JP2009235541A - Method for producing zinc oxide based sintered target - Google Patents

Method for producing zinc oxide based sintered target Download PDF

Info

Publication number
JP2009235541A
JP2009235541A JP2008085633A JP2008085633A JP2009235541A JP 2009235541 A JP2009235541 A JP 2009235541A JP 2008085633 A JP2008085633 A JP 2008085633A JP 2008085633 A JP2008085633 A JP 2008085633A JP 2009235541 A JP2009235541 A JP 2009235541A
Authority
JP
Japan
Prior art keywords
zinc oxide
sintered body
target
zinc
relative density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008085633A
Other languages
Japanese (ja)
Inventor
Takeshi Kuboi
健 久保井
Takuya Ishikawa
卓也 石川
Ryoji Inoue
良二 井上
Hideko Fukushima
英子 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008085633A priority Critical patent/JP2009235541A/en
Publication of JP2009235541A publication Critical patent/JP2009235541A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a zinc oxide based sintered target with an increased density which can perform stable film deposition. <P>SOLUTION: In a method for producing a zinc oxide based sintered target including at least one kind of additional element selected from the group consisting of B, Al and Ga, mixed powder of zinc oxide powder and additional element-containing powder in which the additional element(s) is regulated as metal, oxide or composite oxide with zinc is subjected to atmospheric sintering, so as to produce a temporarily sintered compact with a relative density of ≥90%, thereafter, the temporarily sintered compact is subjected to hot hydrostatic press at the temperature of ≥900°C under the pressure of ≥80 MPa without sealing the same into a metallic vessel, so as to produce a sintered compact with a relative density of ≥99%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、透明導電膜をスパッタリング法で形成するための酸化亜鉛系焼結ターゲットの製造方法に関するものである。   The present invention relates to a method for producing a zinc oxide-based sintered target for forming a transparent conductive film by a sputtering method.

液晶ディスプレイなどのフラットパネルディスプレイ、太陽電池、タッチパネルなどには、透明導電膜が必要とされる。例えば、液晶ディスプレイでは液晶の前後に透明導電膜が形成されており、透明導電膜から電場を付加することによって液晶の配勾性を制御し、バックライトからの光の透過量を調整することによって表示を行う。このために、液晶ディスプレイ用透明導電膜には、可視光域での平均透過率が90%以上、かつ抵抗率が10−4Ωcm台であることが求められる。このような条件を満たす透明導電膜として、現在は錫を添加した酸化インジウム(ITO)が一般的に利用されている。 A transparent conductive film is required for flat panel displays such as liquid crystal displays, solar cells, touch panels, and the like. For example, in a liquid crystal display, a transparent conductive film is formed before and after the liquid crystal. By applying an electric field from the transparent conductive film, the gradient of the liquid crystal is controlled, and the amount of light transmitted from the backlight is adjusted. Display. For this reason, the transparent conductive film for liquid crystal displays is required to have an average transmittance of 90% or more in the visible light region and a resistivity on the order of 10 −4 Ωcm. Currently, indium oxide (ITO) to which tin is added is generally used as a transparent conductive film that satisfies such conditions.

ITOは、可視光域での平均透過率が高く、低抵抗率の薄膜が形成できるが、主成分であるインジウムが高価であり、また資源上の問題もあるため、最近では低コストで資源的な問題もない酸化亜鉛系導電膜がITOの代替として注目されている。   ITO has a high average transmittance in the visible light region and can form a low-resistivity thin film. However, indium, which is the main component, is expensive and has resource problems. A zinc oxide-based conductive film that does not have any problems is attracting attention as an alternative to ITO.

酸化亜鉛系透明導電膜は、化学蒸着法や直流マグネトロンスパッタ法などで形成される。化学蒸着法は成膜速度が速く、比較的に厚い膜を形成する場合には生産性が高いという特徴を有している。一方、直流マグネトロンスパッタ法は、低い基板温度で成膜しても低い抵抗率の薄膜が得られるという特徴を有している。
そして、酸化亜鉛系透明導電膜を直流マグネトロンスパッタ法で形成する際には、一般的に酸化亜鉛系ターゲットが使用されるが、直流マグネトロンスパッタ法に酸化亜鉛系ターゲットを使用する場合には、投入可能な電力が著しく低い上に放電が不安定になることが指摘されている。そのため、これらの課題を解決するために、焼結密度5g/cm以上、比抵抗1Ωcm以下の酸化亜鉛系ターゲットを使用することが提案されている(例えば、特許文献1参照)。
特開平2−149459号公報
The zinc oxide-based transparent conductive film is formed by a chemical vapor deposition method or a direct current magnetron sputtering method. Chemical vapor deposition is characterized by a high film formation rate and high productivity when a relatively thick film is formed. On the other hand, the direct current magnetron sputtering method has a feature that a thin film having a low resistivity can be obtained even when a film is formed at a low substrate temperature.
When a zinc oxide transparent conductive film is formed by DC magnetron sputtering, a zinc oxide target is generally used. However, when a zinc oxide target is used for DC magnetron sputtering, It has been pointed out that the available power is significantly lower and the discharge becomes unstable. Therefore, in order to solve these problems, it has been proposed to use a zinc oxide-based target having a sintered density of 5 g / cm 3 or more and a specific resistance of 1 Ωcm or less (see, for example, Patent Document 1).
JP-A-2-14959

