JP4075866B2 - Flat organic electrolyte battery - Google Patents

Flat organic electrolyte battery Download PDF

Info

Publication number
JP4075866B2
JP4075866B2 JP2004187732A JP2004187732A JP4075866B2 JP 4075866 B2 JP4075866 B2 JP 4075866B2 JP 2004187732 A JP2004187732 A JP 2004187732A JP 2004187732 A JP2004187732 A JP 2004187732A JP 4075866 B2 JP4075866 B2 JP 4075866B2
Authority
JP
Japan
Prior art keywords
battery
lithium
organic electrolyte
imidazole
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004187732A
Other languages
Japanese (ja)
Other versions
JP2006012587A (en
Inventor
忠義 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004187732A priority Critical patent/JP4075866B2/en
Publication of JP2006012587A publication Critical patent/JP2006012587A/en
Application granted granted Critical
Publication of JP4075866B2 publication Critical patent/JP4075866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

本発明は、高温多湿環境下での使用に耐えることができ、低温放電特性に優れる偏平形の有機電解液電池に関するものである。   The present invention relates to a flat organic electrolyte battery that can withstand use in a high-temperature and high-humidity environment and has excellent low-temperature discharge characteristics.

最近、タイヤ内部の圧力センサーなどのような100℃を超す高温雰囲気と、多湿環境下、および−40℃などの低温雰囲気下などの厳しい環境下で使用する機器の電源として、電池が要望されている。その仕様を満たす候補として、0℃以下の低凝固点と100℃以上の高沸点の有機電解液を用いるリチウム一次電池やリチウム二次電池などの有機電解液電池が有望であり、様々な研究・開発が盛んに行われている。   Recently, a battery has been demanded as a power source for equipment used in severe environments such as a high temperature atmosphere exceeding 100 ° C. such as a pressure sensor inside a tire, a humid environment, and a low temperature atmosphere such as −40 ° C. Yes. Candidates satisfying the specifications are promising organic electrolyte batteries such as lithium primary batteries and lithium secondary batteries that use organic electrolytes with a low freezing point of 0 ° C or lower and a high boiling point of 100 ° C or higher. Has been actively conducted.

有機電解液電池の形状としては、必要な放電容量、大きさ、実装性、コストなどから偏平形(ボタン型、コイン型、扁平角型)が最適である。   As the shape of the organic electrolyte battery, a flat type (button type, coin type, flat rectangular type) is optimal in view of necessary discharge capacity, size, mountability, cost, and the like.

上記の温度範囲での要求特性に対して、従来の電池構成材料のガスケット、セパレータ、電解液などを変更することが特許文献1に開示されている。これによれば、ガスケットには従来使用しているポリプリピレン(PP)は100℃以上の温度では軟化して十分な強度が得られないため、エンジニアリングプラスチックであるポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、テトラフルオロエチレン−パーフルオロアルコキシエチレン共重合体(PFA)などの樹脂は100℃以上の高温雰囲気下でも強度を維持することができるために、最適であるとされており、また、セパレータについても同様に、低融点のポリエチレン(PE)、ポリプリピレン(PP)に変えて、ポリブチレンテレフタレート(PBT)、ポリフェニレンスルフィド(PPS)などを用いることが提案されており、また、電解液には高沸点・低凝固点の溶媒を用いることが提案されている。   Japanese Patent Application Laid-Open No. H10-228707 discloses changing the gasket, separator, electrolytic solution, and the like of conventional battery constituent materials with respect to the required characteristics in the above temperature range. According to this, since the conventionally used polypropylene (PP) is softened at a temperature of 100 ° C. or higher and sufficient strength cannot be obtained, engineering plastics such as polyphenylene sulfide (PPS), polyetheretherketone Resins such as (PEEK) and tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA) are considered optimal because they can maintain strength even in a high temperature atmosphere of 100 ° C. or higher, Similarly, it has been proposed to use polybutylene terephthalate (PBT), polyphenylene sulfide (PPS) or the like instead of low melting point polyethylene (PE) or polypropylene (PP) for the separator. Proposal to use a solvent with high boiling point and low freezing point It has been.

また、特許文献2では、イオン透過性に優れ、高い強度を持ち、薄くかつ絶縁性に優れ、耐熱性にも優れるセパレータ材料として、ガラス繊維からなるものが提案されており、他のセパレータに比べて抵抗成分が小さくなり、様々な条件での放電特性が向上する。
特開平8−321287号公報 特開平10−270088号公報
Patent Document 2 proposes a separator material made of glass fiber as a separator material having excellent ion permeability, high strength, thinness, excellent insulating properties, and excellent heat resistance, compared to other separators. As a result, the resistance component is reduced and the discharge characteristics under various conditions are improved.
JP-A-8-32287 JP-A-10-270088

しかし、高沸点・低凝固点の溶媒を用いた電解液は、総じて粘性が非常に高いので、セパレータへの含浸性が非常に低くく、セパレータ内での抵抗成分が高くなり負荷特性が非常に悪くなる恐れがある。   However, electrolytes using a solvent with a high boiling point and a low freezing point generally have very high viscosity, so the impregnation into the separator is very low, the resistance component in the separator is high, and the load characteristics are very poor. There is a fear.

