JP5876766B2 - Nonaqueous electrolyte secondary battery separator and battery - Google Patents

Nonaqueous electrolyte secondary battery separator and battery Download PDF

Info

Publication number
JP5876766B2
JP5876766B2 JP2012104271A JP2012104271A JP5876766B2 JP 5876766 B2 JP5876766 B2 JP 5876766B2 JP 2012104271 A JP2012104271 A JP 2012104271A JP 2012104271 A JP2012104271 A JP 2012104271A JP 5876766 B2 JP5876766 B2 JP 5876766B2
Authority
JP
Japan
Prior art keywords
separator
glass fiber
battery
magnesium oxide
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012104271A
Other languages
Japanese (ja)
Other versions
JP2013232357A (en
Inventor
正宏 津田
正宏 津田
猪野 寿一
寿一 猪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2012104271A priority Critical patent/JP5876766B2/en
Publication of JP2013232357A publication Critical patent/JP2013232357A/en
Application granted granted Critical
Publication of JP5876766B2 publication Critical patent/JP5876766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

本発明は電池の高温保存特性を改善し、汎用されている樹脂製セパレータ材を用いた電池の高温保存特性と同程度まで向上させることができる非水電解液二次電池用セパレータとそれを用いた電池に関する。   INDUSTRIAL APPLICABILITY The present invention improves the high-temperature storage characteristics of the battery, and can be improved to the same level as the high-temperature storage characteristics of the battery using a widely used resin separator material. Related to the battery.

従来から、非水電解液二次電池の各種の特性を向上させるために色々な試みがされてきている。
耐熱性を付与するために、例えば、特許文献1にガラス繊維からなる耐熱セパレータが開示されているが、電池の高温保存特性において樹脂製のセパレータと比べて劣るという問題がある。これは、高温保存時に電解液が熱分解してフッ酸(HF)が発生し、セパレータを構成するガラス繊維と化学反応を起こすためである。
レート特性及びサイクル特性を向上させるために、例えば、特許文献2に、マグネシア(MgO)をポリプロピレンに混合してセパレータとすることが提案されているが、マグネシア表面がポリプロピレン材で被覆されるため、フッ酸を捕捉する効率が低下するという問題があった。これを解消するために、セパレータ表面にMgO又はZrOを添加することが特許文献3において提案されている。特許文献3では、予め形成された微細な孔を有する多孔質の薄膜等の表面に、無機粒子を適量振りかけた後、前記薄膜を形成する樹脂が軟化する程度の適度な温度でプレス加工することにより無機微粒子を圧着することが開示されている。
しかしながら、特許文献3において、セパレータに含まれる無機粒子は0.1〜99質量%の範囲とされているだけで、無機粒子について他に示唆する記載はない。
Conventionally, various attempts have been made to improve various characteristics of the nonaqueous electrolyte secondary battery.
In order to impart heat resistance, for example, Patent Document 1 discloses a heat-resistant separator made of glass fiber, but has a problem that it is inferior to a resin separator in high-temperature storage characteristics of a battery. This is because the electrolytic solution is thermally decomposed during high temperature storage to generate hydrofluoric acid (HF) and cause a chemical reaction with the glass fibers constituting the separator.
In order to improve rate characteristics and cycle characteristics, for example, Patent Document 2 proposes to mix magnesia (MgO) with polypropylene to form a separator, but because the magnesia surface is coated with a polypropylene material, There was a problem that the efficiency of capturing hydrofluoric acid was lowered. In order to solve this problem, Patent Document 3 proposes to add MgO or ZrO 2 to the separator surface. In Patent Document 3, an appropriate amount of inorganic particles is sprinkled on the surface of a porous thin film having fine pores formed in advance, and then pressed at an appropriate temperature such that the resin forming the thin film is softened. Is disclosed for pressure bonding inorganic fine particles.
However, in patent document 3, the inorganic particle contained in a separator is only made into the range of 0.1-99 mass%, and there is no description which suggests other about an inorganic particle.

特開2001−148242号公報JP 2001-148242 A 特開2011−210413号公報JP 2011-210413 A 特開2009−146822号公報JP 2009-146822 A

本発明は、このような従来の問題点に着目してなされたもので、ガラス繊維製セパレータを用いた電池の高温保存特性を改善し、汎用されている樹脂製セパレータ材を用いた電池の高温保存特性と同程度まで向上させることを目的とする。   The present invention has been made paying attention to such conventional problems, and improves the high-temperature storage characteristics of a battery using a glass fiber separator, and the high temperature of a battery using a widely used resin separator material. The purpose is to improve the storage characteristics to the same extent.