直流マグネトロンスパッタ法で形成する酸化亜鉛系透明導電膜の研究には長い歴史があるにもかかわらず、工業的な量産に適用するためには技術的な課題も多く残っている。問題の1つは、酸化亜鉛系ターゲットの高密度化である。上述の特許文献1には、酸化亜鉛系焼結体の焼結密度と焼結体の導電性を向上させるために、1300℃を超える高温で焼結を行うことが提案されているが、上記の方法によっても直流マグネトロンスパッタ法によって酸化亜鉛系透明電極膜を安定的に成膜するには、未だ十分ではない。
本発明の目的は、上記の課題を解決し、安定的な成膜が可能な高密度化した酸化亜鉛系焼結ターゲットを得るための製造方法を提供することである。
Despite a long history of research on zinc oxide-based transparent conductive films formed by DC magnetron sputtering, many technical problems remain to be applied to industrial mass production. One of the problems is increasing the density of the zinc oxide target. In Patent Document 1 described above, in order to improve the sintering density of the zinc oxide-based sintered body and the conductivity of the sintered body, it is proposed to perform sintering at a high temperature exceeding 1300 ° C. This method is still not sufficient for stably forming a zinc oxide based transparent electrode film by the direct current magnetron sputtering method.
An object of the present invention is to solve the above problems and provide a manufacturing method for obtaining a high-density zinc oxide-based sintered target capable of stable film formation.

本発明者は、主に透明導電膜の作製に使用される酸化亜鉛系ターゲットにおいて、焼結密度の向上方法を検討した結果、酸化亜鉛系の粉末を、一度、雰囲気焼結で相対密度90%以上の仮焼結体を作製した後、熱間静水圧プレスで再度焼結することで、酸化亜鉛系の焼結体の相対密度を大きく改善できることを見いだし本発明に到達した。   As a result of studying a method for improving the sintering density in a zinc oxide-based target mainly used for the production of a transparent conductive film, the present inventor has found that a zinc oxide-based powder is once sintered in an atmosphere at a relative density of 90%. After producing the above temporary sintered body, it was found that the relative density of the zinc oxide-based sintered body can be greatly improved by re-sintering with a hot isostatic press, and the present invention has been achieved.

すなわち、本発明は、B、AlおよびGaからなる群から選ばれる少なくとも1種の添加元素を含有する酸化亜鉛系焼結ターゲットの製造方法であって、酸化亜鉛粉末と、前記添加元素を金属、酸化物もしくは亜鉛との複合酸化物として調整した添加元素を含有する粉末との混合粉末を雰囲気焼結によって相対密度90%以上の仮焼結体を作製した後、該仮焼結体を金属容器に密閉せずに、温度900℃以上かつ圧力80MPa以上の条件の熱間静水圧プレスで相対密度99%以上の焼結体を製造する酸化亜鉛系焼結ターゲットの製造方法である。
好ましくは、添加元素の原子数/(亜鉛の原子数+添加元素の原子数)×100で定義される原子比が0.1〜10%の酸化亜鉛系焼結ターゲットである酸化亜鉛系焼結ターゲットの製造方法である。
That is, the present invention is a method for producing a zinc oxide-based sintered target containing at least one additional element selected from the group consisting of B, Al and Ga, wherein the zinc oxide powder, the additive element is a metal, After preparing a temporary sintered body having a relative density of 90% or more by atmospheric sintering of a mixed powder with an oxide or a powder containing an additive element prepared as a composite oxide with zinc, the temporary sintered body is made into a metal container Is a method for producing a zinc oxide-based sintered target in which a sintered body having a relative density of 99% or more is produced by hot isostatic pressing under conditions of a temperature of 900 ° C. or higher and a pressure of 80 MPa or higher.
Preferably, zinc oxide-based sintering, which is a zinc oxide-based sintering target having an atomic ratio defined by the number of atoms of additive element / (number of zinc atoms + number of atoms of additive element) × 100 × 0.1 to 10% It is a manufacturing method of a target.

本発明のによれば、高密度化した酸化亜鉛系焼結ターゲットの製造が可能となるため、酸化亜鉛系焼結ターゲットの製造方法として工業的に非常に重要である。   According to the present invention, since it is possible to manufacture a zinc oxide sintered target having a high density, it is industrially very important as a method for manufacturing a zinc oxide sintered target.