また、有機電解液に一般的に使用されている溶質である六フッ化燐酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)は水分と容易に反応してフッ酸を形成し、電池構成材料に悪影響する。そのため、電池製造時の厳しい水分監理や電池内部への水分侵入に対して封止性能を向上する取り組みが行われている。しかし、偏平形の有機電解液電池の封止はカシメ封口により行われ、他のレーザ封口やガラスハーメチックシールなどに比べて気密性が劣る。加えて、タイヤ内部の圧力センサーなどのような電源として偏平形電池が高温多湿雰囲気下にさらされると、電池外部からの水分進入を阻止するのは困難な状況にある。 In addition, lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ), which are solutes commonly used in organic electrolytes, easily react with moisture to form hydrofluoric acid, It adversely affects battery components. For this reason, efforts are being made to improve sealing performance against strict moisture monitoring during battery manufacture and moisture intrusion into the battery. However, the flat organic electrolyte battery is sealed with a caulking seal, which is less airtight than other laser seals or glass hermetic seals. In addition, when a flat battery is exposed to a hot and humid atmosphere as a power source such as a pressure sensor inside the tire, it is difficult to prevent moisture from entering from the outside of the battery.

このような状況のもとでは、ガラス繊維からなるセパレータは、ガラス特有の問題として、フッ酸(HF)との急激な反応によりフッ化ガラス(SiF4)となり、セパレータとしての機能が極度に低下してしまう。すなわち、無色透明または白色のガラスセパレータがフッ酸との反応により黒色のフッ化ガラスとなり、セパレータ機能が低下に伴って、放電性能が著しく低下する恐れがある。 Under such circumstances, a separator made of glass fiber becomes a fluoride glass (SiF 4 ) due to a rapid reaction with hydrofluoric acid (HF) as a problem peculiar to glass, and the function as a separator is extremely lowered. Resulting in. That is, the colorless and transparent or white glass separator becomes a black fluoride glass due to the reaction with hydrofluoric acid, and the discharge performance may be remarkably lowered as the separator function is lowered.

本発明は、高温多湿環境下での信頼性の確保と低温雰囲気下での高負荷放電特性に優れる偏平形有機電解液電池を目的とする。   An object of the present invention is to provide a flat organic electrolyte battery that is excellent in ensuring reliability in a high-temperature and high-humidity environment and having high-load discharge characteristics in a low-temperature atmosphere.

上記課題を解決するため、本発明の偏平形有機電解液電池は、有底円筒状に形成された負極缶と有底円筒状に形成された正極缶との間に環状のガスケットを介在させ、前記正極缶の開口部を内側にかしめて正極、負極、セパレータ、及び有機電解液からなる発電要素を密封した偏平形有機電解液電池であって、前記セパレータはガラス繊維を主成分とし、前記有機電解液はリチウムビスパーフルオロメチルスルホニルイミド(LiN(CF 3 SO 2 2 )とイミダゾールを含み、前記イミダゾールの含有量がリチウムビスパーフルオロメチルスルホニルイミド(LiN(CF 3 SO 2 2 )とイミダゾールの総量に対して5〜35mol%であることを特徴とする。 In order to solve the above problems, the flat organic electrolyte battery of the present invention has an annular gasket interposed between a negative electrode can formed into a bottomed cylindrical shape and a positive electrode can formed into a bottomed cylindrical shape, A flat organic electrolyte battery in which a positive electrode, a negative electrode, a separator, and a power generation element composed of an organic electrolyte are sealed by caulking the opening of the positive electrode can, wherein the separator is mainly composed of glass fiber, and the organic The electrolytic solution contains lithium bisperfluoromethylsulfonylimide (LiN (CF 3 SO 2 ) 2 ) and imidazole , and the content of the imidazole is lithium bisperfluoromethylsulfonylimide (LiN (CF 3 SO 2 ) 2 ) and imidazole. It is characterized by being 5-35 mol% with respect to the total amount.

ガラス繊維を主成分とするセパレータと、リチウム塩としてリチウムビスパーフルオロメチルスルホニルイミド(LiN(CF 3 SO 2 2 )を含む有機電解液を用い、イミダゾ
ールを適量含有することで、高温多湿環境下での信頼性と低温雰囲気下での高負荷放電特性に優れた偏平形有機電解液電池を提供することができる。
Using an organic electrolytic solution containing a separator mainly composed of glass fiber and lithium bisperfluoromethylsulfonylimide (LiN (CF 3 SO 2 ) 2 ) as a lithium salt , imidazo
By containing an appropriate amount of the steel, it is possible to provide a flat organic electrolyte battery excellent in reliability under a high-temperature and high-humidity environment and high load discharge characteristics under a low-temperature atmosphere.

