is reduced. it can. In addition, since the partner to which the fracture portion of the shell propagates earliest is selected as the reaching-side thermometer, the breakout prediction determination timing can be made the fastest. Furthermore, according to the shell breaking angle predicted from the casting speed, it is possible to select the partner that the shell's fracture part propagates the earliest as the arrival side thermometer as seen from the starting thermometer Become.

請求項2に記載の発明によれば、出発側の温度計に水平方向及び/又は鉛直方向に隣接する温度計が正常に温度を検出できない場合でも、次に最も早くシェルの破断部が伝播する相手を到達側の温度計として選択することが可能になる。 According to the second aspect of the present invention, even when the thermometer adjacent to the starting thermometer in the horizontal direction and / or the vertical direction cannot normally detect the temperature, the broken portion of the shell propagates the earliest next. The other party can be selected as the thermometer on the destination side.

請求項3に記載の発明によれば、シェル破断の伝播監視を行うfrom-toペア(出発側の温度計と到達側の温度計とのペア)が必要最小限になるので、誤検知を削減できる。また、シェルの破断部が最も早く伝播する相手を到達側の温度計として選択するので、ブレークアウト予知の判定タイミングを最速にすることができる。さらに、鋳込速度から予測されるシェル破断角に応じて、出発側の温度計から見て、次に最も早くシェルの破断部が伝播する相手を到達側の温度計として選択することが可能になる。 According to the invention described in claim 3, since a from-to pair (a pair of a thermometer on the starting side and a thermometer on the reaching side) that monitors the propagation of the shell fracture is minimized, false detection is reduced. it can. In addition, since the partner to which the fracture portion of the shell propagates earliest is selected as the reaching-side thermometer, the breakout prediction determination timing can be made the fastest. Furthermore, according to the shell breaking angle predicted from the casting speed, it is possible to select the partner that the shell's fracture part propagates the earliest as the arrival side thermometer as seen from the starting thermometer Become.

請求項4に記載の発明によれば、出発側の温度計に水平方向及び/又は鉛直方向に隣接する温度計が正常に温度を検出できない場合でも、次に最も早くシェルの破断部が伝播する相手を到達側の温度計として選択することが可能になる。 According to the fourth aspect of the present invention, even if the thermometer adjacent to the starting thermometer in the horizontal direction and / or the vertical direction cannot normally detect the temperature, the broken portion of the shell is propagated earliest next. The other party can be selected as the thermometer on the destination side.

本発明の一実施形態の拘束性ブレークアウト予知装置の模式図Schematic diagram of a constraining breakout prediction apparatus according to an embodiment of the present invention シェル破断部の伝播を説明する鋳型の展開図(図2(a)は熱電対(to(1))にシェル破断部が到達した状態を示し、図2(b)は熱電対(to(2))にシェル破断部が到達した状態を示す)FIG. 2 (a) shows a state where the shell fracture portion has reached the thermocouple (to (1)), and FIG. 2 (b) shows a thermocouple (to (2 )) Shows the state where the shell fracture part has reached) 鋳込速度Vcとシェル破断角θとの関係を示すグラフGraph showing the relationship between casting speed Vc and shell break angle θ シェル破断部が通過する際の熱電対での温度変化の推移を示すグラフGraph showing the transition of temperature change in thermocouple when shell rupture passes 熱電対(to(1)及びto(2))が正常に温度を検出できないときの、シェル破断部の伝播を説明する鋳型の展開図(図5(a)は熱電対(to(3))にシェル破断部が到達した状態を示し、図5(b)は熱電対(to(4))にシェル破断部が到達した状態を示す)Development view of mold explaining propagation of shell fracture when thermocouple (to (1) and to (2)) cannot detect temperature normally (Fig. 5 (a) shows thermocouple (to (3)) Fig. 5 (b) shows the state where the shell fracture portion has reached the thermocouple (to (4)). 従来例の熱電対のfrom-toペアの選択と本発明例の熱電対のfrom-toペアの選択との比較を示す図(図6(a)は従来の熱電対のfrom-toペアの選択を示し、図6(b)は本発明の熱電対のfrom-toペアの選択を示す)。FIG. 6 (a) shows a comparison between the selection of the conventional thermocouple from-to pair and the selection of the thermocouple from-to pair of the example of the present invention. FIG. 6 (b) shows the selection of the from-to pair of the thermocouple of the present invention). 従来例の誤検出の割合と本発明例の誤検出の割合とを比較するグラフGraph comparing the ratio of false detection of the conventional example and the ratio of false detection of the example of the present invention

以下、添付図面に基づいて、本発明の一実施形態の連続鋳造設備における拘束性ブレークアウトの予知装置を説明する。図1は本実施形態の連続鋳造設備における拘束性ブレークアウト予知装置の模式図を示す。   Hereinafter, a constraining breakout prediction apparatus in a continuous casting facility according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram of a constraining breakout prediction apparatus in a continuous casting facility according to this embodiment.

まず、従来から公知の連続鋳造設備の概要を説明する。連続鋳造設備は、取鍋、タンディッシュ、鋳型、ガス切断機を備える。転炉で精錬された溶鋼は取鍋に入れられ、連続鋳造設備の最上部に運ばれる。溶鋼は取鍋の底部から下のタンディッシュへ注がれる。溶鋼はタンディッシュの底部から鋳型へと注がれる。鋳型は銅で出来ており、常に水冷されている。溶鋼は鋳型の中で凝固シェルを作りはじめる。溶鋼が固められた鋳片はロールによって鋳型から引き抜かれる。ロールで運ばれる間に固体となった鋳片はロール列の末端にあるガス切断機で適度な長さに切断される。   First, an overview of conventionally known continuous casting equipment will be described. The continuous casting equipment includes a ladle, tundish, mold, and gas cutter. Molten steel refined in the converter is put into a ladle and transported to the top of the continuous casting facility. Molten steel is poured from the bottom of the ladle into the lower tundish. Molten steel is poured from the bottom of the tundish into the mold. The mold is made of copper and is always water-cooled. Molten steel begins to form a solidified shell in the mold. The slab in which the molten steel is hardened is pulled out of the mold by a roll. The slab that has become solid while being carried by the roll is cut into an appropriate length by a gas cutter at the end of the roll row.

図1に示すように、本実施形態の拘束性ブレークアウト予知装置は、鋳型1に水平方向に複数列、垂直方向に複数段埋め込まれる複数の温度計としての熱電対2と、各熱電対2が検出した温度に基づいて拘束性ブレークアウトの予知が成立したか否かを判定する判定装置4と、を備える。   As shown in FIG. 1, the constraining breakout prediction apparatus of this embodiment includes a thermocouple 2 as a plurality of thermometers embedded in a mold 1 in a plurality of rows in the horizontal direction and a plurality of stages in the vertical direction, and each thermocouple 2. And a determination device 4 for determining whether or not the prediction of the constraining breakout has been established based on the temperature detected by.

熱電対2は鋳型1の短辺側及び長辺側に水平方向及び鉛直方向に一定のピッチで配列される。熱電対2は水平方向及び鉛直方向に一列に座標平面上の格子点のように配列されるのが望ましいが、格子点からずれて配列されてもよい。図1には、上下に二段の熱電対が示されているが、上下に三段、四段等の熱電対2が配列されてもよい。   The thermocouples 2 are arranged at a constant pitch in the horizontal and vertical directions on the short side and long side of the mold 1. The thermocouples 2 are desirably arranged in a row in the horizontal direction and in the vertical direction like lattice points on the coordinate plane, but may be arranged so as to be shifted from the lattice points. Although two stages of thermocouples are shown in the upper and lower sides in FIG. 1, three or four stages of thermocouples 2 may be arranged above and below.

熱電対2からの信号は増幅器、A/D変換器を経由して判定装置4に取り込まれる。判定装置4は、コンピュータからなる。判定装置4のROMには、拘束性ブレークアウトの予知の成立の有無を判定するプログラムが格納されている。連続鋳造設備の操作盤コンピュータ5は、鋳込速度のデータ、及び鋳片の所定距離の移動毎に1パルスの割合で発せられるサンプリングパルスを判定装置4に送信する。判定装置4のCPUは、プログラムに基づいて、所定のサンプリング周期毎に鋳込速度のデータ及び各熱電対2の検出温度データを取り込み、拘束性ブレークアウトの予知方法を実行する。   A signal from the thermocouple 2 is taken into the determination device 4 via an amplifier and an A / D converter. The determination device 4 is composed of a computer. The ROM of the determination device 4 stores a program for determining whether or not the constraining breakout is predicted. The operation panel computer 5 of the continuous casting equipment transmits casting speed data and sampling pulses generated at a rate of one pulse every time the slab moves by a predetermined distance. Based on the program, the CPU of the determination device 4 fetches casting speed data and detected temperature data of each thermocouple 2 for each predetermined sampling period, and executes a predictive method for restrictive breakout.

本実施形態の拘束性ブレークアウトの予知方法を説明する前に、まずシェル破断部の伝播について説明する。図2(a)及び(b)は鋳型1の展開図を示す。図2(a)及び(b)に示すように、シェルの破断部はV字形状に形成され、鋳型1の表面に沿って一定の速度で下方に移動する。図2には、移動前のシェル破断部と移動後のシェル破断部が時系列に上下に示されている。シェル破断部の移動速度は鋳込速度の約1/2程度と言われている。ブレークアウトした鋳片の表面状況からシェル破断部の伝播波及角度(すなわちシェル破断角)を調べると、水平レベルに対してほぼ一定の角度θで成長する。この現象はブルーム連続鋳造設備でもスラブ連続鋳造設備でも同様である。シェル破断角は鋳込速度に応じて大きくなると言われており、図3に示すような鋳込速度Vcの関数として定義することができる。図3には、シェル破断角を鋳込速度Vcの一次関数として定義した例が示されている。   Before explaining the method for predicting a constraining breakout according to the present embodiment, propagation of a shell fracture portion will be described first. 2A and 2B are development views of the mold 1. As shown in FIGS. 2A and 2B, the fracture portion of the shell is formed in a V shape and moves downward along the surface of the mold 1 at a constant speed. In FIG. 2, the shell fracture portion before movement and the shell fracture portion after movement are shown vertically in time series. It is said that the moving speed of the shell fracture portion is about ½ of the casting speed. When the propagation spill angle (ie, the shell rupture angle) of the shell fracture portion is examined from the surface condition of the slab that has been broken out, it grows at a substantially constant angle θ with respect to the horizontal level. This phenomenon is the same in Bloom continuous casting equipment and slab continuous casting equipment. The shell breaking angle is said to increase with the casting speed, and can be defined as a function of the casting speed Vc as shown in FIG. FIG. 3 shows an example in which the shell breaking angle is defined as a linear function of the casting speed Vc.

図4は、シェル破断部が通過する際の熱電対2での温度変化の推移を示すグラフである。シェルの破断部が熱電対2に到達する前は、温度はほぼ一定の平均検出温度で推移する。シェルの破断部が熱電対2の位置を通過すると、温度が高くなり、その後は温度降下が生ずる。この温度変化パターンを検出すれば、ブレークアウトを予知することができる。ただし、一つの熱電対2で検出するだけでは、湯面変動に起因する温度変化とブレークアウトに起因する温度変化とを区別することが困難である。ブレークアウトの予知の精度を向上するために、隣接する熱電対2同士で出発側(from側)、到達側(to側)の関係を設定し、それぞれの検出温度がシェル破断の温度変化パターンに当て嵌まるかどうかを確認する。本実施形態のブレークアウトの予知方法においては、さらに隣接する熱電対2のペアが必要最小限になるように相手となる到達側の温度計を選択している。   FIG. 4 is a graph showing the transition of the temperature change in the thermocouple 2 when the shell fracture portion passes. Before the broken portion of the shell reaches the thermocouple 2, the temperature changes at a substantially constant average detected temperature. When the broken portion of the shell passes through the position of the thermocouple 2, the temperature rises and thereafter a temperature drop occurs. By detecting this temperature change pattern, a breakout can be predicted. However, it is difficult to distinguish between a temperature change caused by fluctuations in the molten metal surface and a temperature change caused by breakout only by detecting with one thermocouple 2. In order to improve the accuracy of the breakout prediction, the relationship between the start side (from side) and the arrival side (to side) between adjacent thermocouples 2 is set, and the detected temperature changes to the temperature change pattern of the shell break. Check if it fits. In the breakout prediction method according to the present embodiment, the thermometer on the reaching side as the counterpart is selected so that the pair of adjacent thermocouples 2 becomes the necessary minimum.

本実施形態のブレークアウトの予知方法は以下のとおりでる。まず、判定装置4は所定のサンプリング周期毎に各熱電対2が検出する検出温度データを取り込む。そして、上記の温度変化パターンが検出された熱電対2を出発側の熱電対2に設定する。   The breakout prediction method of the present embodiment is as follows. First, the determination device 4 captures detected temperature data detected by each thermocouple 2 at every predetermined sampling period. Then, the thermocouple 2 in which the temperature change pattern is detected is set as the starting thermocouple 2.

次に、判定装置4は、操作盤コンピュータ5から取り込んだ鋳込速度Vcのデータに基づいて、図3に示す鋳込速度とシェル破断角との関係に基づいてシェル破断角θを算出する。なお、シェル破断角θを定義する鋳込速度Vcの関数は、判定装置4のメモリに記憶されている。   Next, the determination device 4 calculates the shell breaking angle θ based on the relationship between the casting speed and the shell breaking angle shown in FIG. 3 based on the casting speed Vc data fetched from the operation panel computer 5. A function of the casting speed Vc that defines the shell breaking angle θ is stored in the memory of the determination device 4.

次に、判定装置4は、シェル破断角θに応じて、出発側の熱電対2から見て、次に最も早くシェルの破断部が伝播する相手を到達側の熱電対2として選択する。具体的には、図2(a)及び(b)に示すように、最も早くシェル破断部が伝播する縦、及び横の各方向に隣接する熱電対(to(1)及びto(2))までの伝播に要する鋳込み長さL1及びL2に関して最短となる相手の熱電対(to(1)又はto(2))をfrom-toペアとして選択する。   Next, the determination device 4 selects, as the thermocouple 2 on the reaching side, the partner that propagates the fracture portion of the shell earliest next, as viewed from the starting thermocouple 2, according to the shell breaking angle θ. Specifically, as shown in FIGS. 2 (a) and 2 (b), the thermocouples (to (1) and to (2)) that are adjacent to each other in the vertical and horizontal directions where the shell fracture portion propagates the earliest are shown. The partner thermocouple (to (1) or to (2)) that is the shortest with respect to the casting lengths L1 and L2 required for propagation up to is selected as the from-to pair.

出発側(from側)の熱電対から到達側(to側)の熱電対までの伝播に要する鋳込長さL1及びL2は以下の式から求める。   The casting lengths L1 and L2 required for propagation from the starting side (from side) thermocouple to the reaching side (to side) thermocouple are obtained from the following equations.