本発明者等は鋭意検討の結果、下記の解決手段を見出した。
即ち、本発明の非水電解液二次電池用セパレータの第1の解決手段は、ガラス繊維から構成されるセパレータに、添加物としてMgOを添加した非水電解液二次電池用セパレータであって、前記添加物はBET法による比表面積(m/g)が17.40〜176.00であり、前記ガラス繊維全体に対する添加重量割合(wt%)が1.96〜86.67であり、前記比表面積と前記添加重量割合との積が4000[(m/g)・(wt%)]以上となるように添加されたものであることを特徴とする。
また、本発明の電池の第1の解決手段は、電池のセパレータとして、前記第1の解決手段における非水電解液二次電池用セパレータを用いることを特徴とする。
As a result of intensive studies, the present inventors have found the following solution.
That is, the first solution of the non-aqueous electrolyte secondary battery separator of the present invention is a non-aqueous electrolyte secondary battery separator in which MgO is added as an additive to a separator made of glass fiber. The additive has a specific surface area (m 2 / g) according to the BET method of 17.40 to 176.00, and an added weight ratio (wt%) based on the whole glass fiber of 1.96 to 86.67. The product of the specific surface area and the weight ratio is 4000 [(m 2 / g) · (wt%)] or more.
Moreover, the 1st solution means of the battery of this invention uses the separator for nonaqueous electrolyte secondary batteries in the said 1st solution means as a battery separator.

本発明によれば、添加したマグネシア(MgO)が効率よくフッ酸を捕捉するため、ガラス繊維製セパレータを用いた電池の高温保存特性を改善し、汎用されている樹脂製セパレータ材を用いた電池の高温保存特性と同程度まで向上させることができる。 According to the present invention, since the added magnesia (MgO) efficiently captures hydrofluoric acid, the high-temperature storage characteristics of the battery using the glass fiber separator are improved, and the battery using the widely used resin separator material Can be improved to the same extent as the high-temperature storage characteristics.

本発明の非水電解液二次電池用セパレータは、ガラス繊維からなるセパレータにマグネシア(MgO)を添加して非水電解液二次電池用セパレータとするものである。
これにより、添加した材料がフッ酸を捕捉するため、ガラス繊維からなる耐熱セパレータ材を用いた電池の高温保存特性を改善できる。
The separator for non-aqueous electrolyte secondary batteries of the present invention is a separator for non-aqueous electrolyte secondary batteries by adding magnesia (MgO) to a separator made of glass fiber.
Thereby, since the added material capture | acquires hydrofluoric acid, the high temperature storage characteristic of the battery using the heat-resistant separator material which consists of glass fibers can be improved.

また、添加物として、マグネシア(MgO)をガラス繊維からなるセパレータに添加するにあたり、マグネシア(MgO)のBET法による比表面積(m/g)と、これら添加物のガラス繊維の総重量に対する添加重量割合(wt%)との積が4000[(m/g)・(wt%)]以上となるように添加する。前記積が、好ましくは6000[(m/g)・(wt%)]以上となるように添加する。
前記添加重量割合(wt%)は、ガラス繊維重量と添加物重量の和に対する添加物の重量比率を表し、BET法による比表面積(m/g)と添加重量割合(wt%)との積はガラス繊維の単位重量当たりの添加物の表面積を意味する。即ち、電解液中に存在するガラス繊維の単位重量当たり、添加物がどれだけ効果を有するかを意味する。
このようにすることにより、発生したフッ酸を効率よく捕捉し、フッ酸のガラス基材への影響を軽減することができる。その結果、ガラス繊維からなる耐熱セパレータ材を用いた電池の高温保存特性を改善できる。
尚、前記セパレータの作成においてSBRバインダー樹脂を添加すれば、フッ酸の捕捉に影響を与えることなくセパレータの強度を高めることができる。
本発明の電池は電池のセパレータとして、前記本発明の非水電解液二次電池用セパレータを用いるものである。
In addition, when adding magnesia (MgO) to the separator made of glass fiber as an additive, the specific surface area (m 2 / g) of the magnesia (MgO) by the BET method and addition of these additives to the total weight of the glass fiber It adds so that the product with a weight ratio (wt%) may become 4000 [(m < 2 > / g) * (wt%)] or more . It is added so that the product is preferably 6000 [(m 2 / g) · (wt%)] or more.
The additive weight ratio (wt%) represents the weight ratio of the additive to the sum of the glass fiber weight and the additive weight, and is the product of the specific surface area (m 2 / g) and the additive weight ratio (wt%) by the BET method. Means the surface area of the additive per unit weight of glass fiber. That is, it means how effective the additive is per unit weight of the glass fiber present in the electrolytic solution.
By doing in this way, the generated hydrofluoric acid can be captured efficiently and the influence of hydrofluoric acid on the glass substrate can be reduced. As a result, it is possible to improve the high-temperature storage characteristics of the battery using the heat-resistant separator made of glass fiber.
If an SBR binder resin is added in the production of the separator, the strength of the separator can be increased without affecting the capture of hydrofluoric acid.
The battery of the present invention uses the non-aqueous electrolyte secondary battery separator of the present invention as a battery separator.

実験例Experimental example

参考例1
平均直径0.7μm、平均長さ約3mmのガラス短繊維を水中で解きほぐし、硫酸でpH2.5に調製した水溶液中で充分に解離、分散させ、ガラス繊維スラリーを作製した。このスラリーを原料として、湿式抄紙装置を用いて、ガラス繊維不織布を得た。得られたガラス繊維不織布は、厚みが50μmであり、目付量は10g/mであった。また添加物として酸化マグネシウム粉末(株式会社高純度化学研究所、MGO11PB 平均粒径3.6μm、BET法による比表面積18.20m/g)を攪拌機を用いて水に分散し、10wt%のスラリーを作製した。ガラス繊維不織布をこの酸化マグネシウムスラリー(10wt%)に1回ディッピングした。この後120℃で2時間乾燥させ、ディッピング〜乾燥までの操作を4回繰り返してセパレータを作製した。得られたセパレータを120℃で12時間乾燥後に重量測定した所、セパレータに担持された酸化マグネシウムは86.67wt%であった。
[ Reference Example 1 ]
Glass short fibers having an average diameter of 0.7 μm and an average length of about 3 mm were thawed in water and sufficiently dissociated and dispersed in an aqueous solution adjusted to pH 2.5 with sulfuric acid to prepare a glass fiber slurry. Using this slurry as a raw material, a glass fiber nonwoven fabric was obtained using a wet papermaking machine. The obtained glass fiber nonwoven fabric had a thickness of 50 μm and a basis weight of 10 g / m 2 . As an additive, magnesium oxide powder (High Purity Chemical Laboratory Co., Ltd., MGO11PB average particle size 3.6 μm, specific surface area 18.20 m 2 / g by BET method) is dispersed in water using a stirrer, and a 10 wt% slurry. Was made. The glass fiber nonwoven fabric was dipped once in this magnesium oxide slurry (10 wt%). Then, it was dried at 120 ° C. for 2 hours, and the operation from dipping to drying was repeated 4 times to produce a separator. When the obtained separator was dried at 120 ° C. for 12 hours and weighed, the magnesium oxide supported on the separator was 86.67 wt%.

参考例2
参考例1と同様にして厚み50μm、目付量10g/mのガラス繊維不織布を得た。添加物として酸化マグネシウム粉末(宇部マテリアルズ株式会社、UCM−150 平均粒径3.3μm、BET法による比表面積176.00m/g)を攪拌機を用いて水に分散し、1wt%のスラリーを作製した。ガラス繊維不織布をこの酸化マグネシウムスラリー(1wt%)に1回ディッピングした。得られたセパレータを120℃で12時間乾燥後に重量測定した所、セパレータに担持された酸化マグネシウムは1.96wt%であった。
[ Reference Example 2 ]
In the same manner as in Reference Example 1 , a glass fiber nonwoven fabric having a thickness of 50 μm and a basis weight of 10 g / m 2 was obtained. As an additive, magnesium oxide powder (Ube Materials Co., Ltd., UCM-150 average particle size 3.3 μm, specific surface area 176.00 m 2 / g by BET method) is dispersed in water using a stirrer, and 1 wt% slurry is dispersed. Produced. The glass fiber nonwoven fabric was dipped once in this magnesium oxide slurry (1 wt%). When the obtained separator was dried at 120 ° C. for 12 hours and then weighed, the magnesium oxide supported on the separator was 1.96 wt%.

参考例3
参考例2において、酸化マグネシウムスラリーのディッピングと乾燥を2回繰り返し、セパレータを作製した。得られたセパレータを120℃で12時間乾燥後に重量測定した所、セパレータに担持された酸化マグネシウムは4.76wt%であった。
[ Reference Example 3 ]
In Reference Example 2 , dipping and drying of the magnesium oxide slurry were repeated twice to produce a separator. When the obtained separator was dried at 120 ° C. for 12 hours and weighed, the magnesium oxide supported on the separator was 4.76 wt%.

[実施例4]
参考例1と同様にして厚み50μm、目付量10g/mのガラス繊維不織布を得た。添加物として酸化マグネシウム粉末(宇部マテリアルズ株式会社、UCM−150 平均粒径3.3μm、BET法による比表面積176.00m/g)を攪拌機を用いて水に分散し、10wt%のスラリーを作製した。ガラス繊維不織布をSBRバインダー樹脂(日本ゼオン株式会社、BM−400B,以後同じ)の水溶液(SBR濃度3wt%)にディッピングした後、さらにガラス繊維不織布をこの酸化マグネシウムスラリーに1回ディッピングした後、120℃で2時間乾燥させ、セパレータを作製した。得られたセパレータを120℃で12時間乾燥後に重量測定した所、セパレータに担持された酸化マグネシウムは23.08wt%であった。
[Example 4]
In the same manner as in Reference Example 1 , a glass fiber nonwoven fabric having a thickness of 50 μm and a basis weight of 10 g / m 2 was obtained. As an additive, magnesium oxide powder (Ube Materials Co., Ltd., UCM-150 average particle size 3.3 μm, specific surface area 176.00 m 2 / g by BET method) is dispersed in water using a stirrer, and a 10 wt% slurry is prepared. Produced. After dipping the glass fiber nonwoven fabric in an aqueous solution (SBR concentration 3 wt%) of SBR binder resin (Nippon ZEON Co., Ltd., BM-400B, the same applies hereinafter), dipping the glass fiber nonwoven fabric once in this magnesium oxide slurry, 120 The separator was dried at 2 ° C. for 2 hours. When the obtained separator was dried at 120 ° C. for 12 hours and weighed, magnesium oxide supported on the separator was 23.08 wt%.

[実施例5]
参考例2において、ガラス繊維不織布をSBRバインダー樹脂の水溶液(SBR濃度3wt%)にディッピングした後、さらに酸化マグネシウムスラリーのディッピングと乾燥を2回繰り返し、セパレータを作製した。得られたセパレータを120℃で12時間乾燥後に重量測定した所、セパレータに担持された酸化ジルコニウムは37.50wt%であった。
[Example 5]
In Reference Example 2 , the glass fiber nonwoven fabric was dipped into an aqueous solution of SBR binder resin (SBR concentration: 3 wt%), and then dipping and drying of the magnesium oxide slurry were repeated twice to produce a separator. When the obtained separator was dried at 120 ° C. for 12 hours and weighed, the zirconium oxide supported on the separator was 37.50 wt%.

[実施例6]
参考例2において、ガラス繊維不織布をSBRバインダー樹脂の水溶液(SBR濃度3wt%)にディッピングした後、さらに酸化マグネシウムスラリーのディッピングと乾燥を3回繰り返し、セパレータを作製した。得られたセパレータを120℃で12時間乾燥後に重量測定した所、セパレータに担持された酸化ジルコニウムは57.45wt%であった。
[Example 6]
In Reference Example 2 , the glass fiber nonwoven fabric was dipped into an aqueous solution of SBR binder resin (SBR concentration: 3 wt%), and then dipping and drying of the magnesium oxide slurry were repeated three times to produce a separator. The obtained separator was dried at 120 ° C. for 12 hours and weighed. As a result, the zirconium oxide supported on the separator was 57.45 wt%.

[実施例7]
参考例2において、ガラス繊維不織布をSBRバインダー樹脂の水溶液(SBR濃度3wt%)にディッピングした後、さらに酸化マグネシウムスラリーのディッピングと乾燥を4回繰り返し、セパレータを作製した。得られたセパレータを120℃で12時間乾燥後に重量測定した所、セパレータに担持された酸化ジルコニウムは75.00wt%であった。
[Example 7]
In Reference Example 2 , the glass fiber nonwoven fabric was dipped into an aqueous solution of SBR binder resin (SBR concentration: 3 wt%), and then dipping and drying of the magnesium oxide slurry were repeated four times to produce a separator. When the obtained separator was dried at 120 ° C. for 12 hours and weighed, the zirconium oxide supported on the separator was 75.00 wt%.

参考例8
参考例1と同様にして厚み50μm、目付量10g/mのガラス繊維不織布を得た。添加物として酸化ジルコニウム粉末(株式会社高純度化学研究所、ZR002PA、平均粒径1.0μm、比表面積17.40m/g)を攪拌機を用いて水に分散し、10wt%のスラリーを作製した。ガラス繊維不織布を酸化ジルコニウムスラリー(10wt%)に1回ディッピングした。得られたセパレータを120℃で12時間乾燥後に重量測定した所、セパレータに担持された酸化マグネシウムは20.00wt%であった。
[ Reference Example 8 ]
In the same manner as in Reference Example 1 , a glass fiber nonwoven fabric having a thickness of 50 μm and a basis weight of 10 g / m 2 was obtained. Zirconium oxide powder (High Purity Chemical Laboratory Co., Ltd., ZR002PA, average particle size 1.0 μm, specific surface area 17.40 m 2 / g) was dispersed in water using an agitator as an additive to prepare a 10 wt% slurry. . The glass fiber nonwoven fabric was dipped once in a zirconium oxide slurry (10 wt%). When the obtained separator was dried at 120 ° C. for 12 hours and weighed, the magnesium oxide supported on the separator was 20.00 wt%.

参考例9
参考例8において、ガラス繊維不織布をSBRバインダー樹脂の水溶液(SBR濃度3wt%)にディッピングした後、さらに酸化ジルコニウムスラリー(10wt%)に2回ディッピングした。得られたセパレータを120℃で12時間乾燥後に重量測定した所、セパレータに担持された酸化ジルコニウムは33.33wt%であった。
[ Reference Example 9 ]
In Reference Example 8 , the glass fiber nonwoven fabric was dipped in an aqueous solution of SBR binder resin (SBR concentration: 3 wt%), and then dipped twice in a zirconium oxide slurry (10 wt%). When the obtained separator was dried at 120 ° C. for 12 hours and weighed, the zirconium oxide supported on the separator was 33.33 wt%.

参考例10
参考例8において、ガラス繊維不織布をSBRバインダー樹脂の水溶液(SBR濃度3wt%)にディッピングした後、さらに酸化ジルコニウムスラリー(10wt%)に3回ディッピングした。得られたセパレータを120℃で12時間乾燥後に重量測定した所、セパレータに担持された酸化ジルコニウムは50.00wt%であった。
[ Reference Example 10 ]
In Reference Example 8 , the glass fiber nonwoven fabric was dipped in an aqueous solution of SBR binder resin (SBR concentration: 3 wt%), and then dipped in a zirconium oxide slurry (10 wt%) three times. When the obtained separator was dried at 120 ° C. for 12 hours and then weighed, zirconium oxide supported on the separator was 50.00 wt%.

参考例11
参考例8において、ガラス繊維不織布をSBRバインダー樹脂の水溶液(SBR濃度3wt%)にディッピングした後、さらに酸化ジルコニウムスラリー(10wt%)に4回ディッピングした。得られたセパレータを120℃で12時間乾燥後に重量測定した所、セパレータに担持された酸化ジルコニウムは60.00wt%であった。
[ Reference Example 11 ]
In Reference Example 8 , the glass fiber nonwoven fabric was dipped in an aqueous solution of SBR binder resin (SBR concentration 3 wt%), and then dipped in a zirconium oxide slurry (10 wt%) four times. When the obtained separator was dried at 120 ° C. for 12 hours and weighed, the zirconium oxide supported on the separator was 60.00 wt%.

[比較例1]
参考例1と同様にして厚み50μm、目付量10g/mのガラス繊維不織布を得た。
ガラス繊維不織布をSBRバインダー樹脂の水溶液(SBR濃度3wt%)にディッピングし、添加物を付与していないセパレータを作製した。
[Comparative Example 1]
In the same manner as in Reference Example 1 , a glass fiber nonwoven fabric having a thickness of 50 μm and a basis weight of 10 g / m 2 was obtained.
The glass fiber nonwoven fabric was dipped in an aqueous solution of SBR binder resin (SBR concentration 3 wt%) to produce a separator to which no additive was applied.

[比較例2]
参考例1と同様にして厚み50μm、目付量10g/mのガラス繊維不織布を得た。添加物として酸化マグネシウム粉末(株式会社高純度化学研究所、MGO11PB 平均粒径3.6μm、BET法による比表面積18.20m/g)を攪拌機を用いて水に分散し、10wt%のスラリーを作製した。ガラス繊維不織布をこの酸化マグネシウムスラリー(10wt%)に1回ディッピングした。得られたセパレータを120℃で12時間乾燥後に重量測定した所、セパレータに担持された酸化マグネシウムは13.04wt%であった。
[Comparative Example 2]
In the same manner as in Reference Example 1 , a glass fiber nonwoven fabric having a thickness of 50 μm and a basis weight of 10 g / m 2 was obtained. As an additive, magnesium oxide powder (High Purity Chemical Laboratory Co., Ltd., MGO11PB average particle size 3.6 μm, specific surface area 18.20 m 2 / g by BET method) is dispersed in water using a stirrer, and a 10 wt% slurry is dispersed. Produced. The glass fiber nonwoven fabric was dipped once in this magnesium oxide slurry (10 wt%). When the obtained separator was dried at 120 ° C. for 12 hours and then weighed, the magnesium oxide supported on the separator was 13.04 wt%.

[比較例3]
参考例1と同様にして厚み50μm、目付量10g/mのガラス繊維不織布を得た。添加物として酸化マグネシウム粉末(宇部マテリアルズ株式会社、UC−95S 平均粒径3.1μm、BET法による比表面積9.10m/g)を攪拌機を用いて水に分散し、10wt%のスラリーを作製した。ガラス繊維不織布をSBRバインダー樹脂の水溶液(SBR濃度3wt%)にディッピングした後、さらにこの酸化マグネシウムスラリー(10wt%)に1回ディッピングした。得られたセパレータを120℃で12時間乾燥後に重量測定した所、セパレータに担持された酸化マグネシウムは13.04wt%であった。
[Comparative Example 3]
In the same manner as in Reference Example 1 , a glass fiber nonwoven fabric having a thickness of 50 μm and a basis weight of 10 g / m 2 was obtained. As an additive, magnesium oxide powder (Ube Materials Co., Ltd., UC-95S average particle size 3.1 μm, specific surface area 9.10 m 2 / g by BET method) is dispersed in water using a stirrer, and 10 wt% slurry is prepared. Produced. The glass fiber nonwoven fabric was dipped in an aqueous solution of SBR binder resin (SBR concentration 3 wt%), and then dipped once in this magnesium oxide slurry (10 wt%). When the obtained separator was dried at 120 ° C. for 12 hours and then weighed, the magnesium oxide supported on the separator was 13.04 wt%.

[比較例4]
参考例1と同様にして厚み50μm、目付量10g/mのガラス繊維不織布を得た。添加物として酸化マグネシウム粉末(宇部マテリアルズ株式会社、UC−95M 平均粒径3.1μm、比表面積9.10m/g)を攪拌機を用いて水に分散し、10wt%のスラリーを作製した。ガラス繊維不織布をSBRバインダー樹脂の水溶液(SBR濃度3wt%)にディッピングした後、さらに酸化マグネシウムスラリー(10wt%)に1回ディッピングした。得られたセパレータを120℃で12時間乾燥後に重量測定した所、セパレータに担持された酸化マグネシウムは16.67wt%であった。
[Comparative Example 4]
In the same manner as in Reference Example 1 , a glass fiber nonwoven fabric having a thickness of 50 μm and a basis weight of 10 g / m 2 was obtained. As an additive, magnesium oxide powder (Ube Materials Co., Ltd., UC-95M average particle diameter 3.1 μm, specific surface area 9.10 m 2 / g) was dispersed in water using a stirrer to prepare a 10 wt% slurry. The glass fiber nonwoven fabric was dipped in an aqueous solution of SBR binder resin (SBR concentration 3 wt%), and then dipped once in a magnesium oxide slurry (10 wt%). When the obtained separator was dried at 120 ° C. for 12 hours and weighed, the magnesium oxide supported on the separator was 16.67 wt%.

[比較例5]
参考例1と同様にして厚み50μm、目付量10g/mのガラス繊維不織布を得た。添加物として酸化マグネシウム粉末(宇部マテリアルズ株式会社、UC−95H 平均粒径3.3μm、比表面積5.66m/g)を攪拌機を用いて水に分散し、10wt%のスラリーを作製した。ガラス繊維不織布をSBRバインダー樹脂の水溶液(SBR濃度3wt%)にディッピングした後、さらに酸化マグネシウムスラリー(10wt%)に2回ディッピングした。得られたセパレータを120℃で12時間乾燥後に重量測定した所、セパレータに担持された酸化マグネシウムは28.57wt%であった。
[Comparative Example 5]
In the same manner as in Reference Example 1 , a glass fiber nonwoven fabric having a thickness of 50 μm and a basis weight of 10 g / m 2 was obtained. As an additive, magnesium oxide powder (Ube Materials Co., Ltd., UC-95H average particle size 3.3 μm, specific surface area 5.66 m 2 / g) was dispersed in water using a stirrer to prepare a 10 wt% slurry. The glass fiber nonwoven fabric was dipped in an aqueous solution of SBR binder resin (SBR concentration 3 wt%), and then dipped twice in a magnesium oxide slurry (10 wt%). When the obtained separator was dried at 120 ° C. for 12 hours and weighed, the magnesium oxide supported on the separator was 28.57 wt%.

[比較例6]
参考例1と同様にして厚み50μm、目付量10g/mのガラス繊維不織布を得た。添加物として酸化マグネシウム粉末(宇部マテリアルズ株式会社、UCM−150 平均粒径3.3μm、比表面積176.00m/g)を攪拌機を用いて水に分散し、1.0wt%のスラリーを作製した。ガラス繊維不織布をSBRバインダー樹脂の水溶液(SBR濃度3wt%)にディッピングした後、さらに酸化マグネシウムスラリー(1.0wt%)に1回ディッピングした。得られたセパレータを120℃で12時間乾燥後に重量測定した所、セパレータに担持された酸化マグネシウムは0.99wt%であった。
[Comparative Example 6]
In the same manner as in Reference Example 1 , a glass fiber nonwoven fabric having a thickness of 50 μm and a basis weight of 10 g / m 2 was obtained. As an additive, magnesium oxide powder (Ube Materials Co., Ltd., UCM-150 average particle size 3.3 μm, specific surface area 176.00 m 2 / g) is dispersed in water using a stirrer to produce a 1.0 wt% slurry. did. The glass fiber nonwoven fabric was dipped in an aqueous solution of SBR binder resin (SBR concentration 3 wt%), and then dipped once in a magnesium oxide slurry (1.0 wt%). When the obtained separator was dried at 120 ° C. for 12 hours and weighed, the magnesium oxide supported on the separator was 0.99 wt%.

[比較例7]
参考例1と同様にして厚み50μm、目付量10g/mのガラス繊維不織布を得た。添加物として酸化ジルコニウム粉末(株式会社高純度化学研究所、ZR002PA、平均粒径1.0μm、比表面積17.40m/g)を攪拌機を用いて水に分散し、10wt%のスラリーを作製した。ガラス繊維不織布をSBRバインダー樹脂の水溶液(SBR濃度3wt%)にディッピングした後、さらに酸化マグネシウムスラリー(10wt%)に1回ディッピングした。得られたセパレータを120℃で12時間乾燥後に重量測定した所、セパレータに担持された酸化マグネシウムは9.09wt%であった。
[Comparative Example 7]
In the same manner as in Reference Example 1 , a glass fiber nonwoven fabric having a thickness of 50 μm and a basis weight of 10 g / m 2 was obtained. Zirconium oxide powder (High Purity Chemical Laboratory Co., Ltd., ZR002PA, average particle size 1.0 μm, specific surface area 17.40 m 2 / g) was dispersed in water using an agitator as an additive to prepare a 10 wt% slurry. . The glass fiber nonwoven fabric was dipped in an aqueous solution of SBR binder resin (SBR concentration 3 wt%), and then dipped once in a magnesium oxide slurry (10 wt%). When the obtained separator was dried at 120 ° C. for 12 hours and weighed, magnesium oxide supported on the separator was 9.09 wt%.

実施例、参考例及び比較例のセパレータを、直径19mm、重量2mgに形成して以下の形式の電池に使用した。
電池形式:CR2032型コイン電池(スペーサ厚み:1.0mm) 宝泉製
正極材:コバルト酸リチウム(理論容量:1.5mAh/cm) 宝泉製
負極材:グラファイト(理論容量:1.6mAh/cm) 宝泉製
電解液組成:1M LiPF/(EC:DEC=1:3vol%)+2wt% VC キシダ化学製
正極径:15mm/セパレータ径:19mm/負極径:16mm/電解液量160μL
作製時の雰囲気:グローブボックス内 アルゴン雰囲気下
そして、上記形式の電池を以下の条件にして充放電を繰り返し行った。
大気下、室温(25℃)で充放電休止時間を10分とし、充電(定電流方式、0.2、0.5C電流レート、4.2V cutoff at room temp.)と放電(定電流方式、0.2、0.5C電流レート、2.8V cutoff at room temp.)とを繰り返した。
そして、満充電(SOC=100%)後、60℃にて5日間保存し、その後の放電容量を測定、容量維持率を以下の式で算出した。
容量維持率(%)=(高温保存後の放電容量)/(保存前の放電容量)×100
The separators of Examples, Reference Examples and Comparative Examples were formed in a diameter of 19 mm and a weight of 2 mg and used for batteries of the following types.
Battery type: CR2032-type coin battery (spacer thickness: 1.0 mm) Hohosen positive electrode material: lithium cobalt oxide (theoretical capacity: 1.5 mAh / cm 2 ) Hosen made negative electrode material: graphite (theoretical capacity: 1.6 mAh / cm 2 ) Hosen made electrolyte composition: 1M LiPF 6 / (EC: DEC = 1: 3 vol%) + 2 wt% manufactured by VC Kishida Chemical Positive electrode diameter: 15 mm / separator diameter: 19 mm / negative electrode diameter: 16 mm / electrolyte amount 160 μL
Atmosphere at the time of production: Inside the glove box Under an argon atmosphere Then, the battery of the above type was repeatedly charged and discharged under the following conditions.
Charging (constant current method, 0.2, 0.5C current rate, 4.2V cutoff at room temp.) And discharging (constant current method, 0.2, 0.5C current rate, 2.8V cutoff at room temp.).
And after full charge (SOC = 100%), it preserve | saved at 60 degreeC for 5 days, the subsequent discharge capacity was measured, and the capacity | capacitance maintenance factor was computed with the following formula | equation.
Capacity retention rate (%) = (discharge capacity after storage at high temperature) / (discharge capacity before storage) × 100

また、電池高温特性の劣化原因を把握するため、電解液中の電解液中のフッ素イオン濃度を評価した。試験方法は、実施例又は比較例のセパレータを電解液に浸漬して60℃で1日保持した後、電解液0.5[mL]にイオン交換水を加えて50[mL]とし、容器ごとよく振り混ぜて電解液を水に溶解させる。そして、この水溶液をイオンクロマトグラフ装置で測定した。   Moreover, in order to grasp the cause of deterioration of the battery high temperature characteristics, the fluorine ion concentration in the electrolytic solution in the electrolytic solution was evaluated. The test method is to immerse the separator of Example or Comparative Example in an electrolytic solution and hold it at 60 ° C. for 1 day, and then add ion exchange water to 0.5 [mL] of the electrolytic solution to make 50 [mL]. Shake well to dissolve the electrolyte in water. And this aqueous solution was measured with the ion chromatograph apparatus.

実施例、参考例及び比較例の結果を以下の表1にまとめる。表1から明らかなように添加物のBET法による比表面積(m/g)と添加重量割合(wt%)との積が、300[(m/g)・(wt%)]以上となる場合、容量維持率は70%以上で良好な特性を得られたが、300[(m/g)・(wt%)]未満では容量維持率が70%未満となり良好な特性を得られなかった。またフッ素イオン濃度においては添加重量割合(wt%)の積が、300[(m/g)・(wt%)]以上となる場合、フッ素イオン濃度が低いが、300[(m/g)・(wt%)]未満ではフッ素イオン濃度が高くなっていることが分かる。また、前記積が4000[(m/g)・(wt%)]以上になると容量維持率が72%以上となり、前記積が6000[(m/g)・(wt%)]以上になるとフッ素イオン濃度が26%未満となることが分かる。
これはマグネシア(MgO)が電解液中のフッ素イオンを捕捉するため、電解液中のフッ素イオンのガラスセパレータへの影響を軽減し、高温保存において良好な特性を示したと考えられる。
The results of Examples, Reference Examples and Comparative Examples are summarized in Table 1 below. As apparent from Table 1, the product of the specific surface area (m 2 / g) of the additive by the BET method and the added weight ratio (wt%) is 300 [(m 2 / g) · (wt%)] or more. In this case, good characteristics can be obtained when the capacity retention ratio is 70% or more. However, if the capacity retention ratio is less than 300 [(m 2 / g) · (wt%)], the capacity retention ratio is less than 70% and good characteristics are obtained. There wasn't. In addition, when the product of the weight ratio (wt%) of the fluorine ion concentration is 300 [(m 2 / g) · (wt%)] or more, the fluorine ion concentration is low, but 300 [(m 2 / g ) · (Wt%)], it can be seen that the fluorine ion concentration is high. Further, when the product is 4000 [(m 2 / g) · (wt%)] or more, the capacity maintenance ratio is 72% or more, and the product is 6000 [(m 2 / g) · (wt%)] or more. Then, it can be seen that the fluorine ion concentration is less than 26%.
This is thought to be because magnesia (MgO) captures fluorine ions in the electrolyte solution, thereby reducing the influence of the fluorine ions in the electrolyte solution on the glass separator and exhibiting good characteristics during high-temperature storage.

Figure 0005876766
Figure 0005876766

Claims (2)

ガラス繊維から構成されるセパレータに、添加物としてMgOを添加した非水電解液二次電池用セパレータであって、前記添加物はBET法による比表面積(m/g)が17.40〜176.00であり、前記ガラス繊維全体に対する添加重量割合(wt%)が1.96〜86.67であり、前記比表面積と前記添加重量割合との積が4000[(m/g)・(wt%)]以上となるように添加されたものであることを特徴とする非水電解液二次電池用セパレータ。 A separator for a non-aqueous electrolyte secondary battery in which MgO is added as an additive to a separator made of glass fiber, and the additive has a specific surface area (m 2 / g) according to the BET method of 17.40 to 176. 0.00, the added weight ratio (wt%) to the entire glass fiber is 1.96 to 86.67, and the product of the specific surface area and the added weight ratio is 4000 [(m 2 / g) · ( wt%)] is added so as to be equal to or greater than the above. A separator for a non-aqueous electrolyte secondary battery. 電池のセパレータとして、前記請求項1記載の非水電解液二次電池用セパレータを用いたことを特徴とする電池。   A battery comprising the non-aqueous electrolyte secondary battery separator according to claim 1 as a battery separator.
JP2012104271A 2012-04-30 2012-04-30 Nonaqueous electrolyte secondary battery separator and battery Active JP5876766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012104271A JP5876766B2 (en) 2012-04-30 2012-04-30 Nonaqueous electrolyte secondary battery separator and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012104271A JP5876766B2 (en) 2012-04-30 2012-04-30 Nonaqueous electrolyte secondary battery separator and battery

Publications (2)

Publication Number Publication Date
JP2013232357A JP2013232357A (en) 2013-11-14
JP5876766B2 true JP5876766B2 (en) 2016-03-02

Family

ID=49678623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012104271A Active JP5876766B2 (en) 2012-04-30 2012-04-30 Nonaqueous electrolyte secondary battery separator and battery

Country Status (1)

Country Link
JP (1) JP5876766B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009579A (en) * 2014-06-24 2016-01-18 三菱製紙株式会社 Separator for lithium ion secondary battery
JP6390917B2 (en) * 2015-11-05 2018-09-19 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
US20190097198A1 (en) * 2016-03-01 2019-03-28 Nippon Sheet Glass Company, Limited Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6186548B1 (en) * 2016-03-01 2017-08-23 日本板硝子株式会社 Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152860A (en) * 1989-11-09 1991-06-28 Matsushita Electric Ind Co Ltd Separator for lead-acid battery
JP4270411B2 (en) * 1998-03-09 2009-06-03 日本板硝子株式会社 Nonaqueous electrolyte battery and separator for nonaqueous electrolyte battery
JP4075866B2 (en) * 2004-06-25 2008-04-16 松下電器産業株式会社 Flat organic electrolyte battery
JP2011210413A (en) * 2010-03-29 2011-10-20 Konica Minolta Holdings Inc Separator for electrochemical element and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2013232357A (en) 2013-11-14

Similar Documents

Publication Publication Date Title
Lai et al. Three-dimension hierarchical Al2O3 nanosheets wrapped LiMn2O4 with enhanced cycling stability as cathode material for lithium ion batteries
JP5266861B2 (en) Method for producing positive electrode active material for lithium secondary battery
KR101494715B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
JP5754855B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5890886B1 (en) Lithium manganese iron phosphate positive electrode active material and method for producing the same
JP6724292B2 (en) Positive electrode active material for non-aqueous secondary battery
KR20160091172A (en) Manufacturing method of positive active material containing reduced residual lithium and positive active material manufactured by the same
KR20160043979A (en) Improved lithium metal oxide rich cathode materials and method to make them
JP2015508559A (en) Silicon-based composite and method for producing the same
JP5820521B1 (en) Positive electrode material for lithium secondary battery and method for producing the same
KR101588652B1 (en) Positive active material, lithium secondary battery having the same and manufacturing method thereof
KR20200053521A (en) Silicon anode material for lithium ion batteries
JP5876766B2 (en) Nonaqueous electrolyte secondary battery separator and battery
JP5953624B2 (en) Method for producing Si / C composite
JP2016033854A (en) Positive electrode active material for nonaqueous electrolyte secondary battery
JP2013030420A (en) Negative electrode material for lithium ion battery containing surface-fluorinated b-type titanium oxide and manufacturing method thereof, and lithium ion battery using the same
JP5890885B1 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP6232931B2 (en) A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
JP6265521B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME
CN106848254B (en) Sodium-ion battery negative electrode material, preparation method thereof and sodium-ion battery
JP6307127B2 (en) Method for producing lithium phosphate positive electrode active material
JP2016184568A (en) Positive electrode active material for secondary battery and manufacturing method of the same
JP5809200B2 (en) Silicon-based negative electrode active material
JP2017004805A (en) Negative electrode material for battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151217

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160122

R150 Certificate of patent or registration of utility model

Ref document number: 5876766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350