以下、本発明の好ましい実施形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

本発明は、有底円筒状に形成された負極缶と有底円筒状に形成された正極缶との間に環状のガスケットを介在させ、前記正極缶の開口部を内側にかしめて正極、負極、セパレータ、及び有機電解液からなる発電要素を密封した偏平形有機電解液電池であって、前記セパレータはガラス繊維を主成分とし、前記有機電解液はリチウムビスパーフルオロメチルスルホニルイミド(LiN(CF 3 SO 2 2 )とイミダゾールを含み、イミダゾールの含有量は、リチウムビスパーフルオロメチルスルホニルイミド(LiN(CF 3 SO 2 2 )とイミダゾールの総量に対して5〜35mol%であることを特徴とする。 In the present invention, an annular gasket is interposed between a negative electrode can formed in a bottomed cylindrical shape and a positive electrode can formed in a bottomed cylindrical shape, and an opening of the positive electrode can is caulked inward to form a positive electrode and a negative electrode , A separator, and a flat organic electrolyte battery in which a power generation element composed of an organic electrolyte is sealed, wherein the separator is mainly composed of glass fiber, and the organic electrolyte is lithium bisperfluoromethylsulfonylimide (LiN (CF 3 SO 2 ) 2 ) and imidazole , and the content of imidazole is 5 to 35 mol% with respect to the total amount of lithium bisperfluoromethylsulfonylimide (LiN (CF 3 SO 2 ) 2 ) and imidazole. And

偏平形有機電解液電池において、ガラス繊維を主成分とするセパレータと、イミダゾールと、LiN(CF 3 SO 2 2 を組み合わせることにより、高温多湿環境下でも、ガラスセパレータの劣化反応が抑制され、優れた信頼性と放電性能を確保することが可能となる。 In a flat organic electrolyte battery, by combining a separator mainly composed of glass fibers, imidazole, and LiN (CF 3 SO 2 ) 2 , the degradation reaction of the glass separator is suppressed even in a high temperature and high humidity environment. It is possible to ensure excellent reliability and discharge performance.

詳細な機構については定かではないが、ガラス繊維のSiO2表面にイミダゾールが化学的な親和性によって吸着しており(ガラス繊維の酸素とイミダゾールのNH基の水素との水素結合)、また、LiN(CF 3 SO 2 2 イミダゾールがイオン性液体に近いような生成物を形成してガラス繊維を主成分とするセパレータの近傍への水分の移動を抑制することと、フッ酸の生成を抑制している、もしくは生成したフッ酸をイミダゾールがトラップして反応を阻害していると思われる。 Although the detailed mechanism is not clear, imidazole is adsorbed on the SiO 2 surface of the glass fiber due to chemical affinity (hydrogen bond between oxygen of the glass fiber and hydrogen of NH group of imidazole), and LiN (CF 3 SO 2 ) 2 and imidazole form a product that is close to an ionic liquid to suppress the movement of moisture to the vicinity of the separator mainly composed of glass fiber, and to suppress the generation of hydrofluoric acid It seems that imidazole traps the hydrofluoric acid produced or produced to inhibit the reaction.

リチウム塩としてLiN(CF 3 SO 2 2 含有する有機電解液に、イミダゾールを添加すると液の色が透明から薄いピンク色に変化し、何らかの反応または錯イオン形成などをしているのは明らかである。詳細については不明である。 The organic electrolyte containing LiN (CF 3 SO 2) 2 as a lithium salt, the clear color of the liquid upon addition of imidazole was changed to pale pink transparent, and the like any reaction or complex ions formed It is. Details are unknown.

また、スルホン基とイミド結合を有するアニオンであるN(CF3SO22 -などからなるイオン性液体は一般的に疎水性を示すことから、上記のイミダゾールとLiN(CF 3 SO 2 2 関係する生成物も同様な疎水性を発現するものと推察される。 In addition, an ionic liquid composed of N (CF 3 SO 2 ) 2 or the like, which is an anion having a sulfone group and an imide bond, generally exhibits hydrophobicity. Therefore, the above imidazole and LiN (CF 3 SO 2 ) 2 the product associated with is also inferred that express similar hydrophobicity.

ガラス繊維を主成分とするセパレータに上記の両方を組み合わせない場合には、高温多湿環境でセパレータは酷く劣化することから、ガラス繊維を主成分とするセパレータと、イミダゾールと、LiN(CF 3 SO 2 23つの組合せが非常に重要である。 When both of the above are not combined with a separator mainly composed of glass fiber, the separator deteriorates severely in a high-temperature and high-humidity environment. Therefore, a separator mainly composed of glass fiber, imidazole, LiN (CF 3 SO 2 2 ) The combination of 3 is very important.

