JP5875035B2 - Electrode member and manufacturing method thereof - Google Patents

Electrode member and manufacturing method thereof Download PDF

Info

Publication number
JP5875035B2
JP5875035B2 JP2011046627A JP2011046627A JP5875035B2 JP 5875035 B2 JP5875035 B2 JP 5875035B2 JP 2011046627 A JP2011046627 A JP 2011046627A JP 2011046627 A JP2011046627 A JP 2011046627A JP 5875035 B2 JP5875035 B2 JP 5875035B2
Authority
JP
Japan
Prior art keywords
surface layer
titanium
electrode member
treatment
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011046627A
Other languages
Japanese (ja)
Other versions
JP2012184458A (en
Inventor
博朗 ▲たか▼玉
博朗 ▲たか▼玉
山口 誠二
誠二 山口
小久保 正
正 小久保
松下 富春
富春 松下
吉徳 成田
吉徳 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu University Educational Foundation
Original Assignee
Chubu University Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu University Educational Foundation filed Critical Chubu University Educational Foundation
Priority to JP2011046627A priority Critical patent/JP5875035B2/en
Publication of JP2012184458A publication Critical patent/JP2012184458A/en
Application granted granted Critical
Publication of JP5875035B2 publication Critical patent/JP5875035B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

この発明は、電極部材、特にチタン電極部材とその製造方法に関するものである。この電極部材は、その表面に各種有機分子あるいは無機物質、有機・無機複合体、金属錯体、酵素を含む生体分子、分子触媒などの1種又は2種以上の触媒等(以下、触媒という)を固定することにより、水の電気分解装置、燃料電池、太陽電池、センサー等の電極に好適に利用され得る。   The present invention relates to an electrode member, particularly a titanium electrode member and a method for manufacturing the same. This electrode member has various organic molecules or inorganic substances, organic / inorganic composites, metal complexes, biomolecules including enzymes, or one or more types of catalysts such as molecular catalysts (hereinafter referred to as catalysts) on the surface thereof. By fixing, it can be suitably used for electrodes of water electrolysis devices, fuel cells, solar cells, sensors and the like.

酸化チタンは、その表面に触媒を固定することが可能なので、色素増感太陽電池の電極や水分解用の電極に使用されている。そして、電極は触媒を固定する面積が広いほど修飾される触媒の量が増して水分解能や電池の出力が大きくなるので、電極の単位体積あたりの表面積(=比表面積)を大きくすることが望まれている。また、触媒が長期間安定に固定されるためには、電極表面がこれらと化学的に結合しうる機能を表面が有することが必要である。更にまた、触媒に生じた電子が有効に伝播されるためには、一般的にほとんど導電性を示さない酸化チタンの導電性を向上させることが必須である。そのため、これらの性質を有するチタン電極を製造する方法が種々提案されている。   Titanium oxide is used as an electrode for a dye-sensitized solar cell or an electrode for water decomposition because it can fix a catalyst on its surface. And, as the electrode fixing area increases, the amount of the modified catalyst increases and the water resolution and battery output increase, so it is desirable to increase the surface area (= specific surface area) per unit volume of the electrode. It is rare. Further, in order for the catalyst to be stably fixed for a long period of time, it is necessary for the surface to have a function that allows the electrode surface to be chemically bonded thereto. Furthermore, in order for electrons generated in the catalyst to be effectively propagated, it is essential to improve the conductivity of titanium oxide that generally exhibits little conductivity. Therefore, various methods for manufacturing a titanium electrode having these properties have been proposed.

先ず、大比表面積をもつ電極を作るために、電極表面をブラスト処理やエッチング処理する、などの方法が知られている。   First, in order to make an electrode having a large specific surface area, a method of blasting or etching the electrode surface is known.

酸化チタンの導電性を向上させるには、酸化チタンを還元雰囲気(H2、CO等)で焼成する、チタンアルコキシドとキレート化剤との錯体を含有する溶液を基材表面に被覆して加熱する(特許文献1)、チタンアルコキシド溶液をフッ素含有溶液と反応させる(特許文献2)、リチウムを含むドーピング溶液を所定の箇所に塗布後、熱処理する(特許文献3)、チタンアルコキシドとニオブやタンタルのアルコキシド溶液を混ぜて、それを透明基材の上に塗布する(特許文献4)、酸化チタンをアルゴンや窒素などの非酸化雰囲気でホットプレスする(特許文献5)、などの方法により酸素欠陥を導入することが知られている。   In order to improve the conductivity of titanium oxide, the surface of the substrate is coated with a solution containing a complex of titanium alkoxide and a chelating agent, which is fired in a reducing atmosphere (H 2, CO, etc.) and heated ( Patent Document 1), Titanium alkoxide solution is reacted with a fluorine-containing solution (Patent Document 2), a doping solution containing lithium is applied to a predetermined portion, and then heat treated (Patent Document 3). Titanium alkoxide and niobium or tantalum alkoxide Mixing the solution and applying it on a transparent substrate (Patent Document 4), hot pressing titanium oxide in a non-oxidizing atmosphere such as argon or nitrogen (Patent Document 5), and introducing oxygen defects It is known to do.

また、スパッタリング法により形成した酸化チタン膜を水素雰囲気中でRFプラズマ処理することにより水素を導入して酸化チタンの導電性を向上させることも知られている(特許文献6)。更に、基板上に金属窒化物を塗布し、その窒化物の表面を酸化させて金属酸化物層を形成すること(特許文献7)や、酸化チタンナノ粒子をITOなどの導電性ガラス基板の表面に焼結固定すること(非特許文献1)も提案されている。   It is also known to improve the conductivity of titanium oxide by introducing hydrogen by RF plasma treatment of a titanium oxide film formed by sputtering in a hydrogen atmosphere (Patent Document 6). Furthermore, a metal nitride is applied on the substrate and the surface of the nitride is oxidized to form a metal oxide layer (Patent Document 7), and titanium oxide nanoparticles are applied to the surface of a conductive glass substrate such as ITO. Sintering and fixing (Non-Patent Document 1) has also been proposed.

特開平10−146530JP-A-10-146530 特開平9−118524JP-A-9-118524 特開平9−265832JP-A-9-265832 特開2010−225468JP 2010-225468 特開2008−57045JP 2008-57045 A 特開平10−226598JP-A-10-226598 特開2006−210341JP 2006-210341 A

B.O’Regan,M.Gratzel,Nature,353,737,1991.B. O'Regan, M.M. Gratzel, Nature, 353, 737, 1991.

