JPS58148064A - Predicting method for restrictive breakout - Google Patents

Predicting method for restrictive breakout

Info

Publication number
JPS58148064A
JPS58148064A JP3188382A JP3188382A JPS58148064A JP S58148064 A JPS58148064 A JP S58148064A JP 3188382 A JP3188382 A JP 3188382A JP 3188382 A JP3188382 A JP 3188382A JP S58148064 A JPS58148064 A JP S58148064A
Authority
JP
Japan
Prior art keywords
breakout
temperature
mold
detected
thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3188382A
Other languages
Japanese (ja)
Other versions
JPS6347545B2 (en
Inventor
Yoshitaka Oiwa
大岩 美貴
Kazuaki Miyahara
一昭 宮原
Sho Yao
八百 升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3188382A priority Critical patent/JPS58148064A/en
Publication of JPS58148064A publication Critical patent/JPS58148064A/en
Publication of JPS6347545B2 publication Critical patent/JPS6347545B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • B22D11/207Controlling or regulating processes or operations for removing cast stock responsive to thickness of solidified shell

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To predict the generation of rescrictive breakout by detecting the change in temp. with plural thermometers embedded in a casting mold and checking the detected sequential patterns appearing in the temp. changes. CONSTITUTION:Plural thermocouples are embedded in the wall surfaces of a casting mold in a continuous casting installation to monitor the temp. in the wall surfaces of the casting mold. When the temp. changing patterns wherein the detected temps. fall after rising once from an average temp. are detected continuously with >=2 pieces of the adjacent thermocouples, said patterns are predicted as the generation of breakout. The generation of the breakout is thus prevented with sufficient allowances.

Description

【発明の詳細な説明】 本発明は拘束性ブレイクアウト予知方法に係り、詳しく
は、連続鋳造鋳型内#C熱電対V堀め込んtその温度変
化ケ検出し、その変化の推移と温度変化の検出順序パタ
ーンなチェックすることKより、拘束性ブレイクアウト
を予知し。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for predicting a restraining breakout, and more specifically, detects the temperature change of a #C thermocouple V embedded in a continuous casting mold, and calculates the transition of the change and the temperature change. Predict restrictive breakouts by checking the detection order pattern.

未然に防止する方法に係る。This relates to methods of preventing such occurrences.

近年、連続鋳造設備は高速化、高品質化な指向しており
、モールドメッキ、授漬ノズル形状その他鋳造条件は大
巾に変化している。それに伴い操業事故は多様化し、各
種、改善開発にも拘らず減少していない。操業事故の中
でも最も問題となるのは、ブレイクアウトである。従来
のブレイクアウトは多くの場合、温度異常、糾造速度急
変、パウダー不適、マシン不整等の操業条件に異常が認
められる場合に発生している。
In recent years, continuous casting equipment has been trending toward higher speeds and higher quality, and mold plating, immersion nozzle shapes, and other casting conditions have changed drastically. As a result, operational accidents have become more diverse and have not decreased despite various improvements and developments. Breakouts are the most problematic type of operational accident. Conventional breakouts often occur when abnormal operating conditions are observed, such as temperature abnormalities, sudden changes in sizing speed, unsuitable powder, or machine irregularities.

これらのブレイクアウトは、技術の発展とともに減少し
ている。しかし、近年のブレイクアウトは、従来のブレ
イクアウトと相違して操業条件に表面的な異常は認めら
れないにも拘らず、突然発生するものであり、その対策
に苦慮している。この種のブレイクアウトで特徴的なこ
とは、いずれもシェルがモールドに固着し、シェルがひ
きちぎられてブレイクアウトに至ることであって、従来
のブレイクアウトと区別する意味で拘束性ブレイクアウ
トと考えられる。
These breakouts are decreasing as technology develops. However, unlike conventional breakouts, breakouts in recent years occur suddenly even though no superficial abnormality is observed in operating conditions, and it is difficult to countermeasures against breakouts. A characteristic feature of this type of breakout is that the shell sticks to the mold and is torn off, leading to a breakout, and is called a restrictive breakout to distinguish it from a conventional breakout. Conceivable.

この拘束性ブレイクアウトの原因としてパウダーの流入
不良が考えられるが、これ以外に多くの要因に左右され
、パウダーの開発過l!においても拘束性ブレイクアラ
トラ防止することが望まれている。
The cause of this restrictive breakout is thought to be poor powder inflow, but it is also influenced by many other factors, such as poor powder development. It is also desired to prevent restraint breakage.

本発明は、上記欠点の解決1目的とし、具体的には上記
の拘束性ブレイクアウト発生を事前に防止できるブレイ
クアウト予知方法な提案する。
The present invention aims to solve the above-mentioned drawbacks, and specifically proposes a breakout prediction method that can prevent the occurrence of the above-mentioned restrictive breakout in advance.

すなわち1本発明は連続鋳造設備の鋳型壁面vcWl数
の熱電対1に埋設し、これら熱電対中の一つめ熱電対の
検出温度が検出平均i1度より、一旦上昇してから下降
したことな検出し、この一つの熱電対#c隣接した他の
少な(とも一つの熱電対で、続いて上記検出温度の温度
変化パターンが検出されたときIII:、ブレイクアウ
ト発生として予知することを特徴とする。
That is, 1 the present invention is a method for detecting when the temperature detected by the first thermocouple among these thermocouples rises once and then falls from the detection average i1 degree by embedding thermocouples 1 in the wall surface of the mold of continuous casting equipment. However, when a temperature change pattern of the above-mentioned detected temperature is subsequently detected with this one thermocouple #c and other adjacent thermocouples, the occurrence of a breakout is predicted. .

以下、本発明について詳しく説明する。The present invention will be explained in detail below.

まず、連続鋳造において、その鋳型におけるブレイクア
ウトの発生状況なみると、拘束性ブレイクアウトではシ
ェルが鋳型内で破断残存していることがわかる。このた
め、本発明者等はこの現象から拘束性ブレイクアウトの
発生J程V調べたところ次の通りであることがわかった
First, in continuous casting, when we look at the occurrence of breakouts in the mold, we can see that in the case of restraint breakouts, the shell remains broken in the mold. For this reason, the inventors of the present invention investigated the occurrence of restrictive breakout based on this phenomenon and found the following.

すなわち、第1図(1)、(b)、(e)、(d)、(
e)ならびK(f)は拘束性ブレイクアウト発生過程の
説明図であって、纂lにシェルlの一部が何らかの原因
!鋳型2の壁面に固着される(第1図ta+参照)。
That is, Fig. 1 (1), (b), (e), (d), (
e) and K(f) are explanatory diagrams of the restrictive breakout generation process, and it seems that part of the shell l is the cause! It is fixed to the wall of the mold 2 (see ta+ in FIG. 1).

第2#c、鋳込み引抜きによりシェル10弱い部分1a
、つまり固着部11にの直下でシェル1がひきちぎられ
る(第1図(b)参照)。
2nd #c, shell 10 weak part 1a due to casting and drawing
In other words, the shell 1 is torn off directly below the fixed portion 11 (see FIG. 1(b)).

第3K、ちぎられた部分1adflj鋼が矢印の通りに
侵入し、鋳型2と接触凝固する(第1図(C)参照)。
3rd K, the torn part 1adflj steel enters in the direction of the arrow and solidifies in contact with the mold 2 (see Fig. 1(C)).

”M4に、鋳込み引抜きによりシェル1の弱い部分11
.つまり凝固部分がひきちぎられる(第1図(d)参照
)。
"M4, the weak part 11 of the shell 1 is removed by casting and drawing.
.. In other words, the solidified portion is torn off (see Figure 1(d)).

従って、以上の通りの第1〜第4の各過程ヲ繰り返すこ
とにより凝固シェルのひきちぎられる位置は、順次に鋳
型の下方へ移動し、これに伴い固着シェルは凝固厚が厚
くなって、第1図(e)の通りICff1積的に成長す
る。
Therefore, by repeating each of the first to fourth processes as described above, the position where the solidified shell is torn off sequentially moves to the lower part of the mold, and as a result, the solidified thickness of the solidified shell becomes thicker. As shown in Figure 1(e), ICff1 grows exponentially.

また、凝固シェルのひきちぎられる位置が第1図(f)
の通りにモールド直下近傍に到った場合にブレイクアウ
トとなる。
Also, the position where the solidified shell is torn off is shown in Figure 1(f).
If it reaches the vicinity directly below the mold, a breakout will occur.

また1以上の通り鋳W2の上下方向にシェルの破断Hi
aの位置は、下方へ移動するが、これと同時にシェルの
破断部の位置は鋳型の横方向へも伝播波及し、これが重
なって上記の如くブレイクアウトのときにシェルが鋳型
内に残存する。そこで、上記知見事実にもとづいて、第
1図体)〜(f)のAM分の温度を測定し、この温度推
移と@1図(&)〜(f)の各過程との相関性な求めた
ところ、このW[推移によって各過程が適格に把握でき
、ブレイクアウトが予知できることがわかった。
In addition, the shell fracture Hi in the vertical direction of casting W2 as shown in more than one
The position a moves downward, but at the same time, the position of the broken part of the shell also propagates in the lateral direction of the mold, and as a result of this, the shell remains in the mold at the time of breakout as described above. Therefore, based on the above knowledge and facts, we measured the temperature of the AM part of Figure 1) to (f) and found the correlation between this temperature transition and each process in Figure 1 (&) to (f). However, it has been found that each process can be properly understood by this W [transition, and a breakout can be predicted.

すなわち、第2図は上記過程でブレイクアウトが発生す
る際の@1図(a)〜(f)のAl1分の一つの熱電対
での温度変化の推移を示すグラフである。第2図#Cお
いて、纂1図(a)〜(d)での各過程でシェルの破断
部が推移している間は、i!度はほぼ一定の温度、つま
り、検出平均温度で推移する。この破断部が下方(移動
し、第1図(e)のところに至ると高温度となり、その
後は、鋳型壁面に凝固残存したシェル部位は成長すると
共に、鋳型と一片間の伝熱特性の変化(パウダー固化エ
アギャップ生成による)[よって大きな温度降下が第2
図の如く生じる。また、拘束性ブレイクアウトの発生に
は、鋳型温度にピーク値が存在することから、鋳型の温
度分布な酌」定するとブレイクアウト直前に温度分布の
異常が認められ、温度のピーク値が発生し、そのピーク
値す測定すれば予知できることも考えられる。
That is, FIG. 2 is a graph showing the transition of temperature change in one thermocouple of Al1 in Figures 1 (a) to (f) when breakout occurs in the above process. In Figure 2 #C, while the shell rupture part changes in each process in Figures 1 (a) to (d), i! The temperature changes at a nearly constant temperature, that is, the detected average temperature. When this fractured part moves downward (to the point shown in Figure 1(e)), the temperature becomes high, and after that, the shell portion that remains solidified on the mold wall grows, and the heat transfer characteristics between the mold and the piece change. (due to powder solidification air gap formation)
This occurs as shown in the figure. In addition, when a restrictive breakout occurs, there is a peak value in the mold temperature, so if we take into account the temperature distribution of the mold, an abnormality in the temperature distribution will be observed just before the breakout, and a peak temperature value will occur. , it may be possible to predict it by measuring its peak value.

しかし、実際にはこのピーク値は測定位値や一種によっ
て相違するが、その温度差は15〜20℃程度であり、
この程度の温度差では、測定時の湯面変動等の場合と区
別することが困難であり、ピーク値の測定のみによって
ブレイクアウトを予知することは困難である。
However, in reality, this peak value differs depending on the measurement position and type, but the temperature difference is about 15 to 20 degrees Celsius.
With a temperature difference of this magnitude, it is difficult to distinguish from a change in the hot water level during measurement, and it is difficult to predict a breakout only by measuring the peak value.

この点から本発明者等は、ブレイクアウト発生過程にお
ける鋳型温度の降下パターンに右目重視して研究したと
ころ、この温度降下バメーンな検出することによって、
まず、シェル破断部の鋳型側温点通過な判定し、つぎに
この温度変化パターンが隣接する#J温点に波及して少
なくとも連続して2個以上の熱電対で、このような温度
変化パターンな検出するとブレイクアウトな予知できる
ことがわかった。
From this point of view, the present inventors focused their research on the drop pattern of the mold temperature during the breakout generation process, and found that by detecting this temperature drop,
First, it is determined that the shell rupture part has passed through the hot spot on the mold side, and then this temperature change pattern spreads to the adjacent hot spot #J, and at least two or more thermocouples continuously detect this temperature change pattern. We found that it is possible to predict a breakout by detecting this.

換言すると、鋳型ll11iiに熱電対を埋設して温度
変化な検出する際に、そのピークの値のみを検出するの
でなく、一定温度がピーク値を経て急激に温度降下を生
じたとき、つまり、この温度降下パターンを連続して2
つ以上の隣接する熱電対で検出してブレイクアウトを予
知する。
In other words, when detecting temperature changes by embedding thermocouples in the mold, we do not only detect the peak value, but also detect when a constant temperature suddenly drops after reaching its peak value. Two consecutive temperature drop patterns
Predict breakout by detecting two or more adjacent thermocouples.

この連続する2つ以上の隣接する熱電対で、温度変化パ
ターンを検出してブレイクアウト予知するという方法は
、ブレイクアウト発生過程においては、必ず数置シェル
の破断面が除々に伝播波及するという仕組みに着目した
ものである。なお、一つの熱電対のみの温度変化パター
ンでブレイクアウトを予知すると、エアーギャップ及び
連鋳!#業時の継ぎたし等に対して生ずることのある所
關段注ぎ等の発生による1智でも、その発生箇所の通過
によって温度降下の変化パターンが熱電対により検出さ
れ、誤まったブレイクアウト予知となり、実操業への影
智が大きいことから絶対にさける会費がある。この点1
本発明では初期#C温度の降下パターンヶ検出した熱電
対に一隣接した熱電対によって、続いて同じ温度降下パ
ターンが検出されたことをもって、ブレイクアウト予知
な行なうため、上述誤判定なく正しくブレイクアウトが
予知できる。
This method of predicting a breakout by detecting a temperature change pattern using two or more consecutive adjacent thermocouples is a mechanism in which the fracture surface of the numerical shell always propagates and spreads gradually during the breakout occurrence process. The focus is on In addition, if a breakout is predicted based on the temperature change pattern of only one thermocouple, an air gap and continuous casting will occur! #Even if it is due to the occurrence of step pouring, etc., which may occur due to jointing during work, the change pattern of temperature drop can be detected by thermocouples by passing through the point where the problem occurs, resulting in a false breakout. There are some membership fees that should be avoided at all costs because they are predictive and have a large impact on actual operations. This point 1
In the present invention, a breakout is predicted based on the fact that the same temperature drop pattern is subsequently detected by a thermocouple adjacent to the thermocouple that detected the initial #C temperature drop pattern. Therefore, a breakout is correctly detected without the above-mentioned erroneous judgment. Can be predicted.

すなわち、エアーギャップ、段注ぎの発生は部分的であ
って、隣接する二つの熱電対に対して彩管な及ぼすほど
大きなものは通常発生せず、従って、−接する2つの熱
電対での検出による判定で正確に予知され、また、隣接
熱電対に影*V及ぼす大きなエアーギャップ、段注ぎが
発生した際は、鋳型直下でブレイクアウトに至っており
、誤判定とはならない。
In other words, the occurrence of air gaps and step pouring is partial and does not usually occur as large as the effect that a color tube has on two adjacent thermocouples. It is accurately predicted by the judgment, and when a large air gap or step pouring that affects adjacent thermocouples occurs, a breakout occurs directly under the mold, and it is not an erroneous judgment.

この際、熱電対はブレイクアウト発生3tt4程と関連
して熱電対を適正位fに埋め込むのが好ましい。
At this time, it is preferable to embed the thermocouple at an appropriate position f in relation to breakout occurrence.

まず、93図は300X400■サイズで長さ700m
mの鋳型において、鋳型上端から200−で4つの各壁
面巾方向中央の軸足位置に各1本の熱電対を配設して、
ブレイクアウト発生時の各熱電対611定データを側進
時間との関係から示したものである(ただし、B、0発
生とは拘束性ブレイクアウトの発生な示す6)。113
図の左−には熱電対の配設鋳臘壁mな示し、はじめに3
[1i111で温度の急激な上昇と下降が起こり、続い
て4thi@、2面側、1而陶の順で発生していること
がわかる。
First, Figure 93 is 300 x 400 size and 700 m long.
m mold, one thermocouple was placed at each of the four pivot feet in the center of the wall width direction at 200-degrees from the upper end of the mold,
The constant data of each thermocouple 611 when a breakout occurs is shown in relation to the lateral movement time (B, 0 occurrence indicates no occurrence of a restrictive breakout (6)). 113
The left side of the figure shows the casting wall where the thermocouple is installed.
[It can be seen that a rapid rise and fall in temperature occurs at 1i111, followed by 4thi@, 2nd side, and 1st place.

換言すると、最初3面側で温度変化が現われ。In other words, a temperature change appears on the third side first.

続いて隣接する壁面である4面側および2而陶で温度変
化が起こり、最後[4向−又は2面側に隣接するm面で
ある1面一で温度変化が現われているわけである。この
シェル破断面が通過する@に得られる測定データの各面
に現われる時間遅れは#破断面が巾方向および引抜方向
へ伝播波及することな表わしており、この波及状況は第
4図(a)、 (b)、 (e)、 (d)ならびに(
e)[示す。
Subsequently, a temperature change occurs on the 4th side and the 2nd wall, which are the adjacent wall surfaces, and finally, a temperature change appears on the 1st side, which is the m side adjacent to the 4th side or the 2nd side. The time delay that appears on each side of the measurement data obtained when this shell fracture surface passes @ indicates that the # fracture surface propagates in the width direction and the pull-out direction, and this ripple situation is shown in Figure 4 (a). , (b), (e), (d) and (
e) [Show.

すなわち、l!4図(a)、 (b)、(e)、 (d
)ならびに(e)#Cは鋳型壁面の展開図が示され、・
印は各熱電対の棚温位置を示すと共に、符号Bはシェル
破断111に示す。第4図(a)は3面側メニスカス近
傍で焼付けが発生した場合な示し、続いて第4図(b)
はシェル破断面が3面側の測温位置を通過したときに、
3面lit温度がピークを示すことを示す。その後、シ
ェル破断面が鋳型台壁面に伝播波及し、第4図(C)の
通り、4面簡温度がピーフケ示し、続いて第4図(d)
の通り2而陶、第4図(e)の通り111@の顯で温度
ピークが現われる。
That is, l! Figure 4 (a), (b), (e), (d
) and (e) #C are developed views of the mold wall surface, and
The marks indicate the shelf temperature position of each thermocouple, and the symbol B indicates the shell break 111. Figure 4(a) shows the case where burning occurs near the meniscus on the third side, followed by Figure 4(b).
When the shell fracture surface passes the temperature measurement position on the third side,
It shows that the three-sided lit temperature shows a peak. After that, the shell fracture surface propagates and spreads to the mold bed wall surface, and as shown in Figure 4 (C), the temperature on all four surfaces shows a peak, and then as shown in Figure 4 (d).
As shown in Figure 4(e), a temperature peak appears at the edge of 111@.

このことがら熱電対によって検出温度が上昇してからそ
の後、下降するという温度変化パターンが連続して2つ
以上のli4接する熱電対で観劇されたとき、ブレイク
アウトの発生を予知すれば、十分な対応操作時間をとる
ことができ、岨りなくブレイクアウトの発生が予知でき
る。つまり、94図(b)K続<(C)または(d>の
ところでブレイクアラ)1−予知すれば良いわけで、こ
の点から本発明方法では第4図(c)又は(d)でブレ
イクアウト発生を予知する。換言すれば1本発明方法で
は鋳型III向に埋設した複数個の熱電対により、鋳I
J1壁面編度を監視し、検出温度が平均ら度より一担上
昇してから下降する温度変化パターンが連続し、24m
以上の隣接する熱電対で検出したとき、ブレイクアウト
発生の予知なするものである。
From this, it is sufficient to predict the occurrence of a breakout when a temperature change pattern in which the temperature detected by the thermocouple rises and then falls is observed with two or more thermocouples in contact with li4. This allows time for response operations to be taken, and the occurrence of a breakout can be easily predicted. In other words, it is only necessary to predict the break at (C) or (d> in Figure 94 (b) K continuation <(C) or (d>). From this point, in the method of the present invention, the break occurs at Figure 4 (c) or (d). Predict out occurrence. In other words, in the method of the present invention, a plurality of thermocouples buried in the direction of mold III
The J1 wall knitting pattern was monitored, and the temperature change pattern in which the detected temperature rose by one step above the average degree and then fell was continuous, and the temperature was 24 m
When detected by the above-mentioned adjacent thermocouples, it is possible to predict the occurrence of a breakout.

また、上記の各過鵬から、第5図において一片3のシェ
ル破断面Bが鋳型の壁面に沿って伝播波及する速度を求
めると、その鋳込速度(ν)の約1/2の降下速度とな
る。また、第5図に示すようにブレイクアウトした鋳片
の表面状況からシェル破断面Bの伝播波及角度を調べる
と、水平レベルに対しはぼ一定の角度(#)で成長発達
する過程がみられる。このような現象はブルーム連鋳機
のみならず、スラブ連鋳機でも同様である(なお、第5
図において符号5はブレイクアウト発生点な示す。)。
In addition, from each of the above-mentioned overpasses, the speed at which the shell fracture surface B of piece 3 propagates and spreads along the wall surface of the mold in Fig. 5 is found to be approximately 1/2 of the casting speed (ν). becomes. In addition, when examining the propagation angle of shell fracture surface B from the surface condition of the broken-out slab as shown in Figure 5, a process of growth and development at a nearly constant angle (#) with respect to the horizontal level can be seen. . This phenomenon occurs not only in bloom continuous casting machines but also in slab continuous casting machines (note that
In the figure, reference numeral 5 indicates the breakout occurrence point. ).

そこで以上の通り、シェル破断面の降下速度(ν)、伝
播波及角度(の、更に、ブレイクアウト検知からその対
応操作までの余裕時間(1)等から次の通りに熱電対配
設位置な定めることができる。
Therefore, as described above, the thermocouple placement position is determined as follows from the descending speed of the shell fracture surface (ν), the propagation propagation angle (, and also the margin time (1) from breakout detection to corresponding operation). be able to.

まず、早朝にブレイクアウtxt’予知し、その対応操
作の時間的余裕を十分に得ようとする場合は、鋳型上部
に熱電対を埋め込むのが好ましい。しかし、メニスカス
近傍では熱電対の検出温度が場面変動によって大きく変
動し、前述の温度上昇および下降の変化パターンを検出
することがむずかしく、このため、できる限りこの範囲
に熱電対を埋設するのは好ましくない。そこで、熱電対
は鋳型下部に埋設するのが好ましく、その下限設定は次
の通り行なうことができる。すなわち、第6図は1IX
l*Xloの寸法の鋳型の11面を展開して示す展開図
を示し、シェル破断面Bは第5図で示す如く、水平レベ
ルと角度0で伝播波及している。なお、・印は、熱電対
埋設部で、鋳型巾方向の熱電対配設位置はIとして示す
First, if you want to predict a breakout txt' early in the morning and have enough time to respond to it, it is preferable to embed a thermocouple in the upper part of the mold. However, near the meniscus, the temperature detected by the thermocouple fluctuates greatly depending on the scene, making it difficult to detect the pattern of temperature rise and fall described above.For this reason, it is preferable to embed the thermocouple in this range as much as possible. do not have. Therefore, it is preferable to embed the thermocouple in the lower part of the mold, and its lower limit can be set as follows. In other words, Figure 6 shows 1IX
A developed view showing 11 sides of a mold with dimensions l*Xlo is shown, and the shell fracture surface B propagates at an angle of 0 with the horizontal level, as shown in FIG. Note that the * mark is the thermocouple embedding part, and the thermocouple placement position in the mold width direction is shown as I.

第6fjlJから求めると、熱電対埋設位mt工駒型下
端からの距離なυとすると、(1)式で示される範囲に
するのがよい。
When calculated from the 6th fjlJ, the distance υ from the thermocouple buried position mt from the lower end of the piece mold should be within the range shown by equation (1).

L:>tX上・・・・・・・・・・・・・・・(1)ま ただし、νは鋳込速度、tはブレイクアウト予知後の余
裕時間。
L: > tX (1) However, ν is the casting speed, and t is the margin time after breakout prediction.

また、熱電対はブレイクアウト検知の上からはなるべく
多く壁EIiK埋設するのが好ましい。
Further, it is preferable to embed as many thermocouples as possible in the wall EIiK from above the breakout detection.

しかし、実用上は針a#、保守面等からなるべく少ない
個数で検出できるのが好ましい。したかって、熱電対埋
設個数NはwNI型サイズ(巾、犀、兼さ)およびブレ
イクアウト予知後の余裕時間によって増減し、熱電対埋
設部さな上記として次の(2)式で示す鋳型巾方向の熱
電対埋設部M)Kすれば、必簀鍾小限の熱電対個数のが
得^  2X(/l+4!s)  、、、、、−0−(
3)N= NΣN ・・・・・・・・・・・・・・・(4)ブレイ
クアウト発生過程では、第6図に示すシェル破断面Bが
メニスカス近傍を基点として鋳型下端に下降するので、
鋳型下端にシェル破断部先端が到達するまでの間に、前
述の温度変化パターンが検出される時間に制限があるこ
とになり、この隣接熱電対の検出時間間隔(1′)はつ
ぎ04式で示される。
However, in practice, it is preferable to detect as few needles as possible from the viewpoint of needle a#, maintenance, etc. Therefore, the number N of embedded thermocouples increases or decreases depending on the size of the wNI mold (width, size, height) and the time allowance after breakout prediction, and the number N of embedded thermocouples depends on the mold width shown by the following equation (2) as above. If the thermocouple embedding part in the direction M)K is used, the required minimum number of thermocouples can be obtained.
3) N= NΣN (4) During the breakout generation process, the shell fracture surface B shown in Figure 6 descends to the lower end of the mold from the vicinity of the meniscus. ,
There is a limit to the time during which the temperature change pattern described above is detected until the tip of the shell fracture reaches the lower end of the mold, and the detection time interval (1') of the adjacent thermocouples is expressed by the following equation 04. It will be done.

’i’〈jtanθ÷子 ・・・・・・・・・(4)た
だし、Iは鋳型壁面巾方向の熱電対埋設間隔距離、θは
シェル破断面角度、νは鋳込速度である。
'i'<jtanθ÷(4) where I is the thermocouple embedding distance in the mold wall width direction, θ is the shell fracture surface angle, and ν is the casting speed.

つまり、一つの熱電対で前述の@度変化パターンが検出
されても、上記時間T内KV4Wする熱電対で同様の温
度変化パターンが検出されなければ、ブレイクアウト発
生とはならないのであって、この点からも誤判定をさけ
ることができる。又、時間T内に@接しない熱電対(例
えば、1つ間をあけて2つ目の熱電対)で紐度震化パタ
ーンが検出されても、ブレイクアウト発生とはならない
In other words, even if the above-mentioned temperature change pattern is detected with one thermocouple, a breakout will not occur unless a similar temperature change pattern is detected with the KV4W thermocouple within the above time T. Misjudgments can also be avoided from the points. Further, even if a string intensification pattern is detected in a thermocouple that does not make contact within the time T (for example, the second thermocouple separated by one), a breakout will not occur.

要するに1本発明方法ではこの時間T内に連絖して2つ
以上のil+tH1する熱電対において、温度変化パタ
ーンが現われるといつ温度変化検出順序パターンを検出
し、これにもとづいてブレイクアウトの発生な予知する
ところニ特徴がある。
In short, in the method of the present invention, when a temperature change pattern appears in two or more thermocouples that perform il + tH1 consecutively within this time T, a temperature change detection order pattern is detected, and based on this, a breakout is detected. There are two characteristics that make predictions.

実施例 次ec、実施例について説明する。Example Next, an example will be explained.

まず、114図に示す通り、調温銅板の4つの面にそれ
ぞれ1本ずつの熱電陶を取付けた。これら各熱電対はI
IW上端より200m下のところで熱電対先端部は調湿
鋼板内面からlO−のところに位置させた。この連鋳装
置において内断面積が300X400mで全長700■
の鋳型に0.86m/分の速度で機械構造用縦累鋼を鋳
込んだ。この場合、タンディツシュの溶鋼温度ハΔT=
36℃でブレイクアウトが発生するまでの温度推移を求
めたところ、第7図の通りであった。
First, as shown in Figure 114, one thermoelectric ceramic was attached to each of the four sides of the temperature control copper plate. Each of these thermocouples is I
At 200 m below the upper end of the IW, the tip of the thermocouple was located 1O- from the inner surface of the humidity control steel plate. This continuous casting equipment has an internal cross-sectional area of 300 x 400 m and a total length of 700 cm.
Machine structural longitudinal steel was cast into the mold at a speed of 0.86 m/min. In this case, the temperature of the molten steel in the tandish is ΔT=
The temperature change until breakout occurred at 36°C was determined as shown in Figure 7.

第7図において、横軸の鋳込み時間の単位は1分であり
、各熱電対の測温値は一定の伏線で推移しているが、突
如15〜20℃の温度上昇が表われ、続いて100〜1
30℃の温度降下のパターン変化な生じた。このパター
ン変化は例えば、上記の第3図に示す場合と同様に、ま
ず、3mmK設けた熱電対により、ピークか検出され順
次に、4面一、2111i111.1面側で検出され、
1面一検出後若干の時間差でブレイクアウトが発生した
In Figure 7, the unit of casting time on the horizontal axis is 1 minute, and the temperature values measured by each thermocouple are changing at a constant foreshadowing, but a temperature rise of 15 to 20 degrees Celsius suddenly appears, and then 100-1
A pattern change of 30°C temperature drop occurred. For example, similar to the case shown in FIG. 3 above, this pattern change is first detected by a thermocouple of 3 mmK, and then sequentially detected on the 4th surface, 2111i111.1 side,
A breakout occurred with a slight time lag after each detection.

そこで、この温度変化パターン検出時点のズレなまとめ
ると、第8図に示すとおりであり、本発明方法によれば
少なくとも32秒前に確実にブレイクアウト予知がなさ
れ、十分な余裕時間なもっていることがわかる。
Therefore, the deviation in the timing of detecting this temperature change pattern can be summarized as shown in Fig. 8, and according to the method of the present invention, a breakout prediction is reliably made at least 32 seconds in advance, and there is sufficient margin time. I understand.

以上詳しくaQl]L、た通−リ、本発明方法は連続鋳
造鋳型内に温度計な埋め込み、その温度変化を検出し、
2つ以上の温度針で連続してW#LX化が現われる検出
順序パターンなチェックしてブレイクアラ)V予知する
ものであるから、拘束性ブレイクアウトの発生な確実に
検出でき。
In detail, the method of the present invention embeds a thermometer in the continuous casting mold, detects the temperature change,
Since it is possible to predict a breakout by checking the detection order pattern in which W#LX changes occur in two or more temperature needles in succession, it is possible to reliably detect the occurrence of a restrictive breakout.

未然に十分なる余裕iもって防止することができる。This can be prevented with a sufficient margin i.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (b)、 (c)、Td)、le)な
らび#C(f)は拘束性ブレイクアウト発生過程の説明
図、亀2図は上記過程でブレイクアウトが発生する際の
第1図(a)〜(f)のAs分の一つの熱電対での温度
変化の推移を示すグラフ、第3図はブレイクアウト発生
までの鋳m缶面の温度変化な示すグラフ、II 4W(
1k)、 (b)、 (e)、 (d)ならびK(e)
はブレイクアウト発生までの推移を示す説明図、@5図
はブレイクアウト発生後の鋳型表面状況の説明図、第6
図はシェル破断面が鋳型壁面を伝播波及する状m1′展
開して示す説明図、第7図は実際の鋳造時にブレイクア
ウトを予知するときの鋳型各面の温度変化を示すグラフ
%#!8図は第4図の場合の各#型面のa度変化ピーク
発生時の時間的遅れ會示すグラフである。 符号l・・・・・・シェル 1m・・・シェルの弱い部分 lb・・・固着s   2・・・・・・鋳 型3・・・
・・・鋳片 4・・・・・・乱れたオシレーションマーク5・・・・
・・ブレイクアウト発生点 %軒出−人 I口@製鉄株式会社 代理人弁理士松下a勝 弁論士 絢 島 文 雄 第1図 第2図 鋳込時間 第3図 憤ID        鋳  jりL II今 ^門 
 (介ン第5図 5 第6図 鋳込み吟問
Figure 1 (a), (b), (c), Td), le) and #C (f) are explanatory diagrams of the process of generating a restrictive breakout, and Figure 2 is an illustration of when a breakout occurs in the above process. Figure 1 (a) to (f) is a graph showing the transition of temperature change in one of the thermocouples for As, Figure 3 is a graph showing the temperature change on the surface of the casting can until breakout occurs, II 4W(
1k), (b), (e), (d) and K(e)
is an explanatory diagram showing the transition up to the occurrence of breakout, @5 is an explanatory diagram of the mold surface condition after breakout occurs, and Figure 6 is an explanatory diagram showing the transition until breakout occurs.
The figure is an explanatory diagram showing m1' expansion of the shell fracture surface as it propagates and spreads on the mold wall surface, and Figure 7 is a graph showing temperature changes on each mold surface when predicting breakout during actual casting.%#! FIG. 8 is a graph showing the time delay at the occurrence of the a degree change peak of each # type surface in the case of FIG. Code l...Shell 1m...Weak part of the shell lb...Fixed s 2...Mold 3...
... Slab 4 ... Disturbed oscillation mark 5 ...
・・Breakout occurrence point % eaves - people I mouth @ Steel Corporation Patent attorney Matsushita A Masaru Attorney Fumi Ayashima Figure 1 Figure 2 Casting time Figure 3 Fury ID Casting Juri L II Now ^gate
(Intermediate Figure 5 Figure 6 Casting Questions

Claims (1)

【特許請求の範囲】[Claims] 連続鋳造設備の鋳型ll1i1i#c複数の熱電対を埋
設し、これら熱電対中の一つの熱電対の検出温度が検出
平均温度より、一旦上昇してから下降したことを検出し
、この一つの熱電対にrsg!シた他の少なくとも一つ
の熱電対で、続いて上記検出温度の温度変化パターンが
検出されたときケ、ブレイクアウト発生として予知する
ことを%黴とする拘束性ブレイクアウト予知方法。
Mold ll1i1i#c of continuous casting equipment is embedded with multiple thermocouples, and when the detected temperature of one of these thermocouples rises once and then falls from the detected average temperature, this one thermocouple is Against rsg! A restrictive breakout prediction method that predicts the occurrence of a breakout when a temperature change pattern of the detected temperature is subsequently detected by at least one other thermocouple.
JP3188382A 1982-03-01 1982-03-01 Predicting method for restrictive breakout Granted JPS58148064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3188382A JPS58148064A (en) 1982-03-01 1982-03-01 Predicting method for restrictive breakout

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3188382A JPS58148064A (en) 1982-03-01 1982-03-01 Predicting method for restrictive breakout

Publications (2)

Publication Number Publication Date
JPS58148064A true JPS58148064A (en) 1983-09-03
JPS6347545B2 JPS6347545B2 (en) 1988-09-22

Family

ID=12343428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3188382A Granted JPS58148064A (en) 1982-03-01 1982-03-01 Predicting method for restrictive breakout

Country Status (1)

Country Link
JP (1) JPS58148064A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061151A (en) * 1983-09-14 1985-04-08 Kawasaki Steel Corp Foreseeing method of breakout
JPS60106653A (en) * 1983-11-14 1985-06-12 Nippon Steel Corp Continuous casting method of steel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5593801B2 (en) * 2010-04-15 2014-09-24 新日鐵住金株式会社 Breakout prediction method for continuous casting
JP2013052431A (en) * 2011-09-06 2013-03-21 Jfe Steel Corp Method for measuring temperature in mold for continuous casting

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695461A (en) * 1979-12-28 1981-08-01 Nippon Steel Corp Continuous casting method by mold provided with mold temperature measuring element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695461A (en) * 1979-12-28 1981-08-01 Nippon Steel Corp Continuous casting method by mold provided with mold temperature measuring element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061151A (en) * 1983-09-14 1985-04-08 Kawasaki Steel Corp Foreseeing method of breakout
JPS60106653A (en) * 1983-11-14 1985-06-12 Nippon Steel Corp Continuous casting method of steel

Also Published As

Publication number Publication date
JPS6347545B2 (en) 1988-09-22

Similar Documents

Publication Publication Date Title
JPH0999351A (en) Method for detecting blowoff in continuous casting and device therefor
CA1270618A (en) Method and apparatus for preventing cast defects in continuous casting plant
CN102941330A (en) Control method for online predication of surface crack of continuous casting sheet billet
US20130211738A1 (en) Device and method for diagnosing cracks in a solidified shell in a mold
JPS58148064A (en) Predicting method for restrictive breakout
JPS58148061A (en) Method for predicting breakout in continuous casting
KR101257254B1 (en) Crack diagnosis device of solidified shell in mold and method thereof
JPS6061151A (en) Foreseeing method of breakout
JP7115240B2 (en) Breakout prediction method in continuous casting
KR101224979B1 (en) Crack diagnosis device of solidified shell in mold and method thereof
JPS5929353B2 (en) Breakout prediction method
KR101224961B1 (en) Crack diagnosis device of solidified shell in mold and method thereof
KR101246192B1 (en) Crack diagnosis device of solidified shell in mold and method thereof
KR101224960B1 (en) Crack diagnosis device of solidified shell in mold and method thereof
JP6621357B2 (en) Breakout prediction method
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
JPS61176456A (en) Predict method of breakout caused by entrainment of inclusion
JP5906814B2 (en) Method and apparatus for predicting constraining breakout in continuous casting equipment
KR101204943B1 (en) Defect diagnosis device of coating layer on mold and method thereof
JP5593801B2 (en) Breakout prediction method for continuous casting
JPH0790343B2 (en) Breakout prediction method in continuous casting
JPS6044163A (en) Method for predicting breakout in continuous casting
JPH0771726B2 (en) Continuous casting method
JPH0557412A (en) Method for predicting constrained breakout in continuous casting
JPH0575503B2 (en)