JP5867219B2 - ハイブリッド車両 - Google Patents

ハイブリッド車両 Download PDF

Info

Publication number
JP5867219B2
JP5867219B2 JP2012067953A JP2012067953A JP5867219B2 JP 5867219 B2 JP5867219 B2 JP 5867219B2 JP 2012067953 A JP2012067953 A JP 2012067953A JP 2012067953 A JP2012067953 A JP 2012067953A JP 5867219 B2 JP5867219 B2 JP 5867219B2
Authority
JP
Japan
Prior art keywords
engine
torque
output
threshold value
hybrid vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012067953A
Other languages
English (en)
Other versions
JP2013199174A (ja
Inventor
竜太 寺谷
竜太 寺谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012067953A priority Critical patent/JP5867219B2/ja
Publication of JP2013199174A publication Critical patent/JP2013199174A/ja
Application granted granted Critical
Publication of JP5867219B2 publication Critical patent/JP5867219B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、内燃機関と電動機とを制御しながら走行するハイブリッド車両に関する。
ハイブリッド車両は、車両を走行させる駆動力を発生する駆動源として、内燃機関と電動機とを搭載している。即ち、ハイブリッド車両は、機関及び電動機の少なくとも一方が発生するトルクを車両の駆動輪に接続された駆動軸に伝達することによって走行する。以下、内燃機関は単に「機関」とも称呼される。
このようなハイブリッド車両は、ユーザのアクセル操作量に応じてハイブリッド車両の駆動軸に要求されるトルク(即ち、ユーザ要求トルク)を決定し、そのユーザ要求トルクと駆動軸の回転速度(即ち、車速相当値)との積に応じる値に基づいてユーザ要求出力を決定する。次いで、ハイブリッド車両は、そのユーザ要求出力に基づいて機関要求出力を算出し、その機関要求出力を機関から出力させる。このとき、機関が最も効率良く運転され得る状態となるように機関出力トルクTeと機関回転速度Neとが決定される。即ち、ハイブリッド車両は、機関が最も効率良く運転され得る状態となるように機関の運転状態(機関出力トルクTe及び機関回転速度Ne)を調整しながら、機関要求出力と等しい出力を機関から出力させる。そして、その機関出力トルクTeに基づくトルクが駆動軸に作用したときにユーザ要求トルクに対して不足するトルクを電動機が出力するトルクによって補うように電動機を駆動する。
更に、ハイブリッド車両は、機関の運転を間欠的に停止する間欠運転を行う。例えば、ハイブリッド車両は、機関要求出力が機関停止閾値よりも小さく、従って、機関を効率良く運転できない場合、機関の運転を停止する。更に、ハイブリッド車両は、機関の運転停止中に機関要求出力が機関始動閾値よりも大きくなり、従って、機関を効率良く運転できる場合、機関の運転を開始する。
ところが、このような間欠運転を行うハイブリッド車両において、機関が停止している場合にユーザがアクセル操作量を頻繁に変更すると(例えば、アクセル操作量を増大しその後直ちに減少させる操作等を行うと)、機関は一旦始動されるが、その後直ちに停止される。この場合、機関が運転されている期間において機関が行う仕事量は極めて小さい。一方、機関の始動のために燃料及び電力が消費される。その結果、ハイブリッド車両の燃費が間欠運転によって却って悪化する場合が生じる。
そこで、従来のハイブリッド車両は、車速が低下している場合にアクセル操作量が増大された場合或いは車速が一定又は増大している場合にアクセル操作量が減少された場合(即ち、開度変化条件が成立した場合)、その時点から一定時間が経過するまで、機関が運転中であれば機関を自立運転状態に維持して継続的に運転し、機関が停止中であれば機関の運転停止状態を維持する(例えば、特許文献1を参照。)。
特開2010−234872号公報
上記従来のハイブリッド車両によれば、例えば、機関が停止中であるときに開度変化条件が成立すると、その時点から一定時間が経過するまで機関は始動されない。従って、機関停止中にユーザが急な加速を希望してアクセル操作量を大きい値にまで増大した場合、或いは、ユーザが継続的な加速を希望してアクセル操作量を比較的大きい値に維持している場合であっても、一定時間が経過するまで機関が始動されないので、ハイブリッド車両を十分に加速できない可能性がある。
また、上記従来のハイブリッド車両によれば、例えば、機関が運転中であるときに開度変化条件が成立すると、その時点から一定時間が経過するまで機関は停止されない。従って、機関運転中にユーザがアクセル操作量を「0」にまで戻したときであっても、機関の運転が不必要に継続され、結果として燃費が悪化する可能性がある。
本発明は上述した課題に対処するためになされた。即ち、本発明の目的の一つは、ユーザがアクセル操作量を短時間だけ僅かに増大するような運転を行った場合に機関が始動されることを回避しつつ、ユーザが真に加速を要求している場合には機関を始動させ、機関の出力によりユーザの加速要求を満たすことが可能なハイブリッド車両を提供することにある。
本発明によるハイブリッド車両は、内燃機関と、電動機と、車両の駆動軸と前記機関とをトルク伝達可能に連結するとともに同駆動軸と前記電動機とをトルク伝達可能に連結する動力伝達機構と、制御装置と、を備える。
前記制御装置は、
前記機関の運転停止中にユーザのアクセル操作量に応じて定まる機関要求出力が機関始動閾値よりも大きくなったとき前記機関の運転を開始し、前記機関の運転中に前記機関要求出力が機関停止閾値よりも小さくなったとき前記機関の運転を停止する間欠運転を実行しながら、前記ユーザのアクセル操作量に応じて定まる前記駆動軸に要求されるトルクであるユーザ要求トルクに等しいトルクを前記機関の出力トルクと前記電動機の出力トルクとを制御することにより同駆動軸に作用させる。
更に、前記制御装置は、
前記機関が停止している場合、前記アクセル操作量がゼロでない状態の継続時間が長いほど前記機関始動閾値が小さくなるように同機関始動閾値を設定するように構成されている。
これによれば、機関が停止している場合、ユーザがアクセル操作量をゼロから僅かに増大させた直後においては、アクセル操作量がゼロでない状態の継続時間が短いので、機関始動閾値は比較的大きい値に設定される。従って、ユーザがその後直ちにアクセル操作量をゼロに戻した場合には、ユーザのアクセル操作量に応じて定まる機関要求出力は機関始動閾値よりも大きくならない。その結果、機関は始動されず、停止状態を維持するので、機関の始動のために燃料及び電力が消費されない。従って、燃費が悪化しない。
一方、機関が停止している場合、ユーザがアクセル操作量をゼロから大きく増大させたときには、ユーザのアクセル操作量に応じて定まる機関要求出力が機関始動閾値よりも大きくなる。その結果、機関が直ちに始動され、機関の出力が車両の加速に使用される。その結果、ユーザの加速要求を満たすことができる。
他方、機関が停止している場合、ユーザがアクセル操作量をゼロから僅かに増大させた状態を維持していると、アクセル操作量がゼロでない状態の継続時間が長くなる。従って、機関始動閾値が次第に低下するので、この状態がある程度続いた時点にて機関は始動される。その結果、ユーザが継続的な加速を望んでいる場合には機関の出力をその加速要求を満たすために使用することができる。