本発明の重要な特徴は、雰囲気焼結によって得られる所定の仮焼結体を、金属容器に密閉せずに熱間静水圧プレスによる焼結処理を行うことで、非常に高密度の酸化亜鉛系焼結ターゲットを製造することが可能になる点にある。   An important feature of the present invention is that a predetermined temporary sintered body obtained by atmospheric sintering is sintered in a hot isostatic press without being sealed in a metal container, thereby producing a very high density zinc oxide. It is in the point that it becomes possible to manufacture a system sintering target.

本発明は、B、Al、Gaからなる群から選ばれる少なくとも1種の添加元素を含有する酸化亜鉛系焼結ターゲットの製造方法である。酸化亜鉛に添加元素としてB、Al、Gaを含有するのは、酸化亜鉛の透明導電膜にB、Al、Gaが含有されることによって、ホール移動度をあまり低下させることなく、キャリア密度を向上させ、抵抗率の低い透明導電膜が得られるためである。これらの元素は、酸化亜鉛薄膜に1種類のみを添加しても酸化亜鉛薄膜の抵抗率を低くする効果が得られる。また、2種類以上を同時に添加しても酸化亜鉛薄膜の抵抗率を低くする効果が得られる。   The present invention is a method for producing a zinc oxide-based sintered target containing at least one additional element selected from the group consisting of B, Al, and Ga. The inclusion of B, Al, and Ga as additive elements in zinc oxide improves carrier density without significantly reducing hole mobility by containing B, Al, and Ga in the transparent conductive film of zinc oxide This is because a transparent conductive film having a low resistivity is obtained. Even if only one kind of these elements is added to the zinc oxide thin film, the effect of reducing the resistivity of the zinc oxide thin film can be obtained. Even if two or more kinds are added simultaneously, the effect of reducing the resistivity of the zinc oxide thin film can be obtained.

以下、本発明の製造工程について説明する。
まず、酸化亜鉛粉末と添加元素を金属、酸化物もしくは亜鉛との複合酸化物として調整した添加元素を含有する粉末との混合粉末を準備する。なお、添加元素を含有する粉末は、酸化物とすることによって、後工程の雰囲気焼結の焼結温度を高くすることなどが容易になる。
また、混合粉末は、上記の酸化亜鉛粉末と添加元素を含有する粉末を、ボールミルなどの装置を用いて混合することが可能である。この混合は、乾式あるいは湿式のいずれでも良い。また、湿式混合を行った場合は、必要に応じて、スプレードライヤーなどの工程を適用しても良い。
Hereinafter, the manufacturing process of the present invention will be described.
First, a mixed powder of a zinc oxide powder and a powder containing an additive element prepared by adjusting the additive element as a composite oxide of metal, oxide, or zinc is prepared. In addition, it becomes easy to raise the sintering temperature of the atmosphere sintering of a post process, etc. by making the powder containing an additive element into an oxide.
The mixed powder can be obtained by mixing the zinc oxide powder and a powder containing an additive element using a device such as a ball mill. This mixing may be either dry or wet. In addition, when wet mixing is performed, a process such as a spray dryer may be applied as necessary.

続いて、上記の混合粉末を雰囲気焼結によって相対密度90%以上の仮焼結体を作製する。
雰囲気焼結は、大気雰囲気、減圧雰囲気、不活性ガス雰囲気のいずれでも、相対密度90%以上の仮焼結体を作製できる雰囲気であれば可能である。
また、相対密度90%以上の焼結体を得るためには、雰囲気焼結における温度を1000℃以上とすることが好ましい。また、1600℃以上の雰囲気で焼結を行うと、焼結中に酸化亜鉛の重量減少が著しくなるので、焼結時の温度の上限は1600℃であることが好ましい。
なお、ターゲットとしての抵抗率を低減するためには、焼結体中の酸素含有量を低減することが望ましいと考えられている。雰囲気焼結を大気雰囲気で行っても、次工程の熱間静水圧プレスで酸素含有量の低減は十分可能であるが、より酸素含有量を低減したい場合には、不活性ガス雰囲気や0.1MPa以下への減圧雰囲気で雰囲気焼結を行うことも可能である。
Subsequently, a temporary sintered body having a relative density of 90% or more is produced by atmosphere sintering of the mixed powder.
Atmospheric sintering can be performed in any atmosphere such as an air atmosphere, a reduced pressure atmosphere, and an inert gas atmosphere as long as a temporary sintered body having a relative density of 90% or more can be produced.
In order to obtain a sintered body having a relative density of 90% or more, it is preferable that the temperature in the atmosphere sintering is 1000 ° C. or more. Further, if sintering is performed in an atmosphere of 1600 ° C. or higher, the weight loss of zinc oxide becomes significant during sintering, so the upper limit of the temperature during sintering is preferably 1600 ° C.
In order to reduce the resistivity as a target, it is considered desirable to reduce the oxygen content in the sintered body. Even if the atmosphere sintering is performed in an air atmosphere, the oxygen content can be sufficiently reduced by the hot isostatic pressing in the next step. However, if it is desired to further reduce the oxygen content, an inert gas atmosphere or 0. It is also possible to perform atmosphere sintering in a reduced-pressure atmosphere to 1 MPa or less.

また、仮焼結体の相対密度は90%以上にすることが必要である。相対密度を90%以上にすることによって、仮焼結体の多くの空隙がクローズドポアとなり、熱間静水圧プレス工程で空隙を潰すことができると考えられる。相対密度が90%に満たない場合には、仮焼結体内に空隙が多く存在するため、熱間静水圧プレスで焼結体を作製する際に残存する空隙を十分に潰すことが困難になる。また、仮焼結体の相対密度を90%以上とすることで、仮焼結体中の気孔状態は閉気孔となるため、仮焼結体を容器に密閉することなく熱間静水圧プレスでより相対密度を向上させた焼結体を得ることが可能となる。   The relative density of the temporary sintered body needs to be 90% or more. By setting the relative density to 90% or more, it is considered that many voids of the temporary sintered body become closed pores, and the voids can be crushed in the hot isostatic pressing process. When the relative density is less than 90%, since there are many voids in the temporary sintered body, it is difficult to sufficiently crush the remaining voids when producing a sintered body by hot isostatic pressing. . In addition, by setting the relative density of the temporary sintered body to 90% or more, the pore state in the temporary sintered body becomes closed pores, so that the temporary sintered body is sealed with a hot isostatic press without sealing the container. It becomes possible to obtain a sintered body having a higher relative density.

次に、仮焼結体を金属容器に密閉せずに、温度900℃以上かつ圧力80MPa以上の条件の熱間静水圧プレスで相対密度99%以上の焼結体を製造する。
本発明では、熱間静水圧プレスを実施する際に、仮焼結体を金属容器に密閉しないことも重要な特徴である。一般に、熱間静水圧プレスの際には、金属等の容器に原料を密閉して行われるが、酸化亜鉛系焼結体には延性がほとんどないために、金属容器に密閉した上で熱間静水圧プレスを行うと、焼結後の冷却の際などに酸化亜鉛系焼結体と金属容器の熱膨張の違いなどが原因で酸化亜鉛焼結体が割れるなどの問題がある。また、金属容器から酸化亜鉛系焼結体を取り出す際にも、この焼結体に衝撃が加わらないように細心の注意が必要であり、生産性が悪い。そこで、仮焼結体の相対密度を90%以上に高めておく必要はあるが、仮焼結体を金属容器などに密閉せずに熱間静水圧プレスを実施することによって割れなどの不良が著しく低減でき、かつ熱間静水圧プレスの条件の選択範囲を広げることが可能となる。
Next, a sintered body having a relative density of 99% or more is manufactured by hot isostatic pressing under conditions of a temperature of 900 ° C. or higher and a pressure of 80 MPa or higher without sealing the temporary sintered body in a metal container.
In the present invention, it is also an important feature that the temporary sintered body is not sealed in a metal container when hot isostatic pressing is performed. In general, hot isostatic pressing is performed by sealing a raw material in a metal container or the like, but since zinc oxide-based sintered bodies have almost no ductility, they are hot sealed after being sealed in a metal container. When the isostatic pressing is performed, there is a problem that the zinc oxide sintered body breaks due to a difference in thermal expansion between the zinc oxide-based sintered body and the metal container during cooling after sintering. Further, when taking out the zinc oxide sintered body from the metal container, it is necessary to pay close attention so as not to apply an impact to the sintered body, and the productivity is poor. Therefore, although it is necessary to increase the relative density of the temporary sintered body to 90% or more, defects such as cracks are caused by performing hot isostatic pressing without sealing the temporary sintered body in a metal container or the like. It can be remarkably reduced, and the selection range of conditions for hot isostatic pressing can be expanded.

雰囲気焼結によって得られる相対密度90%以上の仮焼結体は、上記の温度と圧力の付加によりさらに高密度の相対密度99%以上の焼結体を得ることが可能となる。さらに、熱間静水圧プレスで一般的なアルゴンなどの不活性ガス雰囲気中で、金属容器に密閉しない仮焼結体を焼結する場合には、酸化亜鉛系の仮焼結体中の酸素含有量を低減しつつ、亜鉛の質量減少は抑制可能である。このため、酸素含有量の低減を伴いつつ、高密度化を実現できるため、ターゲット素材である焼結体の低抵抗率化とスパッタにおける異常放電の低減が可能となる。
また、金属容器に密閉せずに、熱間静水圧プレスで焼結を行う場合には、焼結温度が高くなりすぎると、酸化亜鉛系焼結体の質量減少や熱間静水圧プレス装置内の損傷などの問題が顕著になることから、熱間静水圧プレスにおける温度の上限は、1400℃以下とすることが好ましい。また、圧力条件はより高い圧力の付加が望ましいが、現在実用化される装置の最大圧力は、250MPa程度である。
A temporary sintered body having a relative density of 90% or more obtained by atmospheric sintering can obtain a sintered body having a higher density and a relative density of 99% or more by applying the above temperature and pressure. Furthermore, in the case of sintering a pre-sintered body that is not sealed in a metal container in an inert gas atmosphere such as general argon by hot isostatic pressing, oxygen content in the zinc oxide-based pre-sintered body is included. While reducing the amount, the mass loss of zinc can be suppressed. For this reason, since a high density can be realized while reducing the oxygen content, it is possible to reduce the resistivity of the sintered body as the target material and to reduce abnormal discharge during sputtering.
In addition, when sintering is performed by hot isostatic pressing without sealing the metal container, if the sintering temperature becomes too high, the mass of the zinc oxide-based sintered body is reduced or the hot isostatic pressing apparatus is used. Therefore, the upper limit of the temperature in the hot isostatic pressing is preferably 1400 ° C. or less. Further, it is desirable to apply a higher pressure as the pressure condition, but the maximum pressure of the apparatus that is currently put into practical use is about 250 MPa.

また、本発明の酸化亜鉛系焼結ターゲットは、添加元素の原子数/(亜鉛の原子数+添加元素の原子数)×100で定義される原子比が0.1〜10%であることが望ましい。B、Al、Gaを添加した酸化亜鉛系薄膜は、ホール移動度をあまり低下させることなく、キャリア密度が高くなるので、抵抗率を低減できる。抵抗率の低減効果は、原子比で0.1%の添加元素の添加から効果があるが、10%を超えて添加すると酸化亜鉛薄膜の抵抗率が顕著に高くなると考えられる。
なお、酸化亜鉛系薄膜を液晶ディスプレイ等のフラットパネルディスプレイの透明導電膜に使用する場合には、抵抗率の低減がより重要視されるため、添加元素の含有量は、原子比2〜7%とすることが好ましい。それは、原子比2〜7%の範囲の添加によって、最低値に近い抵抗率が得られるためである。
また、酸化亜鉛系薄膜をCIGSなどの太陽電池の透明導電膜に使用する場合には、発電効率のために、抵抗率もさることながら、赤外光域の吸収を低くすることも求められる。このような場合には、B、Al、Gaの添加量を0.1〜1%とすることが好ましい。
In the zinc oxide-based sintered target of the present invention, the atomic ratio defined by the number of added element atoms / (number of zinc atoms + number of added element atoms) × 100 is 0.1 to 10%. desirable. Since the zinc oxide thin film to which B, Al, and Ga are added does not significantly reduce the hole mobility, the carrier density is increased, so that the resistivity can be reduced. The effect of reducing the resistivity is effective from the addition of 0.1% of the additional element by atomic ratio, but it is considered that the resistivity of the zinc oxide thin film is remarkably increased when it exceeds 10%.
In addition, when using a zinc oxide-based thin film for a transparent conductive film of a flat panel display such as a liquid crystal display, since reduction of resistivity is more important, the content of the additive element is 2 to 7% in atomic ratio. It is preferable that This is because a resistivity close to the minimum value can be obtained by addition in an atomic ratio range of 2 to 7%.
Moreover, when using a zinc oxide-type thin film for the transparent conductive film of solar cells, such as CIGS, it is also calculated | required that the absorption of an infrared-light area | region should be lowered | hung for a power generation efficiency, in addition to a resistivity. In such a case, it is preferable that the addition amount of B, Al, and Ga is 0.1 to 1%.

なお、本発明で用いる原子比とは、添加元素の原子数/(添加元素の原子数+亜鉛の原子数)と定義する。酸素を含めて分析を行うと、誤差が大きいのでこのように定義した。
また、酸化亜鉛系ターゲット中の添加元素の含有量と、マグネトロンスパッタ法で形成された酸化亜鉛系薄膜の添加元素の含有量はほぼ一致する。すなわち、酸化亜鉛系ターゲットの添加元素の含有量をコントロールすることによって、酸化亜鉛系薄膜の添加元素の含有量をコントロールすることが可能である。
The atomic ratio used in the present invention is defined as the number of atoms of an additive element / (the number of atoms of the additive element + the number of atoms of zinc). When analysis including oxygen was performed, the error was large, so it was defined in this way.
Further, the content of the additive element in the zinc oxide-based target and the content of the additive element in the zinc oxide-based thin film formed by the magnetron sputtering method are almost the same. That is, it is possible to control the content of the additive element of the zinc oxide-based thin film by controlling the content of the additive element of the zinc oxide-based target.

以下の実施例で本発明を更に詳しく説明する。ただし、これらの実施例により本発明が限定されるものではない。
Alを原子比で3%添加した酸化亜鉛系焼結ターゲットを以下の通り、作製した。
原料粉末として、平均1次粒径0.2μm酸化亜鉛(ZnO)粉末と平均1次粒径0.2μmの酸化アルミニウム(Al)粉末を用いて、Alが原子比で3%含有されるように調合した粉末に純水を適量添加してボールミルで20時間混合した。ボールミル混合の後、乾燥させた混合粉末にバインダーを適量添加した後、プレス成形し、300MPaの圧力で冷間等方圧加圧を行い、成形体を得た。この成形体を大気圧(0.1MPa)の焼結炉内において大気雰囲気中で1400℃、2時間の雰囲気焼結を行って仮焼結体を作製した。続いて、得られた仮焼結体を金属容器に密閉せずにそのまま熱間静水圧プレス装置に装入して、温度1150℃、圧力100MPa、1時間の熱間静水圧プレスによって焼結体を得た。得られた焼結体に機械加工を施して、Φ150mm×10mmの酸化亜鉛系焼結ターゲットを得た。
なお、上記の仮焼結体および焼結体から試料を採取して、アルキメデス法により相対密度を測定したところ、それぞれ、98.7%(密度:5.56g/cm)、99.8%(密度:5.62g/cm)であった。
The following examples further illustrate the present invention. However, the present invention is not limited to these examples.
A zinc oxide-based sintered target added with 3% Al by atomic ratio was produced as follows.
As the raw material powder, zinc oxide (ZnO) powder having an average primary particle size of 0.2 μm and aluminum oxide (Al 2 O 3 ) powder having an average primary particle size of 0.2 μm are used, and Al is contained in an atomic ratio of 3%. An appropriate amount of pure water was added to the powder thus prepared and mixed for 20 hours by a ball mill. After ball mill mixing, an appropriate amount of a binder was added to the dried mixed powder, followed by press molding, and cold isostatic pressing was performed at a pressure of 300 MPa to obtain a molded body. This compact was sintered in an atmospheric atmosphere (0.1 MPa) in an air atmosphere at 1400 ° C. for 2 hours to prepare a temporary sintered body. Subsequently, the obtained temporary sintered body was inserted into a hot isostatic pressing apparatus without being sealed in a metal container, and the sintered body was subjected to hot isostatic pressing at a temperature of 1150 ° C., a pressure of 100 MPa for 1 hour. Got. The obtained sintered body was machined to obtain a zinc oxide sintered target having a diameter of 150 mm × 10 mm.
In addition, when a sample was extract | collected from said temporary sintered compact and sintered compact, and relative density was measured by the Archimedes method, 98.7% (density: 5.56g / cm < 3 >) and 99.8%, respectively. (Density: 5.62 g / cm 3 ).

以上から、本発明によって、熱間静水圧プレスを適用すると、仮焼結温度の1400℃よりも低い1150℃で焼結しても焼結体の密度を高くすることができ、かつ99%以上の相対密度を得ることができた。   From the above, according to the present invention, when a hot isostatic press is applied, the density of the sintered body can be increased even if sintering is performed at 1150 ° C., which is lower than the pre-sintering temperature of 1400 ° C., and 99% or more. The relative density of can be obtained.

また、上記で得られた酸化亜鉛系焼結ターゲットを用いて、直流マグネトロンスパッタ法による成膜の可否を評価した所、投入電力:直流200W、ガス圧:0.4Pa、スパッタガス:Ar、基板温度:200℃の条件で安定した成膜が可能であった。   Moreover, when the possibility of film formation by the direct current magnetron sputtering method was evaluated using the zinc oxide-based sintered target obtained above, input power: direct current 200 W, gas pressure: 0.4 Pa, sputtering gas: Ar, substrate Temperature: Stable film formation was possible under the condition of 200 ° C.

本発明は酸化亜鉛系ターゲットを高密度化する製造方法として優れているため、液晶ディスプレイや太陽電池の生産において求められる高い生産性が不可欠な用途に適用できる。   Since this invention is excellent as a manufacturing method for increasing the density of a zinc oxide-based target, it can be applied to uses where high productivity required in the production of liquid crystal displays and solar cells is essential.

Claims (2)

B、AlおよびGaからなる群から選ばれる少なくとも1種の添加元素を含有する酸化亜鉛系焼結ターゲットの製造方法であって、酸化亜鉛粉末と、前記添加元素を金属、酸化物もしくは亜鉛との複合酸化物として調整した添加元素を含有する粉末との混合粉末を雰囲気焼結によって相対密度90%以上の仮焼結体を作製した後、該仮焼結体を金属容器に密閉せずに、温度900℃以上かつ圧力80MPa以上の条件の熱間静水圧プレスで相対密度99%以上の焼結体を製造することを特徴とする酸化亜鉛系焼結ターゲットの製造方法。 A method for producing a zinc oxide-based sintered target containing at least one additional element selected from the group consisting of B, Al and Ga, wherein the zinc oxide powder and the additional element are made of metal, oxide or zinc After preparing a temporary sintered body having a relative density of 90% or more by atmosphere sintering of a mixed powder containing an additive element prepared as a complex oxide, without sealing the temporary sintered body in a metal container, A method for producing a zinc oxide-based sintered target, comprising producing a sintered body having a relative density of 99% or more by hot isostatic pressing under conditions of a temperature of 900 ° C or higher and a pressure of 80 MPa or higher. 添加元素の原子数/(亜鉛の原子数+添加元素の原子数)×100で定義される原子比が0.1〜10%の酸化亜鉛系焼結ターゲットであることを特徴とする請求項1に記載の酸化亜鉛系焼結ターゲットの製造方法。 2. The zinc oxide-based sintered target having an atomic ratio of 0.1 to 10% defined by the number of added elements / (number of zinc atoms + number of added elements) × 100. The manufacturing method of the zinc oxide type sintered target described in 1.
JP2008085633A 2008-03-28 2008-03-28 Method for producing zinc oxide based sintered target Pending JP2009235541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008085633A JP2009235541A (en) 2008-03-28 2008-03-28 Method for producing zinc oxide based sintered target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085633A JP2009235541A (en) 2008-03-28 2008-03-28 Method for producing zinc oxide based sintered target

Publications (1)

Publication Number Publication Date
JP2009235541A true JP2009235541A (en) 2009-10-15

Family

ID=41249847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085633A Pending JP2009235541A (en) 2008-03-28 2008-03-28 Method for producing zinc oxide based sintered target

Country Status (1)