イミダゾールの電池内部への添加方法としては、電解液または正極・負極への添加があり、より効果的なのが電解液への添加である。添加したイミダゾールは、電解液に溶解することによって電解液、正極、負極、セパレータの発電要素の任意の部位に拡散して存在する。   As a method for adding imidazole to the inside of the battery, there is an addition to the electrolytic solution or the positive electrode / negative electrode, and the more effective addition is to the electrolytic solution. The added imidazole is diffused and present in any part of the power generation element of the electrolytic solution, the positive electrode, the negative electrode, and the separator by dissolving in the electrolytic solution.

イミダゾールの添加量は、LiN(CF 3 SO 2 2 イミダゾールの総量に対して5mol%未満になると相互作用の効果が薄れて、高温多湿環境下でのガラスセパレータの劣化が起こりやすくなる。また、35mol%を超えると電解液のリチウムイオンの導電率が小さくなるため、放電性能が低下してしまう。 When the amount of imidazole added is less than 5 mol% with respect to the total amount of LiN (CF 3 SO 2 ) 2 and imidazole, the effect of the interaction is weakened, and the glass separator is likely to be deteriorated in a high-temperature and high-humidity environment. On the other hand, if it exceeds 35 mol%, the lithium ion conductivity of the electrolytic solution is reduced, and the discharge performance is degraded.

リチウムビスパーフルオロメチルスルホニルイミド(LiN(CF3SO22
、フッ素を含有するLiPF6、LiBF4塩に比べて水分に対して反応性が低く、耐熱性についても優れている。リチウムビスパーフルオロメチルスルホニルイミド(LiN(CF 3 SO 2 2 )の濃度としては0.75〜1.5mol/lが好ましい。
Lithium bisperfluoromethylsulfonylimide (LiN (CF 3 SO 2 ) 2 ) is less reactive to moisture and excellent in heat resistance than LiPF 6 and LiBF 4 salts containing fluorine. The concentration of lithium bisperfluoromethylsulfonylimide (LiN (CF 3 SO 2 ) 2 ) is preferably 0.75 to 1.5 mol / l .

電解液を構成する有機溶媒としてはγ−ブチロラクトン、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、スルホラン、3−メチルスルホラン、テトラグライムなどの高沸点・高粘度溶媒の単独または混合系と、さらにモノグライム、ジグライム、トリグライムなどのグライム類、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどの鎖状炭酸エステルなどの低粘度溶媒を混合したものなどが好ましい。   The organic solvent constituting the electrolyte includes γ-butyrolactone, ethylene carbonate, propylene carbonate, butylene carbonate, sulfolane, 3-methylsulfolane, tetraglyme and other high-boiling / high-viscosity solvents, or monoglyme and diglyme. A mixture of a low-viscosity solvent such as glymes such as triglyme and a chain carbonate such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate is preferred.

ガラス繊維を主体とするセパレータの目付け重量としては60〜80g/m2で、厚みとしては0.3mm以上が一般的である。放電特性を向上するためには低目付け重量として厚みを薄することが必要となる。ガラス繊維単体では目付け重量が60g/m2以下にすると強度低下し、電池内部での正負極の膨張収縮に伴う応力変化に対応できずに内部短絡する危険性がある。ガラス繊維を主体にバインダーとしてアクリロニトリル重合体のアクリル繊維、ポリメタクリル酸メチル、ポリアクリル酸などを3〜25重量%配合することでセパレータに十分な強度が確保でき、目付け重量30〜50g/m2で、厚みとしては0.1〜0.2mmのものを用いることができる。 The weight of the separator mainly composed of glass fibers is generally 60 to 80 g / m 2 and the thickness is generally 0.3 mm or more. In order to improve the discharge characteristics, it is necessary to reduce the thickness as a low weight per unit area. If the weight per unit weight of glass fiber is 60 g / m 2 or less, the strength decreases, and there is a risk of internal short circuit without being able to cope with the stress change accompanying the expansion and contraction of the positive and negative electrodes inside the battery. By blending 3 to 25% by weight of acrylic fiber of polyacrylonitrile polymer, polymethyl methacrylate, polyacrylic acid, etc. with glass fiber as the main binder, sufficient strength can be secured in the separator, and the basis weight is 30 to 50 g / m 2. Thus, a thickness of 0.1 to 0.2 mm can be used.