しかし、大きな比表面積をもつ電極を製造する前記従来の技術では、酸化チタンの導電性を向上させることはできない。他方、酸化チタンの導電性を向上させる前記従来の技術は、いずれも出発素材が平板であることを前提としているため、得られる電極の比表面積に乏しい。しかも前記非特許文献1に記載の技術では、酸化チタン粒子を強固に基板に接着させることが困難である。従って、従来の技術は、一方の課題を実現しようとすれば他方の課題を犠牲にせざるを得ないものであった。
それ故、この発明の課題は、触媒を化学的に長期間固定しうる酸化チタンの性質を利用可能であって、大きい比表面積を有し、導電性に優れた電極部材を提供することにある。
However, the conventional technique for producing an electrode having a large specific surface area cannot improve the conductivity of titanium oxide. On the other hand, all of the conventional techniques for improving the conductivity of titanium oxide are based on the premise that the starting material is a flat plate, and thus the obtained electrode has a low specific surface area. In addition, with the technique described in Non-Patent Document 1, it is difficult to firmly bond the titanium oxide particles to the substrate. Therefore, in the conventional technique, if one problem is to be realized, the other problem must be sacrificed.
Therefore, an object of the present invention is to provide an electrode member that can utilize the properties of titanium oxide capable of chemically fixing a catalyst for a long period of time, has a large specific surface area, and is excellent in conductivity. .

その課題を解決するために、この発明の電極部材は、
チタンもしくはチタン合金からなる基材と、
その基材の表面に形成され、少なくとも酸化チタンの相及び必要により窒化チタンの相からなり、太さ1〜100nmの多数の柱状結晶を含むくし型構造をとる厚さ0.1〜10μmの表面層と
を備えることを特徴とする。
In order to solve the problem, the electrode member of the present invention is
A substrate made of titanium or a titanium alloy;
Surface of 0.1 to 10 μm thickness formed on the surface of the base material, comprising at least a titanium oxide phase and optionally a titanium nitride phase, and having a comb-like structure including a large number of columnar crystals having a thickness of 1 to 100 nm And a layer.

この発明の電極部材によれば、表面層が少なくとも酸化チタンの相を含むので、触媒を化学的に長期間安定に固定することができる。そして、表面層が前記柱状結晶を含むくし型構造をとるので、大きい比表面積を有し、単位体積あたりの触媒修飾量が大きく反応効率に優れる。ここで、くし型とは、前記基材の表面を櫛の背とすると図1に示すように柱状結晶が櫛の歯のように基材から遠ざかる方向に延びている形状を指す。柱状結晶の酸化チタンを構成するチタンが、基材中のチタンもしくはチタン合金に由来するものであって、表面層が基材から連続して形成されているので、表面層は基材に強く固定されている。しかも前記酸化チタンはTiO2−xで表されるように酸素欠陥を有するものであってもよく、これにより導電性を有する。また、導電性を向上させるために表面層の一部が窒化チタンの相で構成されているAccording to the electrode member of the present invention, since the surface layer includes at least a titanium oxide phase, the catalyst can be chemically and stably fixed for a long period of time. Since the surface layer has a comb structure including the columnar crystals , it has a large specific surface area, a large amount of catalyst modification per unit volume, and excellent reaction efficiency. Here, the comb shape refers to a shape in which columnar crystals extend away from the substrate like comb teeth as shown in FIG. 1 when the surface of the substrate is the back of a comb. Titanium constituting the columnar crystal titanium oxide is derived from titanium or titanium alloy in the base material, and the surface layer is formed continuously from the base material, so the surface layer is strongly fixed to the base material. Has been. Moreover the titanium oxide may be one having an oxygen defect as represented by TiO 2-x, thereby having electrical conductivity. Also, part of the surface layer in order to improve the conductivity is constituted by a phase of titanium nitride.

十分な酸素欠陥及び/又は相当量の窒化チタンの相を含むとき、表面層の比抵抗が1.0×106Ωcm以下となり、触媒に生じた電子が効率よく伝搬される。表面層の厚さが0.1μmより小さいと触媒修飾量が少なくなりすぎて触媒機能を発揮することが困難となるし、10μmを超えると導電性が低下するうえ、基材から剥離する可能性がある。 When sufficient oxygen defects and / or a considerable amount of titanium nitride phase are included, the specific resistance of the surface layer is 1.0 × 10 6 Ωcm or less, and electrons generated in the catalyst are efficiently propagated. If the thickness of the surface layer is smaller than 0.1 μm, the amount of catalyst modification becomes too small to make it difficult to exert the catalytic function, and if it exceeds 10 μm, the conductivity is lowered and the possibility of peeling from the substrate There is.

この発明の電極部材を製造する適切な方法は、
チタンもしくはチタン合金からなる基材をアルカリ性水溶液に浸漬し、次いで水または酸性水溶液に浸漬することにより、基材の表面に水和物でくし型構造をとる表面層を形成するアルカリ−酸処理工程と、
アルカリ−酸処理を経た基材を加熱することにより、前記表面層を脱水させる脱水工程と、
前記表面層を窒素ガス雰囲気下で処理する導電化工程と
を備えることを特徴とする。
A suitable method for manufacturing the electrode member of this invention is:
Alkali-acid treatment step of forming a surface layer with a hydrated comb structure on the surface of the substrate by immersing the substrate made of titanium or titanium alloy in an alkaline aqueous solution and then immersing in water or an acidic aqueous solution When,
A dehydration step of dehydrating the surface layer by heating the base material that has undergone the alkali-acid treatment;
And a conductive step of treating the surface layer in a nitrogen gas atmosphere.

チタンもしくはチタン合金からなる基材をアルカリ性水溶液に浸漬することにより、基材表面にチタン酸水素ナトリウムからなり太さ1〜100nmの多数の柱状結晶を含むくし型構造をとり、厚さ0.1〜10μmの層が形成される。従って、この段階で基材表面の比表面積が著しく増大する。続いて基材を水または酸性水溶液に浸漬し、必要に応じて水洗することにより、アルカリ成分が除去されて、先に形成された構造を維持したチタン酸(H2Ti37など)の層が形成される。 By immersing a base material made of titanium or a titanium alloy in an alkaline aqueous solution, the surface of the base material has a comb structure including a large number of columnar crystals made of sodium hydrogen titanate and having a thickness of 1 to 100 nm. A layer of 10 μm is formed. Accordingly, the specific surface area of the substrate surface is remarkably increased at this stage. Subsequently, the base material is immersed in water or an acidic aqueous solution, and washed with water as necessary to remove the alkali component and maintain the previously formed structure (such as H 2 Ti 3 O 7 ). A layer is formed.