本発明のハイブリッド車両において、
前記制御装置は、
前記機関が運転されている場合、前記機関が運転されている状態の継続時間が長いほど前記機関停止閾値が大きくなるように同機関停止閾値を設定するように構成されることが好適である。
これによれば、機関が始動された直後においては、機関の運転継続時間が短いので、機関停止閾値は小さい。よって、ユーザが大きくアクセル操作量を減少させない限り、機関の運転は停止されない。その結果、機関の停止及び始動が頻繁に繰り返されることを回避することができる。即ち、機関が短時間だけ運転されることによる燃費の悪化を防止することができる。
本発明の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の各実施形態についての説明から容易に理解されるであろう。
図1は、本発明の実施形態に係るハイブリッド車両の概略図である。 図2は、図1に示したパワーマネジメントECUのCPUが実行するルーチンを示したフローチャートである。 図3は、アクセル操作量及び車速と、ユーザ要求トルクと、の関係を示したグラフである。 図4は、図1に示したパワーマネジメントECUのCPUが参照する機関始動閾値のルックアップテーブル(マップ)である。 図5は、機関回転速度及び機関出力トルクと、最適機関動作ラインと、の関係を示したグラフである。 図6は、ハイブリッド車両の走行中における遊星歯車装置の共線図である。 図7は、図1に示したパワーマネジメントECUのCPUが参照する機関始動閾値のルックアップテーブル(マップ)である。
以下、本発明の実施形態に係るハイブリッド車両について図面を参照しながら説明する。
<第1実施形態>
(構成)
図1に示したように、本発明の第1実施形態に係るハイブリッド車両10は、第1発電電動機MG1、第2発電電動機MG2、内燃機関20、動力分配機構30、駆動力伝達機構50、第1インバータ61、第2インバータ62、昇圧コンバータ63、蓄電装置としてのバッテリ64、パワーマネジメントECU70、バッテリECU71、モータECU72及びエンジンECU73等を備えている。
ECUは、エレクトリックコントロールユニットの略称であり、CPU、ROM、RAM、バックアップRAM(又は不揮発性メモリ)及びインターフェース等を含むマイクロコンピュータを主要構成部品として有する電子制御回路である。バックアップRAMは車両10の図示しないイグニッション・キー・スイッチがオン状態にあるかオフ状態にあるかに関わらずデータを保持することができる。
第1発電電動機(モータジェネレータ)MG1は、発電機及び電動機の何れとしても機能することができる同期発電電動機である。第1発電電動機MG1は本例において主として発電機としての機能を発揮する。第1発電電動機MG1は、出力軸としての第1シャフト41を備えている。
第2発電電動機(モータジェネレータ)MG2は、第1発電電動機MG1と同様、発電機及び電動機の何れとしても機能することができる同期発電電動機である。第2発電電動機MG2は本例において主として電動機としての機能を発揮する。第2発電電動機MG2は、出力軸としての第2シャフト42を備えている。
機関20は、4サイクル・火花点火式・多気筒・内燃機関である。機関20は、吸気管及びインテークマニホールドを含む吸気通路部21、スロットル弁22、スロットル弁アクチュエータ22a、複数の燃料噴射弁23、点火プラグを含む複数の点火装置24、機関20の出力軸であるクランクシャフト25、エキゾーストマニホールド26、排気管27、上流側の三元触媒28及び下流側の三元触媒29を含んでいる。なお、機関20は図示しない可変吸気弁制御装置(VVT)を備えていてもよい。
スロットル弁22は吸気通路部21に回転可能に支持されている。
スロットル弁アクチュエータ22aはエンジンECU73からの指示信号に応答してスロットル弁22を回転し、吸気通路部21の通路断面積を変更できるようになっている。
燃料噴射弁23のそれぞれは、各気筒に対応するように各気筒のインテークポートに配設され、エンジンECU73からの指示信号に応答して燃料噴射量を変更できるようになっている。
点火プラグを含む点火装置24のそれぞれは、エンジンECU73からの指示信号に応答して点火用火花を各気筒の燃焼室内において所定のタイミングにて発生するようになっている。
上流側の三元触媒28は、排気浄化用触媒であり、エキゾーストマニホールド26の排気集合部に配設されている。即ち、触媒28は機関20の排気通路に設けられている。三元触媒は、機関20から排出される未燃物(HC,CO等)及びNOxを同時に浄化する。
下流側の三元触媒29は、排気浄化用触媒であり、エキゾーストマニホールド26の排気集合部に接続された排気管27に設けられている。
機関20は、燃料噴射量を変更すること、及び、スロットル弁アクチュエータ22aによりスロットル弁22の開度を変更することによって吸入空気量を変更すること等により、機関20の発生するトルク及び機関回転速度(従って、機関出力)を変更することができる。
動力分配機構30は周知の遊星歯車装置31を備えている。遊星歯車装置31はサンギア32と、複数のプラネタリギア33と、リングギア34と、を含んでいる。
サンギア32は第1発電電動機MG1の第1シャフト41に接続されている。従って、第1発電電動機MG1はサンギア32にトルクを出力することができる。更に、第1発電電動機MG1は、サンギア32から第1発電電動機MG1(第1シャフト41)に入力されるトルクによって回転駆動され得る。第1発電電動機MG1は、サンギア32から第1発電電動機MG1に入力されるトルクによって回転駆動されることにより発電することができる。
複数のプラネタリギア33のそれぞれは、サンギア32と噛合するとともにリングギア34と噛合している。プラネタリギア33の回転軸(自転軸)はプラネタリキャリア35に設けられている。プラネタリキャリア35はサンギア32と同軸に回転可能となるように保持されている。従って、プラネタリギア33は、サンギア32の外周を自転しながら公転することができる。プラネタリキャリア35は機関20のクランクシャフト25に接続されている。よって、プラネタリギア33は、クランクシャフト25からプラネタリキャリア35に入力されるトルクによって回転駆動され得る。
リングギア34は、サンギア32と同軸に回転可能となるように保持されている。
上述したように、プラネタリギア33はサンギア32及びリングギア34と噛合している。従って、プラネタリギア33からサンギア32にトルクが入力されたときには、そのトルクによってサンギア32が回転駆動される。プラネタリギア33からリングギア34にトルクが入力されたときには、そのトルクによってリングギア34が回転駆動される。逆に、サンギア32からプラネタリギア33にトルクが入力されたときには、そのトルクによってプラネタリギア33が回転駆動される。リングギア34からプラネタリギア33にトルクが入力されたときには、そのトルクによってプラネタリギア33が回転駆動される。
リングギア34はリングギアキャリア36を介して第2発電電動機MG2の第2シャフト42に接続されている。従って、第2発電電動機MG2はリングギア34にトルクを出力することができる。更に、第2発電電動機MG2は、リングギア34から第2発電電動機MG2(第2シャフト42)に入力されるトルクによって回転駆動され得る。第2発電電動機MG2は、リングギア34から第2発電電動機MG2に入力されるトルクによって回転駆動されることにより、発電することができる。
更に、リングギア34はリングギアキャリア36を介して出力ギア37に接続されている。従って、出力ギア37は、リングギア34から出力ギア37に入力されるトルクによって回転駆動され得る。リングギア34は、出力ギア37からリングギア34に入力されるトルクによって回転駆動され得る。
駆動力伝達機構50は、ギア列51、ディファレンシャルギア52及び駆動軸(ドライブシャフト)53を含んでいる。
ギア列51は、出力ギア37とディファレンシャルギア52とを動力伝達可能に歯車機構により接続している。ディファレンシャルギア52は駆動軸53に取り付けられている。駆動軸53の両端には駆動輪54が取り付けられている。従って、出力ギア37からのトルクはギア列51、ディファレンシャルギア52、及び、駆動軸53を介して駆動輪54に伝達される。この駆動輪54に伝達されたトルクによりハイブリッド車両10は走行することができる。
第1インバータ61は、第1発電電動機MG1及び昇圧コンバータ63に電気的に接続されている。従って、第1発電電動機MG1が発電しているとき、第1発電電動機MG1が発生した電力は、第1インバータ61及び昇圧コンバータ63を介してバッテリ64に供給される。逆に、第1発電電動機MG1は昇圧コンバータ63及び第1インバータ61を介してバッテリ64から供給される電力によって回転駆動させられる。
第2インバータ62は、第2発電電動機MG2及び昇圧コンバータ63に電気的に接続されている。従って、第2発電電動機MG2が発電しているとき、第2発電電動機MG2が発生した電力は、第2インバータ62及び昇圧コンバータ63を介してバッテリ64に供給される。逆に、第2発電電動機MG2は昇圧コンバータ63及び第2インバータ62を介してバッテリ64から供給される電力によって回転駆動させられる。
更に、第1発電電動機MG1の発生する電力は第2発電電動機MG2に直接供給可能であり、且つ、第2発電電動機MG2の発生する電力は第1発電電動機MG1に直接供給可能である。
バッテリ64は、本例においてリチウムイオン電池である。但し、バッテリ64は放電及び充電が可能な蓄電装置であればよく、ニッケル水素電池及び他の二次電池であってもよい。
パワーマネジメントECU70(以下、「PMECU70」と表記する。)は、バッテリECU71、モータECU72及びエンジンECU73と通信により情報交換可能に接続されている。
PMECU70は、パワースイッチ81、シフトポジションセンサ82、アクセル操作量センサ83、ブレーキスイッチ84及び車速センサ85等と接続され、これらのセンサ類が発生する出力信号を入力するようになっている。
パワースイッチ81はハイブリッド車両10のシステム起動用スイッチである。PMECU70は、何れも図示しない車両キーがキースロットに挿入され且つブレーキペダルが踏み込まれているときにパワースイッチ81が操作されると、システムを起動する(Ready−On状態となる)ように構成されている。
シフトポジションセンサ82は、ハイブリッド車両10の運転席近傍に運転者により操作可能に設けられた図示しないシフトレバーによって選択されているシフトポジションを表す信号を発生するようになっている。シフトポジションは、P(パーキングポジション)、R(後進ポジション)、N(ニュートラルポジション)及びD(走行ポジション)を含む。
アクセル操作量センサ83は、運転者により操作可能に設けられた図示しないアクセルペダルの操作量(アクセル操作量AP)を表す出力信号を発生するようになっている。アクセル操作量APは加速操作量と表現することもできる。アクセルペダルが操作されていないとき、アクセル操作量APはゼロ(「0」)である。
ブレーキスイッチ84は、運転者により操作可能に設けられた図示しないブレーキペダルが操作されたときに、ブレーキペダルが操作された状態にあることを示す出力信号を発生するようになっている。
車速センサ85は、ハイブリッド車両10の車速SPDを表す出力信号を発生するようになっている。
PMECU70は、バッテリECU71により算出されるバッテリ64の残容量SOC(State Of Charge)を入力するようになっている。この残容量SOCはバッテリ64の残容量に相関を有するパラメータであるので、残容量関連パラメータとも称呼される。残容量SOCは、バッテリ64に流出入する電流の積算値等に基づいて周知の手法により算出される。
PMECU70は、更に、バッテリECU71により算出されるバッテリ64の瞬時出力Wout(単位はW)を入力するようになっている。瞬時出力Woutはバッテリ瞬時出力Woutとも称呼される。バッテリ瞬時出力Woutは、バッテリ64が単位時間あたりに出力することができる電力の上限値である。バッテリ瞬時出力Woutは残容量SOCと相関を有し、残容量SOCが所定値(例えば、40%)以上であるとき略一定値となり、残容量SOCが所定値未満であるとき残容量SOCが小さくなるほど小さくなる。
PMECU70は、モータECU72を介して、第1発電電動機MG1の回転速度(以下、「MG1回転速度Nm1」と称呼する。)を表す信号及び第2発電電動機MG2の回転速度(以下、「MG2回転速度Nm2」と称呼する。)を表す信号を入力するようになっている。
なお、MG1回転速度Nm1は、モータECU72によって「第1発電電動機MG1に設けられ且つ第1発電電動機MG1のロータの回転角度に対応する出力値を出力するレゾルバ96の出力値」に基づいて算出されている。同様に、MG2回転速度Nm2は、モータECU72によって「第2発電電動機MG2に設けられ且つ第2発電電動機MG2のロータの回転角度に対応する出力値を出力するレゾルバ97の出力値」に基づいて算出されている。
PMECU70は、エンジンECU73を介して、エンジン状態を表す種々の出力信号を入力するようになっている。このエンジン状態を表す出力信号には、機関回転速度Ne、スロットル弁開度TA及び機関の冷却水温THW等が含まれている。
モータECU72は、第1インバータ61、第2インバータ62及び昇圧コンバータ63に接続されている。モータEC72は、PMECU80からの指令(後述する「MG1指令トルクTm1*及びMG2指令トルクTm2*)に基づいて、これらに指示信号を送出するようになっている。これにより、モータECU72は、第1インバータ61及び昇圧コンバータ63を用いて第1発電電動機MG1を制御し、且つ、第2インバータ62及び昇圧コンバータ63を用いて第2発電電動機MG2を制御するようになっている。
エンジンECU73は、エンジンアクチュエータである「スロットル弁アクチュエータ22a、燃料噴射弁23及び点火装置24等」と接続されていて、これらに指示信号を送出するようになっている。更に、エンジンECU73は、エアフローメータ91、スロットル弁開度センサ92、冷却水温センサ93、機関回転速度センサ94及び空燃比センサ95等と接続されていて、これらの発生する出力信号を取得するようになっている。
エアフローメータ91は、機関20に吸入される単位時間あたりの空気量を計測し、その空気量(吸入空気流量)Gaを表す信号を出力するようになっている。
スロットル弁開度センサ92は、スロットル弁22の開度(スロットル弁開度)を検出し、その検出したスロットル弁開度TAを表す信号を出力するようになっている。
冷却水温センサ93は、機関20の冷却水の温度を検出し、その検出した冷却水温THWを表す信号を出力するようになっている。この冷却水温THWは、触媒28の温度に強い相関を有するパラメータであり、触媒温度パラメータとも称呼される。
機関回転速度センサ94は、機関20のクランクシャフト25が所定角度だけ回転する毎にパルス信号を発生するようになっている。エンジンECU73は、このパルス信号に基づいて機関回転速度Neを取得するようになっている。
空燃比センサ95は、エキゾーストマニホールド26の排気集合部であって、上流側の三元触媒28よりも上流位置に配設されている。空燃比センサ95は、所謂「限界電流式広域空燃比センサ」である。空燃比センサ95は排ガスの空燃比を検出し、その検出した排ガスの空燃比(検出空燃比)abyfsを出力するようになっている。なお、検出空燃比abyfsは排ガスの空燃比が大きくなる(リーンになる)ほど大きくなる。
エンジンECU73は、これらのセンサ等から取得される信号及びPMECU70からの指令に基づいて「スロットル弁アクチュエータ22a、燃料噴射弁23及び点火装置24(更には、図示しない可変吸気弁制御装置)」に指示信号を送出することにより、機関20を制御するようになっている。なお、機関20には図示しないカムポジションセンサが設けられている。エンジンECU73は、機関回転速度センサ94及びカムポジションセンサからの信号に基いて、特定の気筒の吸気上死点を基準とした機関20のクランク角度(絶対クランク角)を取得するようになっている。