正極材料としては弗化黒鉛、酸化銅、硫化銅、硫化鉄、二酸化マンガンなどの一次電池用の活物質、五酸化バナジウム、二硫化チタン、五酸化ニオブ、三酸化モリブデン、オキシ水酸化鉄、オキシ水酸化ニッケル、リチウムマンガン複合酸化物などの3V級の二次電
池用活物質、また、リチウムを含有するコバルト酸リチウム、ニッケル酸リチウム、スピネル型のマンガン酸リチウムなどの4V級二次電池用活物質が挙げられる。
The positive electrode materials include active materials for primary batteries such as graphite fluoride, copper oxide, copper sulfide, iron sulfide, manganese dioxide, vanadium pentoxide, titanium disulfide, niobium pentoxide, molybdenum trioxide, iron oxyhydroxide, oxy Active materials for 3V class secondary batteries such as nickel hydroxide and lithium manganese composite oxide, and actives for 4V class secondary batteries such as lithium cobaltate, lithium nickelate and spinel type lithium manganate containing lithium Substances.

負極材料としては金属リチウム、Si−Li、Sn−Li、Ge−Li、Al−Liなどのリチウム合金、黒鉛、難黒鉛性炭素などの炭素系材料、一酸化ケイ素、一酸化スズ、一酸化コバルトなどを主体とするリチウムに対して1V未満で反応する酸化物、スピネル型のリチウムチタン酸化物、五酸化ニオブ、二酸化タングステンなどのリチウムに対して1V以上で反応する酸化物が挙げられる。   Negative electrode materials include lithium alloys such as metallic lithium, Si-Li, Sn-Li, Ge-Li, and Al-Li, carbon-based materials such as graphite and non-graphitizable carbon, silicon monoxide, tin monoxide, and cobalt monoxide. Examples thereof include oxides that react at less than 1 V with lithium mainly composed of, and the like, oxides that react with lithium at 1 V or more, such as spinel lithium titanium oxide, niobium pentoxide, and tungsten dioxide.

正極と負極については様々な組合せが可能であり、一次電池、二次電池ともに本発明を用いることが可能である。   Various combinations of the positive electrode and the negative electrode are possible, and the present invention can be used for both primary batteries and secondary batteries.

ガスケットは、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、テトラフルオロエチレン・パーフルオロアルコキシエチレン共重合体(PFA)などの樹脂が好ましく、さらに強度を向上させる目的で前記樹脂に充填材としてガラスや、チタン酸カルシウムなどの無機繊維などを用いたものも好ましい。   The gasket is preferably a resin such as polyphenylene sulfide (PPS), polyether ether ketone (PEEK), tetrafluoroethylene / perfluoroalkoxyethylene copolymer (PFA), and the resin is used as a filler for the purpose of further improving the strength. Those using glass or inorganic fibers such as calcium titanate are also preferred.

以上の構成とすることにより、高温多湿環境下での信頼性の確保と低温雰囲気下での高負荷放電特性に優れる偏平形有機電解液電池を提供できる。   By adopting the above configuration, it is possible to provide a flat organic electrolyte battery that ensures reliability in a high-temperature and high-humidity environment and is excellent in high-load discharge characteristics in a low-temperature atmosphere.

以下、本発明の偏平形有機電解液電池について、実施例に基づいて具体的に説明する。   Hereinafter, the flat organic electrolyte battery of the present invention will be specifically described based on examples.

(実施例1)
図1は、本発明の実施例に係る偏平形有機電解液電池の断面図であり、厚さ5mm、直径24mmとした。図1において、発電要素を収容するコイン型の電池容器は、耐食性に優れたステンレス鋼からなる正極缶5と、同様にステンレス鋼の負極缶1と、ガスケット6により構成され、正極缶5の開口部を内側にかしめることによって、発電要素が内部に密封される。ガスケット6は正極缶5と負極缶1とを絶縁する機能に加え、物理的に発電要素を液密的に電池容器内に密閉するための機能を有している。ガスケット6には、ポリフェニレンスルフィド(PPS)樹脂からなるものを使用した。このガスケット6と正極缶5及び負極缶1とガスケット6との間にブチルゴムをトルエンで希釈した溶液を塗布し、トルエンを蒸発させることによりブチルゴム膜からなるシーラント8とした。
Example 1
FIG. 1 is a cross-sectional view of a flat organic electrolyte battery according to an embodiment of the present invention, and has a thickness of 5 mm and a diameter of 24 mm. In FIG. 1, a coin-type battery container that houses a power generation element includes a positive electrode can 5 made of stainless steel having excellent corrosion resistance, a stainless steel negative electrode can 1, and a gasket 6. The power generating element is sealed inside by caulking the part inward. In addition to the function of insulating the positive electrode can 5 and the negative electrode can 1, the gasket 6 has a function of physically sealing the power generation element in a battery container in a liquid-tight manner. A gasket 6 made of polyphenylene sulfide (PPS) resin was used. A solution obtained by diluting butyl rubber with toluene was applied between the gasket 6 and the positive electrode can 5 and between the negative electrode can 1 and the gasket 6, and the toluene was evaporated to obtain a sealant 8 made of a butyl rubber film.