前記基材は、比表面積をさらに増大させるために、気孔径50μm〜3mmの連通孔を持つ多孔体であってもよい。その多孔体の孔内面にくし型構造の前記表面層を形成することにより、さらに比表面積を増大させることが可能である。
多孔体としては、孔同士が通路で結ばれている構造、一直線状に貫通孔がありそれらが束ねられた構造、折り曲げた板を小さな隙間で積み重ねた構造、柱状の孔を有する直方体を多数束ねた構造(蜂の巣状)など、各種多孔構造のものが挙げられる。
上記多孔体の作り方は、粉末を焼結する、レーザーフォームで意図的に設計して出来るする構造にする、穴をあけた板で溝を形成する方法、板を折り曲げて小さな隙間になるように積み重ねる、多数のコの字型に折り曲げて、それらを積み重ねるなどの方法が挙げられる。これらのうち、板を折り曲げる方法が、最も作製コストを抑えられると考えられる。
In order to further increase the specific surface area, the base material may be a porous body having communication holes having a pore diameter of 50 μm to 3 mm. It is possible to further increase the specific surface area by forming the surface layer having a comb structure on the inner surface of the hole of the porous body.
As a porous body, a structure in which holes are connected by a passage, a structure in which through holes are arranged in a straight line and they are bundled, a structure in which folded plates are stacked in a small gap, and a large number of rectangular parallelepipeds having columnar holes are bundled Various porous structures such as a honeycomb structure (honeycomb shape) can be mentioned.
The method of making the porous body is to sinter powder, make a structure that can be intentionally designed with laser foam, form a groove with a plate with holes, and fold the plate to make a small gap For example, they can be stacked, folded into a number of U-shapes, and stacked. Of these, the method of bending the plate is considered to be the least costly manufacturing method.

その後、加熱処理すると、チタン酸が脱水されて酸化チタンの結晶となる。加熱処理を大気中で行った場合、この段階で得られる表面層は、少量の酸素欠陥を含むものの導電性に乏しい。そこで、表面層を窒素ガス雰囲気下で処理する。窒素ガス雰囲気下での処理手段としては、実質的に酸素を含まない窒素ガスの雰囲気中で加熱するか、又は同雰囲気中でプラズマ処理をすることが挙げられる。これにより酸素が拡散して酸素欠陥が多く形成され及び/又は窒化チタンが形成され、導電性が増す。結晶相としては窒素ガス雰囲気下での処理温度が高いほど、TiO2よりもTi47やTi23の量及び窒化チタンの量が増す。また、窒素ガスの雰囲気中での加熱とプラズマ処理とを組み合わせても良い。いずれの場合も前記くし型構造を損なうことは無い。 Thereafter, when heat treatment is performed, titanic acid is dehydrated to form titanium oxide crystals. When the heat treatment is performed in the air, the surface layer obtained at this stage contains a small amount of oxygen defects but is poor in conductivity. Therefore, the surface layer is treated under a nitrogen gas atmosphere. Examples of the treatment means under a nitrogen gas atmosphere include heating in a nitrogen gas atmosphere substantially free of oxygen, or plasma treatment in the same atmosphere. As a result, oxygen diffuses and many oxygen defects are formed and / or titanium nitride is formed, thereby increasing conductivity. As the crystal phase, the higher the treatment temperature in the nitrogen gas atmosphere, the greater the amount of Ti 4 O 7 or Ti 2 O 3 and the amount of titanium nitride than TiO 2 . Further, heating in a nitrogen gas atmosphere and plasma treatment may be combined. In either case, the comb structure is not impaired.

一般的に、酸化チタンのTi−O結合は非常に強いので、酸素を窒素と置換することは困難である。従って、窒素ガス雰囲気中での加熱は、最表層部で酸素欠陥を生じさせるとともに基材表面(基材と表面層との境界付近)のチタン金属と窒素との反応を優先的に生じさせ、表面層の深部へ効率よく窒素を導入することができる。一方、プラズマ処理は、最表層部へ効率よく窒素を導入できる。従って、両者を組み合わせることで、いずれか単独よりも導電性を高めることができる。   In general, the Ti—O bond of titanium oxide is so strong that it is difficult to replace oxygen with nitrogen. Therefore, heating in a nitrogen gas atmosphere causes oxygen defects in the outermost layer portion and causes a reaction between titanium metal on the substrate surface (near the boundary between the substrate and the surface layer) and nitrogen with priority, Nitrogen can be efficiently introduced into the deep part of the surface layer. On the other hand, the plasma treatment can efficiently introduce nitrogen into the outermost layer. Therefore, by combining the two, the conductivity can be increased more than any one of them.

窒素ガス雰囲気中での加熱の温度は、1000℃程度まで高くてもよいことから、前記脱水のための加熱を窒素ガス雰囲気中で行うことにより、脱水と窒化を同時に進行させて脱水工程を窒化工程と兼ねるようにしてもよい。一方、窒化をプラズマ処理単独で行う場合は、プラズマ処理がそれほど高温で実施できないことから、両工程を個別に行うのがよい。
こうして表面層が、触媒を化学的に固定可能な酸化チタンを少なくとも含み、且つその一部に酸素欠陥を生じるように及び/又は一部が窒化チタンの相となるように改質される。
Since the heating temperature in the nitrogen gas atmosphere may be as high as about 1000 ° C., the dehydration process is performed by simultaneously performing dehydration and nitridation by performing the heating for dehydration in the nitrogen gas atmosphere. You may make it serve as a process. On the other hand, when nitriding is performed by plasma processing alone, it is preferable to perform both processes separately because the plasma processing cannot be performed at such a high temperature.
In this way, the surface layer is modified so as to contain at least titanium oxide capable of chemically fixing the catalyst and to cause oxygen deficiency in a part thereof and / or to become a phase of titanium nitride.

以上のように、この発明の電極部材は、大比表面積を有し、導電性を示し、しかも触媒を化学的に固定しうる表面層が基材に強く結合していることから、水の電気分解装置、燃料電池、太陽電池、センサー等の電極に利用されたとき、反応効率及び耐久性の向上に貢献する。   As described above, the electrode member of the present invention has a large specific surface area, exhibits electrical conductivity, and the surface layer capable of chemically fixing the catalyst is strongly bonded to the base material. When used in electrodes for cracking devices, fuel cells, solar cells, sensors, etc., it contributes to improving reaction efficiency and durability.