(作動:駆動制御)
次に、ハイブリッド車両10の作動について説明する。なお、以下に述べる処理は「PMECU70のCPU及びエンジンECU73のCPU」により実行される。但し、以下においては、記載を簡素化するため、PMECU70のCPUを「PM」と表記し、且つ、エンジンECU73のCPUを「EG」と表記する。
PM及びEGは互いに協調しながら、第1発電電動機MG1、第2発電電動機MG2及び機関20の運転を制御してハイブリッド車両10を走行させる。後述するように、機関20の始動条件(運転開始条件)及び運転停止条件を可変とする点を除き、これらの制御は、例えば、特開2009−126450号公報(米国公開特許番号 US2010/0241297)、及び、特開平9−308012号公報(米国出願日1997年3月10日の米国特許第6,131,680号)等に詳細に記載されている。これらは、参照することにより本願明細書に組み込まれる。
PMは、シフトポジションが走行ポジションにある場合、所定時間が経過する毎に図2にフローチャートにより示した「駆動制御ルーチン」を実行するようになっている。従って、所定のタイミングになると、PMは図2のステップ200から処理を開始し、以下に述べるステップ205乃至ステップ220の処理を順に行う。
ステップ205:PMは、アクセル操作量APと車速SPDとに基づいてリングギア要求トルクTr*を取得する。更に、PMは、リングギア要求トルクTr*に基づいてユーザ要求出力Pr*を決定する。
より具体的に述べると、駆動軸53に作用するトルク(駆動軸トルク)とリングギア34の回転軸に作用するトルクとは比例関係にある。従って、ユーザがハイブリッド車両10の走行のために要求しているユーザ要求トルクTu*とリングギア要求トルクTr*とは比例関係にある。
そこで、PMは図3に示した「アクセル操作量AP及び車速SPDと、ユーザ要求トルクTu*と、の間の関係」を「アクセル操作量AP及び車速SPDと、リングギア要求トルクTr*と、の間の関係」に変換したテーブルをトルクマップMapTr*(AP,SPD)としてROM内に記憶している。そして、PMは、そのトルクマップMapTr*(AP,SPD)に現時点の「アクセル操作量AP及び車速SPD」を適用することにより、リングギア要求トルクTr*を取得する。このように、ユーザ要求トルクTu*はユーザのアクセル操作量APに応じて定まる「駆動軸53に要求されるトルク(車両要求駆動力)」であり、リングギア要求トルクTr*もユーザのアクセル操作量APに応じて定まる要求トルクである。
一方、駆動軸53に要求されている出力(パワー)は、ユーザ要求トルクTu*と実際の車速SPDとの積(Tu*・SPD)に等しい。この積(Tu*・SPD)はリングギア要求トルクTr*とリングギア34の回転速度Nrとの積(Tr*・Nr)に等しい。従って、以下、積(Tr*・Nr)を「ユーザ要求出力Pr*」と称呼する。即ち、ユーザ要求出力Pr*は、ユーザ要求トルクTu*に基づいて決定される出力である。
ステップ210:PMは、残容量SOCに基づいてバッテリ充電要求出力Pb*を取得する。バッテリ充電要求出力Pb*は、残容量SOCを所定の残容量中心値SOCcent近傍に維持するためにバッテリ63を充電すべき電力又はバッテリ63から放電すべき電力に応じた値である。
ステップ215:PMは、ユーザ要求出力Pr*とバッテリ充電要求出力Pb*との和に損失Plossを加えた値(Pr*+Pb*+Ploss)を機関要求出力Pe*として取得する。機関要求出力Pe*は機関20に要求される出力である。
ステップ220:PMは、機関20の運転の運転が停止しているか否か(機関運転停止中であるか否か)を判定する。
(ケース1:機関20の運転が停止している場合)
いま、機関20の運転が停止していると仮定する。この場合、PMはステップ220にて「Yes」と判定してステップ225に進み、機関始動閾値Peonthを算出する。より具体的に述べると、PMECU70は、図4に示した「車速SPD及びアクセルペダルON時間Taconと、機関始動閾値Peonthと、の関係を規定したルックアップテーブルMapPeonth(SPD,Tacon)」をROM内に記憶している。アクセルペダルON時間Taconは、アクセルペダルが踏み込まれている状態、即ち、アクセル操作量APが「0」ではない状態の継続時間である。PMは、アクセルペダルON時間Taconを図示しないルーチンにより別途取得している。
PMは、実際の車速SPDとアクセルペダルON時間Taconとを図4に示したテーブルMapPeonth(SPD,Tacon)に適用することにより機関始動閾値Peonthを取得する。このテーブルMapPeonth(SPD,Tacon)によれば、機関始動閾値Peonthは、アクセルペダルON時間Taconが短いほど大きくなるように決定される。換言すると、機関始動閾値Peonthは、アクセルペダルON時間Taconが長いほど小さくなるように決定される。
更に、このテーブルMapPeonth(SPD,Tacon)によれば、機関始動閾値Peonthは、車速SPDが高いほど小さくなるように決定される。但し、機関始動閾値Peonthは、車速SPDが高くなるにつれて増大されたり減少されたりしてもよい。
次に、PMは図2のステップ230に進み、機関要求出力Pe*が「ステップ225にて決定された機関始動閾値Peonth」よりも大きいか否かを判定する。
機関要求出力Pe*が機関始動閾値Peonthよりも大きい場合、PMはステップ230にて「Yes」と判定してステップ235に進み、機関20の運転を開始する指示(始動指示)をエンジンECU73に送信する。エンジンECU73はこの指示に基づいて機関20を始動させる。従って、機関要求出力Pe*が機関始動閾値Peonthよりも大きいとの条件は機関始動条件である。その後、PMは、以下に述べるステップ240乃至ステップ265の処理を順に行い、ステップ295に進んで本ルーチンを一旦終了する。
ステップ240:PMは、機関要求出力Pe*と等しい出力が機関20から出力され、且つ、機関20の運転効率が最良となるように機関20を運転する。即ち、PMは、機関要求出力Pe*に応じた最適機関動作点に基づいて目標機関出力トルクTe*及び目標機関回転速度Ne*を決定する。
より具体的に述べると、ある出力をクランクシャフト25から出力させたとき機関20の運転効率(燃費)が最良となる機関動作点が各出力毎に最適機関動作点として実験等により予め求められている。これらの最適機関動作点を、機関出力トルクTeと機関回転速度Neとによって規定されるグラフ上にプロットし、更に、これらのプロットを結ぶことによって形成されるラインが最適機関動作ラインとして求められる。このようにして求められる最適機関動作ラインが図5に実線Loptにより示されている。図5において、破線により示されている複数のラインC0〜C5のそれぞれは、同じ出力をクランクシャフト25から出力させることができる機関動作点を結んだライン(等出力ライン)である。
PMは、機関要求出力Pe*と等しい出力が得られる最適機関動作点を検索し、その検索された最適動作点に対応する「機関出力トルクTe及び機関回転速度Ne」を「目標機関出力トルクTe*及び目標機関回転速度Ne*」のそれぞれとして決定する。例えば、機関要求出力Pe*が図5のラインC2に対応する出力と等しい場合、ラインC2と実線Loptとの交点P1に対する機関出力トルクTe1が目標機関出力トルクTe*として決定され、交点P1に対する機関回転速度Ne1が目標機関回転速度Ne*として決定される。
ステップ245:PMは、下記(1)式に、リングギア34の回転速度Nrとして「回転速度Nrと等しい第2MG回転速度Nm2」を代入するとともに、機関回転速度Neとして目標機関回転速度Ne*を代入することにより、「サンギア32の目標回転速度Ns*と等しいMG1目標回転速度Nm1*」を算出する。

Ns=Nr−(Nr−Ne)・(1+ρ)/ρ …(1)
(Nm1*=Nm2−(Nm2−Ne*)・(1+ρ)/ρ)
上記(1)式において、「ρ」は下記の(2)式により定義される値である。即ち、「ρ」は、リングギア34の歯数に対するサンギア32の歯数である。

ρ=(サンギア32の歯数/リングギア34の歯数) …(2)
ここで、上記(1)式の根拠について簡単に説明する。遊星歯車装置31における各ギアの回転速度の関係は図6に示した周知の共線図により表される。共線図に示される直線は動作共線Lと称呼される。この共線図から理解されるように、リングギア34の回転速度Nrとサンギア32の回転速度Nsとの差(Nr−Ns)に対する機関回転速度Neとサンギア32の回転速度Nsとの差(Ne−Ns)の比(=(Ne−Ns)/(Nr−Ns))は、値(1+ρ)に対する1の比(=1/(1+ρ))に等しい。この比例関係に基づいて上記(1)式が導かれる。
更に、PMは図2のステップ245にて、下記(3)式に従って第1発電電動機MG1に出力させるべきトルクであるMG1指令トルクTm1*を算出する。(3)式において、値PID(Nm1*−Nm1)は「MG1目標回転速度Nm1*と第1発電電動機MG1の実際の回転速度Nm1」との差に応じたフィードバック量である。即ち、値PID(Nm1*−Nm1)は、実際の回転速度Nm1をMG1目標回転速度Nm1*に一致させるためのフィードバック量である。