正極3は、電解二酸化マンガン(EMD)を活物質に、導電剤としてカーボンブラック及び結着剤としてフッ素樹脂粉末を90:5:5の質量比率で混合し、ペレット状に成型した後、250°C中で12時間乾燥したものである。得られたペレット状の正極材料は、正極缶5の内面にカーボン塗料を塗布することで形成された正極集電体7に接触するようにしてある。一方、負極2は、リチウムアルミニウム(Al−Li)合金を用い、負極缶1に圧着した。また、正極3と負極2との間に配されるセパレータ4には、目付け重量が45g/m2で繊維径が0.3〜1μm、繊維長が300〜1000μmのものでガラス繊維を主体としバインダーにアクリル繊維を15重量%含むものを使用した。電解液はプロピレンレンカーボネートとジグライムとの体積比1:1の混合溶媒にLiN(CF3SO22を1.0mol/l溶解させたものに、イミダゾールをイミダゾールとLiN(CF3SO22の総量に対し25mol%含有するように添加したものを用いた。このようにして得られた電池を電池Aとした。 The positive electrode 3 is obtained by mixing electrolytic manganese dioxide (EMD) as an active material, carbon black as a conductive agent, and fluororesin powder as a binder at a mass ratio of 90: 5: 5, and molding the mixture into a pellet shape. It was dried in C for 12 hours. The obtained pellet-like positive electrode material is in contact with the positive electrode current collector 7 formed by applying a carbon paint on the inner surface of the positive electrode can 5. On the other hand, the negative electrode 2 was pressure-bonded to the negative electrode can 1 using a lithium aluminum (Al—Li) alloy. The separator 4 disposed between the positive electrode 3 and the negative electrode 2 has a basis weight of 45 g / m 2 , a fiber diameter of 0.3 to 1 μm, a fiber length of 300 to 1000 μm, and is mainly made of glass fiber. A binder containing 15% by weight of acrylic fiber was used. The electrolytic solution was prepared by dissolving 1.0 mol / l of LiN (CF 3 SO 2 ) 2 in a 1: 1 mixed solvent of propylene carbonate and diglyme, imidazole and imidazole and LiN (CF 3 SO 2 ). What was added so that it might contain 25 mol% with respect to the total amount of 2 was used. The battery thus obtained was designated as battery A.

電池Aのイミダゾールの含有量25mol%を含有量5mol%〜35mol%の範囲で変化させた以外は、電池Aと同様にして作製した電池を電池B〜Dとした。   Batteries B to D were produced in the same manner as the battery A except that the imidazole content of the battery A was changed from 25 mol% to a content of 5 mol% to 35 mol%.

電池Aの溶質のLiN(CF3SO22に代えてLiN(C25SO22を用いた以外
は電池Aと同様にして作製した電池を電池Eとした。
A battery E was prepared in the same manner as battery A except that LiN (C 2 F 5 SO 2 ) 2 was used instead of LiN (CF 3 SO 2 ) 2 as the solute of battery A.

電池Aの溶質のLiN(CF3SO22に代えてLiN(C49SO2)(CF3SO2)を用いた以外は電池Aと同様にして作製した電池を電池Fとした。 Battery F was prepared in the same manner as Battery A except that LiN (C 4 F 9 SO 2 ) (CF 3 SO 2 ) was used instead of LiN (CF 3 SO 2 ) 2 as the solute of battery A. .

電池Aのイミダゾールの含有量25mol%を無添加(0mol%)、含有量3mol%、及び含有量40mol%とした以外は、電池Aと同様にして作製した電池を電池1、2、3とした。   The batteries produced in the same manner as battery A were designated as batteries 1, 2, and 3 except that the content of imidazole in battery A was 25 mol% without addition (0 mol%), the content was 3 mol%, and the content was 40 mol%. .

電池Aの溶質のリチウム塩LiN(CF3SO22に代えてLiPF6を用いた以外は電池Aと同様にして作製した電池を電池4とした。 A battery produced in the same manner as battery A except that LiPF 6 was used in place of the solute lithium salt LiN (CF 3 SO 2 ) 2 of battery A was designated as battery 4.

本発明にかかる電池A〜Fと比較例となる電池1〜4について、正極の二酸化マンガンの理論容量に対して10%容量を5mAの定電流放電を行った後に、100℃で240時間貯蔵を行う高温保存試験と、85℃90%で240時間貯蔵を行う高温多湿保存試験を行い、それぞれの保存試験の前後で、−40℃の環境下で3mAの電流値で放電させ、放電開始から1秒後の閉回路電圧(CCV)を測定した。その結果を(表1)に示す。   The batteries A to F according to the present invention and the batteries 1 to 4 as comparative examples were subjected to a constant current discharge of 5 mA at a capacity of 10% with respect to the theoretical capacity of manganese dioxide of the positive electrode, and then stored at 100 ° C. for 240 hours. A high-temperature storage test to be performed and a high-temperature and high-humidity storage test to be stored at 85 ° C. and 90% for 240 hours are performed, and before and after each storage test, discharge is performed at a current value of 3 mA in an environment of −40 ° C. The closed circuit voltage (CCV) after 2 seconds was measured. The results are shown in (Table 1).

Figure 0004075866
Figure 0004075866

本発明に係る電池A〜Fについては、高温保存試験後及び高温多湿保存試験後でも低温での閉回路電圧(CCV)の極端な低下がなく、優れた低温放電特性を維持することができた。イミダゾールを添加していない電池1、含有量の少ない電池2、及び溶質にLiPF6を用いた電池4では高温多湿保存試験後の低温での閉回路電圧(CCV)の著しい低下が見られた。イミダゾールの含有量の多い電池3で試験前から低温での閉回路電圧(CCV)が他の電池に比べて低レベルであった。 Regarding the batteries A to F according to the present invention, the closed circuit voltage (CCV) at a low temperature was not drastically decreased even after the high temperature storage test and the high temperature and humidity storage test, and excellent low temperature discharge characteristics could be maintained. . In battery 1 to which imidazole was not added, battery 2 having a low content, and battery 4 using LiPF 6 as a solute, the closed circuit voltage (CCV) at a low temperature after the high-temperature and high-humidity storage test was significantly reduced. In the battery 3 having a high imidazole content, the closed circuit voltage (CCV) at a low temperature before the test was at a low level compared to other batteries.

実施例では、二酸化マンガンリチウム一次電池について述べたが、これに限定されることなく、フッ化黒鉛リチウム一次電池などの一次電池、4V級のコバルト酸リチウムと黒鉛を組みあわせたリチウムイオン二次電池や、五酸化バナジウムとリチウムアルミニウム合金の組合せや、リチウム含有マンガン酸化物ちリチウムアルミニウム合金を組合せた3V級のリチウム二次電池や、コバルト酸リチウムとリチウムチタン酸化物の組合わせや、
五酸化ニオブとリチウムアルミニウム合金を組合せた2.5V級のリチウム二次電池についても同様の効果が得られる。
In the embodiments, a lithium manganese dioxide primary battery has been described. However, the present invention is not limited to this, but a primary battery such as a lithium fluoride graphite primary battery or a lithium ion secondary battery in which 4V-class lithium cobaltate and graphite are combined. Or a combination of vanadium pentoxide and a lithium aluminum alloy, a lithium secondary manganese battery containing a lithium-containing manganese oxide or a lithium aluminum alloy, a combination of lithium cobalt oxide and lithium titanium oxide,
The same effect can be obtained with a 2.5 V class lithium secondary battery in which niobium pentoxide and a lithium aluminum alloy are combined.

本発明は、有底円筒状に形成された負極缶と有底円筒状に形成された正極缶との間に環状のガスケットを介在させ、前記正極缶の開口部を内側にかしめて正極、負極、セパレータ、及び有機電解液からなる発電要素を密封した偏平形有機電解液電池において、ガラス繊維を主成分とするセパレータと、リチウム塩としてリチウムビスパーフルオロメチルスルホニルイミド(LiN(CF 3 SO 2 2 )を含む有機電解液と、イミダゾールとを組み合わせることで、高温多湿環境下での信頼性と低温雰囲気下での高負荷放電特性に優れる偏平形有機電解液電池を提供することができる。 In the present invention, an annular gasket is interposed between a negative electrode can formed in a bottomed cylindrical shape and a positive electrode can formed in a bottomed cylindrical shape, and an opening of the positive electrode can is caulked inward to form a positive electrode and a negative electrode In a flat organic electrolyte battery in which a power generation element composed of a separator and an organic electrolyte is sealed, a separator mainly composed of glass fiber and lithium bisperfluoromethylsulfonylimide (LiN (CF 3 SO 2 ) as a lithium salt By combining the organic electrolyte containing 2 ) with imidazole, it is possible to provide a flat organic electrolyte battery excellent in reliability under a high temperature and humidity environment and high load discharge characteristics in a low temperature atmosphere.

また、今後の自動車の安全性を確保するためのタイヤの空気圧センサーなどの電源としての展開が可能となり、極めて有用である。   In addition, it can be deployed as a power source for tire pressure sensors to ensure the safety of future automobiles, which is extremely useful.