アルカリ−酸処理後、窒素雰囲気中で加熱処理したチタン金属多孔体の内部(左)、外部(中央)、および参照のチタン平板(右)の各表面(上段)および断面(下段)を示すFE−SEM写真である。FE showing each surface (upper) and cross-section (lower) of an inner (left), outer (center), and reference titanium flat plate (right) of a porous titanium metal heat-treated in a nitrogen atmosphere after alkali-acid treatment -SEM photograph. 基材の1つであるチタン金属多孔体の概観図である。It is a general-view figure of the titanium metal porous body which is one of the base materials. 各処理を施したチタン金属板表面の薄膜X線回折パターンを示すグラフである。It is a graph which shows the thin film X-ray diffraction pattern of the titanium metal plate surface which performed each process. アルカリ−酸処理後、窒素雰囲気中で加熱処理したチタン金属板表面付近のグロー放電発光分光分析(GD−OES:Glow Discharge−Optical Emission Spectroscopy)結果 を示すグラフである。It is a graph which shows the glow discharge emission-spectral-analysis (GD-OES: Glow Discharge-Optical Emission Spectroscopy) result vicinity of the titanium metal plate surface heat-processed in nitrogen atmosphere after alkali-acid treatment. 各処理を施したチタン金属板表面の引っかき強度を示すグラフである。It is a graph which shows the scratch strength of the titanium metal plate surface which performed each process. アルカリ−酸処理後、窒素雰囲気中で加熱処理したチタン金属板表面付近のX線光電子分光分析(XPS:X−ray photoelectron spectroscopy)の結果を示すグラフである。It is a graph which shows the result of the X-ray photoelectron spectroscopy (XPS: X-ray photoelectron spectroscopy) vicinity of the titanium metal plate surface heat-processed in nitrogen atmosphere after alkali-acid treatment.

前記表面層は、表面から1μmの深さの範囲において1原子%以上の窒素濃度を有するのが好ましい。1原子%に満たないと、あまり導電性を示さなくなるからである。他方、窒素濃度が高くなりすぎると、触媒修飾に必要な酸化チタンが相対的に減少するので、好ましくない。但し、窒素導入はあまり容易ではなく、現在の技術水準では15原子%以上導入できる処理条件は見つかっていない。   The surface layer preferably has a nitrogen concentration of 1 atomic% or more in a depth range of 1 μm from the surface. This is because if it is less than 1 atomic%, it does not exhibit much conductivity. On the other hand, if the nitrogen concentration is too high, titanium oxide necessary for catalyst modification is relatively reduced, which is not preferable. However, nitrogen introduction is not so easy, and no treatment conditions that can introduce 15 atomic% or more have been found in the current technical level.

前記アルカリ性水溶液の好ましいアルカリ濃度は、0.1〜10Mで、好ましくは水酸化ナトリウム、水酸化カリウムのうちから選ばれる1種以上のアルカリを溶解した水溶液を使用する。いずれの場合も好ましい浸漬温度は5〜99℃、0.5〜48時間である。いずれか一つの条件でも下限に満たないと、前記好ましい厚さ、比表面積または傾斜組成を有する表面層が形成されにくいし、上限を超えると、その後に形成される表面層が厚くなりすぎて導電性が低下するとともに、基材から剥離しやすくなる。   A preferable alkali concentration of the alkaline aqueous solution is 0.1 to 10M, and an aqueous solution in which one or more alkalis selected from sodium hydroxide and potassium hydroxide are dissolved is preferably used. In any case, preferable immersion temperatures are 5 to 99 ° C. and 0.5 to 48 hours. If any one of the conditions is less than the lower limit, a surface layer having the preferred thickness, specific surface area, or gradient composition is difficult to form, and if the upper limit is exceeded, the surface layer formed thereafter becomes too thick and becomes conductive. As well as lowering the properties, it becomes easy to peel off from the substrate.

前記酸性水溶液の好ましい酸濃度は0.5M以下で、好ましくは塩酸、硝酸、硫酸のうちから選ばれる1種以上の酸を溶解した水溶液を使用する。いずれの場合も好ましい浸漬温度は5〜99℃、0.5〜48時間である。いずれか一つの条件でも下限に満たないと、アルカリ成分を十分に除去できず、チタン酸の層が形成されにくいし、上限を超えると、くし型構造が溶解し、比表面積が大幅に低下する可能性が高くなる。   A preferable acid concentration of the acidic aqueous solution is 0.5 M or less, and an aqueous solution in which one or more acids selected from hydrochloric acid, nitric acid, and sulfuric acid are dissolved is preferably used. In any case, preferable immersion temperatures are 5 to 99 ° C. and 0.5 to 48 hours. If any one of the conditions is less than the lower limit, the alkali component cannot be sufficiently removed, and the titanic acid layer is difficult to be formed. If the upper limit is exceeded, the comb structure is dissolved and the specific surface area is greatly reduced. The possibility increases.

前記表面層を脱水させるための加熱温度は、400〜1000℃が望ましい。温度が400℃未満の場合には、結晶性のチタン酸化物が形成されにくく、チタン酸化物の機械的強度も化学的安定性も低い。温度が1000℃を超えると、前記くし型構造が緻密化し、比表面積が大幅に低下し、表面層が厚くなりすぎ、熱膨張差により剥離しやすくなる。   The heating temperature for dehydrating the surface layer is preferably 400 to 1000 ° C. When the temperature is lower than 400 ° C., crystalline titanium oxide is hardly formed, and the mechanical strength and chemical stability of the titanium oxide are low. When the temperature exceeds 1000 ° C., the comb structure is densified, the specific surface area is greatly reduced, the surface layer becomes too thick, and is easily peeled off due to a difference in thermal expansion.

前記窒化をプラズマ処理で行う場合、好ましい出力は10〜1000Wである。   When the nitridation is performed by plasma treatment, a preferable output is 10 to 1000 W.

[製造条件]
−実施例1−
10×10×1mmの大きさの緻密質の純チタン金属板を#400のダイヤモンドパッドを用いて研磨し、アセトン、2−プロパノール、超純水で順に各30分間超音波洗浄した後、5Mの水酸化ナトリウム水溶液5mlに60℃で1時間浸漬し(以下、「アルカリ処理」という)、超純水で30秒間洗浄した。このチタン金属板を0.5mMの塩酸10mlに40℃で3時間浸漬し(以下、「酸処理」という)、超純水で30秒間洗浄した。次いで、チタン金属板を窒素雰囲気下の電気炉中で、常温から600℃まで昇温し、600℃で1時間保持した後、徐冷すること(以下、「窒素加熱処理」という。)により、試料を調製した。
[Production conditions]
Example 1
A fine pure titanium metal plate having a size of 10 × 10 × 1 mm was polished with a # 400 diamond pad, and ultrasonically washed with acetone, 2-propanol, and ultrapure water in order for 30 minutes each, and then 5M It was immersed in 5 ml of an aqueous sodium hydroxide solution at 60 ° C. for 1 hour (hereinafter referred to as “alkali treatment”) and washed with ultrapure water for 30 seconds. This titanium metal plate was immersed in 10 ml of 0.5 mM hydrochloric acid at 40 ° C. for 3 hours (hereinafter referred to as “acid treatment”) and washed with ultrapure water for 30 seconds. Next, the titanium metal plate is heated from room temperature to 600 ° C. in an electric furnace under a nitrogen atmosphere, held at 600 ° C. for 1 hour, and then slowly cooled (hereinafter referred to as “nitrogen heat treatment”). Samples were prepared.

−実施例2−
実施例1において、窒素加熱処理における温度を700℃としたことを除く他は、実施例1と同じ条件で試料を製造した。
-Example 2-
In Example 1, a sample was produced under the same conditions as in Example 1 except that the temperature in the nitrogen heat treatment was 700 ° C.

−実施例3−
実施例1において、窒素加熱処理における温度を800℃としたことを除く他は、実施例1と同じ条件で試料を製造した。
Example 3
In Example 1, a sample was manufactured under the same conditions as in Example 1 except that the temperature in the nitrogen heat treatment was 800 ° C.

−実施例4−
実施例1において、窒素加熱処理における温度を900℃としたことを除く他は、実施例1と同じ条件で試料を製造した。
Example 4
In Example 1, a sample was manufactured under the same conditions as in Example 1 except that the temperature in the nitrogen heat treatment was set to 900 ° C.

−実施例5−
実施例1において、窒素加熱処理における温度を1000℃としたことを除く他は、実施例1と同じ条件で試料を製造した。
-Example 5
In Example 1, a sample was produced under the same conditions as in Example 1 except that the temperature in the nitrogen heat treatment was 1000 ° C.

−実施例6−
10×10×1mmの大きさの緻密質の純チタン金属板を#400のダイヤモンドパッドを用いて研磨し、アセトン、2−プロパノール、超純水で順に各30分間超音波洗浄した後、実施例1と同一条件でアルカリ処理した。このチタン金属板を実施例1と同一条件で酸処理した後、超純水で30秒間洗浄した。次いで、チタン金属板を大気雰囲気下の電気炉中で、常温から600℃まで5℃/minの速度で昇温し、600℃で1時間保持して、炉内で放冷する(以下、「大気加熱処理」という)ことにより、試料を調製した。その後、窒素雰囲気中、常温(約20℃)、出力100Wで1時間プラズマ処理する(以下、「プラズマ処理」という)ことにより、試料を調製した。
-Example 6
A fine pure titanium metal plate having a size of 10 × 10 × 1 mm was polished with a # 400 diamond pad, and ultrasonically washed with acetone, 2-propanol, and ultrapure water in that order for 30 minutes each. 1 was subjected to alkali treatment under the same conditions. This titanium metal plate was acid-treated under the same conditions as in Example 1, and then washed with ultrapure water for 30 seconds. Next, the titanium metal plate was heated from normal temperature to 600 ° C. at a rate of 5 ° C./min in an electric furnace under atmospheric air, held at 600 ° C. for 1 hour, and allowed to cool in the furnace (hereinafter “ Samples were prepared by “atmospheric heat treatment”. Thereafter, a sample was prepared by performing plasma treatment in a nitrogen atmosphere at room temperature (about 20 ° C.) at an output of 100 W for 1 hour (hereinafter referred to as “plasma treatment”).

−実施例7−
実施例6において、プラズマ処理における温度を400℃としたことを除く他は、実施例6と同じ条件で試料を製造した。
-Example 7-
In Example 6, a sample was manufactured under the same conditions as in Example 6 except that the temperature in the plasma treatment was 400 ° C.

−実施例8−
10×10×1mmの大きさの緻密質の純チタン金属板を#400のダイヤモンドパッドを用いて研磨し、アセトン、2−プロパノール、超純水で順に各30分間超音波洗浄した後、実施例1と同一条件でアルカリ処理した。このチタン金属板を実施例1と同一条件で酸処理した後、超純水で30秒間洗浄した。次いで、このチタン金属板を、実施例2と同一条件で窒素加熱処理した。その後、実施例6と同一条件でプラズマ処理することにより、試料を調製した。
-Example 8-
A fine pure titanium metal plate having a size of 10 × 10 × 1 mm was polished with a # 400 diamond pad, and ultrasonically washed with acetone, 2-propanol, and ultrapure water in that order for 30 minutes each. 1 was subjected to alkali treatment under the same conditions. This titanium metal plate was acid-treated under the same conditions as in Example 1, and then washed with ultrapure water for 30 seconds. Next, this titanium metal plate was subjected to nitrogen heat treatment under the same conditions as in Example 2. Thereafter, the sample was prepared by plasma treatment under the same conditions as in Example 6.

−比較例1−
窒素加熱処理を施さないこと以外は実施例1と同一条件で比較試料を調製した。
−比較例2−
比較例1で得られた比較試料を、実施例6と同じ条件で大気加熱処理した。
−比較例3−
比較例1で得られた比較試料を、加熱処理における雰囲気をArとしたことを除く他は、実施例1と同じ条件で加熱処理した。
-Comparative Example 1-
A comparative sample was prepared under the same conditions as in Example 1 except that the nitrogen heat treatment was not performed.
-Comparative Example 2-
The comparative sample obtained in Comparative Example 1 was subjected to atmospheric heat treatment under the same conditions as in Example 6.
-Comparative Example 3-
The comparative sample obtained in Comparative Example 1 was heat-treated under the same conditions as in Example 1 except that the atmosphere in the heat treatment was Ar.