Tm1*=Te*・(ρ/(1+ρ))+PID(Nm1*−Nm1) …(3)
ここで、上記(3)式の根拠について説明する。クランクシャフト25に目標機関出力トルクTe*と等しいトルクが発生させられている場合(即ち、機関出力トルクがTe*である場合)、この機関出力トルクTe*は遊星歯車装置31によりトルク変換される。その結果、機関出力トルクTe*は、サンギア32の回転軸に下記(4)式により表されるトルクTesとなって作用し、リングギア34の回転軸に下記(5)式により表されるトルクTerとなって作用する。

Tes=Te*・(ρ/(1+ρ)) …(4)

Ter=Te*・(1/(1+ρ)) …(5)
動作共線が安定であるためには動作共線の力の釣り合いをとればよい。従って、図6に示したように、サンギア32の回転軸には上記(4)式により求められるトルクTesと大きさが同じで向きが反対のトルクTm1を作用させ、且つ、リングギア34の回転軸には下記の(6)式により表されるトルクTm2を作用させればよい。即ち、トルクTm2は、リングギア要求トルクTr*に対するトルクTerの不足分と等しい。このトルクTm2が、後述する図2のステップ250にてMG2指令トルクTm2*として採用される。

Tm2=Tr*−Ter …(6)
一方、サンギア32が目標回転速度Ns*にて回転すれば(即ち、第1発電電動機MG1の実際の回転速度Nm1がMG1目標回転速度Nm1*に一致すれば)、機関回転速度Neは目標機関回転速度Ne*に一致する。以上から、MG1指令トルクTm1*は上記(3)式により求められる。
ステップ250:PMは、上記(5)式及び上記(6)式に従って、第2発電電動機MG2に出力させるべきトルクであるMG2指令トルクTm2*を算出する。なお、PMは、下記の(7)式に基づいて、MG2指令トルクTm2*を決定してもよい。

Tm2*=Tr*−Tm1*/ρ …(7)
ステップ255:PMは、機関20が最適機関動作点にて運転されるように(換言すると、機関出力トルクが目標機関出力トルクTe*となるように)、EGに指令信号を送出する。これにより、EGは、スロットル弁アクチュエータ22aによりスロットル弁22の開度を変更するとともに、それに応じて燃料噴射量を変更し、機関出力トルクTeが目標機関出力トルクTe*となるように機関20を制御する。
ステップ260:PMは、MG1指令トルクTm1*をモータECU72に送信する。モータECU72は、第1発電電動機MG1の発生トルクがMG1指令トルクTm1*に一致するように第1インバータ61及び昇圧コンバータ63を制御する。
ステップ265:PMは、MG2指令トルクTm2*をモータECU72に送信する。モータECU72は、第2発電電動機MG2の発生トルクがMG2指令トルクTm2*に一致するように第2インバータ62及び昇圧コンバータ63を制御する。
以上の処理により、リングギア34にはリングギア要求トルクTr*と等しいトルクが機関20及び第2発電電動機MG2によって作用させられる。更に、残容量SOCが所定値SOCLothよりも小さい場合、機関20の発生する出力はバッテリ充電要求出力Pb*だけ増大させられる。従って、トルクTerは大きくなるので、上記(6)式から理解されるように、MG2指令トルクTm2*は小さくなる。その結果、第1発電電動機MG1が発電する電力のうち第2発電電動機MG2にて消費される電力が少なくなるので、第1発電電動機MG1が発電する余剰の電力(第2発電電動機MG2によって消費されない電力)によってバッテリ64が充電される。
これに対し、PMがステップ230の処理を実行する時点において、機関要求出力Pe*が機関始動閾値Peonth以下であると、PMはそのステップ230にて「No」と判定してステップ270に進み、MG1指令トルクTm1*を「0」に設定する。次いで、PMはステップ275に進んでMG2指令トルクTM2*にリングギア要求トルクTr*を設定する。その後、PMは前述したステップ260及びステップ265の処理を実行する。この結果、機関20は始動されず(運転停止状態を維持し)、且つ、ユーザ要求トルクTu*は第2発電電動機MG2の発生するトルクのみによって満足される。
(ケース2:機関20の運転が停止していない場合)
いま、機関20が運転中であると仮定する。この場合、PMはステップ220にて「No」と判定してステップ280に進み、機関停止閾値Peoffthを算出する。より具体的に述べると、PMECU70は、図7に示した「車速SPD及び機関運転時間(機関運転継続時間)Tegonと、機関停止閾値Peoffthと、の関係を規定したルックアップテーブルMapPeoffth(SPD,Tegon)」をROM内に記憶している。機関運転時間Tegonは、機関20の運転継続時間(機関20が始動されてから運転を継続している時間)である。PMは、機関運転時間Tegonを図示しないルーチンにより別途取得している。
PMは、実際の車速SPDと機関運転時間Tegonとを図7に示したテーブルMapPeoffth(SPD,Tegon)に適用することにより機関停止閾値Peoffthを取得する。このテーブルMapPeoffth(SPD,Tegon)によれば、機関停止閾値Peoffthは、機関運転時間Tegonが長いほど大きくなるように決定される。換言すると、機関停止閾値Peoffthは、機関運転時間Tegonが短いほど小さくなるように決定される。
更に、このテーブルMapPeoffth(SPD,Tegon)によれば、機関停止閾値Peoffthは、車速SPDが高いほど小さくなるように決定される。但し、機関停止閾値Peoffthは、車速SPDが高くなるにつれて増大されたり減少されたりしてもよい。
次に、PMは図2のステップ285に進み、機関要求出力Pe*が「ステップ280にて決定された機関停止閾値Peoffth」よりも小さいか否かを判定する。
機関要求出力Pe*が機関停止閾値Peoffthよりも小さい場合、PMはステップ285にて「Yes」と判定してステップ290に進み、機関20の運転を停止する指示(運転停止指示)をエンジンECU73に送信する。エンジンECU73はこの指示に基づいて機関20の運転を停止する。従って、機関要求出力Pe*が機関停止閾値Peoffthよりも小さいとの条件は機関停止条件である。その後、PMは、ステップ270、ステップ275、ステップ260及びステップ265の処理を行い、ステップ295に進んで本ルーチンを一旦終了する。
この結果、機関20の運転が停止され、且つ、ユーザ要求トルクTu*は第2発電電動機MG2の発生するトルクのみによって満足される。
これに対し、PMがステップ285の処理を実行する時点において、機関要求出力Pe*が機関停止閾値Peoffth以上であると、PMはステップ285にて「No」と判定し、ステップ240乃至ステップ265の処理を順に行う。この結果、機関20の運転が継続され、且つ、ユーザ要求出力Pr*は機関20及び第2発電電動機MG2の発生するトルクにより満足される。
以上、説明したように、本発明の実施形態に係るハイブリッド車両10は、
内燃機関20と、
電動機(第2発電電動機MG2)と、
前記電動機を駆動する電力を同電動機に供給可能な蓄電装置(バッテリ64)と、
前記蓄電装置を充電する電力を前記機関20の出力を用いて発生可能な発電機(第1発電電動機MG1)と、
車両の駆動軸53と前記機関20とをトルク伝達可能に連結するとともに同駆動軸53と前記電動機(第2発電電動機MG2)とをトルク伝達可能に連結する動力伝達機構(30、50)と、
制御装置(PMECU70、モータECU72及びエンジンECU73等)と、
を備える。
更に、その制御装置は、
機関20の運転停止中にユーザのアクセル操作量APに応じて定まる機関要求出力Pe*(図2のステップ205乃至ステップ215を参照。)が機関始動閾値Peonthよりも大きくなったとき機関20の運転を開始し(図2のステップ230及びステップ235を参照。)、機関20の運転中に機関要求出力Pe*が機関停止閾値Peoffthよりも小さくなったとき機関20の運転を停止する(図2のステップ285及びステップ290を参照。)。即ち、制御装置は、機関20の間欠運転を実行する。更に、制御装置は、アクセル操作量APに応じて定まるユーザ要求トルクTu*(駆動軸53に要求されるトルク)に等しいトルクを「機関20の出力トルクと電動機(第2発電電動機MG2)の出力トルクと」を制御することにより駆動軸53に作用させる(図2のステップ240乃至ステップ265、ステップ270、及び、ステップ275を参照。)。
加えて、前記制御装置は、
機関20が停止している場合、アクセル操作量APがゼロでない状態の継続時間(アクセルペダルON時間Tacon)が長いほど機関始動閾値Peonthが小さくなるように、機関始動閾値Peonthを設定する(図2のステップ225及び図4のテーブルを参照。)。
従って、機関停止中に、ユーザがアクセルペダルを短期間だけ軽く踏み込んだ場合には、機関始動閾値Peonthが大きい値に設定されるので、機関20が始動されない。よって、機関20の始動のために燃料及び電力が無駄に消費されないので、ハイブリッド車両10の燃費を向上することができる。更に、機関停止中に、ユーザがアクセルペダルを大きく踏み込んだ場合、及び、アクセルペダルを継続的に踏み込んでいる場合、機関20は始動される。その結果、機関20の出力を用いてハイブリッド車両10の加速性能を向上することができる。
更に、前記制御装置は、
機関20が運転されている場合、機関20が運転されている状態の継続時間(機関運転時間Tegon)が長いほど機関停止閾値Peoffthが大きくなるように、機関停止閾値Peoffthを設定する(図2のステップ280及び図7のテーブルを参照。)。
従って、機関20が一旦始動された後には、機関20の運転が短期間内に停止される頻度が低下するので、機関20の始動回数を低減することができ、その結果、ハイブリッド車両10の燃費を向上することができる。
本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、ハイブリッド車両10の動力伝達構成は上記実施形態形態に限定されることはない。即ち、電動機及び機関を用いてハイブリッド車両の駆動力を発生させるとともに機関を間欠運転できる構成を備えたハイブリッド車両であれば、本発明を適用することができる。
10…ハイブリッド車両、20…内燃機関、22…スロットル弁、22a…スロットル弁アクチュエータ、23…燃料噴射弁、25…クランクシャフト、30…動力分配機構、31…遊星歯車装置、50…駆動力伝達機構、53…駆動軸、83…アクセル操作量センサ、85…車速センサ。

Claims (2)

  1. 内燃機関と、
    電動機と、
    車両の駆動軸と前記機関とをトルク伝達可能に連結するとともに同駆動軸と前記電動機とをトルク伝達可能に連結する動力伝達機構と、
    前記機関の運転停止中にユーザのアクセル操作量に応じて定まる機関要求出力が機関始動閾値よりも大きくなったとき前記機関の運転を開始し、前記機関の運転中に前記機関要求出力が機関停止閾値よりも小さくなったとき前記機関の運転を停止する間欠運転を実行しながら、前記ユーザのアクセル操作量に応じて定まる前記駆動軸に要求されるトルクであるユーザ要求トルクに等しいトルクを前記機関の出力トルクと前記電動機の出力トルクとを制御することにより同駆動軸に作用させる制御装置と、
    を含むハイブリッド車両において、
    前記制御装置は、
    前記機関が停止している場合、前記アクセル操作量がゼロでない状態の継続時間が長いほど前記機関始動閾値が小さくなるように同機関始動閾値を設定するように構成されたハイブリッド車両。
  2. 請求項1に記載のハイブリッド車両において、
    前記制御装置は、
    前記機関が運転されている場合、前記機関が運転されている状態の継続時間が長いほど前記機関停止閾値が大きくなるように同機関停止閾値を設定するように構成されたハイブリッド車両。
JP2012067953A 2012-03-23 2012-03-23 ハイブリッド車両 Active JP5867219B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012067953A JP5867219B2 (ja) 2012-03-23 2012-03-23 ハイブリッド車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012067953A JP5867219B2 (ja) 2012-03-23 2012-03-23 ハイブリッド車両

Publications (2)

Publication Number Publication Date
JP2013199174A JP2013199174A (ja) 2013-10-03
JP5867219B2 true JP5867219B2 (ja) 2016-02-24

Family

ID=49519758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012067953A Active JP5867219B2 (ja) 2012-03-23 2012-03-23 ハイブリッド車両

Country Status (1)

Country Link
JP (1) JP5867219B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11486472B2 (en) 2020-04-16 2022-11-01 United Technologies Advanced Projects Inc. Gear sytems with variable speed drive
US11535392B2 (en) 2019-03-18 2022-12-27 Pratt & Whitney Canada Corp. Architectures for hybrid-electric propulsion
US11628942B2 (en) 2019-03-01 2023-04-18 Pratt & Whitney Canada Corp. Torque ripple control for an aircraft power train
US11697505B2 (en) 2019-03-01 2023-07-11 Pratt & Whitney Canada Corp. Distributed propulsion configurations for aircraft having mixed drive systems
US11732639B2 (en) 2019-03-01 2023-08-22 Pratt & Whitney Canada Corp. Mechanical disconnects for parallel power lanes in hybrid electric propulsion systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6098547B2 (ja) * 2014-02-27 2017-03-22 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3903628B2 (ja) * 1999-01-13 2007-04-11 日産自動車株式会社 ハイブリッド車両の制御装置
JP4229185B2 (ja) * 2007-01-12 2009-02-25 トヨタ自動車株式会社 ハイブリッド自動車およびその制御方法
JP2010234873A (ja) * 2009-03-30 2010-10-21 Nippon Soken Inc ハイブリッド車およびその制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11628942B2 (en) 2019-03-01 2023-04-18 Pratt & Whitney Canada Corp. Torque ripple control for an aircraft power train
US11697505B2 (en) 2019-03-01 2023-07-11 Pratt & Whitney Canada Corp. Distributed propulsion configurations for aircraft having mixed drive systems
US11732639B2 (en) 2019-03-01 2023-08-22 Pratt & Whitney Canada Corp. Mechanical disconnects for parallel power lanes in hybrid electric propulsion systems
US11535392B2 (en) 2019-03-18 2022-12-27 Pratt & Whitney Canada Corp. Architectures for hybrid-electric propulsion
US11486472B2 (en) 2020-04-16 2022-11-01 United Technologies Advanced Projects Inc. Gear sytems with variable speed drive

Also Published As

Publication number Publication date
JP2013199174A (ja) 2013-10-03

Similar Documents

Publication Publication Date Title
JP5682581B2 (ja) ハイブリッド車両
JP5862296B2 (ja) ハイブリッド車両
JP5897885B2 (ja) ハイブリッド車両
JP4183013B1 (ja) 車両およびその制御方法
JP5862311B2 (ja) ハイブリッド車両
JP5807600B2 (ja) ハイブリッド車両
WO2013080376A1 (ja) ハイブリッド車両
JP4779800B2 (ja) 車両およびその制御方法
JP5867219B2 (ja) ハイブリッド車両
JP2010179780A (ja) ハイブリッド車およびその制御方法
WO2013099029A1 (ja) ハイブリッド車両
JP5245899B2 (ja) ハイブリッド車およびその制御方法
JP2007176418A (ja) 車両およびその制御方法
JP2007120382A (ja) 動力出力装置およびその制御方法並びに車両
JP2008239077A (ja) 車両およびその制御方法
JP4438752B2 (ja) 動力出力装置およびその制御方法並びに車両
JP2013199175A (ja) ハイブリッド車両
JP2009279965A (ja) ハイブリッド車およびその制御方法
JP2008247098A (ja) 動力出力装置およびその制御方法並びに車両
JP4311414B2 (ja) 車両およびその制御方法
JP2010024891A (ja) 自動車およびその制御方法
JP5737209B2 (ja) ハイブリッド車両の制御装置
JP4962404B2 (ja) 内燃機関装置および車両並びに内燃機関装置の制御方法
JP2006329172A (ja) 車両およびその制御方法
JP2008247226A (ja) 動力出力装置およびその制御方法並びに車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R151 Written notification of patent or utility model registration

Ref document number: 5867219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151