本発明の実施例に係る偏平形有機電解液電池の断面図Sectional drawing of the flat organic electrolyte battery which concerns on the Example of this invention

符号の説明Explanation of symbols

1 負極缶
2 負極
3 正極
4 セパレータ
5 正極缶
6 ガスケット
DESCRIPTION OF SYMBOLS 1 Negative electrode can 2 Negative electrode 3 Positive electrode 4 Separator 5 Positive electrode can 6 Gasket

Claims (1)

有底円筒状に形成された負極缶と有底円筒状に形成された正極缶との間に環状のガスケットを介在させ、前記正極缶の開口部を内側にかしめて正極、負極、セパレータ、及び有機電解液からなる発電要素を密封した偏平形有機電解液電池であって、前記セパレータはガラス繊維を主成分とし、前記有機電解液はリチウムビスパーフルオロメチルスルホニルイミド(LiN(CF 3 SO 2 2 )とイミダゾールを含み、前記イミダゾールの含有量がリチウムビスパーフルオロメチルスルホニルイミド(LiN(CF 3 SO 2 2 )とイミダゾールの総量に対して5〜35mol%であることを特徴とする偏平形有機電解液電池。 An annular gasket is interposed between the negative electrode can formed into a bottomed cylindrical shape and the positive electrode can formed into a bottomed cylindrical shape, and the positive electrode, negative electrode, separator, and A flat organic electrolyte battery in which a power generation element made of an organic electrolyte is sealed, wherein the separator is mainly composed of glass fiber, and the organic electrolyte is lithium bisperfluoromethylsulfonylimide (LiN (CF 3 SO 2 ) 2 ) and imidazole , wherein the imidazole content is 5 to 35 mol% with respect to the total amount of lithium bisperfluoromethylsulfonylimide (LiN (CF 3 SO 2 ) 2 ) and imidazole, Organic electrolyte battery.
JP2004187732A 2004-06-25 2004-06-25 Flat organic electrolyte battery Expired - Fee Related JP4075866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004187732A JP4075866B2 (en) 2004-06-25 2004-06-25 Flat organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004187732A JP4075866B2 (en) 2004-06-25 2004-06-25 Flat organic electrolyte battery

Publications (2)

Publication Number Publication Date
JP2006012587A JP2006012587A (en) 2006-01-12
JP4075866B2 true JP4075866B2 (en) 2008-04-16

Family

ID=35779587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004187732A Expired - Fee Related JP4075866B2 (en) 2004-06-25 2004-06-25 Flat organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP4075866B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5407469B2 (en) * 2009-03-25 2014-02-05 パナソニック株式会社 Organic electrolyte battery
JP5876766B2 (en) * 2012-04-30 2016-03-02 日本板硝子株式会社 Nonaqueous electrolyte secondary battery separator and battery
JP6056076B2 (en) * 2012-12-10 2017-01-11 三星電子株式会社Samsung Electronics Co.,Ltd. Electrochemical devices
EP3345232B1 (en) * 2015-09-02 2019-07-31 Sceye Sàrl Li-s battery with carbon coated separator
US20230387379A1 (en) * 2020-11-20 2023-11-30 Nippon Telegraph And Telephone Corporation Primary Battery
WO2022138085A1 (en) * 2020-12-25 2022-06-30 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery negative electrode, slurry composition for non-aqueous secondary battery negative electrode, non-aqueous secondary battery negative electrode and method for producing same, and non-aqueous secondary battery
US20220311052A1 (en) 2021-03-24 2022-09-29 Lg Energy Solution, Ltd. Non-Aqueous Electrolyte Solution for Lithium Secondary Battery and Lithium Secondary Battery Comprising Same

Also Published As

Publication number Publication date
JP2006012587A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
US9583750B2 (en) Secondary battery
JP3708183B2 (en) Organic electrolyte battery
KR100814560B1 (en) Secondary battery with terminal for surface mounting
KR101212829B1 (en) Battery
JP5407469B2 (en) Organic electrolyte battery
JP5166033B2 (en) Flat organic electrolyte secondary battery
JP2007227221A (en) Lithium/iron disulphide primary cell
JP2013219027A (en) Nonaqueous electrolyte secondary battery
JP6176537B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
US20040219424A1 (en) Non-aqueous electrolyte secondary battery
JP4761725B2 (en) Method for producing non-aqueous electrolyte battery
JP4075866B2 (en) Flat organic electrolyte battery
JP2006100164A (en) Lithium/iron disulfide primary battery
CN110603682B (en) Non-aqueous electrolyte and lithium secondary battery comprising same
JP7079629B2 (en) Non-aqueous electrolyte secondary battery
JP2008305644A (en) Battery
JP2007042447A (en) Lithium/iron disulphide primary cell
JP4967464B2 (en) Non-aqueous electrolyte secondary battery
JP4945074B2 (en) Nonaqueous electrolyte secondary battery
JP6587929B2 (en) Nonaqueous electrolyte secondary battery
KR101073165B1 (en) Heat-Resistant Lithium Battery
JP2004327305A (en) Manufacturing method of lithium secondary battery
JP7020976B2 (en) Non-aqueous electrolyte primary battery and its manufacturing method
WO2018154841A1 (en) Coin-shaped battery
JPWO2020129128A1 (en) Batteries, battery packs, power storage devices, vehicles and flying objects

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R151 Written notification of patent or utility model registration

Ref document number: 4075866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees