JP5905856B2 - 超音波検査装置 - Google Patents

超音波検査装置 Download PDF

Info

Publication number
JP5905856B2
JP5905856B2 JP2013144809A JP2013144809A JP5905856B2 JP 5905856 B2 JP5905856 B2 JP 5905856B2 JP 2013144809 A JP2013144809 A JP 2013144809A JP 2013144809 A JP2013144809 A JP 2013144809A JP 5905856 B2 JP5905856 B2 JP 5905856B2
Authority
JP
Japan
Prior art keywords
element data
unit
ultrasonic
data
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013144809A
Other languages
English (en)
Other versions
JP2014030715A (ja
Inventor
拓明 山本
拓明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2013144809A priority Critical patent/JP5905856B2/ja
Priority to CN201380037373.XA priority patent/CN104487002B/zh
Priority to PCT/JP2013/069010 priority patent/WO2014010683A1/ja
Publication of JP2014030715A publication Critical patent/JP2014030715A/ja
Priority to US14/594,889 priority patent/US10588598B2/en
Application granted granted Critical
Publication of JP5905856B2 publication Critical patent/JP5905856B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/346Circuits therefor using phase variation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/469Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Gynecology & Obstetrics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、超音波ビームを送受信することにより生体内の臓器等の検査対象物の撮像を行って、検査対象物の検査や診断のために用いられる超音波画像を生成する超音波検査装置に関する。
従来から、医療分野において、超音波画像を利用した超音波画像診断装置等の超音波検査装置が実用化されている。一般に、この種の超音波検査装置は、複数の素子(超音波トランスデューサ)を内蔵した超音波探触子(超音波プローブ)と、この超音波探触子に接続された装置本体とを有しており、超音波探触子の複数の素子から検査対象物(被検体)に向けて超音波ビームを送信し、被検体からの超音波エコーを超音波探触子で受信して、その受信した超音波エコー信号を装置本体で電気的に処理することにより超音波画像が生成される。
超音波検査装置においては、超音波画像を生成するとき、被検体の検査対象領域、例えば、生体内の臓器やその臓器内の病巣等に探触子の複数の素子から焦点を合わせて超音波ビームを送信し、検査対象領域の反射体、例えば臓器や病巣等の表面や界面からの超音波エコーを複数の素子を介して受信しているが、同一の反射体で反射された超音波エコーを複数の素子で受信するので、送信素子から送信された超音波ビームの焦点位置に位置する反射体で反射され、送信素子で受信された超音波エコー信号に対して、同一の反射体で反射され、送信素子と異なるその他の素子で受信された超音波エコー信号は遅延することになるので、複数の素子で受信した超音波エコー信号をA/D(アナログ/デジタル)変換して素子データにとした後、素子データを受信フォーカス処理して、即ち遅延補正して位相を合わせ整相加算して音線信号を生成し、こうして得られた音線信号に基づいて超音波画像を生成している。
このような超音波検査技術において、被検体の検査対象領域が大きい場合、非常に多数の送信超音波ビームが必要になり、画像を生成させるために要する時間が長くなるため、生成される超音波画像の解像度が送信超音波ビームの幅に依存する従来技術に対して、幅の広い超音波ビームを発生させるシステムと受信超音波エコーを画像情報へ変換するアルゴリズムにより超音波画像を生成する技術が特許文献1に開示されている。
特許文献1では、まず、通常の超音波ビームより幅広の超音波ビーム(特許文献1図12B参照)を設計して送信し、受信データを得る(同図4参照)。特許文献1では、幅広ビームには極座標(半径Rと角度θ)が割り当てられ、受信データとこの幾何学的な座標との関係から超音波画像が生成される。こうして生成された超音波画像は、画像のフレームレートが従来技術よりも増加しており、画像形成時間に対して画像の解像度を向上させることができる。
また、特許文献2には、複数の素子(超音波トランスデューサ)から被検体内の組織のエリアをカバーする幅広の超音波ビームを1素子超シフトさせながら送信し、組織のエリアからの超音波エコーによる複数の受信信号に基づいて生成された組織のエリアの情報を含むパラレルの生データ(素子データ)をシリアルの生データに変換し、変換された生データに受信フォーカス処理を施して画像信号(音線信号)を生成し、得られた音線信号に基づいて超音波画像を生成する超音波診断装置が開示されている。
特許文献2では、音線信号を生成する際に、隣接する2つのエリアが互いにオーバーラップするように超音波ビームを送信して、オーバーラップ領域内の1つのサンプリングポイントについて、複数回の送信によって得られる生データ(素子データ)を利用して信号処理(例えば、受信フォーカス処理)を行うことで、1つの音線信号を生成することができ、SN比や開口が広がったことにより低下した解像度を改善することができる。あるいは、複数回の送信によって得られる生データに基づいて、1つのサンプリングポイントについて複数の音線信号をそれぞれ生成した後に、それらの音線信号の平均値を求めることにより、SN比や開口が広がったことにより低下した解像度が改善された1つの音線信号を得ることができることを開示している。
特許文献3には、送信用振動素子群を構成する複数個の振動素子から放射される送信超音波を送信集束点に集束させることにより仮想的な点音源を形成し、そして、この点音源から放射される送信超音波によって連続した複数の観測点から反射する受信超音波を、受信用振動素子群を構成する複数個の振動素子によって受信し、得られたチャンネル分の受信信号に対し観測点が受信集束点となるような受信整相加算を行う。更に、前記受信用振動素子群と振動素子の配列方向に順次シフトさせた送信用振動素子群の各々を用いて得られた受信信号に対しても同様の受信整相加算を行い、これら受信整相加算後の受信信号に対し各々の送信集束点から観測点までの伝搬距離の差異に起因した送信遅延を補正する送信整相加算を行う超音波診断装置が開示されている。
特許文献3では、複数の振動素子から得られた受信信号に対して受信整相加算と送信整相加算を行なうことにより被検体の深さ方向に対してほぼ一様な細いビーム幅を有した送信ビーム及び受信ビームを高精度かつ高感度で形成することができる。このため、特許文献3は、空間分解能、コントラスト分解能及びS/Nに優れた画像データの生成と表示が可能となることを開示している。
特開2003−180688号公報 特開2011−011045号公報 特開2009−240700号公報
しかしながら、特許文献1に開示の技術では、幅の広いビームを用いることで超音波ビームの強度が従来技術よりも低下するため、SN比(S/N)が悪くなることや、幅広ビームを発生させる専用の超音波プローブが必要になるという問題があった。
また、特許文献2に開示の技術では、複数の素子からの幅広ビームの隣接エリアをオーバーラップさせることにより、幅広ビームによるSN比や解像度の劣化を改善しているが、単に、オーバーラップさせた隣接エリアの1つのサンプリングポイントについて、複数の生データに対して受信フォーカス処理を施して1つの音線信号を求めるもの、若しくは複数の生データに受信フォーカス処理をしてそれぞれ音線信号を求め、その平均値を求めて1つの音線信号を得るものに過ぎないので、幅広ビームによるSN比や解像度の劣化の改善には限度があり、更なるSN比の向上を得ることができず、十分なSN比の超音波画像を得ることができないという問題があった。
一方、特許文献3に開示の技術では、従来技術よりも高画質な画像が得られるが、1ラインのデータを作るのに複数の送信ビームを、送信位置を変えて発生させる必要があり、従来技術よりも送信回数が増えるためフレームレートが低下し、リアルタイム性が悪くなるという問題があった。
本発明の目的は、上記従来技術の問題点を解消し、超音波プローブの複数の素子からの超音波ビームを送信する際に、異なる2以上の素子からの送信で取得した素子データを重ねることで、送信超音波ビームの広がりによる影響を低減し、SN比を上げ、解像度を上げることができ、幅広ビーム送信専用超音波プローブを使うことなく、かつ、従来と変わらないフレームレートのまま、送信ビームの幅に依存しない高い解像度で、最適な空間分解能を持つシャープな超音波画像を得ることができる超音波検査装置を提供することにある。
上記目的を達成するために、本発明の超音波検査装置は、超音波ビームを用いて検査対象物を検査する超音波検査装置であって、超音波ビームを送信し、かつ、検査対象物によって反射された超音波エコーを受信して、受信した超音波エコーに応じたアナログ素子信号を出力する、複数の素子が配列された探触子と、探触子に、複数の素子を用い、所定の送信焦点を形成するように超音波ビームを送信させることを、複数回、行わせる送信部と、個々の超音波ビームの送信に対応して、複数の素子が出力したアナログ素子信号を受け、所定の処理を施す受信部と、受信部が処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換部と、複数の第1の素子データから、第1の素子データのいずれかに対応する第2の素子データを生成するデータ処理部とを備え、データ処理部は、第2の素子データを求める位置の深さに応じて、第2の素子データを生成するための2以上の第1の素子データの取得条件を変更することを特徴とする。
ここで、送信部は、中心となる素子の変更、および、超音波ビームの送信方向の変更の少なくとも一方を行って、探触子に複数回の超音波ビームの送信を行わせることが好ましい。
また、データ処理部は、中心となる素子が互いに異なる超音波ビームの送信で得られた複数の第1の素子データ、および、送信方向が互いに異なる超音波ビームの送信で得られた複数の第1の素子データの、少なくとも一方を用いて、第2の素子データを生成することが好ましい。
また、データ処理部は、送信領域が重なり合う超音波ビームの送信で得られた、複数の第1の素子データから、第2の素子データを生成することが好ましい。
また、データ処理部は、複数の第1の素子データを、素子が超音波エコーを受信した受信時間および素子の位置に応じて重ね合わせて、第2の素子データを生成することが好ましい。
また、データ処理部は、2以上の第1の素子データの遅延時間を算出する遅延時間算出部と、2以上の第1の素子データを算出された遅延時間及び受信された探触子の素子の位置に基づいて重ね合わせ、第2の素子データを生成する重ね合わせ処理部とを有することが好ましい。
また、遅延時間算出部は、事前に取得された探触子、検査対象物の音速、超音波ビームの焦点位置、送信部による探触子の送信開口、及び受信部による探触子の受信開口に関する少なくとも1つの情報に基づいて、2以上の第1の素子データの遅延時間を算出し、重ね合わせ処理部は、予め設定された、2以上の第1の素子データのうち受信時間上において重ね合わせる第1の素子データの数、及び重ね合わせ処理方法に基づいて2以上の第1の素子データを重ね合わせ、少なくとも1つの第2の素子データを生成することが好ましい。
また、データ処理部は、重ね合わせ処理部により、2以上の第1の素子データを重ね合わせる際に、重なる部分のみの素子データから、第2の素子データを生成することが好ましい。
また、データ処理部は、2以上の第1の素子データを、その各々の第1の素子データに対して重み付け係数を掛けた後に、重ね合わせることが好ましい。
また、データ処理部は、第2の素子データを求める位置の深さに応じて、選択する第1の素子データの数を変更することが好ましい。
また、データ処理部は、素子データ毎の受信時間において少なくとも2つ以上の異なる時間軸上の点に基づいて、適応的に2以上の第1の素子データを重ね合わせることが好ましい。
また、異なる時間軸上の点は、送信部による探触子の送信開口に基づくものであることが好ましく、更に、2つ以上の送信開口で送信された場合に各送信における送信開口に基づくものであることがより好ましい。あるいは、異なる時間軸上の点は、検査対象物の音速に基づくものであることが好ましい。
また、送信部が、送信ラインごとに、同じ送信ライン上において深さの異なる送信焦点を形成する超音波ビームを送信することによって、受信部が、同じ送信ラインに対応する複数の第1の素子データを取得し、データ処理部は、送信焦点の深さごとに、同じ深さの送信焦点の超音波ビームの送受信によって得られた複数の第1の素子データから、第2の素子データを生成することが好ましい。
また、データ処理部は、選択する第1の素子データの数を、検査対象物内における超音波ビームの空間的な広がりに基づき、それに対応した第2の素子データを求める位置の深さに応じて、変化させることが好ましく、あるいは、検査対象物内の空間的な位置における信号に基づいて、それに対応した第2の素子データを求める位置の深さに応じて、変化させることが好ましい。
また、データ処理部は、選択する第1の素子データの数を、第1の素子データの波形解析の結果に基づいて、それに対応した第2の素子データを求める位置の深さに応じて、変化させることも好ましい。
また、波形解析は、選択する第1の素子データの候補に関する、波形の関連性、あるいは、コヒーレンス性を解析するものであることが好ましい。
また、データ処理部は、選択する第1の素子データの数を変化させて作成した複数の第2の素子データにおける信号に基づいて最適な素子データ数を求めることが好ましい。
また、送信部は、第2の素子データを求める位置の深さに応じて送信焦点深さを決定し、決定した送信焦点深さで、探触子に超音波ビームの送信を、複数回、行わせて、複数の第1の素子データを取得し、データ処理部は、決定した送信焦点深さの超音波ビームの送信で得られた複数の第1の素子データから、第2の素子データを生成するための2以上の第1の素子データを選択することが好ましい。
また、送信部は、第2の素子データを求める位置の深さに応じて送信開口数を決定し、決定した送信開口数で、探触子に超音波ビームの送信を、複数回、行わせて、複数の第1の素子データを取得し、データ処理部は、決定した送信開口数での超音波ビームの送信で得られた複数の第1の素子データから、第2の素子データを生成するための2以上の第1の素子データを選択することが好ましい。
また、送信部は、探触子にステア送信させることが好ましい。
また、素子データは、位相情報及び振幅情報を含むことが好ましい。
また、第1の素子データおよび第2の素子データの少なくとも1方を記憶する素子データ記憶部を有することが好ましい。
また、データ処理部は、複数の第1の素子データから第2の素子データを生成する直前に、複数の第1の素子データそれぞれの整相加算を行って複数の第1の受信データを生成し、複数の第1の受信データから、第1の受信データのいずれかに対応する第2の受信データを生成する。
また、上記目的を達成するために、本発明の超音波検査装置は、超音波ビームを用いて検査対象物を検査する超音波検査装置であって、超音波ビームを送信し、かつ、検査対象物によって反射された超音波エコーを受信して、受信した超音波エコーに応じたアナログ素子信号を出力する、複数の素子が配列された探触子と、探触子に、複数の素子を用い、所定の送信焦点を形成するように超音波ビームを送信させることを、複数回、行わせる送信部と、個々の超音波ビームの送信に対応して、複数の素子が出力したアナログ素子信号を受け、所定の処理を施す受信部と、受信部が処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換部と、複数の第1の素子データに対して、同じ素子に対応するラインを中心にしてそれぞれ整相加算を行い複数の第1の受信データを生成する整相加算部と、複数の第1の受信データから、第1の受信データのいずれかに対応する第2の受信データを生成するデータ処理部とを備え、データ処理部は、第2の受信データを求める位置の深さに応じて、第2の受信データを生成するための2以上の第1の受信データの取得条件を変更することを特徴とする。
また、上記目的を達成するために、本発明の超音波検査装置は、超音波ビームを用いて検査対象物を検査する超音波検査装置であって、超音波ビームを送信し、かつ、検査対象物によって反射された超音波エコーを受信して、受信した超音波エコーに応じたアナログ素子信号を出力する、複数の素子が配列された探触子と、探触子に、複数の素子を用い、所定の送信焦点を形成するように超音波ビームを送信させることを、複数回、行わせる送信部と、個々の超音波ビームの送信に対応して、複数の素子が出力したアナログ素子信号を受け、所定の処理を施す受信部と、受信部が処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換部と、複数の第1の素子データから、第1の素子データのいずれかに対応する第2の素子データを生成するデータ処理部と、第1の素子データを用いて超音波画像を生成する第1のモードと、データ処理部が生成した第2の素子データを用いて超音波画像を生成する第2のモードとを切り替えるモード切替部とを備え、モード切替部によるモード切り替えに応じて、送信部が探触子に超音波ビームの送信を行わせる際のF値を切り替えると共に、データ処理手段は、モード切替手段でモード切り替えを行った際に切り替えたF値に基づいて得られた複数の第1の素子データから、第1の素子データのいずれかに対応する第2の素子データを生成することを特徴とする。
データ処理手段は、モード切替手段でモード切り替えを行った際に切り替えたF値に基づいて得られた複数の第1の素子データから、第1の素子データのいずれかに対応する第2の素子データを生成することが好ましい。
また、第2のモードが選択された際の超音波ビームのF値は、第1のモードが選択された際の超音波ビームのF値よりも小さいことが好ましい。
超音波ビームの焦点位置の深さによらずF値が一定となるように超音波ビームを送信して第1の素子データを取得することが好ましい。
また、上記目的を達成するために、本発明の超音波検査装置は、超音波ビームを用いて検査対象物を検査する超音波検査装置であって、超音波ビームを送信し、かつ、検査対象物によって反射された超音波エコーを受信して、受信した超音波エコーに応じたアナログ素子信号を出力する、複数の素子が配列された探触子と、探触子に、複数の素子を用い、所定の送信焦点を形成するように超音波ビームを送信させることを、複数回、行わせる送信部と、個々の超音波ビームの送信に対応して、複数の素子が出力したアナログ素子信号を受け、所定の処理を施す受信部と、受信部が処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換部と、複数の第1の素子データから、第1の素子データのいずれかに対応する第2の素子データを生成するデータ処理部と、少なくとも1つの、検査対象物内における音速を決定する音速設定部とを備え、データ処理部は、音速設定部で得られた音速に基づいて、第2の素子データを生成することを特徴とする。
また、データ処理部は、検査対象物内における音速を用いて、2以上の第1の素子データの遅延時間を算出し、算出した遅延時間に基づいて、2以上の第1の素子データを重ね合わせて、第2の素子データを生成するものであり、
少なくとも1つの音速設定部は、データ処理部において遅延時間算出に用いる検査対象物の音速を設定する第1の音速設定部を含み、この第1の音速設定部で設定された音速を用いてデータ処理部により第2の素子データを求め、この第2の素子データの整相加算を行って音線信号を生成する整相加算部と、この整相加算部によって得られた音線信号の適否を判定する第1の判定部と、整相加算部が生成した音線信号に基づいて超音波画像を生成する画像生成部と、を有し、第1の判定部の判定結果が否である時、第1の音速設定部は新たに別の音速を再度設定し、データ処理部において再度設定された音速を用いて再度遅延時間を算出を行い、再度算出された遅延時間に基づいて第2の素子データを求め、整相加算部が、再度求められた第2の素子データを用いて再度音線信号を生成することを、再度生成された音線信号による第1の判定部の判定結果が適になるまで繰り返し、第1の判定部の判定結果が適である時、画像生成部は、音線信号に基づいてに超音波画像を生成することが好ましい。
また、第1の音速設定部は素子データ毎の受信時間上において少なくとも1点以上に音速を設定することが好ましい。
また、第1の判定部の判定結果が適である時、このとき生成された第2の素子データに基づいて、受信側の最適音速を求める第2の音速設定部と、この第2の音速設定部で求められた最適音速を用いて第2の素子データの整相加算を行って音線信号を生成する整相加算部と、この整相加算部によって得られた音線信号の適否を判定する第2の判定部とを有し、第2の判定部の判定結果が否である時、第2の音速設定部が、第2の素子データに基づいて再度最適音速を求め、整相加算部が、再度求められた最適音速を用いて再度音線信号を生成することを、再度生成された音線信号による第2の判定部の判定結果が適になるまで繰り返し、第2の判定部の判定結果が適である時、画像生成部は、音線信号に基づいて超音波画像を生成することが好ましい。
また、第2の音速設定部は素子データ毎の受信時間上において少なくとも1点以上に音速を設定することが好ましい。
また、第1の素子データに基づいて、受信側の最適音速を求める第3の音速設定部と、この第3の音速設定部で求められた最適音速を用いて第1の素子データの整相加算を行って音線信号を生成する整相加算部と、この整相加算部によって得られた音線信号の適否を判定する第3の判定部とを有し、第3の判定部の判定結果が否である時、第3の音速設定部が、第1の素子データに基づいて再度最適音速を求め、整相加算部が、再度求められた最適音速を用いて再度音線信号を生成することを、再度生成された音線信号による第3の判定部の判定結果が適になるまで繰り返し、第3の判定部の判定結果が適である時、遅延時間算出部は、求められた最適音速を検査対象物の音速として設定することが好ましい。
また、第3の音速設定部は素子データ毎の受信時間上において少なくとも1点以上に音速を設定することが好ましい。
また、第3の音速設定部は、第2の音速設定部と同じであることが好ましい。
また、第3の判定部は、第2の判定部と同じであることが好ましい。
また、更に、少なくとも1つの音速設定部は、データ処理部で所定の音速を用いて生成された第2の素子データに基づいて、受信側の最適音速を求める第4の音速設定部を含み、この第4の音速設定部で求められた最適音速を用いて第2の素子データの整相加算を行って音線信号を生成する整相加算部と、この整相加算部によって得られた音線信号の適否を判定する第4の判定部と、整相加算部が生成した音線信号に基づいて超音波画像を生成する画像生成部と、を有し、第4の判定部の判定結果が否である時、データ処理部が、第4の音速設定部で求められた最適音速を用いて再度第2の素子データを生成する処理を行うと共に、第4の音速設定部が、再度生成された第2の素子データに基づいて再度最適音速を求め、整相加算部が、再度求められた最適音速を用いて再度音線信号を生成することを、再度生成された音線信号による第4の判定部の判定結果が適になるまで繰り返し、第4の判定部の判定結果が適である時、画像生成部は、音線信号に基づいて超音波画像を生成することが好ましい。
また、第4の音速設定部は素子データ毎の受信時間上において少なくとも1点以上に音速を設定することが好ましい。
また、第4の音速設定部は第2の音速設定部および第3の音速設定部と同じであることが好ましい。
また、第4の判定部は第2の判定部および第3の判定部と同じであることが好ましい。
また、上記目的を達成するために、本発明の超音波検査装置は、超音波ビームを用いて検査対象物を検査する超音波検査装置であって、超音波ビームを送信し、かつ、検査対象物によって反射された超音波エコーを受信して、受信した超音波エコーに応じたアナログ素子信号を出力する、複数の素子が配列された探触子と、探触子に、複数の素子を用い、所定の送信焦点を形成するように超音波ビームを送信させることを、複数回、行わせる送信部と、個々の超音波ビームの送信に対応して、複数の素子が出力したアナログ素子信号を受け、所定の処理を施す受信部と、受信部が処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換部と、複数の第1の素子データから、第1の素子データのいずれかに対応する第2の素子データを生成するデータ処理部と、第1の素子データに基づいて第1の超音波画像を生成する第1の画像生成部と、第2の素子データに基づいて第2の超音波画像を生成する第2の画像生成部と、第1の画像生成部で生成された第1の超音波画像と、第2の画像生成部で生成された第2の超音波画像との画質比較を行う画質判定部と、画質判定部の判定結果に基づいて、前記第1の超音波画像及び前記第2の超音波画像から超音波検査の対象とする超音波画像を生成する第3の画像生成部と、を備えることを特徴とする。
ここで、画質判定部は、第1の超音波画像及び第2の超音波画像における、輝度値、コントラスト、粒状性のいずれか1つ、あるいは2つ以上の複数の組み合わせにより、画質判定を行うことが好ましい。
また、第3の画像生成部は、画質判定部の判定結果に基づいて、第1の超音波画像及び第2の超音波画像のいずれか1方を超音波検査の対象とする超音波画像として採用することが好ましい。
あるいは、さらに、第1の超音波画像及び第2の超音波画像を複数の領域に分割する領域分割部を有し、画質判定部は、領域分割部で分割された領域毎に第1の超音波画像と第2の超音波画像との画質判定を行い、第3の画像生成部は、画質判定部の判定結果に基づいて、領域毎に第1の超音波画像及び第2の超音波画像の一方を、該当する領域の超音波画像として選択し、領域毎に選択された画像を組み合わせて超音波画像を作成することが好ましい。
本発明によれば、超音波プローブの複数の素子からの超音波ビームを送信する際に、異なる2以上の素子からの送信で取得した素子データを重ねることで、送信超音波ビームの広がりによる影響を低減し、SN比を上げ、解像度を上げることができ、幅広ビーム送信専用超音波プローブを使うことなく、かつ、従来と変わらないフレームレートのまま、送信ビームの幅に依存しない高い解像度で、最適な空間分解能を持つシャープな超音波画像を得ることができる。
本発明に係る超音波検査装置の構成の一例を概念的に示すブロック図である。 図1に示す超音波検査装置の素子データ処理部の構成の一例を概念的に示すブロック図である。 (a)及び(c)は、それぞれ理想的な超音波ビームを被検体の反射点の真上の素子及び真上でない素子から送信する場合の説明図であり、(b)及び(d)は、それぞれ得られる素子データを示す説明図である。 (a)及び(c)は、それぞれ実際の超音波ビームを被検体の反射点の真上の素子及び真上でない素子から送信する場合の説明図であり、(b)及び(d)は、それぞれ得られる素子データを示す説明図である。 (a)及び(b)は、それぞれ真の反射超音波エコーとゴーストの反射信号の場合の超音波ビームの送信経路及び受信経路の距離を説明する説明図であり、(c)及び(d)は、それぞれ複数の素子で得られる素子データ及びそれらの遅延時間を示す説明図である。 (a)、(b)及び(c)並びに(d)、(e)及び(f)は、それぞれ真の信号の場合並びにゴーストの場合の複数の素子で得られる素子データ、それらの遅延時間及び素子データの重ね合わせ状態を示す説明図であり、(g)及び(h)は、それぞれ複数の素子に対応する素子データの重ね合わせ状態及びその結果を示す説明図である。 図1に示す本発明の実施例1の超音波検査装置の要部を処理フローに沿って示すブロック図である。 (a)及び(b)は、それぞれ本発明の実施例2の超音波検査装置の要部の一例を処理フローに沿って概念的に示すブロック図である。 本発明の実施例3の超音波検査装置の要部の一例を処理フローに沿って概念的に示すブロック図である。 (a)は、図9に示す超音波検査装置の音速補正部の構成の一例を概念的に示すブロック図であり、(b)は、(a)に示す音速補正部の着目領域設定部で着目領域が設定された超音波画像の一例を模式的に示す図である。 図10(a)に示す音速補正部の最適音速算出部の一例の詳細を処理フローに沿って示すブロック図である。 本発明の実施例3の超音波検査装置の要部の他の例を処理フローに沿って概念的に示すブロック図である。 本発明の実施例4の超音波検査装置の要部の一例を処理フローに沿って概念的に示すブロック図である。 本発明の実施例5の超音波検査装置の要部の一例を処理フローに沿って概念的に示すブロック図である。 本発明の実施例5の超音波検査装置の要部の他の例を処理フローに沿って概念的に示すブロック図である。 本発明の実施例5の超音波検査装置の要部の他の例を処理フローに沿って概念的に示すブロック図である。 本発明の実施例5の超音波検査装置の要部の他の例を処理フローに沿って概念的に示すブロック図である。 本発明の実施例6の超音波検査装置の要部の一例を処理フローに沿って概念的に示すブロック図である。 本発明の実施例7の超音波検査装置の構成の一実施例を概念的に示すブロック図である。 図19に示す超音波検査装置の動作を説明するためのフローチャートである。 (a)および(b)は、F値の切り替えを説明するための概略図である。 F値を一定としたときの、送信焦点の位置と開口数とを説明するための概略図である。 本発明の実施例8の超音波検査装置の構成の一実施例を概念的に示すブロック図である。 図23に示す超音波検査装置のデータ処理部の構成の一例を概念的に示すブロック図である。 素子データと素子とを概念的に示す図である。 (A)〜(C)は、図24に示すデータ処理部の整相加算、および、重ね合わせ処理を説明するための図である。
本発明に係る超音波検査装置を添付の図面に示す好適実施形態に基づいて以下に詳細に説明する。
図1は、本発明の超音波検査装置の構成の一実施例を概念的に示すブロック図である。
同図に示すように、超音波検査装置10は、超音波プローブ12と、超音波プローブ12に接続される送信部14及び受信部16と、A/D変換部18と、素子データ記憶部20と、素子データ処理部22と、画像生成部24と、表示制御部26と、表示部28と、制御部30と、操作部32と、格納部34とを有する。
超音波プローブ12は、通常の超音波検査装置に用いられる探触子36を有する。
探触子36は、1次元又は2次元アレイ状に配列された複数の素子、即ち超音波トランスデューサを有している。これらの超音波トランスデューサは、検査対象物(以下、被検体という)の超音波画像の撮像の際に、それぞれ送信部14から供給される駆動信号に従って超音波ビームを被検体に送信すると共に、被検体からの超音波エコーを受信して受信信号を出力する。本実施形態では、探触子36の複数の超音波トランスデューサの内の一組を成す所定数の超音波トランスデューサの各々は、1つの超音波ビームの各成分を発生し、一組の所定数の超音波トランスデューサは、被検体に送信する1つの超音波ビームを発生する。
各超音波トランスデューサは、例えば、PZT(チタン酸ジルコン酸鉛)に代表される圧電セラミックや、PVDF(ポリフッ化ビニリデン)に代表される高分子圧電素子、PMN−PT(マグネシウムニオブ酸・チタン酸鉛固溶体)に代表される圧電単結晶等からなる圧電体の両端に電極を形成した素子、即ち振動子によって構成される。即ち、探触子36は、複数の超音波素子として複数の振動子が1次元又は2次元アレイ状に配列された振動子アレイということができる。
このような振動子の電極に、パルス状又は連続波状の電圧を印加すると、圧電体が伸縮し、それぞれの振動子からパルス状又は連続波状の超音波が発生して、それらの超音波の合成により超音波ビームが形成される。また、それぞれの振動子は、伝搬する超音波を受信することにより伸縮して電気信号を発生し、それらの電気信号は、超音波の受信信号として出力される。
送信部14は、例えば、複数のパルサを含んでおり、制御部30からの制御信号に応じて選択された送信遅延パターンに基づいて設定される音速または音速の分布に従い、探触子36の一組の所定数の超音波トランスデューサ(以下、超音波素子という)から送信される超音波ビーム成分が1つの超音波ビームを形成するようにそれぞれの駆動信号の遅延量を調節して組を成す複数の超音波素子に供給する。
受信部16は、制御部30からの制御信号に応じて、探触子36の各超音波素子によって超音波ビームと被検体との間の相互作用によって発生された超音波エコーを被検体から受信して、受信信号、即ち超音波素子毎のアナログ素子信号を増幅して出力し、増幅されたアナログ素子信号をA/D変換部18に供給する。
素子データ記憶部20は、A/D変換部18から出力されるデジタル素子データ(以下、単に素子データという)を順次格納する。素子データは、位置(素子位置)および受信時間と、信号強度との関係を表すデータであり、位相情報および振幅情報を含む。
また、素子データ記憶部20は、制御部30から入力されるフレームレートに関する情報(例えば、超音波の反射位置の深度、走査線の密度、視野幅を示すパラメータ)を上記のデジタル素子データに関連付けて格納する。
素子データ記憶部20は、制御部30からの制御信号に応じて、2次元以上の位置座標上の対象領域において重なり合う少なくとも2つ以上の対象領域を検査する際に、この2つ以上の対象領域毎に受信部16で受信した超音波エコーから2つ以上の対象領域毎に生成された2以上の素子データを記憶保持するものであり、素子データ記憶部20に記憶保持される素子データは、素子データ毎に受信した各素子における受信時間毎の受信データを含む、2以上の素子データである。
素子データ処理部22は、本発明の特徴とする部分であって、制御部30による制御に基づいて、素子データ記憶部20によって記憶保持された2つ以上の対象領域毎に生成された2以上の素子データ(以下、未処理素子データという)を受信時間上で時間を合わせて重ね合わせて重ね合わせ処理後素子データ(以下、処理済素子データという)を生成する。
具体的には、素子データ処理部22は、制御部30による制御に基づいて、素子データ記憶部20に記憶された素子データのうち、中心となる超音波トランスデューサ(中心となる素子(中心素子))が異なり、かつ、超音波ビームの送信領域が重なり合う、所定数(複数)の超音波ビームの送信で得られた素子データを、各超音波トランスデューサが超音波エコーを受信した時間、および、超音波トランスデューサの位置に応じて重ね合わせて、素子データ(後述する注目素子の素子データ)に対応する処理済素子データを生成する。
素子データ処理部22の詳細については、後述する。
画像生成部24は、制御部30による制御下で、素子データ処理部22から供給された処理済素子データから音線信号(受信データ)を生成し、この音線信号から超音波画像を生成するものである。
画像生成部24は、整相加算部38、検波処理部40、DSC42、画像作成部44、および、画像メモリ46を有する。
整相加算部38は、制御部30において設定された受信方向に応じて、予め記憶されている複数の受信遅延パターンの中から1つの受信遅延パターンを選択し、選択された受信遅延パターンに基づいて設定される音速または音速の分布に従い、素子データにそれぞれの遅延を与えて加算することにより、受信フォーカス処理を行う。この受信フォーカス処理により、超音波エコーの焦点が絞り込まれた受信データ(音線信号)が生成される。
整相加算部38は、受信データを検波処理部40に供給する。
検波処理部40は、整相加算部38で生成された受信データに対し、超音波の反射位置の深度に応じて距離による減衰の補正を施した後、包絡線検波処理を施すことにより、被検体内の組織に関する断層画像情報であるBモード画像データを生成する。
DSC(digital scan converter)48は、検波処理部40で生成されたBモード画像データを通常のテレビジョン信号の走査方式に従う画像データに変換(ラスター変換)する。
画像作成部44は、DSC42から入力されるBモード画像データに階調処理等の各種の必要な画像処理を施して検査や表示に供するためのBモード画像データを作成した後、作成された検査用又は表示用Bモード画像データを表示のために表示制御部26に出力する、或いは画像メモリ46に格納する。
画像メモリ46は、画像作成部44で作成された検査用Bモード画像データを一旦格納する。画像メモリ46に格納された検査用Bモード画像データは、必要に応じて、表示部28で表示するために表示制御部26に読み出される。
表示制御部26は、画像作成部44によって画像処理が施された検査用Bモード画像信号に基づいて、表示部28に超音波画像を表示させる。
表示部28は、例えば、LCD等のディスプレイ装置を含んでおり、表示制御部26の制御の下で、超音波画像を表示する。
制御部30は、操作者により操作部32から入力された指令に基づいて超音波検査装置10の各部の制御を行う。
ここで、制御部30は、操作者によって操作部32を介して種々の情報、特に、素子データ処理部22及び画像生成部24の整相加算部38で用いられる遅延時間算出に必要な情報及び素子データ処理部22における素子データ処理に必要な情報の入力が行われた際に、操作部32から入力された上述の種々の情報を、必要に応じて、送信部14、受信部16、素子データ記憶部20、素子データ処理部22、画像生成部24及び表示制御部26等の各部に供給する。
操作部32は、操作者が入力操作を行うためのものであり、キーボード、マウス、トラックボール、タッチパネル等から形成することができる。
また、操作部32は、操作者が必要に応じて各種の情報、特に上述の遅延時間算出に用いられるプローブ12の探触子36の複数の超音波素子、被検体の検査対象領域の音速、超音波ビームの焦点位置、探触子36の送信開口及び受信開口等に関する情報、並びに重ね合わせ素子データ数及び重ね合わせ処理方法等の素子データ処理に関する情報等を入力操作するための入力装置を備えている。
格納部34は、操作部32から入力された各種の情報、特に、上述のプローブ12、音速、焦点位置、送信開口及び受信開口等に関する情報、重ね合わせ素子データ数及び重ね合わせ処理方法等の素子データ処理に関する情報等や、送信部14、受信部16、素子データ記憶部20、素子データ処理部22、画像生成部24及び表示制御部26等の制御部30で制御される各部の処理や動作に必要な情報、並びに、各部の処理や動作を実行させるための動作プログラムや処理プログラム等を格納するもので、ハードディスク、フレキシブルディスク、MO、MT、RAM、CD−ROM、DVD−ROM等の記録媒体を用いることができる。
なお、素子データ処理部22、整相加算部38、検波処理部40、DSC42、画像作成部44、及び表示制御部26は、CPUと、CPUに各種の処理を行わせるための動作プログラムから構成されるが、それらをデジタル回路で構成してもよい。
ここで、素子データ処理部22を、図2に基づいて詳細に説明する。
同図に示すように、素子データ処理部22は、遅延時間算出部48と、重ね合わせ処理部50とを有する。
遅延時間算出部48は、操作部32から入力された、もしくは、操作部32から入力されて格納部34に格納されているプローブ12の探触子36の複数の超音波素子、被検体の検査対象領域の音速、超音波ビームの焦点位置、探触子36の送信開口及び受信開口等に関する情報を事前に取得しておき、超音波ビームを形成し送信する、送信開口の超音波素子(送信素子)と、被検体からの、超音波ビームによる超音波エコーを受信する、受信開口の超音波素子との幾何学的配置に基づいて、受信開口の各超音波素子で受信される素子データの遅延時間を算出する。
重ね合わせ処理部50は、操作部32から入力された、もしくは、操作部32から入力されて格納部34に格納されている、重ね合わせる素子データの数及び重ね合わせ処理方法等の素子データ処理に関する情報に基づいて、素子データ記憶部20によって記憶保持された2以上の対象領域毎に生成された2以上の未処理素子データを読み出し、遅延時間算出部48でそれぞれ算出された遅延時間に基づいて、2以上の未処理素子データを受信時間上で、即ち時間を合わせて、かつ、受信された探触子の素子の絶対的な位置を合わせて、重ね合わせて処理済素子データを生成する。
次に、素子データ処理部22で行う素子データ処理について詳細に説明する。
まず、超音波プローブ12の探触子36の送信用超音波素子(以下、単に送信素子という)から超音波ビーム(以下、送信ビームという)を被検体に送信し、被検体との間の相互作用によって発生された超音波エコーを探触子36の受信用超音波素子(以下、単に受信素子という)で受信して素子データを得る場合において、送信素子からの送信ビームと受信素子で得られる素子データとの関係について説明する。
図3(a)及び(c)に示すように、それぞれ7つの超音波素子(以下、単に、素子ともいう)52a〜52g及び52b〜52hを受信素子として超音波エコーを受信して素子データを取得する時、反射点54を含む検査対象領域に送信する送信ビーム56が理想的に素子間隔以下に絞れている理想的な場合には、図3(a)のように、検査対象領域内の反射点54の真上にある、素子52a〜52gの中心の素子52dを送信素子として送信ビーム56を送信し、受信素子52a〜52gで超音波エコーを受信して素子データを取得する場合、送信ビーム56の焦点58は、素子52dと反射点54とを結ぶ一直線上にあり、送信ビーム56は、反射点54まで送信されるので、反射点54から反射される超音波エコーが生成される。反射点54からの超音波エコーは、所定角度に拡がる受信経路60を通って受信素子52a〜52gに受信され、受信素子52a〜52gによって、図3(b)に示すような素子データ62が得られることになる。
これに対し、図3(c)に示すように、送信素子の中心を、反射点54に対して1素子分、素子の方向(図中右方向)にシフトさせ、反射点54の真上にある素子52dに隣接する素子52eを送信素子として送信ビーム56を送信し、受信素子52b〜52hで超音波エコーを受信する場合には、送信ビーム56の送信方向、即ち、送信素子52eと焦点58とを結ぶ直線上に反射点54が存在しないため、送信ビーム56は、反射点54に送信されない。このため、反射点54から反射される超音波エコーは生成されず、受信素子52b〜52hでは、超音波エコーを受信しないので、図3(d)に示すように、反射点からの反射信号が得られないことになる(素子データの信号強度が『0』になる)。
しかしながら、図4(a)及び(c)に示すように、実際の送信ビーム64は、素子間隔より幅が広い。
ここで、図4(a)のように、反射点54の真上にある素子52dを送信素子として送信ビーム64を送信した場合には、図3(a)の場合と同様に、送信ビーム56が幅広であっても、その焦点58は、素子52dと反射点54とを結ぶ一直線上にあり、送信ビーム64は、反射点54で反射され、超音波エコーが生成される。その結果、図3(a)の場合と同様に、反射点54からの超音波エコーは、所定角度に拡がる受信経路60を通って受信素子52a〜52gに受信され、受信素子52a〜52gによって、図4(b)に示すような真の素子データ66が得られることになる。
一方、図4(c)に示すように、図3(c)の場合と同様に、送信素子の中心を、反射点54に対して1素子分、素子の方向(図中右方向)にシフトさせ、反射点54の真上にある素子52dに隣接する素子52eを送信素子として送信ビーム64を送信し、受信素子52b〜52hで超音波エコーを受信する場合、送信ビーム64は幅広であるため、その送信方向、即ち、送信素子52eと焦点58とを結ぶ直線上に反射点54が存在していなくても、送信ビーム64は、反射点54に送信されることになる。このため、反射点54から本来存在しない超音波エコー、所謂ゴーストの反射信号が発生し、反射点54からのゴーストの反射信号は、所定角度に拡がる受信経路60を通って受信素子52b〜52hに受信され、受信素子52b〜52hによって、図4(d)に示すようなゴーストの素子データ68が得られることになる。
このようなゴーストの素子データ68は、素子データから生成される超音波画像の精度を低下させる原因となる。
素子データ処理部22は、素子データに対応する遅延時間を遅延時間算出部48で算出し、重ね合わせ処理部49が、2以上の素子データを、この遅延時間および素子の絶対的な位置に応じて重ね合わせることで、真の素子データを強調して、ゴーストの素子データを減衰させた、高精度な素子データである処理済素子データを生成するものである。
ここで、図4(c)に示す送信ビーム64が送信素子52eから焦点58を経由して反射点54に至る送信経路とゴーストの反射信号が反射点54から各受信素子52b〜52hに至る受信経路との和(伝播距離)は、それぞれ図4(a)に示す送信ビーム64が送信素子52dから焦点58を経由して反射点54に至る送信経路と真の反射超音波エコーが反射点54から各受信素子52a〜52gに至る受信経路との和(伝播距離)より長くなるため、図4(d)に示すようなゴーストの素子データ68は、図4(b)に示すような真の素子データ66に対して遅延することになる。
本発明の素子データ処理部22の遅延時間算出部48においては、真の素子データに対するゴーストの素子データの時間差、即ち遅延時間は、送信素子、超音波ビームの焦点、被検体の反射点、及び受信素子の幾何学的配置から算出される。したがって、遅延時間の計算には、超音波プローブ12の形状(素子間隔、リニア、コンベックスなど)、被検体の検査対象領域の音速、焦点位置、送信開口、受信開口などの情報が必要であり、遅延時間算出部48では、操作部32によって入力された、若しくは格納部34に格納されたこれらの情報を取得して遅延時間の計算を行う。遅延時間は、例えば、送信素子、超音波ビームの焦点、被検体の反射点、及び受信素子の幾何学的配置から算出される、送信素子から焦点を経て反射点に至る送信ビームの送信経路及び反射点から受信素子に至る真の反射超音波エコー又はゴーストの反射信号の受信経路の合計長さ(伝播距離)とその音速によって算出される伝播時間の差から算出することができる。
本発明では、例えば、図5(a)及び図5(b)に示すようにして、真の反射超音波エコーとゴーストの反射信号の場合の送信ビームの送信経路及び受信経路の長さを求めることができる。
真の反射超音波エコーの場合、図5(a)に示すように、送信素子52dと受信素子52d(受信素子52a〜52gの中心)とが一致し、その真下に、焦点58及び反射点54が配置されており、反射点54の真上の素子52dの位置をxy2次元座標上の座標(x0、0)とし、素子間隔をLe、焦点58の位置を座標(x0、df)、反射点54の位置を座標(x0、z)とする時、送信素子52dの位置も反射点54の真上の素子52dと同じく座標(x0、0)となり、送信素子52dから焦点58を経て反射点54に至る送信ビームの送信経路61の長さ(送信経路距離)Ltaは、及び、反射点54から受信素子52dに至る真の反射超音波エコーの受信経路60の長さ(受信経路距離)Lraは、Lta=Lra=zによって算出することができる。
したがって、真の反射超音波エコーの場合の超音波の伝播距離Luaは、Lua=Lta+Lra=2zとなる。
ゴーストの反射信号の場合、図5(b)に示すように、図5(a)の場合と比べて、送信素子52eの位置が反射点54に対して1素子分横(x方向:図中右方向)にずれて、焦点58は送信素子52eの真下に配置されるが、反射点54は受信素子52dの真下に配置されており、反射点54の真上の受信素子52dの位置を、図5(a)の場合と同じくxy2次元座標上の座標(x0、0)とし、素子間隔をLe、反射点54の位置を座標(x0、z)とすると、送信素子52eの位置は座標(x0+Le、0)、焦点58の位置は座標(x0+Le、df)となるので、送信素子52eから焦点58を経て反射点54に至る送信ビームの送信経路61の長さ(送信経路距離)Ltbは、Ltb=df+√{(z−df)+Le}によって算出することができ、反射点54から受信素子52dに至るゴーストの反射信号の受信経路60の長さ(受信経路距離)Lrbは、Lrb=zによって算出することができる。
したがって、ゴーストの反射信号の場合の超音波の伝播距離Lubは、Lub=Ltb+Lrb=df+√{(z−df)+Le}+zとなる。
こうして、図5(a)に示す幾何学配置で求めた送信経路61の距離Ltaと受信経路60の距離Lraを合計した超音波の伝播距離Luaを音速で割った値が真の反射超音波エコーの伝播時間となり、図5(b)に示す幾何学配置で求めた送信経路61の距離Ltbと受信経路60の距離Lrbを合計した超音波の伝播距離Lubを音速で割った値がゴーストの反射信号の伝播時間となる。遅延時間の算出は、反射点54と送信素子52(52d)のx座標が一致している時の真の超音波エコーの伝播時間から、反射点54と送信素子52(52e)のx座標を1素子間隔ずつずらしたときのゴーストの反射信号の伝播時間の差から遅延時間を求める。
なお、図5(a)及び図5(b)の幾何学モデルでは、送信経路61が焦点58を経由したモデルになっているが、本発明はこれに限定されず、例えば、焦点58を経由せずに直接反射点54に至る経路であっても良い。
また、図5(a)及び図5(b)の幾何学モデルはリニアプローブの場合であるが、これに限らず他のプローブにおいても、プローブの形状から同様の幾何学計算を行うことができる。例えば、コンベックスプローブの場合、プローブの半径と素子間隔の角度から幾何学モデルを設定して同じように計算することができる。
また、ステア送信の場合には、送信角度などの情報を考慮した幾何学モデル(図示せず)を用い、送信素子と反射点との位置関係から真の超音波エコーの素子データ及びその周辺のゴーストの素子データの遅延時間を算出することができる。
さらに、幾何学モデルよって遅延時間を算出する方法に限らず、あらかじめ装置の計測条件に合わせて高輝度反射点を計測した計測結果から、計測条件毎に遅延時間を求めておき、その遅延時間を装置内に記憶しておくことで、同じ計測条件の遅延時間を読み出すようにしておいてもよい。
図5(c)に、中央に真の信号の素子データ66及び真の信号の周辺のゴーストの素子データ68を示し、図5(d)に、上述の幾何学計算から得られた素子データ66に対するゴーストの素子データ68の遅延時間の一例を示す。真の信号の素子データ66を中心にゴーストの信号の素子データ68は、対称的に時間が遅れることが示されている。
なお、こうして、素子データ処理部22の遅延時間算出部48において算出された遅延時間を整相加算部38における遅延補正に用いることもできる。
後に詳述するが、本発明においては、或る注目素子を中心素子とする超音波ビームの送信(注目素子の送受信)で得られた素子データに、中心素子が異なり、かつ、超音波ビームの少なくとも一部が重複する超音波ビームの送信で得られた素子データを、超音波エコーの受信時間と素子の位置とを合わせて重ね合わせることで、注目素子の処理済素子データ(第2の素子データ)を生成する(注目素子の素子データを再構築する)。
図5において、反射点54は、注目素子の真下(方位方向の同位置/注目素子と焦点とを結ぶ直線上)に位置する或るサンプリングポイントの位置(素子データの出力位置)を示している。本発明では、注目素子の送受信における注目素子の真下のサンプリングポイントへの送受信経路を真の素子データの送受信経路と見なし、中心素子が異なる超音波の送受信(周辺素子からの送受信)における同じサンプリングポイントへの送受信経路をゴーストの送受信経路と見なして、両送信経路の差から、遅延時間を算出して、この遅延時間を用いて素子データの時間を合わせて、重ね合わせを行う。言い換えれば、注目素子の送受信で得られた素子データを真の素子データ、中心素子が異なる送受信で得られた素子データをゴーストの素子データと仮定して、遅延時間を算出し、素子データの重ね合わせを行う。
本発明では、全てのサンプリングポイント(全ての素子データの出力位置)に対応して、同様の考え方で遅延時間を算出して、素子データの重ね合わせを行い、各素子の処理済素子データを生成する。その際、サンプリングポイントは、同一ライン上の深さ方向(y方向)にも複数設定することが好ましい。
ここで、実際には、方位方向(x方向)にサンプリングポント(反射点)の位置をズラしても、受信経路の長さ(受信経路距離Lrb)は変わらない。従って、各注目素子に関しては、深さ方向(y方向)の各サンプリングポイント毎に、中心素子が異なる送受信による素子データとの遅延時間の算出を行えばよい。
また、この重ね合わせ処理においては、真の素子データがどの素子データであるかを知っている必要はない。すなわち、後に図6を用いて詳述するが、この重ね合わせ処理では、注目素子の素子データが真の素子データであれば、自動的に強調されて素子データが残り、ゴーストであれば素子データは打ち消される。すなわち、注目素子の素子データが真の素子データである場合には、遅延時間による処理が一致して信号が強調され、注目素子の素子データがゴーストの素子データである場合には、遅延時間による処理が一致せずに、信号が打ち消される。
次に、本発明の素子データ処理部22の重ね合わせ処理部50においては、こうして遅延時間算出部48において算出された遅延時間を用いて真の超音波エコーの素子データ及びその周辺のゴーストの素子データの重ね合わせ処理を行う。
重ね合わせ処理部50における重ね合わせ処理では、重ね合わせる時の重ね合わせ素子データ数と重ね合わせ処理方法の情報が必要になるが、これらは、予め、操作部32によって入力しておいても良いし、格納部34に格納しておいても良い。
図6(a)〜(h)に、重ね合わせ処理部50で行われる、素子データ数が5つ、重ね合わせ素子データ数が3つの場合の重ね合わせ処理の一具体例を示す。
図6(a)は、5つの素子データを横に並べて表示しており、素子データ毎に、超音波ビームを送信し、反射信号を受信した様子を表している。各素子データの横軸は、受信素子を表しており、それぞれの素子データにおいて超音波ビームの送信時における中心の素子を中心にして表示している。縦軸は、受信時間を表す。
5つの素子データのうち、真中の素子データでは、素子データの中心の素子(受信素子の中心の素子)、即ち、送信時における中心の素子(送信素子)の真下に反射点が存在しており、反射点からの反射信号が受信されている。つまり、この反射信号は真の信号であり、真中の素子データは、真の信号を表す。
真中の素子データ以外の両側2つの素子データについては、送信時における中心の素子の真下には反射点は存在していないが、送信した超音波ビームの広がりによって、真中の素子データの送信素子の真下に存在する反射点に超音波ビームが当たることで生じた反射信号、即ちゴーストが写り込んでいる。ゴーストは、真の信号から離れるほど反射点までの超音波の伝播時間が長くなるため、真の信号よりも受信時間が遅くなる。また、反射点からの反射信号が初めに受信される受信素子の位置は、反射点の真上の素子であるが、素子データの横軸は超音波ビームの送信時における中心の素子を中心にしているため、素子データ毎にこの中心の素子を1素子ずつずらして送信していることから、各素子データにおいて素子の絶対位置は1素子ずつずれている。つまり、真中の素子データでは、反射点からの反射信号がはじめに受信される受信素子は真中の素子であるが、両隣の素子データにおいては、真中の素子データよりも1素子ずれており、右側の素子データでは左に1素子ずれ、左側の素子データでは右に1素子ずれている。更に、両端の素子データでは、真中の素子データよりも2素子ずれており、右端の素子データでは左に2素子ずれ、左端の素子データでは右に2素子ずれている。このように、ゴーストの信号は、真の信号に対して、受信時間が遅れるだけでなく、受信素子の方向に対してもずれを生じている。
図6(b)に、図6(a)に示す5つの素子データのうちの真中の素子データに対する受信時間の遅延時間の一例を示す。
重ね合わせ処理部50では、図6(b)に示す遅延時間を用いて、真中の素子データを注目素子の素子データとした場合に、注目素子の素子データを中心に、重ね合わせ素子データ数分、図示例では3素子データ分だけ遅延時間補正を行うと共に、各素子データを注目素子との素子位置の差(中心素子の位置の差)に応じて、図示例では両側に1素子分だけ横方向にシフトさせて、即ち位相を合わせて3素子データ分の未処理素子データを重ね合わせ、注目素子の素子データの1つの重ね合わせ処理済素子データとして求める。
こうして得られた注目素子の素子データの重ね合わせ処理済素子データを図6(c)に示す。
図6(a)に示す注目素子の素子データは、真の信号の素子データであることから、注目素子の素子データの両側の隣接素子データの未処理素子データに遅延時間補正及び横方向のシフトを行って位相合わせを行うと、図6(c)に示すように、隣接素子データの未処理素子データと、注目素子の未処理素子データとは、位相が合うので高輝度位置で重なり合う。したがって、これらの素子データを、例えば加算すると素子データ値は大きな値(高輝度値)を示し、例えば、平均して平均値を求めても強調された値(高輝度値)を示す。
これに対し、図6(d)は、図6(a)と同じ素子データであるが、真中の素子データの左隣の素子データ、つまりゴーストを注目素子の素子データとした場合の一例を示す。
図6(e)は、図6(b)と同じものであり、図6(a)に示す5つの素子データのうちの真中の素子データに対する受信時間の遅延時間の一例を示す。即ち、図6(a)と図6(d)は同じ素子データであるので、図6(d)に示す5つの素子データのうちの真中の素子データに対する受信時間の遅延時間とも同じである。
重ね合わせ処理部50では、図6(e)(即ち、図6(b)と同じ)に示す遅延時間を用いて、注目素子の素子データを中心に、重ね合わせ素子データ数分、図示例では3素子データ分だけ遅延時間補正を行うと共に、各素子データを注目素子との素子位置の差(中心素子の位置の差)に応じて、図示例では両側に1素子分だけ横方向にシフトさせて、3素子データ分の未処理素子データを重ね合わせ、注目素子の素子データの1つの重ね合わせ処理済素子データとして求める。
こうして得られて注目素子の素子データの重ね合わせ処理済素子データを図6(f)に示す。
図6(d)に示す注目素子の素子データは、ゴーストの素子データであることから、注目素子の素子データの両側の隣接素子データの未処理素子データに遅延時間補正及び横方向のシフトを行って位相合わせを行っても、図6(f)に示すように、隣接素子データの各未処理素子データと注目素子の未処理素子データとは、それぞれ位相が合わないので重なり合わない。このため、これらの3つの素子データを、例えば加算しても、位相が合っていないために、位相が反転している信号などは信号が打ち消しあうため、加算値は大きくならず、例えば、平均して平均値を求めると小さな値を示すことになる。
他の素子データに関しても、注目素子の素子データとして同様の遅延時間補正及び横方向のシフトを行った結果、図示例の5素子データそれぞれについての隣接する3つの素子データの重なり状態を図6(g)に示し、これらに対して、重ね合わせ処理として、例えば、加算処理、若しくは平均処理した結果を図6(h)に示す。
図6(h)に示すように、図6(a)に示す送信素子と反射点との座標が一致している時の注目素子の素子データでは、真の信号の素子データが高輝度値を持つ重ね合わせ処理済素子データとして求められ、その両側の各2素子データの全4素子データでは、ゴーストの素子データは互いに位相が合わない素子データを加算し、又は平均するので、互いに打ち消し合うことになるため、ゴーストの重ね合わせ処理済素子データは、その値が真の信号の素子データである高輝度値を持つ重ね合わせ処理済素子データに対して小さくなり、真の信号の素子データに対してゴーストの素子データの影響を低減させることができ、又は、その影響を無視できる程、小さくすることができる。
そのため、処理済素子データに整相加算や検波処理を行って、受信データを生成して、超音波画像を生成することにより、同様に、ゴーストの影響を無くし、すなわち音線上の全ての点で焦点を結んだのに等しい素子データで超音波画像生成できるので、高輝度で、鮮鋭性に優れた、高画質な超音波画像を生成することができる。
なお、以下の説明では、この処理済素子データの生成を、マルチライン処理とも言う。
本発明において、中心素子とは、送信の開口数(超音波の送信を行う素子数)が奇数の場合には、方位方向の中央の素子である。
他方、開口数が偶数の場合には、方位方向の中央の素子のいずれかを中心素子とし、あるいは、方位方向の真中に素子が有ると仮定して、中心素子とする。すなわち、開口数が偶数の場合には、開口の真中のライン上に焦点が有るものとして計算を行ってもよい。
なお、重ね合わせ処理部50における重ね合わせ処理方法としては、単に、加算するだけでなく、平均値や中央値をとってもよいし、係数を掛け合わせた上で(重み付して)加算してもよい。なお、平均値や中央値を取ることは、素子データレベルでの平均化フィルタやメディアンフィルタを掛けることに相当すると考えられるが、平均化フィルタやメディアンフィルタの代わりに、通常の画像処理で行われる逆フィルタなども適用してもよい。或いは、重ね合わせる各素子データ同士を比較し、類似している場合には最大値、類似していない場合には平均値、分布の偏りがある場合には中間値をとるなど、これに限らず、重ね合わせる各素子データの特徴量に基づいて重ね合わせ処理を変えてもよい。
また、注目素子の素子データに重ね合わせる素子データの数は、図示例の2つに限定はされず、1つでもよく、あるいは、3つ以上でもよい。すなわち、注目素子の素子データに重ね合わせる素子データの数は、要求される処理速度(フレームレート等)や画質などに応じて、適宜、設定すればよい。
また、重ね合わせる素子データ数は、超音波ビームのビーム幅の広がり程度に合わせた方が望ましい。従って、深さによってビーム幅が変わる場合には、重ね合わせ素子データ数も深さによって変更してもよい。また、ビーム幅は送信開口数に依存することから、送信開口数に応じて重ね合わせ素子データ数を変更してもよい。或いは、画像の輝度値などの特徴量に基づいて重ね合わせ素子データ数を変更してもよいし、素子データの波形解析を行い、素子データ同士の相関性やコヒーレンス性を評価した結果に基づいて重ね合わせ素子データ数を変更してもよいし、重ね合わせ素子データ数を複数パターン変えて作成した画像から最適な重ね合わせ素子データ数を選択してもよい。
また、深さに応じて重ね合わせる素子データの数を変更することに限定はされず、重ね合わせる位置(サンプリングポイント)の空間的な深さに応じて、送信焦点の深さ、送信開口数等を変更して、変更した送信条件で超音波ビームの送信を行って得られた第1の素子データを用いてマルチライン処理を行うようにしてもよい。
例えば、サンプリングポイントと焦点とが所定の距離となるように、サンプリングポイントの深さに応じた位置に送信焦点を設定して得られた第1の素子データを用いてマルチライン処理を行う。これにより、サンプリングポイントの深さによらず、マルチライン処理の精度を一様にすることができる。さらに、送信焦点の深さによらずF値が一定となるように、サンプリングポイントの深さに応じて、送信焦点の位置と開口数とを設定することがより好ましい(図22(a)、(b)参照)。これにより、サンプリングポイントの深さによらず、マルチライン処理の精度をより一様にすることができる。
また、送信ラインごとに、同一の送信ライン上において異なる深さの送信焦点を形成する超音波ビームを送信して、同一の送信ラインに対応する複数の第1の素子データを取得し、素子データ処理部22が、送信焦点の深さごとに、異なる送信ラインで同じ焦点深さの第1の素子データを用いてマルチライン処理を行ってもよい。このような場合には、遅延時間の計算は、それぞれ送信焦点の深さ(素子データの受信時間)を基準にして行えばよい。
なお、以上のマルチライン処理では、中心素子が異なり、かつ、超音波ビームの送信方向が平行(角度が同一)である、複数の超音波ビームの送信によって得られた素子データを重ね合わせることにより、注目素子の素子データの処理済素子データを生成したが、本発明は、これに限定はされない。
例えば、中心素子を同一として、送信方向(角度)が異なる複数の超音波ビームの送信によって得られた素子データを重ね合わせることにより、処理済素子データを生成してもよい。この際において、何れの超音波ビームの送信で得られた素子データの処理済素子データを生成するか(すなわち、どの方向の音線の処理済素子データを生成するか)は、診察部位やプローブの種類等に応じてデフォルトで設定されていてもよく、あるいは、操作者が選択するようにしてもよい。
また、中心素子が異なり、平行な超音波ビームの送信で得られた素子データと、中心素子を同一として、送信方向が異なる超音波ビームの送信で得られた素子データとの両方を用いて、処理済素子データを生成してもよい。
重ね合わせた結果、上述したように、真の信号の素子データでは信号の位相が合うが、ゴーストでは信号の位相が合わないため、加算などの重ね合わせ処理の結果、様々な位相の信号がお互いに打ち消し合い、信号が弱くなる。結果的に、真の信号は、有効な値を持つ、例えば高輝度の素子データとして残り、ゴーストの信号は、減弱した値を持つ、例えば低輝度の素子データとして得ることができる。
本発明の超音波検査装置の動作、作用及び超音波画像の作成方法について説明する。
図7は、図1に示す実施例1の超音波検査装置の要部を処理フローに沿って示すブロック図である。
操作者が、図1に示すように、超音波プローブ12を被検体の表面に当接し、測定を開始すると、図7に示すように、送信部14から供給される駆動信号に従って探触子36から超音波ビームが送信され、被検体からの超音波エコーを、探触子36が受信し、受信信号としてアナログ素子信号を出力する。
受信部16は、アナログ素子信号を増幅してA/D変換部18に供給し、A/D変換部18は、アナログ素子信号をデジタル素子データに変換して素子データ記憶部20に供給して、記憶保持させる。
素子データ処理部22は、遅延時間算出部48(図2)において、真の信号の未処理素子データに対する周辺のゴーストの信号の未処理素子データの遅延時間(例えば、図6(b)、図6(e)、どちらも同じものである。)を、送信素子、焦点、反射点、及び受信素子の幾何学的配置、及び予め入力されて設定されている被検体の検査対象領域の音速等から算出する(例えば、図5の幾何学モデルを用いて算出する)。
次に、素子データ処理部22は、未処理素子データを素子データ記憶部20から読み出し、処理を行う素子データを注目素子の素子データとし、重ね合わせ処理部50(図2)において、遅延時間算出部48で算出された遅延時間を用いて、注目素子の素子データとその周辺の未処理素子データとを位相合わせて重ね合わせて処理済素子データを求める。これにより、真の信号を含む未処理素子データであれば、強調された処理済素子データが求まると共に、ゴーストの未処理素子データであれば減弱した処理済素子データが求まる。
素子データ処理部22は、こうして求めた処理済素子データを画像生成部24の整相加算部38に供給する。
画像生成部24の整相加算部38は、素子データに受信フォーカス処理を施して受信データ(音線信号)を生成し、検波処理部40に供給する。検波処理部40は、音線信号を処理してBモード画像信号を生成する。Bモード画像信号を、DSC42がラスター変換し、画像作成部44が画像処理を施し、超音波画像が生成される。生成された超音波画像は、画像メモリ46に格納されると共に、表示制御部26により超音波画像が表示部28に表示される。
このように本発明の実施例1の超音波検査装置10は、素子データ処理部22でゴーストの信号が弱減され、真の信号が強調された処理済素子データを用いて超音波画像を作成するので、幅広ビーム送信専用超音波プローブを使うことなく、かつ、従来と変わらないフレームレートのまま、送信ビームの幅に依存しない高解像度で、SN比が高く、最適な空間分解能を持つシャープな超音波画像を得ることができる。
本発明の実施例1の超音波検査装置は、基本的に以上のように構成される。
なお、本発明の実施例1の超音波検査装置10においては、素子データ処理部22の遅延時間算出部48における遅延時間算出の際、及び整相加算部38で用いる遅延時間算出の際に必要である、検査対象物内、即ち、被検体の検査対象領域の音速が与えられているが、本発明はこれに限定されず、検査対象物内の音速がわからない場合に、以下に示すように、超音波検査装置内において、最適な音速を設定するようにしても良い。
次に、図8(a)及び(b)に基づいて、本発明の実施例2の超音波検査装置について説明する。
図8(a)及び(b)は、それぞれ本発明の実施例2に係る超音波検査装置の要部の一例を処理フローに沿って概念的に示すブロック図である。
なお、図8(a)及び(b)に示す超音波検査装置70a及び70bは、図1及び図7に示す超音波検査装置10と、判定部72a、72b、及び音速変更部74を備えている点で異なる以外は、全く同様の構成を有するものであるので、同一の構成要素には、同一の参照符号を付し、その詳細な説明は省略する。
まず、図8(a)に示す超音波検査装置70aについて説明するが、図8(a)は、図7と同様に、超音波検査装置70aの要部を処理フローに沿って示す。
図8(a)に示すように、超音波検査装置70aは、送信部14と、探触子36と、受信部16と、素子データ記憶部20と、素子データ処理部22と、整相加算部38と、検波処理部40と、画像作成部44と、判定部72aと、音速変更部74と、表示部28とを有する。
ここで、探触子36、送信部14、受信部16、及び素子データ記憶部20における処理と、素子データ処理部22、整相加算部38、検波処理部40、及び画像作成部44における第1回目の処理とは、図1及び図7に示す超音波検査装置10と同様に行われるので、その説明を省略する。
1回目の処理では、素子データ処理部22は、予め設定された音速の初期値を用いて素子データの処理を行った後、整相加算部38に処理済素子データを送り、整相加算部38は、適当な音速値、例えば、生体に近い音速値等を用いて、受信フォーカス処理、即ち、整相加算を行って音線信号(受信データ)を生成し、検波処理部40は、生成された音線信号に検波処理を行い、Bモード画像信号を生成し、画像作成部44は、生成されたBモード画像信号に画像処理を施し、超音波画像を生成する。
判定部72aは、画像作成部44と、表示部28との間に設けられるもので、画像作成部44で作成された超音波画像を用い、作成された超音波画像に基づいて、例えば、超音波画像の輝度値、鮮鋭度、輝度値の鮮鋭度等の画質指標や音速の収束度合い等に基づいて判定を行う。判定部72aは、例えば、超音波画像の輝度値、鮮鋭度、輝度値の鮮鋭度等の画質指標が所定値より高くなる時、好ましくは最も高くなる時や、音速が所定範囲内に収束した時に、是又は適(OK)と判定し、そうでない時には否(NG)と判定する。
判定部72aによってOKと判定された場合には、画像作成部44で作成された超音波画像が表示部28に送られ、その表示画面に表示される。
一方、判定部72aによってNGと判定された場合には、音速変更部74に進む。
音速変更部74は、素子データ処理部22の遅延時間算出部48における遅延時間算出に必要な検査対象物内の音速が分からない場合に最適な音速を設定するためのもので、最初は予め設定された音速の初期値から、2回目以降は先に変更された音速値から、新しい音速値に変更して設定する。
ここで、音速値の変更は、判定部72aによる判定がOKとなる最適な音速値を求めることができる方法であればどのような方法でも良いが、音速の初期値から所定の間隔で増加又は減少させるようにするのが好ましい。音速値の変更は、所定音速範囲に亘り所定速度間隔毎に順次行えばよいが、例えば、人体等の生体を対象とする場合、1400m/sから1m/s〜50m/sの所定ステップ、例えば、10m/sのステップで1700m/sまで順次に変更することができる。
音速変更部74で、新しい音速値に変更されると、音速変更部74から素子データ処理部22に戻り、2回目以降の処理として、素子データ処理部22の遅延時間算出部48が、新しい音速値を用いて遅延時間を算出し直す。その後、重ね合わせ処理部50において、遅延時間算出部48で算出された遅延時間を用いて、2以上の未処理素子データに重ね合わせ処理をして処理済素子データを求める。
こうして、素子データ処理部22で処理済素子データを求めた後、整相加算部38で、素子データ処理部22で求められた処理済素子データに対して、音速変更部74で変更された新たな音速値に基づいて受信フォーカス処理を行って音線信号を生成し、1回目の処理と同様に、検波処理部40で検波処理を行い、画像作成部44で画像処理を施し、超音波画像を生成し、判定部72aによる判定を行う。
ここで、判定部72aの判定がOKであれば、画像作成部44で作成された超音波画像が表示部28に表示される。
これに対し、判定部72aの判定がNGであれば、判定がOKとなる、即ち、最適音速が設定されるまで、音速変更部74における新しい音速値への変更、素子データ処理部22の遅延時間算出部48での、変更された新しい音速値を用いた遅延時間の算出、重ね合わせ処理部50での処理済素子データの生成、整相加算部38での新しい音速値に基づく音線信号の生成、検波処理部40での検波処理、画像作成部44での超音波画像の生成が繰り返される。
なお、例えば、音速変更部74における新しい音速値への変更が所定音速範囲内で全て行われた場合、例えば、所定音速範囲全域において所定間隔で行われた場合でも、判定部72aの判定がOKとならなかった場合には、最も判定基準に近かった時の音速値を最適音速として採用すればよい。
なお、音速変更部74による音速値の変更方法及び最適音速の設定方法は、本発明においては特に限定的されず、上述したように、音速値の変更を所定音速範囲内において所定間隔順次行い、変更された音速値を用いて上述の各処理をする毎に判定部72aによる判定を行うものであっても良いし、また、音速値の変更を所定音速範囲全域において所定間隔で網羅的に行い、所定音速範囲の全域の全ての音速値を用いて上述の各処理をしたあとに判定部72aによる判定を行うものであっても良いが、音速値の変更及び最適音速の設定を探索的に行うものであっても良い。例えば、探索的に行う場合は、設定音速の初期値をなるべく生体等に近い値からスタートさせて、例えば、音速値をプラス側に変えたときに、判定の結果として画像の鮮鋭度等の画質指標が上がった場合には、さらにプラス側に変えて鮮鋭度等の画質指標が下がるまで繰り返し、あるいは、はじめに音速値をマイナス側に変えたときに判定の結果として鮮鋭度等の画質指標が下がった場合には、プラス側に変えるなど、前回の音速値との比較から次の音速値を適宜変えて、音速値を所定の音速値に収束させて、収束した所定の音速値を最適音速として設定しても良い。
また、音速変更部74における音速値の変更及び最適音速の設定の際に、音速値を設定する領域は、特に制限的ではなく、被写体全体や検査対象領域全体を同一の音速値として設定してもよいが、被写体や検査対象領域を微小領域ごとに区切って、微小領域ごとに音速値を設定してもよく、画素単位で1点ずつ音速値を設定しても良い。また、被写体や検査対象領域の注目領域に音速値を設定し、注目領域に設定された音速値を最適音速として用いても良い。
なお、このような場合でも、遅延時間の計算に使用する音速値は、計算する反射点の位置における音速値を採用すればよいので、計算方法に違いはないのは勿論である。
なお、図8(a)に示す超音波検査装置70aでは、判定部72aを画像作成部44と表示部28との間に設けているが、本発明はこれに限定されず、図8(b)に示す超音波検査装置70bのように、判定部72bを整相加算部38と検波処理部40との間に設けるようにしても良い。
図8(b)に示す超音波検査装置70bにおいては、探触子36、送信部14、受信部16、及び素子データ記憶部20における処理と、検波処理部40、画像作成部44、及び表示部28における処理と、素子データ処理部22及び整相加算部38における第1回目の処理とは、図8(a)に示す超音波検査装置70aと同様に行われるので、その説明を省略する。
判定部72bは、整相加算部38と、検波処理部40との間に設けられるもので、整相加算部38で受信フォーカス処理を行って生成された音線信号に基づいて、例えば、音線信号を用いて求められる画像の輝度値、鮮鋭度、輝度値の鮮鋭度等の画質指標や音速の収束度合い等に基づいて判定を行う。判定部72bは、判定部72aと同様に、例えば、画像の輝度値、鮮鋭度、又は輝度値の鮮鋭度等の画質指標が、所定値より高くなる時、好ましくは最も高くなる時や、音速が所定範囲内に収束した時に、OKと判定し、輝度値や鮮鋭度等の画質指標が所定値や最も高い値に達していない時や、音速が所定範囲内に収束していない時にはNGと判定する。
判定部72bによってOKと判定された場合には、整相加算部38で生成された音線信号に対して、検波処理部40による検波処理、画像作成部44による超音波画像の作成、表示部28による超音波画像の表示が成される。
一方、判定部72bによってNGと判定された場合には、2回目以降の処理に移り、音速変更部74において新しい音速値に変更して、素子データ処理部22に戻り、素子データ処理部22の遅延時間算出部48が、音速変更部74で変更された新しい音速値を用いて遅延時間を算出し直す。その後、重ね合わせ処理部50において、新しい音速値を用いて算出された遅延時間を用いて、2以上の未処理素子データに重ね合わせ処理をして処理済素子データを求める。
こうして、素子データ処理部22で処理済素子データを求めた後、整相加算部38で、素子データ処理部22で求められた処理済素子データに対して、音速変更部74で変更された新しい音速値に基づいて受信フォーカス処理を行って音線信号(受信データ)を生成し、判定部72bで、1回目の処理と同様に、整相加算部38で生成された音線信号に基づいて判定を行う。
このように、2回目以降の処理の処理では、音速変更部74、素子データ処理部22、整相加算部38及び判定部72bによる各処理が、判定部72bの判定がOKとなるまで繰り返され、判定部72bのOK判定後、検波処理部40及び画像作成部44の各処理を経て、表示部28に超音波画像が表示される。
このように本発明の実施例2の超音波検査装置70a及び70bは、素子データ処理部22でゴーストの信号が弱減され、真の信号が強調された処理済素子データを用いて超音波画像を作成するので、幅広ビーム送信専用超音波プローブを使うことなく、かつ、従来と変わらないフレームレートのまま、送信ビームの幅に依存しない高解像度で、SN比が高く、最適な空間分解能を持つシャープな超音波画像を得ることができる。
本発明の実施例2の超音波検査装置は、基本的に以上のように構成される。
なお、本発明の実施例2の超音波検査装置70a及び70bにおいては、それぞれ、判定部72a及び72bにおいて、判定結果がOKとなった場合には、画像作成部44で作成された超音波画像を直ちに、若しくは、検波処理部40の検波処理及び画像作成部44の画像処理を経て作成された超音波画像を表示部28に表示しているが、本発明はこれに限定されず、判定部の判定結果がOKとなった後に、受信側の最適音速を求め、求められた最適音速を用いた受信フォーカス処理(整相加算処理)、検波処理、及び画像処理を行い、超音波画像を作成して表示するようにしても良い。
次に、図9〜図12に基づいて本発明の実施例3の超音波検査装置について説明する。
図9及び図12は、それぞれ本発明の実施例3に係る超音波検査装置の要部の一例を処理フローに沿って概念的に示すブロック図である。図10(a)は、図9に示す超音波検査装置の音速補正部の構成の一例を概念的に示すブロック図である。図10(b)は、図10(a)に示す音速補正部の着目領域設定部で着目領域が設定された超音波画像の一例を模式的に示す図である。図11は、図10(a)に示す音速補正部の最適音速算出部の一例の詳細を処理フローに沿って示すブロック図である。
なお、図9及び図12に示す超音波検査装置70c及び70dは、それぞれ図8(a)及び図8(b)に示す超音波検査装置70a及び70bと、判定部72a及び72bの後段にそれぞれ音速補正部76及び76aを備え、音速補正部76及び76aで設定された最適音速で受信フォーカス処理(整相加算処理)、検波処理、及び画像処理、超音波画像の表示を行っている点で異なる以外は、全く同様の構成を有するものであるので、同一の構成要素には、同一の参照符号を付し、その詳細な説明は省略する。
まず、図9に示す超音波検査装置70cについて説明するが、図9は、図8(a)と同様に、超音波検査装置70cの要部を処理フローに沿って示すブロック図である。
図9に示すように、超音波検査装置70cは、送信部14と、探触子36と、受信部16と、素子データ記憶部20と、素子データ処理部22と、整相加算部38と、検波処理部40と、画像作成部44と、判定部72aと、音速変更部74と、音速補正部76と、整相加算部38aと、検波処理部40aと、画像作成部44aと、表示部28と、を有する。
ここで、探触子36、送信部14、受信部16、及び素子データ記憶部20における処理と、判定部72aでの判定結果がOKとなるまでの素子データ処理部22、整相加算部38、検波処理部40、画像作成部44、判定部72a、及び音速変更部74における処理とは、図8(a)に示す超音波検査装置70aと同様に行われるので、その説明を省略する。
音速補正部76は、判定部72aと整相加算部38aとの間に設けられるもので、整相加算部38aで用いられる受信側の最適音速、即ち被検体の検査対象領域、したがって、その超音波画像に最も適した音速を求めるものである。音速補正部76は、例えば、設定音速vを検査対象領域内の音速として推定される所定音速範囲全域を所定音速間隔で変化させて、例えば、人体等の生体を対象とする場合、具体的には、1400m/sから1650m/s又は1700m/sまで、1m/s〜50m/sの所定刻み(ステップ)、例えば、10m/s刻みで変化させて、検査対象領域内の画像の輝度値、鮮鋭度等の画質指標や音速の収束度合い等に基づいて網羅的に最適音速を求めるものである。
このような音速補正部76による音速補正方法は、例えば、特開2011−92686号公報に開示の音速補正方法を用いることができる。なお、この公報に開示の音速補正方法では、着目領域毎に送信フォーカスを結ぶ必要がある。しかしながら、本発明では、素子データ処理部22の重ね合わせ処理部の重ね合わせ処理によって擬似的に如何なる深さにおいても送信フォーカスを結ぶことができている素子データが得られているので、着目領域毎に送信フォーカスを設定する必要はない。ただし、本発明においても、この公報に開示の音速補正方法の通りに、着目領域毎に送信フォーカスを設定するようにしても良いのは勿論である。
例えば、音速補正部76は、詳細は後述するが、図11に示すように、検査対象領域内の設定音速vを変化させ、それぞれの設定速度vにおいて設定速度vに基づいて、素子データ記憶部20から直接、又は素子データ処理部22を経て未処理のまま供給された未処理素子データや、素子データ処理部22から供給された処理済素子データ等の素子データを用いて最適音速算出部80の整相加算部38dにおいて受信フォーカス処理をして整相加算を行い音線信号を生成し、この音線信号から画像作成部44dにおいて超音波画像を形成し、それぞれの設定音速vでの検査対象領域内の画像の輝度値、鮮鋭度等の画質指標を算出する。
各設定音速vでの画像の輝度値、鮮鋭度等の画質指標を比較判定部86において比較して、例えば得られた輝度値、鮮鋭度等の画質指標の値が最も高い設定音速vを判定し、判定された設定音速vを音速設定部88において最適な音速値(最適音速値)として設定する。
即ち、音速補正部76においても、音速変更部74と同様に、音速値の変更及び最適音速の設定は、網羅的に行っても、探索的に行っても良い。
また、音速補正部76における音速値の変更及び最適音速の設定の際に、音速値を設定する領域は、特に制限的ではなく、被写体全体や検査対象領域全体を同一の音速値として設定してもよいが、被写体や検査対象領域を微小領域ごとに区切って、微小領域ごとに音速値を設定してもよく、画素単位で1点ずつ音速値を設定しても良い。また、後述するように、被写体や検査対象領域の注目領域に音速値を設定し、注目領域に設定された音速値を最適音速として用いても良い。
なお、このような場合でも、遅延時間の計算に使用する音速値は、計算する反射点の位置における音速値を採用すればよいので、計算方法に違いはないのは勿論である。
なお、音速補正部76は、判定部72aでの判定結果がOKとなった時に、音速変更部74によって設定されて、整相加算部38で用いた音速値をそのまま最適音速としても良いのは勿論である。
本実施例3では、判定部72aでの判定結果がOKとなった後に、最終的に音速補正部76で受信側の最適音速が設定される。
整相加算部38aは、整相加算部38と全く同様の構成及び機能を有し、素子データ処理部22で求められた処理済素子データに対して、音速補正部76で設定された最適音速に基づいて遅延を与えて加算する受信フォーカス処理を行って音線信号を生成する。
検波処理部40aは、検波処理部40と全く同様の構成及び機能を有し、整相加算部38aで生成された音線信号に対して、包絡線検波処理等の処理を施すことにより、被検体内の組織に関する断層画像情報であるBモード画像データを生成する。
画像作成部44aは、画像作成部44と全く同様の構成及び機能を有し、検波処理部40aで生成されたBモード画像データに画像処理を施して超音波画像を作成する。
この後、こうして作成された超音波画像は、表示部28に表示される。
なお、上述のように、音速補正部76は、整相加算部38aで用いる最適音速を被検体の検査対象領域内の超音波画像に基づいて設定するものであっても良いが、超音波画像の着目領域(注目領域)に基づいて被検体の検査対象領域の着目領域、即ち、超音波画像の着目領域に最も適した音速を設定するものであっても良い。
このような音速補正部を図10(a)に示す。
同図に示すように、音速補正部76は、制御部30(図1参照)による制御の下で、着目領域の最適音速を演算するもので、着目領域設定部77と、着目領域データ取得部78と、最適音速算出部80とを有する。
着目領域設定部77は、操作者による操作部32(図1参照)からの入力に応じて、着目領域ROIを設定する。
図10(b)は、着目領域ROIが設定された超音波画像の一例を模式的に示す図である。同図に示す超音波画像においては、見たい組織(臓器)や病変といった、対象部位Pが撮像されており、この対象部位Pを囲むように着目領域ROIが設定されている。
着目領域設定部77は、設定した着目領域ROIの情報を着目領域データ取得部78に供給する。
なお、着目領域設定部77は、操作部32からの入力に応じて着目領域ROIを設定する構成に限定はされず、画像生成部24(図1参照)の画像作成部44で生成された超音波画像(Bモード画像信号)を解析して、着目領域ROIを設定する構成としてもよい。
例えば、着目領域設定部77は、画像作成部44で生成された超音波画像において、隣接する画素同士の輝度値の差が所定の値以上となる位置(画素)を構造領域(組織や病変)の辺縁部(エッジ)と判定して、エッジに囲まれた領域、あるいは、エッジを多く含む領域を構造領域、即ち、対象部位Pと判定して抽出し、対象部位Pを含み、かつ、所定の形状、大きさとなる領域を着目領域ROIに設定してもよい。
なお、超音波画像を解析して着目領域ROIを設定する場合には、構造領域を1種類の領域とみなしても良く、あるいは、エッジの連続性や、輝度値のレベル等に応じて2種以上の領域とみなして、各領域を対象部位Pと判定して抽出し、対象部位Pごとに着目領域ROIを設定してもよい。
着目領域データ取得部78は、着目領域設定部77から供給される着目領域ROIの情報に基づいて、素子データ記憶部20に記憶されている未処理素子データから、着目領域ROIに対応する位置の未処理素子データを読み出し、最適音速算出部80に供給する。
なお、着目領域データ取得部78は、素子データ記憶部20から、着目領域ROIに対応する位置の未処理素子データを読み出す構成に限定はされず、素子データ記憶部22から最適音速算出部80に着目領域ROIに対応する位置の処理済素子データを供給するようにしても良いし、着目領域ROIが設定された後に、探触子36が、設定された着目領域ROIにフォーカスして超音波の送信を実施する構成とし、着目領域ROIに超音波を送信して、その超音波エコーを受信して得られた素子データを、着目領域ROIに対応する位置の素子データとして取得する構成としてもよい。
最適音速算出部80は、設定された着目領域ROI内の最適音速値を算出して設定する部位である。
ここで、最適音速値とは、設定音速を種々変更し、それぞれの設定音速に基づいて、受信フォーカス処理をして超音波画像を形成した場合に、画像のコントラストおよび/またはシャープネスが最も高くなる設定音速値であり、例えば、特開平8−317926号公報に記載のように、画像のコントラスト、スキャン方向の空間周波数、分散等に基づいて最適音速値の判定を行うことができる。
最適音速算出部80は、着目領域データ取得部78から供給された着目領域ROIに対応する素子データを入力値として用いて最適な音速値(最適音速値)を出力値として網羅的に求めて設定するためのものである。
最適音速算出部80としては、例えば、図11に示すように、所定の音速探索範囲を網羅的に探索して最適な音速値を設定するものを挙げることができ、音速探索範囲設定部82と、音速初期値設定部83と、整相加算部38dと、検波処理部40dと、画像作成部44dと、画質指標算出部84と、音速判定部85と、比較判定部86と、音速値更新部87と、音速設定部88と、を有する。
最適音速算出部80において、最適音速を設定する際には、まず、着目領域データ取得部78から着目領域ROIに対応する素子データ等の入力値が入力されると、音速探索範囲設定部82が音速の探索範囲及び音速変更幅を設定する。例えば、音速探索範囲設定部82は、音速の探索開始の音速初期値Vst、音速の探索終了の音速終端値Vend、音速値を変更するステップ幅(刻み幅:音速変更幅)ΔVを設定する。一例として、生体等の場合、音速初期値Vstを1400m/sに、音速値Vendを1700m/sに、音速変更幅ΔVを10m/sに設定する。
続いて、音速初期値設定部83は、設定音速vを音速初期値Vst(例えば、1400m/s)に設定する。次に、整相加算部38dは、音速初期値Vstである設定音速vに基づいて、着目領域データ取得部78から供給された着目領域ROIに対応する素子データを用いて受信フォーカス処理をして整相加算を行い音線信号を生成する。次いで、検波処理部40dは、生成された音線信号に対して検波処理を行ってBモード画像信号を生成する。そして、画像作成部44dは、生成されたBモード画像信号から超音波画像を作成する。
その後、画質指標算出部84は、作成された超音波画像から設定音速vにおける画質指標、即ち画像の輝度値や鮮鋭度等の画質指標、例えば、各設定音速vでの着目領域ROIの画像の鮮鋭度(シャープネス)等を算出する。算出された画質指標は、設定音速値vに対応付けられて画質指標算出部84内に保持される、例えばメモリに保持される。
次に、音速判定部85は、設定音速vを音速終端値Vendと比較して、両者が等しいか否かの判定を行う。
音速判定部85の判定において、設定音速vが音速終端値Vendに等しい(v=Vend)場合には、比較判定部86に移行し、設定音速vが音速終端値Vendに等しくない(v≠Vend)場合には、音速値更新部87に移行する。
音速値更新部87に移行した場合には、音速値更新部87が、現在の設定音速vに音速変更幅ΔVを加算して新しい設定音速v(v=v+ΔV)を設定する。
この後、整相加算部38dに戻り、新しい設定音速vに基づいて整相加算部38dによる整相加算、検波処理部40dによる検波処理、画像作成部44dによる画像作成、画質指標算出部84による画質指標の算出及び保持、並びに音速判定部85による判定が行われる。
音速判定部85による判定結果がv≠Vend場合には、上述したように、音速値更新部87に移行し、音速値更新部87による新しい設定音速vの設定、新しい設定音速vに基づく整相加算部38dによる整相加算、検波処理部40dによる検波処理、画像作成部44dによる画像作成、画質指標算出部84による画質指標の算出及び保持、並びに音速判定部85による判定が、v=Vendになるまで繰り返される。即ち、これらの処理を、音速範囲の終了の音速終端値Vendになるまで設定音速の値をΔVずつ変更しながら、例えば、設定音速vを、1400m/sから1700m/sまで、10m/s刻みで変化させながら繰り返し行う。
一方、音速判定部85による判定結果がv=Vendである場合には、音速の探索範囲内の全ての設定音速vに関して画質指標が求められたことになるので、上述したように、比較判定部86に移行し、比較判定部86は、画質指標算出部84に保持されている各音速値毎に求められた画質指標を読み出し、比較判定部86は、各設定音速vでの画質指標、例えば、超音波画像の鮮鋭度(シャープネス値)を比較し、最も画質がよい時、例えば、超音波画像の鮮鋭度(シャープネス値)が最も高い時の設定音速(音速値)vを判定し、音速設定部88は、比較判定部86にて判定された設定音速(音速値)vを最適音速として採用し、設定する。
こうして、最適音速算出部80は、最適音速を算出する。
図11に示す最適音速算出部80では、音速値の変更を繰り返して処理しているが、本発明はこれに限定されず、GPUなどのマルチスレッドを用いて、全探索音速値を並列計算し、一度に全ての音速値における画質指標を求めることも可能である。
なお、最適音速算出部80内の整相加算部38dで整相加算を行う、素子データは、素子データ記憶部20から供給された未処理素子データであっても、素子データ処理部22から供給される処理済素子データであっても良い。なお、未処理素子データは、素子データ記憶部20から直接供給された未処理素子データであっても、素子データ処理部22から未処理のまま供給される未処理素子データであっても良い。
最適音速算出部80は、こうして算出して設定した最適音速値を画像生成部24の整相加算部38に供給する。
上述のとおり、超音波画像を生成する際に、超音波画像に着目領域を設定して、着目領域において最適音速値を求める構成とすることにより、着目領域、即ち、見たい組織や病変の画像の空間分解能を最適化すると共に、短時間で最適音速値を求めることができるという効果もある。
図10(a)に示す音速補正部76は、着目領域設定部77、着目領域データ取得部78及び最適音速算出部80を備えるものであるが、上述したように、音速補正部76おいて音速値を設定する領域を、被写体全体や検査対象領域全体を同一の音速値として設定する場合には、着目領域設定部77は無くても良く、又は、被写体全体や検査対象領域全体を注目領域として設定するものであっても良いし、着目領域データ取得部78は、被写体全体や検査対象領域全体の全データを取得するものであれば良いし、被写体や検査対象領域を微小領域ごとに区切って、微小領域ごとに音速値を設定する場合や、画素単位で1点ずつ音速値を設定する場合には、着目領域設定部77が、微少領域や画素単位の1点を注目領域として設定し、着目領域データ取得部78が、微少領域や画素単位の1点のデータを取得するものであれば良い。
なお、図9に示す超音波検査装置70cでは、図8(a)に示す超音波検査装置70aと同様に、判定部72aを画像作成部44と表示部28との間に設けているが、本発明はこれに限定されず、図12に示す超音波検査装置70dのように、図8(b)に示す超音波検査装置70bと同様に、判定部72bを整相加算部38と検波処理部40との間に設けるようにしても良い。
図12に示す超音波検査装置70dは、送信部14と、探触子36と、受信部16と、素子データ記憶部20と、素子データ処理部22と、整相加算部38と、判定部72bと、音速変更部74と、音速補正部76aと、整相加算部38aと、検波処理部40と、画像作成部44と、表示部28と、を有する。
ここで、探触子36、送信部14、受信部16、及び素子データ記憶部20における処理と、判定部72bでの判定結果がOKとなるまでの素子データ処理部22、整相加算部38、判定部72a、及び音速変更部74における処理と、判定部72bでの判定結果がOKとなった後の検波処理部40、画像作成部44、及び表示部28における処理は、図8(b)に示す超音波検査装置70aと同様に行われるので、その説明を省略する。
本実施例3の超音波検査装置70dでは、音速補正部76aは、判定部72bと整相加算部38aとの間に設けられるもので、図9又は図10(a)に示す音速補正部76と同様の構成及び機能を有し、後段の整相加算部38aにおいて用いられる受信側の最適音速、即ち被検体の検査対象領域、したがって、その超音波画像に最も適した音速を求めるものである。なお、音速補正部76aは、判定部72bでの判定結果がOKとなった時に、音速変更部74によって設定されて、整相加算部38で用いた音速値をそのまま最適音速としても良いのは勿論である。
超音波検査装置70dでは、判定部72bでの判定結果がOKとなった後に、音速補正部76aで受信側の最適音速が設定される。
次に、整相加算部38aにおいて、素子データ処理部22で求められた処理済素子データに、音速補正部76aで設定された最適音速に基づいて遅延が与えられて受信フォーカス処理が行われ音線信号が生成される。
続いて、検波処理部40において、整相加算部38aで生成された音線信号に対して、検波処理が施され、Bモード画像データが生成される。
次に、画像作成部44において、検波処理部40で生成されたBモード画像データから超音波画像が作成される。
この後、こうして作成された超音波画像は、表示部28に表示される。
このように本発明の実施例3の超音波検査装置70c及び70dは、素子データ処理部22で最適な音速を用いて処理され、ゴーストの信号が弱減され、真の信号が強調された処理済素子データを用いて超音波画像を作成するので、幅広ビーム送信専用超音波プローブを使うことなく、かつ、従来と変わらないフレームレートのまま、送信ビームの幅に依存しない高解像度で、SN比が高く、最適な空間分解能を持つシャープな超音波画像を得ることができる。
本発明の実施例3の超音波検査装置は、基本的に以上のように構成される。
次に、図13に基づいて本発明の実施例4の超音波検査装置について説明する。
図13は、本発明の実施例4に係る超音波検査装置の要部の一例を処理フローに沿って概念的に示すブロック図である。
図13に示すように、超音波検査装置11は、送信部14と、探触子36と、受信部16と、素子データ記憶部20と、音速補正部76bと、素子データ処理部22と、整相加算部38と、検波処理部40と、画像作成部44と、表示部28とを有する。
なお、図13に示す超音波検査装置11は、図1、及び図7に示す超音波検査装置10と、音速補正部76bを備えている点で異なる以外は、全く同様の構成を有するものであるので、同一の構成要素には、同一の参照符号を付し、その詳細な説明は省略する。
また、超音波検査装置11において、探触子36、送信部14、受信部16及び素子データ記憶部20における処理と、整相加算部38、検波処理部40、画像作成部44及び表示部28における処理とは、図7に示す超音波検査装置10と同様に行われるので、その説明を省略する。
本実施例4の超音波検査装置11は、音速補正部76bで、素子データ処理を行う前の素子データに対して音速補正を行い、最適音速を求め、素子データ処理部22では、求められた最適音速に基づいて、遅延時間を算出し、重ね合わせ処理を行う。
音速補正部76bは、素子データ記憶部20と素子データ処理部22との間に設けられるもので、図9又は図10(a)に示す音速補正部76と同様の構成及び機能を有し、後段の素子データ処理部22の遅延時間算出部48で遅延時間を算出するため、及び、整相加算部38において受信フォーカス処理を施すために用いられる受信側の最適音速、即ち被検体の検査対象領域に最も適した音速を求めるものである。
素子データ処理部22は、その遅延時間算出部48において、上述したように、真の信号の未処理素子データに対する周辺のゴーストの信号の未処理素子データの遅延時間を、音速補正部76bで設定された被検体の検査対象領域の最適音速と、送信素子、焦点、反射点、及び受信素子の幾何学的配置とを用いて算出する。
次に、素子データ処理部22は、重ね合わせ処理部50において、遅延時間算出部48で算出された遅延時間を用いて、注目素子の素子データとその周辺の未処理素子データとを位相合わせて重ね合わせて処理済素子データを求め、整相加算部38に供給する。
次に、整相加算部38では、素子データ処理部22から供給された処理済素子データに、音速補正部76bで設定された最適音速に基づいて遅延が与えられて受信フォーカス処理が行われ音線信号が生成される。
続いて、検波処理部40において、整相加算部38で生成された音線信号に対して、検波処理が施され、Bモード画像データが生成され、画像作成部44において、検波処理部40で生成されたBモード画像データから超音波画像が作成され、表示部28に表示される。
このように、本発明の実施例4の超音波検査装置11においては、音速補正部76bで設定された最適音速を用いて素子データ処理部22で処理された、ゴーストの信号が弱減され、真の信号が強調された処理済素子データを用いて超音波画像を作成するので、幅広ビーム送信専用超音波プローブを使うことなく、かつ、従来と変わらないフレームレートのまま、送信ビームの幅に依存しない高解像度で、SN比が高く、最適な空間分解能を持つシャープな超音波画像を得ることができる。
本発明の実施例4の超音波検査装置は、基本的に以上のように構成される。
次に、図14〜図17に基づいて、本発明の実施例5の超音波検査装置について説明する。
図14〜図17は、それぞれ本発明の実施例5に係る超音波検査装置の要部の一例を処理フローに沿って概念的に示すブロック図である。
なお、図14〜図17に示す超音波検査装置90a〜90dは、図1及び図7に示す超音波検査装置10と、音速補正部76c、判定部72a及び72bを備えている点で異なる以外は、全く同様の構成を有するものであるので、同一の構成要素には、同一の参照符号を付し、その詳細な説明は省略する。
まず、図14に示す超音波検査装置90aについて説明するが、図14は、図7と同様に、超音波検査装置90aの要部を処理フローに沿って示す。
図14に示すように、超音波検査装置90aは、送信部14と、探触子36と、受信部16と、素子データ記憶部20と、素子データ処理部22と、音速補正部76cと、整相加算部38と、検波処理部40と、画像作成部44と、判定部72aと、表示部28とを有する。
ここで、探触子36、送信部14、受信部16、及び素子データ記憶部20における処理、素子データ処理部22、検波処理部40、及び画像作成部44における第1回目の処理は、図1及び図7に示す超音波検査装置10と同様に行われるので、その説明を省略する。
音速補正部76cは、素子データ処理部22と、画像生成部24の整相加算部38との間に設けられるもので、図9又は図10(a)に示す音速補正部76と同様の構成及び機能を有し、前段の素子データ処理部22で求められた処理済素子データに対して、後段の整相加算部38において受信フォーカス処理をするために用いられる受信側の最適音速、即ち、被検体の検査対象領域に最も適した音速を求めるものである。音速補正部76cは、例えば、設定音速vを、1400m/sか1700m/sまで、10m/s刻みで変化させて、判定部72aで、画像の輝度値、鮮鋭度(シャープネス)等の画質指標や音速の収束度合い等に基づく判定によって最適音速を求めるものであっても良い。なお、音速補正部76cは、素子データ処理部22の遅延時間算出部48において遅延時間を算出するために用いた予め設定された音速の初期値をそのまま最適音速としても良いのは勿論である。
1回目の処理では、素子データ処理部22は、予め設定された音速の初期値を用いて素子データの処理を行う。即ち、素子データ処理部22の遅延時間算出部48では、予め設定された音速の初期値を用いて遅延時間を算出し、算出された遅延時間を用いて、重ね合わせ処理部50で2以上の未処理素子データを重ね合わせ処理して処理済素子データを求め、後段の音速補正部76cでは、受信側の最適音速を求め、処理済素子データと共に、後段の整相加算部38に送る。
整相加算部38は、素子データ処理部22で求められた処理済素子データに対して、音速補正部76cで設定された最適音速に基づいて遅延を与えて加算する受信フォーカス処理を行って音線信号を生成する。
続いて、検波処理部40は、生成された音線信号に検波処理を行い、Bモード画像信号を生成し、画像作成部44は、生成されたBモード画像信号に画像処理を施し、超音波画像を生成する。
判定部72aは、図8(a)又は図9に示す判定部72aと同様の構成及び機能を有し、画像作成部44で作成された超音波画像を用い、作成された超音波画像に基づいて判定を行い、例えば、超音波画像の輝度値の鮮鋭度等の画質指標が所定値より高くなる時などに、是又は適(OK)と判定し、そうでない時には否(NG)と判定する。
判定部72aによってOKと判定された場合には、画像作成部44で作成された超音波画像が表示部28に送られ、その表示画面に表示される。
一方、判定部72aでNGと判定された場合には、素子データ処理部22に戻り、2回目以降の処理において、素子データ処理部22の遅延時間算出部48が、音速補正部76cで設定された最適音速を用いて遅延時間を算出し直す。その後、重ね合わせ処理部50において、最適音速を用いて算出された遅延時間を用いて、2以上の未処理素子データに重ね合わせ処理をして処理済素子データを求める。
こうして、素子データ処理部22で処理済素子データを求めた後、音速補正部76cで新最適音速を新たに設定し、整相加算部38で、素子データ処理部22で求められた処理済素子データに対して、音速補正部76cで新たに設定された新最適音速に基づいて受信フォーカス処理を行って音線信号(受信データ)を生成し、1回目の処理と同様に、検波処理部40で検波処理を行い、画像作成部44で画像処理を施し、超音波画像を生成し、判定部72aによる判定を行う。
上述のように、2回目以降の処理では、素子データ処理部22、音速補正部76c、整相加算部38、検波処理部40、画像作成部44及び判定部72aによる各処理が、判定部72aの判定がOKとなるまで繰り返され、判定部72aのOK判定後、表示部28に超音波画像が表示される。
なお、例えば、音速補正部76cでの新最適音速の設定が、所定音速範囲内で全て行われた場合、例えば、所定音速範囲全域において所定間隔で行われた場合でも、判定部72aの判定がOKとならなかった場合には、最も判定基準に近かった時の音速値を最適音速として採用すればよい。
次に、図15に示す超音波検査装置90bについて説明する。
図15に示す超音波検査装置90bは、図14に示す超音波検査装置90aと、判定部72aが画像作成部44と表示部28との間に設けられているのに対し、判定部72bが整相加算部38と検波処理部40との間に設けられている点で異なる以外は、全く同様の構成を有するものであるので、同一の構成要素には、同一の参照符号を付し、その詳細な説明は省略する。
図15に示すように、超音波検査装置90bは、送信部14と、探触子36と、受信部16と、素子データ記憶部20と、素子データ処理部22と、音速補正部76cと、整相加算部38、判定部72bと、検波処理部40と、画像作成部44と、表示部28とを有する。
ここで、探触子36、送信部14、受信部16、及び素子データ記憶部20における処理と、検波処理部40、画像作成部44、及び表示部28における処理と、素子データ処理部22、音速補正部76c、及び整相加算部38における第1回目の処理は、図14に示す超音波検査装置90aと同様に行われるので、その説明を省略する。
音速補正部76cは、素子データ処理部22で処理済素子データを求めた後に、整相加算部38において用いられる受信側の最適音速、即ち被検体の検査対象領域に最も適した音速を求めるものである。音速補正部76cは、例えば設定音速vを所定音速範囲内で、所定音速刻みで変化させて、判定部72bで、画像の輝度値、鮮鋭度等の画質指標や音速の収束度合い等に基づく判定によって最適音速を求めるものであっても良い。
整相加算部38は、素子データ処理部22で求められた処理済素子データに対して、音速補正部76cで設定された最適音速に基づいて遅延を与えて加算する受信フォーカス処理を行って音線信号(受信データ)を生成する。
判定部72bは、図8(b)又は図12に示す判定部72bと同様の構成及び機能を有し、整相加算部38で受信フォーカス処理を行って生成された音線信号を用い、画像の輝度値、鮮鋭度、輝度値の鮮鋭度等の画質指標や音速の収束度合い等に基づいて判定を行う。判定部72bは、輝度値や鮮鋭度等の画質指標が最も高くなる時にOKと判定し、輝度値や鮮鋭度等の画質指標が最も高い値に達していない時にはNGと判定する。
判定部72bによってOKと判定された場合には、検波処理部40に進み、検波処理部40が、整相加算部38で生成された音線信号に対して、包絡線検波処理等を施すことにより、被検体内の組織に関する断層画像情報であるBモード画像データを生成する。その後、画像作成部44で超音波画像が作成され、表示部28に表示される。
一方、判定部72bによってNGと判定された場合には、素子データ処理部22に戻り、素子データ処理部22の遅延時間算出部48が、音速補正部76cで設定された最適音速を用いて遅延時間を算出し直す。その後、重ね合わせ処理部50において、最適音速を用いて算出された遅延時間を用いて、2以上の未処理素子データに重ね合わせ処理をして処理済素子データを求める。
こうして、素子データ処理部22で処理済素子データを求めた後、音速補正部76cで最適音速を新たに設定し、整相加算部38で、素子データ処理部22で求められた処理済素子データに対して、音速補正部76cで新たに設定された新最適音速に基づいて受信フォーカス処理を行って音線信号(受信データ)を生成し、判定部72bで、整相加算部38で生成された音線信号を用い、画像の輝度値、鮮鋭度等の画質指標や音速の収束度合い等に基づいて判定を行う。
判定部72bの判定がOKであれば、検波処理部40でのBモード画像データの生成、画像作成部44での超音波画像の作成、表示部28での超音波画像の表示が成される。
これに対し、判定部72bの判定がNGであれば、判定がOKとなる、即ち、最適音速が設定されるまで、素子データ処理部22の遅延時間算出部48での音速補正部76cで設定された新最適音速を用いた遅延時間の算出、重ね合わせ処理部50での処理済素子データの生成、音速補正部76cで最適音速の新たな設定、整相加算部38での素子データ処理部22で求められた処理済素子データに対する、音速補正部76cで新たに設定された最適音速に基づく音線信号の生成が繰り返される。
なお、図14及び図15に示す超音波検査装置90a及び90bでは、音速補正部76cを、素子データ処理部22の後段に設けているが、本発明は、これに限定されず、素子データ処理部22の前段に設けるようにしても良い。
図16及び図17は、図14及び図15と同様に、超音波検査装置90c及び90dの要部を処理フローに沿って示すブロック図であるが、それぞれ図14及び図15に示す超音波検査装置90a及び90bと処理の流れが異なるだけで、同一の構成要素からなる。
図16に示す超音波検査装置90cは、探触子36と、送信部14と、受信部16と、素子データ記憶部20と、音速補正部76cと、整相加算部38、素子データ処理部22と、検波処理部40と、画像作成部44と、判定部72aと、表示部28とを有する。
図17に示す超音波検査装置90dは、探触子36と、送信部14と、受信部16と、素子データ記憶部20と、音速補正部76cと、整相加算部38、判定部72bと、素子データ処理部22と、検波処理部40と、画像作成部44と、表示部28とを有する。
ここで、図16及び図17に示す超音波検査装置90c及び90dでは、探触子36、送信部14、受信部16、及び素子データ記憶部20における処理は、図14及び図15に示す超音波検査装置90a及び90bと同様に行われるので、その説明を省略する。
図16及び図17に示す超音波検査装置90c及び90dの音速補正部76cは、第1回目の処理では、素子データ記憶部20と整相加算部38との間に設けられる点では、図14及び図15に示す超音波検査装置90a及び90bの音速補正部76cと異なるが、第2回目以降の処理では、素子データ処理部22と整相加算部38との間に設けられていることになるので、図14及び図15に示す超音波検査装置90a及び90bの音速補正部76cと全く同一であり、整相加算部38において用いられる受信側の最適音速、即ち被検体の検査対象領域に最も適した音速を求める点でも全く同一であるので、その詳細な説明を省略する。なお、音速補正部76cでは、第1回目の処理では、最初に最適音速を設定するが、予め設定された音速の初期値をそのまま最適音速としても設定しても良いのは勿論である。
まず、図16に示す超音波検査装置90cについて説明する。
図16に示す超音波検査装置90cにおいては、1回目の処理では、音速補正部76cは、素子データ記憶部20から読み出された未処理素子データに対し、被検体の検査対象領域の受信側の最適音速を設定し、整相加算部38は、その未処理素子データに対して、音速補正部76cで設定された最適音速に基づいて遅延を与えて加算する受信フォーカス処理を行って音線信号(受信データ)を生成する。
続いて、検波処理部40は、生成された音線信号に検波処理を行い、Bモード画像信号を生成し、画像作成部44は、生成されたBモード画像信号に画像処理を施し、超音波画像を生成する。
判定部72aは、画像作成部44で作成された超音波画像を用い、作成された超音波画像に基づいて判定を行い、例えば、超音波画像の輝度値の鮮鋭度等の画質指標が所定値より高くなる時などに、是又は適(OK)と判定し、そうでない時には否(NG)と判定する。
判定部72aによってOKと判定された場合には、画像作成部44で作成された超音波画像が表示部28に送られ、その表示画面に表示される。
一方、判定部72aでNGと判定された場合には、2回目以降の処理となり、素子データ処理部22に戻り、素子データ処理部22の遅延時間算出部48が音速補正部76cで設定された最適音速を用いて遅延時間を算出し直し、重ね合わせ処理部50が最適音速を用いて算出された遅延時間を用いて、2以上の未処理素子データに重ね合わせ処理をして処理済素子データを求める。
こうして、2回目以降の処理では、素子データ処理部22で処理済素子データを求めた後、音速補正部76cで新最適音速を新たに設定し、整相加算部38で、素子データ処理部22で求められた処理済素子データに対して、音速補正部76cで新たに設定された新最適音速に基づいて受信フォーカス処理を行って音線信号(受信データ)を生成し、1回目の処理と同様に、検波処理部40で検波処理を行い、画像作成部44で画像処理を施し、超音波画像を生成し、判定部72aによる判定を行う。
上述のように、2回目以降の処理では、素子データ処理部22、音速補正部76c、整相加算部38、検波処理部40、画像作成部44及び判定部72aによる各処理が、判定部72aの判定がOKとなるまで繰り返され、判定部72aのOK判定後、表示部28に超音波画像が表示される。
なお、例えば、音速補正部76cでの新最適音速の設定が、所定音速範囲内で全て行われた場合、例えば、所定音速範囲全域において所定間隔で行われた場合でも、判定部72aの判定がOKとならなかった場合には、最も判定基準に近かった時の音速値を最適音速として採用すればよい。
次に、図17に示す超音波検査装置90dについて説明する。
図17に示す超音波検査装置90dにおいては、1回目の処理では、まず、音速補正部76cは、素子データ記憶部20から読み出された未処理素子データに対し、被検体の検査対象領域の受信側の最適音速を設定する。
整相加算部38は、第1回目の処理では、素子データ記憶部20から読み出された未処理素子データに対して、第2回目以降の処理では、素子データ処理部22で求められた処理済素子データに対して、音速補正部76cで設定された最適音速に基づいて遅延を与えて加算する受信フォーカス処理を行って音線信号(受信データ)を生成する。
判定部72bは、整相加算部38と、検波処理部40及び素子データ処理部22との間に設けられるもので、第1回目の処理の場合には、自動的にNGと判定し、第2回目以降の処理では、図15に示す超音波検査装置90bの判定部72bと同様に、整相加算部38で受信フォーカス処理を行って生成された音線信号(受信データ)を用い、画像の輝度値、鮮鋭度等の画質指標や音速の収束度合い等に基づいて判定を行う。判定部72bは、輝度値や鮮鋭度等の画質指標が最も高くなる時にOKと判定し、輝度値や鮮鋭度等の画質指標が最も高い値に達していない時にはNGと判定する。
判定部72bによってOKと判定された場合には、図15に示す超音波検査装置90bと同様に、検波処理部40に進み、検波処理部40が、整相加算部38で生成された音線信号に対して、包絡線検波処理等の処理を施すことにより、被検体内の組織に関する断層画像情報であるBモード画像データを生成する。その後、画像作成部44で超音波画像が作成され、表示部28に表示される。
一方、判定部72bによってNGと判定された場合には、2回目以降の処理となり、素子データ処理部22に進み、素子データ処理部22の遅延時間算出部48が、音速補正部76cで設定された最適音速を用いて遅延時間を算出する。その後、重ね合わせ処理部50において、最適音速を用いて算出された遅延時間を用いて、2以上の未処理素子データに重ね合わせ処理をして処理済素子データを求める。
こうして、素子データ処理部22で処理済素子データを求めた後、音速補正部76cに戻り、そこで最適音速を新たに設定し、整相加算部38で、素子データ処理部22で求められた処理済素子データに対して、音速補正部76cで新たに設定された最適音速に基づいて受信フォーカス処理を行って音線信号(受信データ)を生成し、判定部72bで、整相加算部38で生成された音線信号を用い、画像の輝度値、鮮鋭度等の画質指標や音速の収束度合い等に基づいて判定を行う。
2回目以降の処理において、判定部72bの判定がOKであれば、検波処理部40でのBモード画像データの生成、画像作成部44での超音波画像の作成、表示部28での超音波画像の表示が成される。
これに対し、判定部72bの判定がNGであれば、判定がOKとなる、即ち、最適音速が設定されるまで、素子データ処理部22の遅延時間算出部48での音速補正部76cで設定された新たな最適音速を用いた遅延時間の算出、重ね合わせ処理部50での処理済素子データの生成、音速補正部76cで最適音速の新たな設定、整相加算部38での素子データ処理部22で求められた処理済素子データに対する、音速補正部76cで新たに設定された最適音速に基づく音線信号の生成が繰り返される。
なお、超音波検査装置90a〜90dにおいては、判定部72aや72bを、整相加算部38と検波処理部40との間に設けるものに限定されず、検波処理部40と画像形成44部との間に設けても良いし、音速補正部76cを、素子データ処理部22や素子データ記憶部20と整相加算部38との間に設けるものに限定されず、判定部72aや72b(のNG側)と素子データ処理部22との間に設けても良い。
このように本発明の実施例5の超音波検査装置90a〜90dは、最適化された最適音速を用いて素子データ処理部22の遅延時間算出部で遅延時間を算出するので、最も適切にゴーストの信号が弱減され、最も適切に真の信号が強調された処理済素子データを用いて超音波画像を作成することができ、また、幅広ビーム送信専用超音波プローブを使うことなく、かつ、従来と変わらないフレームレートのまま、送信ビームの幅に依存しない高解像度で、SN比が高く、最適な空間分解能を持つシャープな超音波画像を得ることができる。
本発明の実施例5の超音波検査装置は、基本的に以上のように構成される。
次に、図18に基づいて本発明の実施例6の超音波検査装置について説明する。
図18は、本発明の実施例6に係る超音波検査装置の要部の一例を処理フローに沿って概念的に示すブロック図である。
なお、図18に示す超音波検査装置92は、整相加算部38b、38c、検波処理部40b、40c、第1、第2の画像作成部44b、44c、及び第3の画像作成部94、画質判定部96、を備えている点で、整相加算部38、検波処理部40、及び画像作成部44を備える図7に示す超音波検査装置10と異なる以外は、全く同様の構成を有するものであるので、同一の構成要素には同一の参照符号を付し、その詳細な説明は省略する。
図18に示すように、本発明の超音波検査装置92は、送信部14と、探触子36と、受信部16と、素子データ記憶部20と、素子データ処理部22と、整相加算部38b、38cと、検波処理部40b、40cと、第1の画像作成部44bと、第2の画像作成部44cと、第3の画像作成部94と、画質判定部96と、表示部28とを有する。
ここで、整相加算部38c、検波処理部40c、及び第2の画像作成部44cは、図7に示す超音波検査装置10の相加算部38、検波処理部40、及び画像作成部44と全く同じ構成を有するので、その詳細な説明は省略する。
一方、整相加算部38b、検波処理部40b、及び第1の画像作成部44bは、素子データ処理部22で処理された処理済素子データを対象とするのではなく、素子データ記憶部20に記憶保持された未処理素子データを対象とする従来の処理を行う点で、処理済素子データを対象とする整相加算部38c、検波処理部40c、及び第2の画像作成部44cとは異なるが、処理自体は全く同一である。
このような超音波検査装置92においては、素子データ処理部22における重ね合わせ処理において、未処理素子データが左右対称な点状反射であれば素子データ処理を実行してゴーストの成分を除去して処理済素子データを生成し、整相加算部38c、検波処理部40c、及び第2の画像作成部44cでの処理を経て、ゴーストの信号が弱減され、真の信号が強調された処理済素子データを用いて、送信ビームの幅に依存しない高解像度で、SN比が高く、最適な空間分解能を持つシャープな本発明の超音波画像を生成する。
一方、素子データ処理部22における重ね合わせ処理において、未処理素子データが左右非対称であればスペックルと見なして、素子データ処理部22での素子データ処理を行いたくない場合には、素子データ処理を行っていない素子データ記憶部20に記憶保持された未処理素子データを用い、整相加算部38b、検波処理部40b、及び第1の画像作成部44bでの処理を経て、従来の超音波画像を生成する。
そして、画質判定部96は、予め未処理素子データの対称性に基づいて、従来の未処理素子データの画像処理である第1の画像作成部44bで作成した第1の超音波画像の画質と、本発明の素子データ処理部22での素子データ処理を施した第2の画像作成部44cで作成した第2の超音波画像の画質とを比較し、その比較結果に基づいて、第1の超音波画像と、第2の超音波画像とのいずれか一方を採用する判定を行う。具体的には、画質判定部96は、画質の比較として、画像の輝度値、コントラスト、粒状性のいずれか1つか、あるいは2つ以上の組み合わせを用いて比較する。また、判定は、例えば、輝度値の比較であれば、高い方の輝度値を採用する判定を行う。
次に、第3の画像作成部94は、画質判定部96の画質判定結果に基づいて、第1の超音波画像と第2の超音波画像とから表示部28に表示するための超音波画像を作成する。
具体的には、第3の画像作成部94は、画質判定部96の画質判定結果に基づいて、第1の超音波画像と、第2の超音波画像とのいずれか一方を表示部28に表示する超音波画像として選択する。例えば、画質判定部96が、第1の超音波画像と第2の超音波画像との輝度値を比較した場合には、輝度値の高い方の画像を採用する。
あるいは、さらに、第1の超音波画像及び第2の超音波画像を所定の領域ごとに分割する領域分割部を有し、画質判定部96は、画質の比較を行う際に、分割した領域毎に画質を判定し、第3の画像作成部94は、領域毎に、画質判定結果に基づいて、第1の超音波画像と第2の超音波画像とのいずれか一方を選択して、領域毎に選択された画像を組み合わせて表示部28に表示するための超音波画像を作成するようにしてもよい。
なお、素子データ処理部22における重ね合わせ処理において、平均値を用いた場合には、素子データ処理を行わない場合に比べて輝度値が小さくなる可能性があり、その場合には従来処理で作成した第1の超音波画像を採用した方が高輝度な画像が得られる。したがって、第3の画像作成部94では、第1の画像作成部で作成した第1の超音波画像と第2の画像作成部で作成した第2の超音波画像とを比較し、高輝度な反射点の分布において第1の画像作成部で作成した第1の超音波画像の方が高輝度であれば第1の超音波画像の方を採用するようにしても良い。あるいは、第3の画像作成部94は、例えば、画質判定結果が同等であった領域については、画素ごとに第1の超音波画像および第2の超音波画像の輝度値の平均値を取り、超音波画像を作成してもよい。あるいは、画質判定結果に応じて、加重平均値を取ってもよい。
なお、本実施例6において、上記実施例2〜5の超音波検査装置を適用しても良いのは勿論である。
以上から、本発明の第6実施例の超音波検査装置においては、常に、高輝度な超音波画像を生成することができる。
また、上記の実施例1〜6においては、超音波の送受信により取得した第1の素子データを用いてマルチライン処理を行って第2の素子データを生成し、第2の素子データを用いて超音波画像を生成する構成としたが、これに限定はされず、第1の素子データを用いて超音波画像を生成する第1のモードと、第2の素子データを用いて超音波画像を生成する第2のモードとを切り替え可能に構成してもよい。
次に、図19および図20に基づいて本発明の実施例7の超音波検査装置について説明する。
図19は、本発明の実施例7に係る超音波検査装置の構成の一実施例を概念的に示すブロック図であり、図20は、図19に示す超音波検査装置100の動作を説明するためのフローチャートである。
なお、図19に示す超音波検査装置100は、図1に示す超音波検査装置10と、送信部14に代えて送信部14aを有し、モード切替部102を備えている点で異なる以外は、全く同様の構成を有するものであるので、同一の構成要素には、同一の参照符号を付し、その詳細な説明は省略する。
図19に示す超音波検査装置100は、第1の素子データを用いて超音波画像を生成する第1のモード(通常モード)と、第2の素子データを用いて超音波画像を生成する第2のモード(マルチライン処理モード)とを切り替え可能に構成されており、モードの切り替えに応じて、超音波ビームを送信する際のF値、すなわち、焦点深さと開口数との比を切り替えるものである。
図19に示すように、超音波検査装置100は、超音波プローブ12と、送信部14aと、受信部16と、A/D変換部18と、素子データ記憶部20と、素子データ処理部22と、画像生成部24と、表示制御部26と、表示部28と、制御部30と、操作部32と、格納部34と、モード切替部102と、を有する。
モード切替部102は、操作部32からの入力指示、あるいは、制御部30からの指示に基づいて、画像生成部24において、マルチライン処理を行っていない未処理の素子データ(第1の素子データ)を用いて超音波画像を生成する第1のモード(通常モード)と、素子データ処理部22によるマルチライン処理を行った処理済素子データ(第2の素子データ)を用いて超音波画像を生成する第2のモード(マルチライン処理モード)とを切り替える部位である。
モード切替部102は、選択されたモードの情報を画像生成部24および送信部14aに供給する。
送信部14aは、モード切替部102から供給されたモードの情報に基づいて、選択されたモードに応じて、送信する超音波ビームのF値を切り替えて、超音波ビームを送信する以外は、基本的に、図1に示す実施例1の超音波検査装置10の送信部14と同様の構成である。
具体的には、送信部14aは、マルチライン処理モードが選択された場合に、通常モードの場合のF値よりも小さいF値の超音波ビームの送信を、探触子36に行わせる。
図21(a)に、通常モードの場合のF値の一例を説明するための概略図を示し、図21(b)に、マルチライン処理モードの場合のF値の一例を説明するための概略図を示す。
図21(a)に示すように、通常モードの場合は、送信部14aは、素子52eを中心素子とする5つの素子52c〜52gを送信素子として、所定の焦点58を形成する送信ビーム(超音波ビーム)56を送信させる。
一方、図21(b)に示すように、マルチライン処理モードの場合は、送信部14aは、素子52eを中心素子とする9つの素子52a〜52iを送信素子として、所定の焦点58を形成する送信ビーム56を送信する。このとき、焦点58の深さは、通常モードの場合と同じ深さに設定されている。このように、マルチライン処理モードの場合には、「焦点深さ/開口数」であるF値を、通常モードの場合のF値よりも小さくする。
図21(a)に示すように、F値が大きい場合には、送信ビーム64を十分に絞ることができないため、平面波に近い送信波形になる。これに対して、F値が小さい場合には、図21(b)に示すように、送信ビーム64を絞ることができる。送信ビーム64を絞ることで、焦点58を1つの点に近づけることができるため、素子データ処理部22の遅延時間算出部48で遅延時間を算出するための幾何学モデル(図5参照)に近い状態を作りだすことができる。
すなわち、遅延時間算出部48で遅延時間を算出する際に用いる幾何学モデルは、焦点を1つの仮想的な音源とみなしている。そのため、F値を小さくして焦点を絞ることは、よりモデルに近い状態を作り出すことができ、F値を切り替えない場合と比べて、マルチライン処理における素子データの重ね合わせ処理の精度を向上させることができ、より高画質な画像を得ることができる。
図20のフローチャートに示すように、実施例7の超音波診断装置100は、モード切替部102によりマルチライン処理モードに切り替えられた場合には、送信部14aは、小さいF値を設定して超音波の送受信を行う。素子データ処理部22は、小さいF値での送受信により得られた第1の素子データを用いて、マルチライン処理を行い第2の素子データを生成する。画像生成部24は、第2の素子データを用いて超音波画像を生成し、表示制御部26は、超音波画像を表示部28に表示する。
一方、モード切替部102により通常モードに切り替えられた場合には、送信部14aは、大きいF値を設定して超音波の送受信を行い第1の素子データを取得する。画像生成部24は、第1の素子データを用いて超音波画像を生成し、表示制御部26は、超音波画像を表示部28に表示する。
なお、各モードにおいて、超音波ビームの焦点位置の深さによらず、F値が一定となるように、送信焦点の位置と開口数とを設定することが好ましい。すなわち、図22(a)および(b)に示すように、深さ方向に異なる焦点58をそれぞれ形成する超音波ビーム64を送信する場合でも、超音波ビーム64の広がりθが一定となるように焦点位置と開口数を設定することが好ましい。
なお、本実施例7において、上記実施例2〜6の超音波検査装置を適用しても良いのは勿論である。
また、上記の実施例1〜7においては、素子データ処理部22におけるマルチライン処理は、第1の素子データを用いて行う構成としたが、本発明は、これに限定はされず、第1の素子データを整相加算した第1の受信データを用いてマルチライン処理を行う構成としてもよい。
次に、図23に基づいて本発明の実施例8の超音波検査装置について説明する。
図23は、本発明の実施例8に係る超音波検査装置の構成の一例を概念的に示すブロック図である。
なお、図23に示す超音波診断装置110は、素子データ処理部22に代えてデータ処理部114を有し、画像生成部24に代えて画像生成部116を有する以外には、図1に示す超音波検査装置10と同じ構成を有するので、同一の構成要素には、同一の参照符号を付し、その詳細な説明は省略する。
図23に示す超音波診断装置110は、超音波プローブ12と、超音波プローブ12に接続される送信部14及び受信部16と、A/D変換部18と、素子データ記憶部20と、データ処理部114と、画像生成部116と、表示制御部26と、表示部28と、制御部30と、操作部32と、格納部34とを有する。
図24に、データ処理部114の構成を、ブロック図で概念的に示す。
データ処理部114は、整相加算部118と、遅延時間算出部48と、重ね合わせ処理部120とを有する。
整相加算部118は、素子データ記憶部20から読み出した第1の素子データを整相加算して受信フォーカス処理を行い、第1の受信データを生成する。
ここで、整相加算部118は、後述する重ね合わせ処理部120で重ね合わせを行う複数の素子データに対して、同じ素子(ライン)を基準として、それぞれ整相加算を行う。
重ね合わせ処理部120は、重ね合わせるデータの数および重ね合わせ処理方法等のデータ処理に関する情報に基づいて、素子データ記憶部20から素子データを読み出させて、整相加算部118で生成された第1の受信データを取得する。
また、重ね合わせ処理部120は、遅延時間算出部48で算出された、それぞれの受信データに対応する遅延時間に基づいて、2以上の第1の受信データを、受信時間上で、即ち時間を合わせて、重ね合わせて、処理済(第2の)受信データを生成する。
整相加算部118および重ね合わせ処理部120について、図25および図26を用いてより詳細に説明する。
図25に、素子データと、これに対応する位置の振動子アレイ36を概念的に示す。
図25に示す素子データは、n番目の素子を中心素子として超音波の送受信を行って得られた(第1の)素子データである。この素子データをn番目の素子データと表す。
また、以下の説明では、例えば、このn番目の素子データに対して、n−2番目のラインを基準として整相加算を行い生成した受信データを、n(n−2)番目の受信データと表す。すなわち、n番目の素子データをi番目のラインを基準として整相加算して得られた受信データを、n(i)番目の受信データと表す。
図26(A)〜(C)は、整相加算部118による整相加算、および、重ね合わせ処理部120による重ね合わせ処理を説明するための図である。
図26(A)は、それぞれn−2番目の素子データ、n−1番目の素子データ、n番目の素子データを示す。
一例として、n−2番目、n−1番目、n番目の受信データを用いて、n番目の受信データに対応する処理済受信データを生成する場合を考える。
n番目の受信データに対応する処理済受信データを生成する場合には、整相加算部118は、n番目の素子を基準として、各素子データの整相加算を行う。すなわち、同図中、実線で示すラインを基準としてそれぞれの素子データの整相加算を行う。整相加算により、図26(B)に示す第1の受信データ(n−2(n)番目の受信データ、n−1(n)番目の受信データ、n(n)番目の受信データ)が生成される。
次に、重ね合わせ処理部120は、整相加算部118が生成した第1の受信データを、遅延時間算出部48で算出された、それぞれの受信データに対応する遅延時間に基づいて、各第1の受信データを、時間を合わせて重ね合わせて、図26(C)に示すようなn番目の受信データに対応する処理済受信データを生成する。
データ処理部114は、処理済受信データを画像生成部116に供給する。
画像生成部116は、検波処理部40と、DSC42と、画像処理部44と、画像メモリ46とを有する。
画像生成部116では、検波処理部40が、受信データに減衰補正および包絡線検波処理を施すことにより、Bモード画像データを生成する。さらに、DSC42が、Bモード画像データを通常のテレビジョン信号の走査方式に対応する画像データにラスター変換し、画像処理部44で階調処理等の所定の処理を施す。
画像処理部44は、生成したBモード画像データを画像メモリ46に格納し、および/または、表示制御部26に送って、被検体のBモード画像を表示部28に表示する。
なお、図23に示す超音波診断装置110においては、受信した第1の素子データに対して、中心軸をずらしながら整相加算を行って第1の受信データを生成した後に、第1の受信データに対してマルチライン処理を行い第2の受信データを生成する構成としたが、これに限定はされず、第2の受信データを生成する直前に、各第1の素子データに対して、横方向シフト(図6等参照)のみを行った後に、整相加算をして第1の受信データを生成し、第1の受信データに対してマルチライン処理を行って第2の受信データを生成する構成としてもよい。
なお、本実施例8において、上記実施例2〜7の超音波検査装置を適用しても良いのは勿論である。
以上、本発明について詳細に説明したが、本発明は上記実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
例えば、図1、図7、図8(a)、(b)、図9、図11〜図19、図23に示す各構成要素をハードウエアとして構成いても良いし、コンピュータ等で実行されるソフトウエアとして構成しても良い。
また、図7、図8(a)、(b)、図9、図12〜図18に示す例では超音波検査装置の要部を、図11に示す例では超音波検査装置の音速補正部の最適音速算出部を、処理フローに沿って種々の処理ブロックを示しているので、整相加算部38についても、異なる参照符号38,38a,38b,38c,38dを付し、また、検波処理部40についても、異なる参照符号40,40a,40b,40c,40dを付し、さらに、画像作成部44についても、異なる参照符号44,44a,44b,44c,44dを付しているが、整相加算部38,38a,38b,38c,38dは、また、検波処理部40,40a,40b,40c,40dは、さらに、画像作成部44,44a,44b,44c,44dは、それぞれ異なるハードエアやソフトウエアであっても良いし、同一のハードウエアやソフトウエアを異なるシーケンスで用いるものであっても良い。
10、11、70a、70b、70c、70d、90a、90b、90c、90d、
92、100、110 超音波検査装置
12 超音波プローブ
14、14a 送信部
16 受信部
18 A/D変換部
20 素子データ記憶部
22 素子データ処理部
24、116 画像生成部
26 表示制御部
28 表示部
30 制御部
32 操作部
34 格納部
36 探触子
38、38a、38b、38c、38d、118 整相加算部
40、40a、40b、40c、40d 検波処理部
42 DSC
44、44a、44d 画像作成部
44b 第1の画像作成部
44c 第2の画像作成部
46 画像メモリ
48 遅延時間算出部
50、120 重ね合わせ処理部
72a、72b 判定部
74 音速変更部
76、76a、76b、76c 音速補正部
77 着目領域設定部
78 着目領域データ取得部
80 最適音速算出部
82 音速探索範囲設定部
83 音速初期値設定部
84 画質指標算出部
85 音速判定部
86 比較判定部
87 音速値更新部
88 音速設定部
94 第3の画像作成部
96 画質判定部
102 モード切替部
114 データ処理部

Claims (27)

  1. 超音波ビームを用いて検査対象物を検査する超音波検査装置であって、
    前記超音波ビームを送信し、かつ、前記検査対象物によって反射された超音波エコーを受信して、受信した超音波エコーに応じたアナログ素子信号を出力する、複数の素子が配列された探触子と、
    前記探触子に、複数の前記素子を用い、所定の送信焦点を形成するように前記超音波ビームを送信させることを、複数回、行わせる送信部と、
    個々の前記超音波ビームの送信に対応して、複数の前記素子が出力したアナログ素子信号を受け、所定の処理を施す受信部と、
    前記受信部が処理したアナログ素子信号をA/D変換して、デジタル素子信号であり、素子位置と時間に対する強度のデータを表す第1の素子データとするAD変換部と、
    複数の前記第1の素子データから、前記第1の素子データのいずれかに対応する、素子位置と時間に対する強度のデータを表す第2の素子データを生成するデータ処理部とを備え、
    前記データ処理部は、2以上の前記第1の素子データの遅延時間を算出する遅延時間算出部と、前記2以上の第1の素子データを算出された遅延時間及び受信された前記探触子の素子の位置に基づいて重ね合わせ、前記第2の素子データを生成する重ね合わせ処理部とを有し、
    前記データ処理部は、前記第2の素子データを求める位置の深さに応じて、前記第2の素子データを生成するための2以上の前記第1の素子データの取得条件を変更することを特徴とする超音波検査装置。
  2. 前記送信部は、中心となる素子の変更、および、超音波ビームの送信方向の変更の少なくとも一方を行って、前記探触子に前記複数回の超音波ビームの送信を行わせる請求項1に記載の超音波検査装置。
  3. 前記データ処理部は、中心となる素子が互いに異なる前記超音波ビームの送信で得られた複数の前記第1の素子データ、および、送信方向が互いに異なる前記超音波ビームの送信で得られた複数の前記第1の素子データの、少なくとも一方を用いて、前記第2の素子データを生成する請求項2に記載の超音波検査装置。
  4. 前記データ処理部は、送信領域が重なり合う前記超音波ビームの送信で得られた、複数の前記第1の素子データから、前記第2の素子データを生成する請求項1〜3のいずれか1項に記載の超音波検査装置。
  5. 前記データ処理部は、複数の前記第1の素子データを、前記素子が超音波エコーを受信した受信時間および前記素子の位置に応じて重ね合わせて、前記第2の素子データを生成する請求項1〜4のいずれか1項に記載の超音波検査装置。
  6. 前記遅延時間算出部は、事前に取得された前記探触子、前記検査対象物の音速、前記超音波ビームの焦点位置、前記送信部による前記探触子の送信開口、及び前記受信部による前記探触子の受信開口に関する少なくとも1つの情報に基づいて、前記2以上の第1の素子データの遅延時間を算出し、
    前記重ね合わせ処理部は、予め設定された、前記2以上の第1の素子データのうち重ね合わせる第1の素子データの数、及び重ね合わせ処理方法に基づいて前記2以上の第1の素子データを重ね合わせ、少なくとも1つの第2の素子データを生成する請求項1〜5に記載の超音波検査装置。
  7. 前記データ処理部は、前記重ね合わせ処理部により、前記2以上の第1の素子データを重ね合わせる際に、重なる部分のみの素子データから、前記第2の素子データを生成する請求項1〜6に記載の超音波検査装置。
  8. 前記データ処理部は、2以上の前記第1の素子データを、その各々の第1の素子データに対して重み付け係数を掛けた後に、重ね合わせる請求項1〜7のいずれか1項に記載の超音波検査装置。
  9. 前記データ処理部は、前記第2の素子データを求める位置の深さに応じて、選択する前記第1の素子データの数を変更する請求項1〜8のいずれか1項に記載の超音波検査装置。
  10. 前記データ処理部は、前記素子データ毎の受信時間上において少なくとも2つ以上の異なる時間軸上の点に基づいて、適応的に前記2以上の第1の素子データを重ね合わせる請求項1〜9のいずれか1項に記載の超音波検査装置。
  11. 前記異なる時間軸上の点は、前記送信部による前記探触子の送信開口毎に基づくものである請求項10に記載の超音波検査装置。
  12. 前記異なる時間軸上の点は、前記2以上の第1の素子データ毎に少なくとも2つ以上の送信開口で送信された場合に、該送信開口毎に基づくものである請求項10又は11に記載の超音波検査装置。
  13. 前記異なる時間軸上の点は、前記検査対象物の音速に基づくものである請求項10〜12のいずれか1項に記載の超音波検査装置。
  14. 前記送信部が、送信ラインごとに、同じ送信ライン上において深さの異なる送信焦点を形成する前記超音波ビームを送信することによって、前記受信部が、同じ送信ラインに対応する複数の前記第1の素子データを取得し、
    前記データ処理部は、送信焦点の深さごとに、同じ深さの送信焦点の超音波ビームの送受信によって得られた複数の前記第1の素子データから、前記第2の素子データを生成する請求項10〜13のいずれか1項に記載の超音波検査装置。
  15. 前記データ処理部は、選択する前記第1の素子データの数を、前記検査対象物内における前記超音波ビームの空間的な広がりに基づき、それに対応した前記第2の素子データを求める位置の深さに応じて、変化させる請求項9〜14のいずれか1項に記載の超音波検査装置。
  16. 前記データ処理部は、選択する前記第1の素子データの数を、前記検査対象物内の空間的な位置における信号に基づいて、それに対応した前記第2の素子データを求める位置の深さに応じて、変化させる請求項9〜15のいずれか1項に記載の超音波検査装置。
  17. 前記データ処理部は、選択する前記第1の素子データの数を、前記第1の素子データの波形解析の結果に基づいて、それに対応した前記第2の素子データを求める位置の深さに応じて、変化させる請求項9〜16のいずれか1項に記載の超音波検査装置。
  18. 前記波形解析は、選択する前記第1の素子データの候補に関する、波形の関連性、あるいは、コヒーレンス性を解析するものである請求項17に記載の超音波検査装置。
  19. 前記データ処理部は、選択する前記第1の素子データの数を変化させて作成した複数の第2の素子データにおける信号に基づいて最適な素子データ数を求める請求項9〜18のいずれか1項に記載の超音波検査装置。
  20. 前記送信部は、前記第2の素子データを求める位置の深さに応じて送信焦点深さを決定し、決定した前記送信焦点深さで、前記探触子に前記超音波ビームの送信を、複数回、行わせて、複数の前記第1の素子データを取得し、
    前記データ処理部は、決定した前記送信焦点深さの前記超音波ビームの送信で得られた複数の前記第1の素子データから、前記第2の素子データを生成するための2以上の前記第1の素子データを選択する請求項1〜19のいずれか1項に記載の超音波検査装置。
  21. 前記送信部は、前記第2の素子データを求める位置の深さに応じて送信開口数を決定し、決定した前記送信開口数で、前記探触子に前記超音波ビームの送信を、複数回、行わせて、複数の前記第1の素子データを取得し、
    前記データ処理部は、決定した前記送信開口数での前記超音波ビームの送信で得られた複数の前記第1の素子データから、前記第2の素子データを生成するための2以上の前記第1の素子データを選択する請求項1〜20のいずれか1項に記載の超音波検査装置。
  22. 前記送信部は、前記探触子にステア送信させる請求項1〜21のいずれか1項に記載の超音波検査装置。
  23. 前記素子データは、位相情報及び振幅情報を含む、請求項1〜22のいずれか1項に記載の超音波検査装置。
  24. 前記第1の素子データおよび前記第2の素子データの少なくとも1方を記憶する素子データ記憶部を有する請求項1〜23のいずれか1項に記載の超音波検査装置。
  25. 前記データ処理部は、複数の前記第1の素子データから前記第2の素子データを生成する直前に、複数の前記第1の素子データそれぞれの整相加算を行って複数の第1の受信データを生成し、複数の前記第1の受信データから、前記第1の受信データのいずれかに対応する第2の受信データを生成する請求項1〜24のいずれか1項に記載の超音波検査装置。
  26. 超音波ビームを用いて検査対象物を検査する超音波検査装置であって、
    前記超音波ビームを送信し、かつ、前記検査対象物によって反射された超音波エコーを受信して、受信した超音波エコーに応じたアナログ素子信号を出力する、複数の素子が配列された探触子と、
    前記探触子に、複数の前記素子を用い、所定の送信焦点を形成するように前記超音波ビームを送信させることを、複数回、行わせる送信部と、
    個々の前記超音波ビームの送信に対応して、複数の前記素子が出力したアナログ素子信号を受け、所定の処理を施す受信部と、
    前記受信部が処理したアナログ素子信号をA/D変換して、デジタル素子信号であり、素子位置と時間に対する強度のデータを表す第1の素子データとするAD変換部と、
    複数の前記第1の素子データに対して、同じ前記素子に対応するラインを中心にしてそれぞれ整相加算を行い複数の、時間に対する強度のデータを表す第1の受信データを生成する整相加算部と、
    同じ前記素子に対応するラインを中心にして整相加算された複数の前記第1の受信データから、前記第1の受信データのいずれかに対応する第2の受信データを生成するデータ処理部とを備え、
    前記データ処理部は、2以上の前記第1の受信データの遅延時間を算出する遅延時間算出部と、前記2以上の第1の受信データを算出された遅延時間に基づいて重ね合わせ、前記第2の受信データを生成する重ね合わせ処理部とを有し、
    前記データ処理部は、前記第2の受信データを求める位置の深さに応じて、前記第2の受信データを生成するための2以上の前記第1の受信データの取得条件を変更することを特徴とする超音波検査装置。
  27. 前記遅延時間算出部は、事前に取得された前記探触子、前記検査対象物の音速、前記超音波ビームの焦点位置、前記送信部による前記探触子の送信開口、及び前記受信部による前記探触子の受信開口に関する少なくとも1つの情報に基づいて、前記2以上の第1の受信データの遅延時間を算出し、
    前記重ね合わせ処理部は、予め設定された、前記2以上の第1の受信データのうち重ね合わせる第1の受信データの数、及び重ね合わせ処理方法に基づいて前記2以上の第1の受信データを重ね合わせ、少なくとも1つの第2の受信データを生成する請求項26に記載の超音波検査装置。
JP2013144809A 2012-07-13 2013-07-10 超音波検査装置 Active JP5905856B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013144809A JP5905856B2 (ja) 2012-07-13 2013-07-10 超音波検査装置
CN201380037373.XA CN104487002B (zh) 2012-07-13 2013-07-11 超声波检查装置
PCT/JP2013/069010 WO2014010683A1 (ja) 2012-07-13 2013-07-11 超音波検査装置
US14/594,889 US10588598B2 (en) 2012-07-13 2015-01-12 Ultrasonic inspection apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012158009 2012-07-13
JP2012158009 2012-07-13
JP2013144809A JP5905856B2 (ja) 2012-07-13 2013-07-10 超音波検査装置

Publications (2)

Publication Number Publication Date
JP2014030715A JP2014030715A (ja) 2014-02-20
JP5905856B2 true JP5905856B2 (ja) 2016-04-20

Family

ID=49916124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013144809A Active JP5905856B2 (ja) 2012-07-13 2013-07-10 超音波検査装置

Country Status (4)

Country Link
US (1) US10588598B2 (ja)
JP (1) JP5905856B2 (ja)
CN (1) CN104487002B (ja)
WO (1) WO2014010683A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6006249B2 (ja) * 2014-03-24 2016-10-12 富士フイルム株式会社 音響波処理装置、音響波処理装置の信号処理方法およびプログラム
JP6165089B2 (ja) * 2014-03-25 2017-07-19 富士フイルム株式会社 音響波処理装置、音響波処理装置の信号処理方法およびプログラム
JP6285241B2 (ja) * 2014-03-26 2018-02-28 富士フイルム株式会社 音響波処理装置、音響波処理装置の信号処理方法およびプログラム
JP6129108B2 (ja) * 2014-03-31 2017-05-17 富士フイルム株式会社 音響波処理装置、音響波処理装置の信号処理方法およびプログラム
WO2016017331A1 (ja) * 2014-07-31 2016-02-04 富士フイルム株式会社 音響波診断装置およびその制御方法
WO2016038944A1 (ja) * 2014-09-10 2016-03-17 富士フイルム株式会社 音響波画像生成装置およびその制御方法
EP3278738B1 (en) * 2015-04-03 2020-01-01 Fujifilm Corporation Acoustic wave image generation device and method
JP2017046811A (ja) * 2015-08-31 2017-03-09 セイコーエプソン株式会社 超音波デバイス、超音波モジュール、及び超音波測定機
JP6724797B2 (ja) * 2017-01-13 2020-07-15 コニカミノルタ株式会社 超音波診断装置、および、その制御方法
EP3447486A1 (en) * 2017-08-25 2019-02-27 Kabushiki Kaisha Toshiba Linear-scan ultrasonic inspection apparatus and linear-scan ultrasonic inspection method
JP2023515846A (ja) * 2020-02-28 2023-04-14 エヴィデント・カナダ・インコーポレイテッド 超音波検査のための位相ベースのアプローチ
US20220313207A1 (en) * 2021-04-01 2022-10-06 Bfly Operations, Inc. Apparatuses and methods for configuring ultrasound devices

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3788757D1 (de) * 1986-08-20 1994-02-24 Siemens Ag Verfahren und Einrichtung zur adaptiven Fokussierung bei einem medizinischen Ultraschall-Bildgabegerät.
US5817023A (en) * 1997-05-12 1998-10-06 General Electrical Company Ultrasound imaging system with dynamic window function generator
JP4416256B2 (ja) * 2000-03-10 2010-02-17 株式会社日立メディコ 超音波撮像装置
DE10248747B4 (de) 2001-10-20 2018-08-02 ZONARE Medical Systems, Inc. (n.d.Ges.d. Staates Delaware) Breitstrahlabbildung
US20060058669A1 (en) * 2003-08-14 2006-03-16 Matsushita Electric Industrial Co., Ltd. Ultrasonographic device
US7740583B2 (en) * 2004-06-30 2010-06-22 General Electric Company Time delay estimation method and system for use in ultrasound imaging
US8317712B2 (en) * 2006-05-12 2012-11-27 Koninklijke Philips Electronics N.V. Eindhoven Retrospective dynamic transmit focusing for spatial compounding
BRPI0711595A2 (pt) * 2006-05-12 2011-11-16 Koninkl Philips Electronics Nv sistema de formação de imagem de diagnóstico ultra-sÈnico, e, método para produzir uma imagem de ultra-som com uma gama focal estendida.
CN101238991B (zh) * 2007-02-09 2011-02-09 阿洛卡株式会社 超声波诊断装置
JP5355924B2 (ja) * 2008-03-31 2013-11-27 株式会社東芝 超音波診断装置
JP5357815B2 (ja) 2009-06-03 2013-12-04 富士フイルム株式会社 超音波診断装置
JP5645421B2 (ja) 2010-02-23 2014-12-24 キヤノン株式会社 超音波画像装置および遅延制御方法
JP5560134B2 (ja) * 2010-08-03 2014-07-23 富士フイルム株式会社 超音波画像生成装置
JP5814556B2 (ja) * 2011-02-04 2015-11-17 キヤノン株式会社 信号処理装置
EP3570068A1 (en) * 2011-05-02 2019-11-20 Verasonics, Inc. Enhanced ultrasound image formation using qualified regions of overlapping transmit beams
US9775585B2 (en) * 2011-06-15 2017-10-03 Toshiba Medical Systems Corporation Variable power saving processing scheme for ultrasound beamformer functionality
US20140343422A1 (en) * 2011-11-17 2014-11-20 Hitachi Aloka Medical, Ltd. Ultrasonic diagnostic device and ultrasonic image generation method

Also Published As

Publication number Publication date
WO2014010683A1 (ja) 2014-01-16
JP2014030715A (ja) 2014-02-20
US20150141831A1 (en) 2015-05-21
CN104487002B (zh) 2016-08-31
CN104487002A (zh) 2015-04-01
US10588598B2 (en) 2020-03-17

Similar Documents

Publication Publication Date Title
JP5905856B2 (ja) 超音波検査装置
JP5946427B2 (ja) 超音波検査装置、超音波検査方法、プログラム及び記録媒体
JP6006249B2 (ja) 音響波処理装置、音響波処理装置の信号処理方法およびプログラム
JP6000197B2 (ja) 超音波診断装置、超音波画像生成方法およびプログラム
JP5905808B2 (ja) 超音波検査装置、超音波画像データ生成方法およびプログラム
JP6074299B2 (ja) 超音波診断装置、超音波診断装置の信号処理方法およびプログラム
US10980515B2 (en) Acoustic wave processing apparatus, signal processing method, and program for acoustic wave processing apparatus
JP6000196B2 (ja) 超音波診断装置、音速決定方法およびプログラム
JP6165089B2 (ja) 音響波処理装置、音響波処理装置の信号処理方法およびプログラム
JP5873412B2 (ja) 超音波診断装置、音速決定方法およびプログラム
JP5964774B2 (ja) 超音波診断装置、超音波診断装置の信号処理方法およびプログラム
US10383601B2 (en) Acoustic wave processing apparatus, signal processing method, and program for acoustic wave processing apparatus
JP6047041B2 (ja) 超音波診断装置、超音波診断装置の信号処理方法およびプログラム
WO2014050847A1 (ja) 超音波診断装置、超音波画像データ生成方法およびプログラム
WO2014050897A1 (ja) 超音波検査装置、超音波画像データ生成方法およびプログラム
WO2014050756A1 (ja) 超音波検査装置、超音波画像データ生成方法およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160317

R150 Certificate of patent or registration of utility model

Ref document number: 5905856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250