[導電性測定]
実施例および比較例の各試料の導電性を測定したところ、表1に示すように、全ての実施例において比較例2よりも導電性が優れていた。特に、実施例1、2、3、4、5、8の試料では、大幅に導電性が向上した。
[Conductivity measurement]
When the conductivity of each sample of the example and the comparative example was measured, as shown in Table 1, the conductivity was superior to that of the comparative example 2 in all the examples. In particular, in the samples of Examples 1, 2, 3, 4, 5, and 8, the conductivity was significantly improved.

Figure 0005875035
Figure 0005875035

[比表面積測定]
大きさ6×25×1mmの緻密質の純チタン金属板を準備した。このチタン金属板の表面積は1枚あたり3.62×10-42=362mm2(=6×25×2+6×1×2+25×1×2)で、密度が約4.5g/cm3であるから、その重量は0.675g(=0.6×2.5×0.1×4.5)となる。従って、単位重量あたりの表面積は、536mm2/g(≒362÷0.675)と算出される。
[Specific surface area measurement]
A dense pure titanium metal plate having a size of 6 × 25 × 1 mm was prepared. The surface area of this titanium metal plate is 3.62 × 10 −4 m 2 = 362 mm 2 (= 6 × 25 × 2 + 6 × 1 × 2 + 25 × 1 × 2), and the density is about 4.5 g / cm 3 . Therefore, the weight is 0.675 g (= 0.6 × 2.5 × 0.1 × 4.5). Therefore, the surface area per unit weight is calculated as 536 mm 2 / g (≈362 ÷ 0.675).

このチタン金属板をアルカリ処理−酸処理−窒素加熱処理した後、日本ベル株式会社製の自動比表面積測定装置BELSORP−miniを用いて、比表面積を測定したところ、1gあたり5.745×10-22/gであった。その結果、表面積は、約107(≒5.745×10-2÷5.36×10-4)倍となることが分かった。 The titanium metal plate to an alkali treatment - acid treatment - After nitrogen heat treatment, using an automatic specific surface area measuring apparatus BELSORP-mini BEL Japan Co., Ltd., was measured specific surface area, 1g per 5.745 × 10 - 2 m 2 / g. As a result, it was found that the surface area was about 107 (≈5.745 × 10 −2 ÷ 5.36 × 10 −4 ) times.

[多孔構造体への表面処理]
図2に示す大きさ約10×10×10mm、気孔率70.1%、気孔径0.5〜3mmの連通孔を有するチタン多孔体をアルカリ処理及び酸処理すると、図1に示すとおり多孔体内部(表面から5mm程度の深さの部分)と外部で同様の厚みかつナノサイズの網目構造が均一に形成されることがわかった。これらのことから、この化学処理法は、平板試料だけでなく、多孔体にも適応可能であることがわかった。
[Surface treatment to porous structure]
When a titanium porous body having a communicating hole having a size of about 10 × 10 × 10 mm, a porosity of 70.1%, and a pore diameter of 0.5 to 3 mm shown in FIG. 2 is treated with an alkali and acid, the porous body is shown in FIG. It was found that the same thickness and nano-sized network structure was uniformly formed inside (a portion having a depth of about 5 mm from the surface) and outside. From these results, it was found that this chemical treatment method can be applied not only to a flat plate sample but also to a porous body.

[結晶相の同定]
実施例1−5及び8、並びに比較例1と同一条件でそれぞれ処理を施したチタン金属板を薄膜X線回折装置にかけて、表面層の結晶相を解析したところ、図3に示すように窒素加熱処理における温度が高いほど窒化チタンのピークが顕著であった。また、加熱処理温度が高くなるにつれて、TiO2よりO/Ti比(理論値=2)が小さい、Ti47(O/Ti=1.75)、Ti23(O/Ti=1.5)の形成が確認できた。このことは酸素欠陥の形成を示していると考えられる。
[Identification of crystal phase]
A titanium metal plate treated under the same conditions as in Examples 1-5 and 8 and Comparative Example 1 was applied to a thin-film X-ray diffractometer, and the crystal phase of the surface layer was analyzed. As shown in FIG. The higher the temperature in the treatment, the more prominent the titanium nitride peak. Further, as the heat treatment temperature becomes higher, the O / Ti ratio (theoretical value = 2) is smaller than that of TiO 2 , Ti 4 O 7 (O / Ti = 1.75), Ti 2 O 3 (O / Ti = 1). .) Was confirmed. This is considered to indicate the formation of oxygen defects.

[元素濃度の測定]
実施例2及び比較例1と同一条件でそれぞれ処理を施したチタン金属板をグロー放電分光分析装置にかけて、表面層の元素濃度を測定したところ、図4に示すように比較例1(左:アルカリ処理及び酸処理のみ)では水素及び酸素が0.1μmより浅いところに多く分布し、実施例2(右:アルカリ処理及び酸処理後に窒素加熱処理)では酸素が0.1μmより浅いところに多く分布する一方、窒素が0.1μmより深いところに多く分布していることが判った。
[Measurement of element concentration]
A titanium metal plate treated under the same conditions as in Example 2 and Comparative Example 1 was subjected to a glow discharge spectroscopic analyzer to measure the elemental concentration of the surface layer. As shown in FIG. 4, Comparative Example 1 (left: alkali In the treatment and acid treatment only), hydrogen and oxygen are mostly distributed at a depth of less than 0.1 μm, and in Example 2 (right: nitrogen heat treatment after alkali treatment and acid treatment), oxygen is distributed at a depth of less than 0.1 μm. On the other hand, it was found that a large amount of nitrogen was distributed at a depth deeper than 0.1 μm.

[引っかき強度測定]
株式会社レスカ製のスクラッチ試験機CSR−2000を用いて、緻密質の純チタン金属板をアルカリ処理−酸処理後、および大気、ArあるいはN2中600℃で加熱処理した試料のスクラッチ強度を測定した。測定は、バネ定数200g/mmのスタイラスに試料上で100μmの振幅を与え、100mN/minの荷重を印加しながら、スタイラスを10mm/secの速度で移動させることによって、行った。その結果、図5に示すように、N2雰囲気中で加熱処理することによりスクラッチ強度は、大幅に向上することが分かった。
[Scratch strength measurement]
Using a scratch tester CSR-2000 manufactured by Reska Co., Ltd., measure the scratch strength of a sample obtained by subjecting a dense pure titanium metal plate to alkali treatment-acid treatment and heat treatment at 600 ° C. in air, Ar or N 2. did. The measurement was performed by applying an amplitude of 100 μm on the sample to a stylus having a spring constant of 200 g / mm and moving the stylus at a speed of 10 mm / sec while applying a load of 100 mN / min. As a result, as shown in FIG. 5, it was found that the scratch strength was significantly improved by heat treatment in an N 2 atmosphere.

[窒素導入手段の評価]
実施例1−3及び6、7と同一条件でそれぞれ処理を施したチタン金属板をX線光電子分光分析装置にかけて、試料表面の窒素の電子状態を分析したところ、図6に示すようにプラズマ処理によって、著しく表面の窒素濃度が増すことが判った。
[Evaluation of nitrogen introduction means]
A titanium metal plate treated under the same conditions as in Examples 1-3, 6, and 7 was applied to an X-ray photoelectron spectrometer and analyzed for the electronic state of nitrogen on the sample surface. As shown in FIG. It was found that the surface nitrogen concentration significantly increased.

[触媒固定評価]
大きさが35×10×1mmである以外は実施例2と同一条件でアルカリ−希塩酸−加熱処理した試料をフェロセニルジリン酸(Fc(PO322)のエタノール溶液にアルゴンガス雰囲気下100℃で2日間浸すことにより、表面層にフェロセニルジリン酸を修飾させた。この試料について反射FT−IRを測定したところ、1196cm-1(P=O結合)及び1080cm-1(P−O−Ti結合)の位置にピークが見られた。即ち、触媒が酸化チタンに化学的に固定されていると認められた。
[Catalyst fixation evaluation]
A sample treated with alkali-dilute hydrochloric acid-heat treatment under the same conditions as in Example 2 except that the size was 35 × 10 × 1 mm was added to an ethanol solution of ferrocenyl diphosphate (Fc (PO 3 H 2 ) 2 ) in an argon gas atmosphere. The surface layer was modified with ferrocenyl diphosphate by soaking at 100 ° C. for 2 days. This was measured reflection FT-IR for the sample, 1196cm -1 (P = O bond) and peaks at 1080cm -1 (P-O-Ti bond) was observed. That is, it was recognized that the catalyst was chemically fixed to titanium oxide.

[CV測定]
実施例1と同一条件で処理した試料をフェロセニルジリン酸のエタノール溶液にアルゴンガス雰囲気下100℃で2日間浸すことにより、表面層にフェロセニルジリン酸を修飾させた。
この試料について0Vから1.0V(参照電極:銀/塩化銀、溶媒:ホウ酸緩衝液、pH=7)まで20mV/s、40mV/s、60mV/s、80mV/s及び100mV/sの電位掃引速度でサイクリックボルタモグラムを測定したところ、いずれも繰り返し再現性良くフェロセンの酸化還元に基づく可逆波が見られた。また、掃引速度と酸化波ピーク電流値の関係をプロットしたところ直線的な関係が得られ、これより電極表面上で酸化還元に関与するフェロセニルジリン酸の単位面積当たり修飾量は5.6nmol/cm2と算出された。
[CV measurement]
The sample treated under the same conditions as in Example 1 was immersed in an ethanol solution of ferrocenyl diphosphoric acid at 100 ° C. for 2 days in an argon gas atmosphere to modify the ferrocenyl diphosphoric acid on the surface layer.
Potentials of 20 mV / s, 40 mV / s, 60 mV / s, 80 mV / s and 100 mV / s from 0 V to 1.0 V (reference electrode: silver / silver chloride, solvent: borate buffer, pH = 7) for this sample Cyclic voltammograms were measured at the sweep rate, and all showed reversible waves based on ferrocene redox with good reproducibility. Further, when the relationship between the sweep rate and the oxidation wave peak current value is plotted, a linear relationship is obtained. From this, the modification amount per unit area of ferrocenyl diphosphate involved in redox on the electrode surface is 5.6 nmol. / Cm 2 was calculated.

Claims (12)

チタンもしくはチタン合金からなる基材と、
その基材の表面に形成され、少なくとも酸化チタンの相及び窒化チタンの相からなり、太さ1〜100nmの柱状結晶を含むくし型構造をとる厚さ0.1〜10μmの表面層と
を備えることを特徴とする電極部材。
A substrate made of titanium or a titanium alloy;
And a surface layer having a thickness of 0.1 to 10 μm which is formed on the surface of the substrate and has a comb-like structure including at least a titanium oxide phase and a titanium nitride phase and including columnar crystals having a thickness of 1 to 100 nm. An electrode member.
前記表面層の比抵抗が1.0×10Ωcm以下である請求項1に記載の電極部材。 The electrode member according to claim 1, wherein the specific resistance of the surface layer is 1.0 × 10 6 Ωcm or less. 前記表面層が1〜10000cm/gの比表面積を有する請求項1に記載の電極部材。 The electrode member according to claim 1, wherein the surface layer has a specific surface area of 1 to 10,000 cm 2 / g. 前記表面層が1原子%以上の窒素を含む請求項1に記載の電極部材。   The electrode member according to claim 1, wherein the surface layer contains 1 atomic% or more of nitrogen. 前記基材が気孔径50μm〜3mmの連通孔を有する多孔体であり、前記表面層が前記連通孔の内面に形成されている請求項1に記載の電極部材。   The electrode member according to claim 1, wherein the base material is a porous body having communication holes having a pore diameter of 50 μm to 3 mm, and the surface layer is formed on an inner surface of the communication holes. 請求項1〜5のいずれかに記載の電極部材と、
前記電極部材における表面層に固定された触媒と
を備えることを特徴とする電極。
The electrode member according to any one of claims 1 to 5,
An electrode comprising: a catalyst fixed to a surface layer of the electrode member.
チタンもしくはチタン合金からなる基材をアルカリ性水溶液に浸漬し、次いで水または酸性水溶液に浸漬することにより、基材の表面に水和物でくし型構造をとる表面層を形成するアルカリ−酸処理工程と、
アルカリ−酸処理を経た基材を加熱することにより、前記表面層を脱水させる脱水工程と、
前記表面層を酸素を含まない窒素ガス雰囲気中で加熱及び/又は同雰囲気中でプラズマ処理する導電化工程と
を備えることを特徴とする電極部材の製造方法。
Alkali-acid treatment step of forming a surface layer with a hydrated comb structure on the surface of the substrate by immersing the substrate made of titanium or titanium alloy in an alkaline aqueous solution and then immersing in water or an acidic aqueous solution When,
A dehydration step of dehydrating the surface layer by heating the base material that has undergone the alkali-acid treatment;
A method for producing an electrode member, comprising: a step of heating the surface layer in a nitrogen gas atmosphere not containing oxygen and / or plasma treatment in the same atmosphere.
前記アルカリ水溶液のアルカリ濃度が0.1〜10M、前記酸性水溶液の酸濃度が0.5M以下である請求項7に記載の方法。 The alkali concentration of the alkaline aqueous solution is 0.1 to 10 M, The method of claim 7 acid concentration of said acidic aqueous solution is less than 0.5M. 前記脱水工程における加熱の温度が400℃以上1000℃以下である請求項7に記載の方法。   The method according to claim 7, wherein the heating temperature in the dehydration step is 400 ° C. or higher and 1000 ° C. or lower. 前記脱水工程における加熱を窒素ガスの雰囲気下で行うことにより、前記脱水工程が前記導電化工程を兼ねる請求項7に記載の方法。   The method according to claim 7, wherein the dehydration step also serves as the conductive step by performing heating in the dehydration step in an atmosphere of nitrogen gas. 前記導電化工程における処理がプラズマ処理である請求項7に記載の方法。   The method according to claim 7, wherein the treatment in the conductive step is a plasma treatment. 前記プラズマ処理における出力が10〜1000Wである請求項11に記載の方法。   The method according to claim 11, wherein an output in the plasma treatment is 10 to 1000 W.
JP2011046627A 2011-03-03 2011-03-03 Electrode member and manufacturing method thereof Expired - Fee Related JP5875035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011046627A JP5875035B2 (en) 2011-03-03 2011-03-03 Electrode member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011046627A JP5875035B2 (en) 2011-03-03 2011-03-03 Electrode member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012184458A JP2012184458A (en) 2012-09-27
JP5875035B2 true JP5875035B2 (en) 2016-03-02