Country Link
JP (1) JP2009235541A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101175672B1 (en) * 2010-03-05 2012-08-22 안동대학교 산학협력단 A Preparation Method of Densified Zinc Oxide Based Transparent Electroconductive Film Target
WO2013137020A1 (en) * 2012-03-13 2013-09-19 三菱マテリアル株式会社 Sputtering target, and high-resistance transparent film and method for production thereof
JP2013209277A (en) * 2012-03-02 2013-10-10 Sumitomo Chemical Co Ltd Method for manufacturing zinc oxide-based sintered body and target
WO2013172007A1 (en) * 2012-05-16 2013-11-21 株式会社豊田自動織機 Current collector for non-aqueous electrolyte secondary cell positive electrode, method for manufacturing same, positive electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
JP2014080312A (en) * 2012-10-15 2014-05-08 Sumitomo Chemical Co Ltd Method for producing zinc oxide-based sintered body and target
CN104416160A (en) * 2013-09-11 2015-03-18 安泰科技股份有限公司 High-density zinc oxide based target and preparation method thereof
CN113652657A (en) * 2021-08-25 2021-11-16 有研亿金新材料有限公司 Aluminum-scandium alloy target material and manufacturing method adopting atmospheric high-temperature diffusion sintering molding
CN116751048A (en) * 2023-06-05 2023-09-15 洛阳晶联光电材料有限责任公司 Gallium-aluminum doped zinc oxide target material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149459A (en) * 1988-08-09 1990-06-08 Tosoh Corp Oxide sintered body, production and use thereof
JPH08176811A (en) * 1994-12-28 1996-07-09 Hitachi Metals Ltd Sintered compact for indium-tin oxide film and its production
JPH11322332A (en) * 1998-05-21 1999-11-24 Sumitomo Metal Mining Co Ltd Zno-based sintered product and its production
JP2004175616A (en) * 2002-11-27 2004-06-24 Sumitomo Metal Mining Co Ltd Zinc oxide-type sintered compact and its manufacturing method
JP2005330158A (en) * 2004-05-20 2005-12-02 Ulvac Material Kk Method for manufacturing complex oxide sintered body, and sputtering target composed of its sintered body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149459A (en) * 1988-08-09 1990-06-08 Tosoh Corp Oxide sintered body, production and use thereof
JPH08176811A (en) * 1994-12-28 1996-07-09 Hitachi Metals Ltd Sintered compact for indium-tin oxide film and its production
JPH11322332A (en) * 1998-05-21 1999-11-24 Sumitomo Metal Mining Co Ltd Zno-based sintered product and its production
JP2004175616A (en) * 2002-11-27 2004-06-24 Sumitomo Metal Mining Co Ltd Zinc oxide-type sintered compact and its manufacturing method
JP2005330158A (en) * 2004-05-20 2005-12-02 Ulvac Material Kk Method for manufacturing complex oxide sintered body, and sputtering target composed of its sintered body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012036216; 財団法人日本セラミックス協会編: セラミック工学ハンドブック[基礎・資料] 2版1刷, 20020331, p.219-222, 技報堂出版株式会社 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101175672B1 (en) * 2010-03-05 2012-08-22 안동대학교 산학협력단 A Preparation Method of Densified Zinc Oxide Based Transparent Electroconductive Film Target
JP2013209277A (en) * 2012-03-02 2013-10-10 Sumitomo Chemical Co Ltd Method for manufacturing zinc oxide-based sintered body and target
WO2013137020A1 (en) * 2012-03-13 2013-09-19 三菱マテリアル株式会社 Sputtering target, and high-resistance transparent film and method for production thereof
JP2013189669A (en) * 2012-03-13 2013-09-26 Mitsubishi Materials Corp Sputtering target, high-resistance transparent film, and production method therefor
CN103958729A (en) * 2012-03-13 2014-07-30 三菱综合材料株式会社 Sputtering target, and high-resistance transparent film and method for producing the same
WO2013172007A1 (en) * 2012-05-16 2013-11-21 株式会社豊田自動織機 Current collector for non-aqueous electrolyte secondary cell positive electrode, method for manufacturing same, positive electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
JP2014080312A (en) * 2012-10-15 2014-05-08 Sumitomo Chemical Co Ltd Method for producing zinc oxide-based sintered body and target
CN104416160A (en) * 2013-09-11 2015-03-18 安泰科技股份有限公司 High-density zinc oxide based target and preparation method thereof
CN113652657A (en) * 2021-08-25 2021-11-16 有研亿金新材料有限公司 Aluminum-scandium alloy target material and manufacturing method adopting atmospheric high-temperature diffusion sintering molding
CN113652657B (en) * 2021-08-25 2023-10-10 有研亿金新材料有限公司 Aluminum scandium alloy target material and manufacturing method adopting atmospheric high-temperature diffusion sintering molding
CN116751048A (en) * 2023-06-05 2023-09-15 洛阳晶联光电材料有限责任公司 Gallium-aluminum doped zinc oxide target material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2009235541A (en) Method for producing zinc oxide based sintered target
JP5884549B2 (en) Transparent oxide film and method for producing the same
CN104416160B (en) High-density zinc oxide based target and preparation method thereof
CN101775578B (en) ZnAl target preparation method and prepared ZnAl target
JP5993703B2 (en) Method for producing zinc oxide powder
CN103741094A (en) Preparation method of graphene composite conductive oxide target and transparent conductive film thereof
TWI594970B (en) ITO sputtering target and manufacturing method thereof, and manufacturing method of ITO transparent conductive film and ITO transparent conductive film
JP2007238375A (en) ZnO-Al2O3-BASED SINTERED COMPACT, SPUTTERING TARGET AND METHOD OF FORMING TRANSPARENT CONDUCTIVE FILM
JP2011184715A (en) Zinc oxide based transparent conductive film forming material, method for producing the same, target using the same, and method for forming zinc oxide based transparent conductive film
CN103993288B (en) A kind of preparation method of electrically conducting transparent FTO/Ag/FTO laminated film
CN102826856B (en) High-purity low-density ITO target material and preparation method thereof
JP2013173658A (en) Tin oxide-based sintered body and method for manufacturing the same
CN101885609B (en) Method for preparing zinc oxide-based ceramic sputtering target material at intermediate temperature
CN104073771A (en) Method for preparing sodium-doped molybdenum sputtering target material
JP5167575B2 (en) Oxide sintered body, sputtering target, and transparent conductive film
CN102134704A (en) Preparation method of multilayer transparent conductive film, film prepared thereby, and application thereof
JP5993700B2 (en) Method for producing zinc oxide-based sintered body
JP2012092438A (en) Mo-based sputtering target and method of manufacturing the same, and cigs-based thin-film solar cell using the same
CN101187006A (en) Double target co-sputtering method for preparing Zr doped ITO film
JP2010084177A (en) Zinc oxide-based sintered target and method for producing the same
JP2017193755A (en) Method of manufacturing transparent conductive film, and transparent conductive film
CN108517500A (en) A kind of preparation method of ST/Ag/ST structures multi-layer transparent electroconductive film
JP2010269984A (en) METHOD FOR MANUFACTURING ZnO-BASED SINTERED COMPACT CONTAINING BORON
JP6027844B2 (en) Method for producing zinc oxide-based sintered body
CN102650034A (en) Preparation method of multilayer transparent conductive thin film as well as prepared thin film and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121102