図2(a)に示すように、出発側(from側)の熱電対から鉛直方向に隣接する到達側の熱電対(to(1))までの鋳込み長さL1の場合
L1=y
図2(b)に示すように、出発側(from側)の熱電対から水平方向に隣接する到達側の熱電対(to(2))までの鋳込み長さL2の場合
L2=x×tanθ
ここで、yは出発側(from側)の熱電対から鉛直方向に隣接する到達側の熱電対(to(1))までの距離であり、xは出発側の熱電対から水平方向に隣接する到達側の熱電対(to(2))までの距離であり、θはシェル破断角である。
As shown in FIG. 2A, in the case of the casting length L1 from the starting side (from side) thermocouple to the reaching side thermocouple (to (1)) adjacent in the vertical direction, L1 = y
As shown in FIG. 2B, in the case of the casting length L2 from the thermocouple on the starting side (from side) to the thermocouple on the reaching side adjacent to the horizontal direction (to (2)), L2 = x × tan θ
Where y is the distance from the starting thermocouple (from side) to the reaching thermocouple (to (1)) adjacent in the vertical direction, and x is adjacent to the starting thermocouple in the horizontal direction. It is the distance to the thermocouple (to (2)) on the reaching side, and θ is the shell break angle.

判定装置4は、L1とL2を比較し、どちらが短いか割り出し、短い方の熱電対を出発側(from側)のペアとして設定する。図2の場合には熱電対(to(1))がペアとなるが、θが違えば(小さくなれば)、熱電対(to(2))がペアとなる場合もある。   The determination device 4 compares L1 and L2, determines which is shorter, and sets the shorter thermocouple as the starting side (from side) pair. In the case of FIG. 2, the thermocouple (to (1)) is paired, but if θ is different (smaller), the thermocouple (to (2)) may be paired.

なお、V字形状のシェル破断部の頂点が出発側(from側)の熱電対の右側に位置するか左側に位置するかは、出発側(from側)の熱電対からは区別することができない。このため、出発側(from側)の熱電対の左右に位置する一対の熱電対のうち、どちらに速くシェル破断部が伝播するかを知ることは不可能である。よって、上記のように鋳込み長さL1及びL2を算出し、鉛直方向に隣接する到達側の熱電対(to(1))及び水平方向に隣接する到達側の熱電対(to(2))のいずれかを選択することとする。   In addition, it cannot be distinguished from the thermocouple on the starting side (from side) whether the vertex of the V-shaped shell fracture portion is located on the right side or the left side of the starting side (from side) thermocouple. . For this reason, it is impossible to know which of the pair of thermocouples located on the left and right of the thermocouple on the starting side (from side) quickly propagates the shell fracture portion. Therefore, the casting lengths L1 and L2 are calculated as described above, and the arrival side thermocouple (to (1)) adjacent in the vertical direction and the arrival side thermocouple (to (2)) adjacent in the horizontal direction are calculated. Either one will be selected.

全熱電対が健全なときは、上記の処理でよい。しかし、熱電対(to(1)及びto(2))が断線により正常に検出できなくなり、監視対象から除外された場合は、図5(a)に示すように、出発側(from側)の熱電対から見て、斜め下方向の熱電対(to(3))、及び図3(b)に示すように、出発側(from側)の熱電対から見て、水平方向で熱電対(to(2))をスキップした熱電対(to(4))についての伝播に要する鋳込み長さL3及びL4を求める。そして、L3及びL4の短い方の熱電対を割り出して、出発側(from側)の熱電対のペアに選択する。   When the total thermocouple is healthy, the above processing is sufficient. However, when the thermocouple (to (1) and to (2)) cannot be detected normally due to disconnection and is excluded from the monitoring target, as shown in FIG. As seen from the thermocouple, the thermocouple in the diagonally downward direction (to (3)), and as shown in FIG. 3 (b), the thermocouple in the horizontal direction (to) The casting lengths L3 and L4 required for propagation for the thermocouple (to (4)) skipping (2)) are obtained. Then, the shorter thermocouple of L3 and L4 is determined and selected as the starting thermocouple pair (from side).

L3及びL4は以下のように算出される。   L3 and L4 are calculated as follows.

図5(a)に示すように、出発側(from側)の熱電対から斜め下方向に燐接する(to(3))までの鋳込み長さL3の場合
L3=y+x×tanθ
図5(b)に示すように、出発側(from側)の熱電対から水平方向に隣接する熱電対(to(2))をスキップした次の熱電対(to(4))までの鋳込み長さL4の場合
L4=2x×tanθ
ここで、yは出発側(from側)の熱電対から鉛直方向に隣接する熱電対(to(1))までの距離であり、xは出発側(from側)の熱電対から水平方向に隣接する到達側の熱電対(to(2))までの距離であり、2xは出発側(from側)の熱電対から水平方向に隣接する熱電対(to(2))をスキップした次の熱電対(to(4))までの距離であり、θはシェル破断角である。
As shown in FIG. 5A, in the case of a casting length L3 from the thermocouple on the starting side (from side) to the phosphoric contact in the diagonally downward direction (to (3)), L3 = y + x × tan θ
As shown in Fig. 5 (b), the casting length from the starting thermocouple (from side) to the next thermocouple (to (4)) skipping the horizontally adjacent thermocouple (to (2)) In the case of L4 L4 = 2x × tan θ
Here, y is the distance from the thermocouple on the start side (from side) to the thermocouple (to (1)) adjacent in the vertical direction, and x is adjacent to the thermocouple on the start side (from side) in the horizontal direction. Is the distance to the thermocouple on the arrival side (to (2)), and 2x is the next thermocouple that skips the thermocouple (to (2)) adjacent in the horizontal direction from the thermocouple on the start side (from side) Is the distance to (to (4)), and θ is the shell break angle.

判定装置4は、L3とL4を比較し、どちらが短いか割り出し、短い方の熱電対を出発側(from側)のペアとして選択する。図4の場合には熱電対(to(3))がペアとなるが、θが違えば(小さくなれば)、熱電対(to(4))がペアとなる場合もある。   The determination device 4 compares L3 and L4, determines which is shorter, and selects the shorter thermocouple as the starting side (from side) pair. In the case of FIG. 4, the thermocouple (to (3)) is paired, but if θ is different (smaller), the thermocouple (to (4)) may be paired.

そして、判定装置4は、出発側(from側)の熱電対及び選択された到達側の熱電対(to(1)〜to(4)のいずれか)が検出した温度に基づいて、ブレークアウトの予知を成立させる。具体的には、出発側(from側)の熱電対の検出温度が一旦上昇してから下降したことを検出し、到達側の熱電対(to(1)〜to(4)のいずれか)の検出温度が続いて上記温度変化パターンを検出したときを、ブレークアウトの発生として予知する。例えば、出発側(from側)の熱電対及び到達側の熱電対(to(1)〜to(4)のいずれか)の検出温度の偏差及び変化率が一定以上のとき、上記の温度変化パターンが検出されたとしてもよいし、到達側の熱電対(to(1)〜to(4)のいずれか)の検出温度が出発側(from側)の熱電対の検出温度の差から上記の温度変化パターンが検出されたとしてもよい。   Then, the determination device 4 performs breakout based on the temperature detected by the thermocouple on the departure side (from side) and the selected thermocouple on the arrival side (any of to (1) to to (4)). Establish prediction. Specifically, it is detected that the detection temperature of the thermocouple on the departure side (from side) has risen and then dropped, and the thermocouple on the arrival side (any of to (1) to to (4)) The time when the detected temperature continues and the temperature change pattern is detected is predicted as the occurrence of a breakout. For example, when the detected temperature deviation and rate of change of the start side (from side) thermocouple and the destination side thermocouple (any of to (1) to to (4)) are above a certain level, the above temperature change pattern May be detected, or the detected temperature of the thermocouple on the arrival side (any of to (1) to to (4)) is the above temperature from the difference in the detection temperature of the thermocouple on the departure side (from side) A change pattern may be detected.

図6は、従来の熱電対のfrom-toペアの選択と本実施形態の熱電対のfrom-toペアの選択との比較を示す。図6(a)が従来の熱電対のfrom-toペアの選択を示し、図6(b)が本実施形態の熱電対のfrom-toペアの選択を示す。図6(a)に示すように、従来の熱電対のfrom-toペアの選択においては、ある出発側の熱電対2−1の相手として鉛直方向の熱電対2−4及び水平方向の左右の熱電対2−2,2−3が選択されており、合計三つのペアが存在している。これに対して、図6(b)の左側に示すように、本実施形態の熱電対のfrom-toペアの選択においては、出発側の熱電対2−1と鉛直方向の熱電対のペア2−4、及び出発側の熱電対2−1と水平方向の熱電対2−2,2−3のペアのいずれかが選択されている。この選択は鋳込速度Vcから予測されるシェル破断角θに応じて伝播に要する鋳込み長さが最短となるように自動的に選択される。具体的には、鋳込速度Vcが速い場合、上段に示すように、ある出発側の熱電対2−1に対して鉛直方向の熱電対2−4が選択され、鋳込速度Vcが遅い場合、下段に示すように、ある出発側の熱電対2−1に対して水平方向の熱電対2−2,2−3が選択される。なお、上述のように、水平方向の左右の熱電対2−2,2−3についてはいずれの鋳込み長さが最短になるかは区別できないので、左右の熱電対2−2,2−3を選択することになる。   FIG. 6 shows a comparison between the selection of a conventional thermocouple from-to pair and the selection of the thermocouple from-to pair of the present embodiment. FIG. 6A shows selection of a conventional thermocouple from-to pair, and FIG. 6B shows selection of the thermocouple from-to pair of the present embodiment. As shown in FIG. 6 (a), in the selection of a conventional thermocouple from-to pair, a vertical thermocouple 2-4 and a horizontal left and right thermocouple 2-1 are paired with a certain starting thermocouple 2-1. Thermocouples 2-2 and 2-3 are selected, and there are a total of three pairs. On the other hand, as shown on the left side of FIG. 6B, in the selection of the thermocouple from-to pair of the present embodiment, the starting thermocouple 2-1 and the vertical thermocouple pair 2 are selected. -4, and a pair of the thermocouple 2-1 on the starting side and the thermocouples 2-2 and 2-3 in the horizontal direction are selected. This selection is automatically selected so that the casting length required for propagation becomes the shortest according to the shell breaking angle θ predicted from the casting speed Vc. Specifically, when the casting speed Vc is high, as shown in the upper part, the vertical thermocouple 2-4 is selected with respect to a certain starting thermocouple 2-1, and the casting speed Vc is slow. As shown in the lower part, horizontal thermocouples 2-2 and 2-3 are selected for a certain thermocouple 2-1 on the starting side. As described above, since the left and right thermocouples 2-2 and 2-3 cannot be distinguished as to which casting length is the shortest, the left and right thermocouples 2-2 and 2-3 are connected to each other. Will choose.

また、図6(b)の右側に示すように、ある出発側の熱電2−1対に対して水平方向及び垂直方向に隣接する熱電対2−2,2−3,2−4が断線等により正常に温度を検出できない場合、出発側の熱電対2−1に対して斜め下方向の熱電対2−5が選択されるか、図6(b)の下段に示すように、出発側の熱電対2−1に対して水平方向に隣接する熱電対をスキップした熱電対2−6,2−7が選択される。この選択も鋳込速度Vcから予測されるシェル破断角θに応じて伝播に要する鋳込み長さが最短となるように自動的に選択される。   Further, as shown on the right side of FIG. 6B, the thermocouples 2-2, 2-3, and 2-4 adjacent in the horizontal direction and the vertical direction with respect to a certain thermoelectric pair 2-1 are disconnected or the like. If the temperature cannot be detected normally by the thermocouple 2-1, the thermocouple 2-5 in the diagonally lower direction is selected with respect to the thermocouple 2-1 on the starting side, or as shown in the lower part of FIG. The thermocouples 2-6 and 2-7 that skip the thermocouple adjacent in the horizontal direction to the thermocouple 2-1 are selected. This selection is also automatically selected so that the casting length required for propagation becomes the shortest according to the shell breaking angle θ predicted from the casting speed Vc.

上記により、鋳込速度Vc及び熱電対2の健全状況に応じて最適な熱電対2のfrom-toペアを設定することで、従来であれば過剰に熱電対2のfrom-toペアを設定していたが、本実施形態では、最小限の熱電対2のfrom-toペアにて監視することができ、誤検知を削減することができる。   By setting the optimum thermocouple 2 from-to pair according to the casting speed Vc and the sound condition of the thermocouple 2 as described above, the thermocouple 2 from-to pair is excessively set in the conventional case. However, in the present embodiment, monitoring can be performed with a minimum from-to pair of thermocouples 2, and erroneous detection can be reduced.

実機のスラブ連続鋳造設備を用い、本実施形態の予知方法と従来の予知方法を使用し、拘束性ブレークアウトを予知した。適用材は低炭素鋼及び極低炭素鋼であり、鋳込速度は1.5m/min〜2.5m/minの範囲内であった。図7に示すように、熱電対のfrom-toペア数が多い従来の予知方法では、拘束性ブレークアウト発生検出のうち15%程度の誤差があった。これに対し、熱電対のfrom-toペア数を最小限にする本実施形態の予知方法では、拘束性ブレークアウト発生検出の誤検出を8%程度とすることができ、誤検出の削減により生産能率向上が可能になった。   Using the actual slab continuous casting equipment, the predictive method of this embodiment and the conventional predictive method were used to predict the constraining breakout. The applied materials were low carbon steel and extremely low carbon steel, and the casting speed was in the range of 1.5 m / min to 2.5 m / min. As shown in FIG. 7, in the conventional prediction method with a large number of from-to pairs of thermocouples, there was an error of about 15% in detecting the occurrence of constraining breakout. On the other hand, in the prediction method of this embodiment that minimizes the number of from-to pairs of thermocouples, the false detection of the occurrence of the constraining breakout can be reduced to about 8%, and the production is achieved by reducing the false detection. Improved efficiency.

1…鋳型
2…熱電対
4…判定装置
DESCRIPTION OF SYMBOLS 1 ... Mold 2 ... Thermocouple 4 ... Judgment device

Claims (4)

連続鋳造設備の鋳型壁面の水平方向及び鉛直方向に複数の温度計を設け、温度計が検出した温度に基づいて拘束性ブレークアウトの予知を成立させる連続鋳造設備における拘束性ブレークアウトの予知方法において、
出発側の温度計から鉛直方向に隣接する温度計までの鋳込み長さL1、及び前記出発側の温度計から水平方向に隣接する温度計までの鋳込み長さL2を下記の計算式に基づいて算出し、
鋳込み長さL1と鋳込み長さL2とでどちらが短いかを割り出し、L1が短い場合には鉛直方向に隣接する温度計を、L2が短い場合には前記出発側の温度計の左右両方の温度計を到達側の温度計として選択し、
前記出発側の温度計及び選択された前記到達側の温度計が検出した温度に基づいて、ブレークアウトの予知を成立させることを特徴とする連続鋳造設備における拘束性ブレークアウトの予知方法。
ここで、
L1=y
L2=x×tanθ
yは前記出発側の温度計から鉛直方向に隣接する前記到達側の温度計までの距離であり、xは前記出発側の温度計から水平方向に隣接する前記到達側の温度計までの距離であり、θはシェル破断角である。
In a method for predicting a constraining breakout in a continuous casting facility in which a plurality of thermometers are provided in the horizontal direction and the vertical direction of the mold wall surface of the continuous casting facility, and the prediction of the constraining breakout is established based on the temperature detected by the thermometer. ,
The casting length L1 from the starting thermometer to the vertically adjacent thermometer and the casting length L2 from the starting thermometer to the horizontally adjacent thermometer are calculated based on the following calculation formulas: And
Determine which is shorter between casting length L1 and casting length L2, and if L1 is short, the thermometer adjacent in the vertical direction, and if L2 is short, both the left and right thermometers of the starting thermometer Select as the destination thermometer,
A predictive method of constraining breakout in a continuous casting facility, wherein breakout prediction is established based on the temperature detected by the starting side thermometer and the selected thermometer on the reaching side.
here,
L1 = y
L2 = x × tan θ
y is a distance from the starting side thermometer to the arrival side thermometer adjacent in the vertical direction, and x is a distance from the starting side thermometer to the arrival side thermometer adjacent in the horizontal direction. Yes, θ is the shell break angle.
前記出発側の温度計に水平方向及び鉛直方向に隣接する温度計が正常に温度を検出できない場合、
前記出発側の温度計から斜め下方向に接する温度計までの鋳込み長さL3、及び前記出発側の温度計から水平方向に隣接する温度計をスキップした次の温度計までの鋳込み長さL4を算出し、
鋳込み長さL3と鋳込み長さL4のどちらが短いかを割り出し、
鋳込み長さが短い方の温度計を前記到達側の温度計として選択することを特徴とする請求項に記載の連続鋳造設備における拘束性ブレークアウトの予知方法。
ここで、
L3=y+x×tanθ
L4=2x×tanθ
yは前記出発側の温度計から鉛直方向に隣接する温度計までの距離であり、xは前記出発側の温度計から水平方向に隣接する前記到達側の温度計までの距離であり、2xは前記出発側の温度計から水平方向に隣接する温度計をスキップした次の温度計までの距離であり、θはシェル破断角である。
When the thermometer adjacent to the departure side thermometer in the horizontal and vertical directions cannot detect the temperature normally,
It said starting side next casting length L4 to the thermometer skip thermometer casting length L3 from the thermometer to the next contact thermometer obliquely downward, and a thermometer of the starting side adjacent in the horizontal direction To calculate
Determine which casting length L3 or casting length L4 is shorter,
2. The method for predicting constraining breakout in a continuous casting facility according to claim 1 , wherein a thermometer having a shorter casting length is selected as the thermometer on the reaching side.
here,
L3 = y + x × tan θ
L4 = 2x × tan θ
y is the distance from the starting thermometer to the thermometer adjacent in the vertical direction, x is the distance from the starting thermometer to the adjacent thermometer in the horizontal direction, and 2x is The distance from the starting thermometer to the next thermometer that skips the horizontally adjacent thermometer, and θ is the shell break angle.
連続鋳造設備の鋳型壁面の水平方向及び鉛直方向に設けられる複数の温度計と、
温度計が検出した温度に基づいて、拘束性ブレークアウトの予知を成立させる判定装置と、を備える連続鋳造設備における拘束性ブレークアウトの予知装置において、
前記判定装置は、
出発側の温度計から鉛直方向に隣接する温度計までの鋳込み長さL1、及び前記出発側の温度計から水平方向に隣接する温度計までの鋳込み長さL2を下記の計算式に基づいて算出し、
鋳込み長さL1と鋳込み長さL2とでどちらが短いかを割り出し、L1が短い場合には鉛直方向に隣接する温度計を、L2が短い場合には前記出発側の温度計の左右両方の温度計を到達側の温度計として選択し、
前記出発側の温度計及び選択された前記到達側の温度計が検出した温度に基づいて、ブレークアウトの予知を成立させる連続鋳造設備における拘束性ブレークアウトの予知装置。
ここで、
L1=y
L2=x×tanθ
yは前記出発側の温度計から鉛直方向に隣接する前記到達側の温度計までの距離であり、xは前記出発側の温度計から水平方向に隣接する前記到達側の温度計までの距離であり、θはシェル破断角である。
A plurality of thermometers provided in the horizontal direction and the vertical direction of the mold wall surface of the continuous casting facility;
In a predictive device for constraining breakout in a continuous casting facility, comprising a determination device that establishes a predictive of constraining breakout based on a temperature detected by a thermometer,
The determination device includes:
The casting length L1 from the starting thermometer to the vertically adjacent thermometer and the casting length L2 from the starting thermometer to the horizontally adjacent thermometer are calculated based on the following calculation formulas: And
Determine which is shorter between casting length L1 and casting length L2, and if L1 is short, the thermometer adjacent in the vertical direction, and if L2 is short, both the left and right thermometers of the starting thermometer Select as the destination thermometer,
An apparatus for predicting a constraining breakout in a continuous casting facility that establishes a prediction of a breakout based on a temperature detected by the starting-side thermometer and the selected reaching-side thermometer.
here,
L1 = y
L2 = x × tan θ
y is a distance from the starting side thermometer to the arrival side thermometer adjacent in the vertical direction, and x is a distance from the starting side thermometer to the arrival side thermometer adjacent in the horizontal direction. Yes, θ is the shell break angle.
前記出発側の温度計に水平方向及び鉛直方向に隣接する温度計が正常に温度を検出できない場合、 When the thermometer adjacent to the departure side thermometer in the horizontal and vertical directions cannot detect the temperature normally,
前記出発側の温度計から斜め下方向に隣接する温度計までの鋳込み長さL3、及び前記出発側の温度計から水平方向に隣接する温度計をスキップした次の温度計までの鋳込み長さL4を算出し、  Casting length L3 from the starting side thermometer to the thermometer adjacent in the diagonally downward direction, and casting length L4 from the starting side thermometer to the next thermometer skipping the adjacent thermometer in the horizontal direction To calculate
鋳込み長さL3と鋳込み長さL4のどちらが短いかを割り出し、  Determine which casting length L3 or casting length L4 is shorter,
鋳込み長さが短い方の温度計を前記到達側の温度計として選択することを特徴とする請求項3に記載の連続鋳造設備における拘束性ブレークアウトの予知装置。  The predictive device for constraining breakout in the continuous casting equipment according to claim 3, wherein a thermometer having a shorter casting length is selected as the thermometer on the reaching side.
ここで、  here,
L3=y+x×tanθ  L3 = y + x × tan θ
L4=2x×tanθ  L4 = 2x × tan θ
yは前記出発側の温度計から鉛直方向に隣接する温度計までの距離であり、xは前記出発側の温度計から水平方向に隣接する前記到達側の温度計までの距離であり、2xは前記出発側の温度計から水平方向に隣接する温度計をスキップした次の温度計までの距離であり、θはシェル破断角である。  y is the distance from the starting thermometer to the thermometer adjacent in the vertical direction, x is the distance from the starting thermometer to the adjacent thermometer in the horizontal direction, and 2x is The distance from the starting thermometer to the next thermometer that skips the horizontally adjacent thermometer, and θ is the shell break angle.
JP2012045554A 2012-03-01 2012-03-01 Method and apparatus for predicting constraining breakout in continuous casting equipment Active JP5906814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012045554A JP5906814B2 (en) 2012-03-01 2012-03-01 Method and apparatus for predicting constraining breakout in continuous casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012045554A JP5906814B2 (en) 2012-03-01 2012-03-01 Method and apparatus for predicting constraining breakout in continuous casting equipment

Publications (2)

Publication Number Publication Date
JP2013180317A JP2013180317A (en) 2013-09-12
JP5906814B2 true JP5906814B2 (en) 2016-04-20

Family

ID=49271359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012045554A Active JP5906814B2 (en) 2012-03-01 2012-03-01 Method and apparatus for predicting constraining breakout in continuous casting equipment

Country Status (1)

Country Link
JP (1) JP5906814B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7001074B2 (en) 2019-02-26 2022-01-19 Jfeスチール株式会社 Prediction method of restrictive breakout and continuous casting method of steel
CN113814369B (en) * 2021-09-28 2022-11-18 大连理工大学 Crystallizer bleed-out forecasting method based on eigenvector and Adaboost integrated model

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0771726B2 (en) * 1987-11-30 1995-08-02 川崎製鉄株式会社 Continuous casting method
JP3501054B2 (en) * 1999-12-09 2004-02-23 Jfeスチール株式会社 Method for preventing constraining breakout in continuous casting
JP2002361382A (en) * 2001-06-12 2002-12-17 Kawasaki Steel Corp Detecting method for restraining breakout

Also Published As

Publication number Publication date
JP2013180317A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP4688755B2 (en) Steel continuous casting method
JP5673100B2 (en) Breakout prediction method
JP6950860B1 (en) Breakout prediction method, continuous casting machine operation method, and breakout prediction device
JP5906814B2 (en) Method and apparatus for predicting constraining breakout in continuous casting equipment
JP5407987B2 (en) Method for detecting longitudinal cracks in slabs
JP2009061469A (en) Method and device for detecting break-out in continuous casting, continuous casting method of steel using the same device, and device for preventing break-out
JP3501054B2 (en) Method for preventing constraining breakout in continuous casting
JP2009178746A (en) Method and apparatus for changing continuous casting mold width
JP6621357B2 (en) Breakout prediction method
JP5482418B2 (en) Breakout prediction method
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
JP6347236B2 (en) Breakout prediction method, breakout prediction apparatus, and continuous casting method
JP4828366B2 (en) Longitudinal detection method and continuous casting method based on mold heat flux
JP5593801B2 (en) Breakout prediction method for continuous casting
WO2021256063A1 (en) Breakout prediction method, method for operating continuous casting apparatus, and breakout prediction device
JPH0557412A (en) Method for predicting constrained breakout in continuous casting
JPS6044163A (en) Method for predicting breakout in continuous casting
JPH0775766B2 (en) Method for detecting vertical crack in slab in continuous casting
JP5915463B2 (en) Breakout prediction method
JP6337848B2 (en) Method and apparatus for predicting constrained breakout
JPH0771726B2 (en) Continuous casting method
JP2013052431A (en) Method for measuring temperature in mold for continuous casting
JPS61176456A (en) Predict method of breakout caused by entrainment of inclusion
JPS58148064A (en) Predicting method for restrictive breakout
JP2002361382A (en) Detecting method for restraining breakout

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5906814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250