Family

ID=47014771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011046627A Expired - Fee Related JP5875035B2 (en) 2011-03-03 2011-03-03 Electrode member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5875035B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6805822B2 (en) * 2016-12-28 2020-12-23 日本製鉄株式会社 Titanium material, separator, cell, and polymer electrolyte fuel cell
JP6805823B2 (en) * 2016-12-28 2020-12-23 日本製鉄株式会社 Titanium material, separator, cell, and polymer electrolyte fuel cell
JP7183158B2 (en) * 2017-06-30 2022-12-05 三井金属鉱業株式会社 Supported catalyst and method for producing the same
WO2019176956A1 (en) * 2018-03-12 2019-09-19 三菱マテリアル株式会社 Titanium base material, method for producing titanium base material, electrode for water electrolysis, and water electrolysis device
WO2019180797A1 (en) 2018-03-19 2019-09-26 東邦チタニウム株式会社 Titanium-based porous body and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117978A (en) * 1975-04-09 1976-10-16 Sekisui Chem Co Ltd Electrode
JPS63162893A (en) * 1986-12-26 1988-07-06 Nkk Corp Insoluble electrode for anode
JPH03252057A (en) * 1990-02-20 1991-11-11 Ebonex Technol Inc Electrochemical cell
JP2768904B2 (en) * 1993-07-21 1998-06-25 古河電気工業株式会社 Oxygen generating electrode
JP3128556B2 (en) * 1996-03-27 2001-01-29 株式会社住友シチックス尼崎 Titanium coloring method
IT1391767B1 (en) * 2008-11-12 2012-01-27 Industrie De Nora Spa ELECTRODE FOR ELECTROLYTIC CELL

Also Published As

Publication number Publication date
JP2012184458A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
Hayat et al. Nickel oxide nano-particles on 3D nickel foam substrate as a non-enzymatic glucose sensor
JP5875035B2 (en) Electrode member and manufacturing method thereof
Yang Pulsed laser deposition of manganese oxide thin films for supercapacitor applications
Paranthaman et al. Investigation on the performance of reduced graphene oxide as counter electrode in dye sensitized solar cell applications
JP3858058B2 (en) Method for producing anatase-type titanium oxide film by anodic electrolytic oxidation treatment
KR101210416B1 (en) Process for producing crystalline titanium oxide coating film through electrolytic anodizing
Serebrennikova et al. Electrochemical behavior of sol‐gel produced Ni and Ni‐Co oxide films
CN103214274B (en) Graphene-supported porous ceramics electro-conductive material and preparation method thereof
Okumura et al. High performance protonic ceramic fuel cells with acid-etched surfaces
Cheng et al. Simultaneous enhancement of actuation strain and mechanical strength of nanoporous Ni–Mn actuators
Sharma et al. Effect of doping on TiO 2 nanotubes based electrochemical sensors: Glucose sensing as a case study
KR101563261B1 (en) Electrochemical method of graphene oxide deposition, graphene oxide deposited substrate made by the same, and electric device including the same
KR101454058B1 (en) Proton conducting membrane and method for producing proton conducting membrane
Abdollahi et al. High‐performance tin‐oxide supercapacitors using hydrazine functionalising assisted by hydrogen plasma treatment
Lobinsky et al. A novel oxidation–reduction route for successive ionic layer deposition of NiO1+ x· nH2O nanolayers and their capacitive performance
KR20150124821A (en) Preparing method of graphite oxide, and graphene-structured material and preparing method thereof
JP6437825B2 (en) Method for producing graphene / silica composite and graphene / silica composite produced by the method
Shafiee et al. Solid molybdenum nitride microdisc electrodes: fabrication, characterisation, and application to the reduction of peroxodisulfate
CN108914148A (en) A kind of preparation method of photoelectrochemical cell light anode
JP6252885B2 (en) Method for producing electrode carrying platinum nanoparticles
RU2760430C1 (en) Method for activating electrodes of electrochemical devices on solid electrolytes
Yamaguchi et al. Preparation of a titanium metal electrode with a nitrogen-doped one-dimensional titanium oxide surface layer for the support of catalysts
KR100926770B1 (en) Platinum-gold alloy thin film having a mesoporous structure by electrochemical deposition and platinum-gold alloy thin film manufactured using the same
Imae Reduction of Graphene Oxide Using an Environmentally Friendly Method and Its Application to Energy-Related Materials. Coatings 2021, 11, 297
Dickinson et al. Fabrication and Characterisation of the First Graphene Ring Micro Electrodes (GRIMEs)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160112

R150 Certificate of patent or registration of utility model

Ref document number: 5875035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees