JP5865858B2 - 磁気抵抗効果素子及び磁気抵抗効果素子の製造方法 - Google Patents

磁気抵抗効果素子及び磁気抵抗効果素子の製造方法 Download PDF

Info

Publication number
JP5865858B2
JP5865858B2 JP2013060724A JP2013060724A JP5865858B2 JP 5865858 B2 JP5865858 B2 JP 5865858B2 JP 2013060724 A JP2013060724 A JP 2013060724A JP 2013060724 A JP2013060724 A JP 2013060724A JP 5865858 B2 JP5865858 B2 JP 5865858B2
Authority
JP
Japan
Prior art keywords
film
layer
magnetic
conductive
tunnel barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013060724A
Other languages
English (en)
Other versions
JP2014187169A (ja
Inventor
大 都甲
大 都甲
岸 達也
達也 岸
昭之 村山
昭之 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013060724A priority Critical patent/JP5865858B2/ja
Priority to US14/015,374 priority patent/US9042166B2/en
Publication of JP2014187169A publication Critical patent/JP2014187169A/ja
Application granted granted Critical
Publication of JP5865858B2 publication Critical patent/JP5865858B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Description

実施形態は、磁気抵抗効果素子及び磁気抵抗効果素子の製造方法に関する。
TMR(Tunnel Magneto Resistive)素子を利用した磁気メモリを実現するために、様々な技術が提案されている。
スピン注入磁化反転方式の磁気メモリ(例えば、STT−MRAM)は、低消費電力、高速動作、及び、大容量化が可能なメモリとして、開発が推進されている。
STTによる磁気メモリのデータの書き込みは、MTJ素子に、書き込み電流が供給されることによって、MTJ素子の磁性膜の磁化が反転され、磁気抵抗効果素子の抵抗状態が変化する。磁気抵抗効果素子の抵抗状態に対応するように“1”又は“0”データが、磁気抵抗効果素子に記憶される。
磁気メモリのデータの読み出しは、読み出し電流が磁気抵抗効果素子に供給され、TMR効果による磁気抵抗効果素子の抵抗値の違いが判別されることによって、実行される。
特開2008−294420号公報
磁気抵抗効果素子の特性を向上する技術を提案する。
実施形態の磁気抵抗効果素子は、第1及び第2の導電層と、前記第1及び第2の導電層間において前記第1の導電層側に設けられ、磁化の向きが可変な第1の磁性層と、前記第1及び第2の導電層間において前記第2の導電層側に設けられ、磁化の向きが不変な第2の磁性層と、前記第1及び第2の磁性層間に設けられたトンネルバリア層と、前記第1の磁性層内に設けられ、前記トンネルバリア層側の第1の面と前記第1の面に対向する第2の面とを有し、膜面に対して垂直方向の磁気異方性を有する第1の磁化膜と、前記第1の磁性層内において前記第1の磁化膜の前記第2の面側に設けられ、前記第1の磁化膜に対して界面磁気異方性を生じさせる第1の非磁性膜と、前記第1の磁化膜と前記第1の導電層とを導通させる第3の導電層と、を含み、前記トンネルバリア層及び前記第1の非磁性膜は、同じ材料を主成分に含み、前記第1の非磁性膜の膜厚は、前記トンネルバリア層の膜厚より厚く、前記第1の非磁性膜の抵抗値は、前記トンネルバリア層の抵抗値より高い。
実施形態の磁気抵抗効果素子の基本構成を示す図。 第1の実施形態の磁気抵抗効果素子の構造を示す図。 第1の実施形態の磁気抵抗効果素子の構造を示す図。 第1の実施形態の磁気抵抗効果素子の製造方法を示す断面工程図。 第1の実施形態の磁気抵抗効果素子の製造方法を示す断面工程図。 第1の実施形態の磁気抵抗効果素子の製造方法を示す断面工程図。 第2の実施形態の磁気抵抗効果素子の構造を示す図。 第2の実施形態の磁気抵抗効果素子の構造を示す図。 第2の実施形態の磁気抵抗効果素子の製造方法を示す断面工程図。 第2の実施形態の磁気抵抗効果素子の製造方法を示す断面工程図。 実施形態の磁気抵抗効果素子の変形例を示す図。 実施形態の磁気抵抗効果素子の変形例を示す図。 実施形態の磁気抵抗効果素子の変形例を示す図。 実施形態の磁気抵抗効果素子の変形例を示す図。 実施形態の磁気抵抗効果素子の適用例を示す図。 実施形態の磁気抵抗効果素子の適用例を示す図。
[実施形態]
以下、図面を参照しながら、本実施形態について詳細に説明する。以下の説明において、同一の機能及び構成を有する要素については、同一符号を付し、重複する説明は必要に応じて行う。
(A) 基本構成
図1を参照して、実施形態の磁気抵抗効果素子の基本構成について、説明する。
図1は、磁気抵抗効果素子の基本構成を示す断面図である。
図1の磁気抵抗効果素子は、磁化の向きが不変な(固定状態の)第1の磁性層10と、磁化の向きが可変な第2の磁性層11と、2つの磁性層10,11間の非磁性層12とを含む。
2つの磁性層10,11と非磁性層12とによって、磁気トンネル接合が形成される。
以下では、磁化の向きが不変な第1の磁性層10のことを、参照層10とよぶ。磁化の向きが可変な第2の磁性層11のことを、記憶層11とよぶ。また、非磁性層12のことを、トンネルバリア層12とよぶ。
2つの磁性層10,11は、磁性層10,11の膜面に対して垂直方向において磁気異方性を有する。2つの磁性層10,11の磁化は、膜面に対して垂直方向を向いている。以下では、磁化が層(膜)の膜面に対して垂直方向を向く磁性層(磁性体、磁化膜)のことを、垂直磁化膜ともよぶ。
本実施形態において、記憶層11は、1つの磁化膜110と、1つの非磁性膜130とを、含む。
記憶層11内の非磁性膜130は、電極17Bと磁化膜110との間に挟まれている。
本実施形態の磁気抵抗効果素子において、記憶層11の磁化膜110が、2つの非磁性層12,130に挟まれた構造を有する。
非磁性層12,130と磁化膜110との間に、磁化膜110の磁気異方性(例えば、界面磁気異方性)が発現するように、磁化膜110の材料及び非磁性層12,130の材料の組み合わせが、設定される。
磁化膜11の参照層側の第1の面IF1、及び、磁化膜11の第1の面IF1に対向する第2の面IF2にそれぞれ接するように、非磁性層12,130が設けられる。これによって、磁性層(磁気トンネル接合)の積層方向における磁化膜の第1及び第2の面IF1,IF2の両方で、界面磁気異方性がそれぞれ発現する。
この結果として、磁化膜110の片側の面のみに磁化膜110と非磁性層との界面磁気異方性が形成される場合に比較して、磁化膜110の互いに対向する両面からの界面磁気異方性エネルギーの印加により、磁化膜110の垂直磁気異方性が向上する。これによって、記憶層11の熱擾乱定数(ΔE)を向上できる。
以下では、磁化膜に対してトンネルバリア層側の反対側において磁化膜に接する非磁性膜のことを、異方性付与膜とよぶ。例えば、異方性付与膜130には、非磁性層12層12と同じ材料が用いられる。例えば、磁化膜が、Co(コバルト)、Fe(鉄)、及びB(ボロン)のうち少なくとも2つを含む膜である場合、異方性付与膜130及びトンネルバリア層12には、例えば、MgO(酸化マグネシウム)などの絶縁性又は高抵抗の膜が用いられる。
尚、本実施形態において、異方性付与膜130を、記憶層11の一部として説明するが、異方性付与膜130は、記憶層11とは別の構成要素としてみなしてもよい。
本実施形態の磁気抵抗効果素子1において、記憶層11内の磁化膜110と異方性付与膜130との界面IF2をまたがるように、側壁膜15が、記憶層11の側面上に設けられている。また、側壁膜15は、異方性付与膜130と導電層(電極)17Bと界面をまたがり、側壁膜15は、導電層17Bの側面上に設けられている。側壁膜15には、金属が用いられる。側壁膜15は、異方性付与膜130より抵抗値が低い。磁気抵抗効果素子1に電流が供給された時において、その供給された電流が、導電性の側壁膜(導電層)15の内部を流れる。以下では、導電性の側壁膜15のことを、側壁導電膜15、導電層15、又は、電流経路膜15ともよぶ。
電流経路としての側壁膜15は、トンネルバリア層12及び参照層10の側面上に設けらない。側壁膜15は、記憶層11とトンネルバリア層12との界面をまたがらない。また、側壁膜15は、トンネルバリア層12と参照層との界面をまたがらない。
磁気抵抗効果素子1がメモリ素子として用いられる場合、記憶層11の磁化の向きを変化させるために、書き込み電流が磁気抵抗効果素子に供給される。また、メモリ素子としての磁気抵抗効果素子1の抵抗値を判別するために、読み出し電流が、磁気抵抗効果素子に供給される。
側壁膜15の抵抗値は、異方性付与膜130の抵抗値、及び、磁化膜110と異方性付与膜130との間の抵抗値(界面抵抗、または、トンネル接合の抵抗)より小さい。
それゆえ、書き込み電流及び読み出し電流の大部分の電流I1は、記憶層11の側面上の側壁膜(電流経路膜)15内を流れ、記憶層11とトンネルバリア層12との界面を経由して、記憶層11と参照層12との間を流れる。磁化膜110と異方性付与膜130との界面IF2を流れる電流I2は、記憶層11の側面上の側壁膜15内を流れる電流I1より、小さい。
側壁膜15が、磁化膜110と導電層17Bとを接続する電流経路となる。記憶層11内を流れる電流は、異方性付与膜130を迂回して、磁化膜110と導電層17Bとの間を流れる。
それゆえ、磁気抵抗効果素子1の内部に電流が流れるとき、比較的抵抗の高い異方性付与膜130に起因する電流の損失は、低減される。
以上のように、本実施形態の磁気抵抗効果素子1は、異方性付与膜130としての非磁性層(絶縁膜)は、実質的な記憶層としての磁化膜110の磁気異方性の向上に寄与する。その一方で、本実施形態の磁気抵抗効果素子1は、記憶層11と導電層17Bとを電気的に接続する導電性の側壁膜15によって異方性付与膜130の抵抗成分をほとんど無視でき、高抵抗の異方性付与膜130に起因する磁気抵抗効果素子の電気的特性(例えば、MR比)の悪影響は、生じない。
したがって、実施形態の磁気抵抗効果素子によれば、磁気抵抗効果素子の特性を向上できる。
(B) 第1の実施形態
図2乃至6を参照して、第1の実施形態の磁気抵抗効果素子及びその製造方法について、説明する。
(a) 構造
図2及び図3を用いて、第1の実施形態の磁気抵抗効果素子の構造について説明する。
図2は、第1の実施形態の磁気抵抗効果素子の平面構造を模式的に示す平面図である。図3は、第1の実施形態の磁気抵抗効果素子の断面構造を模式的に示す断面図である。
図2に示されるように、磁気抵抗効果素子1Aは、円形又は楕円形状の平面形状を有している。磁気抵抗効果素子1Aの各磁性層10,11及び非磁性層12のそれぞれは、ある直径の円形状(又は、楕円形状)の平面形状を有している。
図3に示されるように、本実施形態の磁気抵抗効果素子は、素子1Aの2つの電極17A,17B間に、参照層及び記憶層としての2つの磁性層10,11を含んでいる。尚、参照層10は、ピン(pin)層、磁化不変層、磁化固着層ともよばれる。記憶層11は、記録層、自由層、磁化可変層ともよばれる。
記憶層11及び参照層10の磁化は、記憶層11及び参照層10内の複数のスピン(磁性粒の磁化)の集合によって、形成されている。
記憶層11は、磁化の向きが反転可能である。参照層10の磁化の向きは固定状態である。このため、記憶層11の磁化の向きを変える電流が供給されたとしても、参照層10の磁化の向きが変わらないように、参照層10の磁化反転しきい値が、記憶層11の磁化反転しきい値よりも大きくされる。
本実施形態のMTJ素子1Aが磁気メモリのメモリ素子に用いられた場合、スピン注入磁化反転方式(Spin Transfer Torque、以下では、STTと表記する)に基づくデータ書き込みにおいて、記憶層11の磁化反転しきい値以上、且つ、参照層10の磁化反転しきい値より小さい電流が、MTJ素子1Aに供給されることによって、記憶層11と参照層10との相対的な磁化の向きが反転される。
STTにおいて、MTJ素子1Aの記憶層11の磁化の向きは、MTJ素子1Aに流された電流に起因するスピントルクによって、変化される。すなわち、記憶層11の磁化の向きは、MTJ素子1Aに供給された電流が含むスピン偏極した電子が、記憶層11の磁化(スピン)に作用することによって、変化する。
記憶層11の磁化の向きが参照層10の磁化の向きと平行(P:Parallel)状態にされる場合、つまり、記憶層11の磁化の向きが参照層10の磁化の向きと同じにされる場合、記憶層11から参照層10に向かって流れる電流が、書き込み電流として、MTJ素子1Aに供給される。
記憶層11の磁化の向きが参照層10の磁化の向きと反平行(AP:Antiparallel)状態にされる場合、つまり、記憶層11の磁化の向きが参照層10の磁化の向きに対して反対にされる場合、参照層10から記憶層11に向かって流れる電流が、書き込み電流として、MTJ素子1Aに供給される。
例えば、メモリ素子としてのMTJ素子1Aにおいて、例えば、抵抗値が小さい状態(磁化配列が平行状態)のMTJ素子1Aは、“0”データ保持状態に対応づけられ、抵抗値が高い状態(磁化配列が反平行状態)のMTJ素子1Aは、“1”データ保持状態に対応付けられる。
メモリ素子としてのMTJ素子1Aのデータの読み出しは、MTJ素子の抵抗状態を判別することによって実行される。MTJ素子1Aの抵抗状態を判別する場合において、MTJ素子1A内に電流を流すことによって、MTJ素子1Aが“0”データ保持状態であるか、“1”データ保持状態であるかが判定される。
MTJ素子1Aを流れる抵抗状態を判別するための電流(以下では、読み出し電流又は抵抗判定電流とよぶ)に基づく信号(読み出し出力、読み出し信号)の大きさは、MTJ素子1Aの抵抗値に応じて、変動する。読み出し電流の電流値は、読み出し電流によって記憶層11の磁化が反転しないように、書き込み電流の電流値(磁化反転しきい値)より小さい値に設定される。
このように、MTJ素子1Aが、磁気メモリのメモリ素子に用いられた場合、MTJ素子1Aに電流を流すことによって、メモリ素子としてのMTJ素子に対して、データが書き込まれ、メモリ素子としてのMTJ素子に記憶されたデータが、読み出される。
参照層10、トンネルバリア層12、及び、記憶層11は、基板79上に積層されている。
本実施形態において、記憶層11は、トンネルバリア層12を介して、参照層10上方に積層されている。本実施形態の磁気抵抗効果素子のように、記憶層11が参照層10の上方に積層された構造は、トップフリー型構造(又はボトムピン型構造)とよばれる。
参照層10、トンネルバリア層12、及び、記憶層11は、磁気トンネル接合(Magnetic tunneling Junction)を形成している。以下では、磁気トンネル接合を含む磁気抵抗効果素子1Aを、MTJ素子1Aとよぶ。
MTJ素子1Aを形成する積層構造は、積層方向において、2つ電極17A,17B間に挟まれている。
基板側において、参照層10が、基板79上の電極(以下では、下部電極)17A上に設けられている。基板側とは反対側において、電極(以下では、上部電極とよぶ)17Bが、記憶層11上に設けられている。記憶層11は、トンネルバリア層12と上部電極17Bとの間に設けられている。
MTJ素子1Aの記憶層11の垂直磁気異方性は、磁性膜の界面磁気異方性を利用して、発現される。界面磁気異方性は、積層膜の界面の歪みや界面の電子状態に起因する。磁性層11,12の垂直磁気異方性が、界面磁気異方性によって形成された場合、磁性層の結晶軸の分散を抑制できる。
トンネルバリア層(非磁性層)12にMgOを主成分とする膜が用いられ、記憶層11(磁化膜110)にFeB或いはCoFeBが用いられることによって、MgOとFeBとの間、又は、MgOとCoFeBとの間で、界面磁気異方性が生じ、膜面に対して垂直方向の磁気異方性を有する記憶層11が得られる。記憶層11の垂直磁気異方性は、非磁性層12と記憶層11との間で発現するため、磁化の異方性分散を抑制でき、記憶層11の反転しきい値電流の増大が抑制される。
尚、界面磁気異方性を利用した垂直磁化膜は、例えば、人工格子によって形成することもできる。例えば、磁性体のCoと非磁性体のPt(又はPd)とが交互に積層された人口格子が、挙げられる。
STTを用いたメモリ素子としてのMTJ素子1Aに対するデータ書き込みを考慮した場合、記憶層11は、ダンピング定数が小さい材料を用いて形成されることが好ましい。
トンネルバリア層(非磁性膜)12は、酸化マグネシウム(MgO)を主成分とする膜から形成される。トンネルバリア層11としてのMgOを主成分とする膜は、結晶配向していることが好ましい。結晶性のMgO膜は、例えば、bcc(001)面(又は方位)及びそれに等価な面(又は方位)に優先配向していることが好ましい。
例えば、垂直磁気異方性を有する参照層10を形成するために、例えば、TbCoFeなどのフェリ磁性体を主成分とする膜、CoとFeとを主成分とする膜、CoとPtとの人口格子、CoとPdとの人口格子などが、参照層10に用いられる。
尚、記憶層11とトンネルバリア層12との界面近傍、及び、参照層10とトンネルバリア層12との界面近傍に、界面層が設けられてもよい。界面層は、トンネルバリア層12に接触する磁性膜である。界面層は、トンネルバリア層と磁性層との格子不整合を緩和し、トンネルバリア層12及び磁性層10,11の結晶性を改善させる。この結果として、MTJ素子の特性(例えば、MR比)が向上する。
記憶層11及び参照層10とは別途に設けられた磁性膜だけでなく、トンネルバリア層12に接触する記憶層11又は参照層10の部分(領域)を界面層とよぶ場合もある。例えば、界面層は、Co(コバルト)、Fe(鉄)及びB(ボロン)を含むグループのうち少なくとも2つの元素を含む磁性膜を用いて、形成される。記憶層11側の界面層としてのCoFeB膜と参照層側の界面層としてのCoFeB膜とに関して、Co、Fe及びBの組成比は、2つの界面層において互いに異なっていてもよい。界面層の材料は、Co、Fe又はBを含む磁性膜に限定されない。
MTJ素子1Aは、参照層10の磁化の向きと反対の向きの磁化を有するシフト調整層(図示せず)を含んでもよい。シフト調整層(バイアス層又はシフト磁界調整層ともよばれる)は、参照層10に起因する漏れ磁場を実質的にゼロにし、参照層10からの漏れ磁場に起因して記憶層11内にシフト磁界が生じるのを抑制する。例えば、シフト調整層は、参照層10におけるトンネルバリア層12が設けられた側(面)に対して反対側(対向する面)に設けられる。
MTJ素子1Aの上部電極17Bは、MTJ素子1Aを所定の形状に加工するためのハードマスクとして用いられてもよい。下部電極17Aは、磁性層(ここでは、参照層)の結晶性を改善させる下地層としての機能を有していてもよい。
下部電極17A及び上部電極17Bは、例えば、タンタル(Ta)、チタン(Ti)、窒化タンタル(TaN)、窒化チタン(TiN)、或いは、これらの積層膜が用いられる。下部電極17Aには、Irやルテニウム(Ru)が用いられてもよい。下部電極17A及び上部電極17Bは、抵抗値が低く、不純物の拡散を防ぐ材料であることが好ましい。
例えば、MTJ素子1A内において、記憶層11と上部電極17Bとの間にキャップ層14が設けられている。キャップ層14は、記憶層11と上部電極17Bとの間の不純物の拡散を防ぐ。また、キャップ層14は、記憶層11の結晶性を向上するための機能を有する。記憶層11と上部電極17Bとの間で生じるスピンポンピングを低減し、記憶層11のダンピング定数を低下できる材料が、キャップ層14に用いられることが好ましい。記憶層11のダンピング定数の低減によって、書込み電流を低減できる。尚、キャップ層14を、上部電極17Bの一部として、扱ってもよい。
本実施形態において、基板表面に対して平行方向における参照層10の寸法(参照層10の直径)W1は、基板表面に対して平行方向における記憶層11の寸法(記憶層11の直径)W2よりも大きい。基板表面に対して平行方向におけるトンネルバリア層12の寸法は、参照層10の寸法W1と実質的に同じである。基板表面に対して平行方向におけるトンネルバリア層12の寸法は、記憶層11の寸法W2よりも大きい。以下では、基板表面に対して平行方向におけるトンネルバリア層12の寸法を、基板表面に対して平行方向における参照層10の寸法W1と同じ大きさとする。
記憶層11、キャップ層14及び上部電極17Bの側面上に、側壁絶縁膜19が設けられている。側壁絶縁膜19には、密でコンフォーマルな膜が用いられることが好ましく、例えば、窒化シリコンや窒化アルミニウムなどが用いられる。尚、下部電極17A、参照層10及びトンネルバリア層12の側面上に、側壁絶縁膜が設けられてもよい。
本実施形態のMTJ素子(磁気抵抗効果素子)1Aにおいて、記憶層11は、磁化膜110と異方性付与膜130とを含む。
異方性付与膜130には、トンネルバリア層12と同じ材料が用いられ、例えば、MgOを主成分とする膜が用いられる。異方性付与膜130の抵抗値は、トンネルバリア層12の抵抗値より低いことが好ましい。異方性付与膜130とトンネルバリア層12とが同じ材料(例えば、MgO)から形成される場合、異方性付与膜130の抵抗値をトンネルバリア層12の抵抗値より低くするために、異方性付与膜130の膜厚が、トンネルバリア層12の膜厚より薄いことが好ましい。ただし、磁性体の界面異方性エネルギーを向上させるために膜質の良い異方性付与膜(MgO)を用いることが望ましい場合、異方性付与膜130の膜厚は、トンネルバリア層12の膜厚より厚くてもよい。
MgO膜が、異方性付与膜130及びトンネルバリア層12に用いられた場合、磁化膜110には、例えば、CoFeBが用いられる。
磁化膜110がトンネルバリア層12及び異方性付与膜130と接触することにより発現する界面磁気異方性により、実質的に記憶層11として機能する磁化膜110は、その膜面に対して垂直方向の磁気異方性を有する。
磁性層の界面磁気異方性エネルギーKtotalは、Ktotal=Ks×S−2πMs2(3Na−1)、で示される。この式中の“Ks”は界面磁気異方性定数を示し、“S”は磁性層の面積を示している。式中の“Ms”は飽和磁化を示し、“Na”は反磁界係数を示している。
磁性層の熱擾乱定数(熱安定性指標)ΔEは、ΔE=Ktotal/(kT)で示される。式中の“k”はボルツマン定数を示し、“T”は温度(絶対温度)を示している。このΔEとKtotalとの関係に基づくと、素子の微細化に伴って、記憶層の面積S(基板表面に対して平行方向における記憶層の寸法)が縮小されるため、記憶層に与えられる界面磁気異方性が低下する傾向がある。
本実施形態のように、トンネルバリア層12と異方性付与膜130とによって、基板表面に対して垂直方向(層の積層方向)における磁化膜110が有する対向する2つの面に界面磁気異方性が発現する。この場合、上述の界面磁気異方性エネルギーKtotalに基づくと、“S”の値が2倍になることに相当するため、記憶層11内の磁化膜110の界面磁気異方性エネルギーが増大し、磁化膜110の垂直磁気異方性が向上する。
この結果として、本実施形態のMTJ素子1Aは、記憶層11内の磁化膜110の熱擾乱定数が向上し、磁気抵抗効果素子の動作の熱安定性が改善される。
本実施形態のMTJ素子1Aにおいて、記憶層11及び記憶層11の上面上に積層された導電層14,17Bの側面上に、導電性の側壁膜(側壁導電膜、電流経路膜)15が設けられている。側壁導電膜15は、記憶層11と側壁絶縁膜19との間に設けられている。側壁導電膜15は、例えば、円柱状の記憶層11の側面を覆う円筒状の形状を有している。
側壁導電膜15の抵抗値は、異方性付与膜130の抵抗値より低い。側壁導電膜15には、金属が用いられ、例えば、側壁導電膜15は、磁化膜110と実質的に同じ材料からなる。尚、側壁導電膜15が、磁化膜110と同じ元素を主成分とする膜である場合、側壁導電膜15内の各元素の組成比と、磁化膜110内の各元素の組成比は異なっていてもよい。また、側壁導電膜15は、トンネルバリア層12が含む金属元素を含んでいてもよい。
側壁導電膜15は、記憶層11内の磁化膜110と異方性付与膜130との界面をまたがるように、記憶層11の側面上に設けられている。側壁導電膜15は、磁化膜110の側面に直接接触する。側壁導電膜15は、異方性付与膜130とキャップ層14との界面をまたがるように、キャップ層14の側面上に設けられている。導電層15は、キャップ層14の側面に直接接触する。側壁導電膜15は、異方性付与膜130の側面をまたがって、記憶層11の磁化膜110の側面とキャップ層14の側面との間を延在している。
尚、側壁導電膜15は、記憶層11及びキャップ層14の側面上に加えて、上部電極17Bの側面上に設けられてもよい。側壁導電膜15は、記憶層11の側面全体に均一に形成されていなくてもよい。磁化膜110が側壁導電膜15によってキャップ層14(上部電極17B)に電気的に接続されていれば、側壁導電膜15は、磁化膜110とキャップ層14との間を延在するように、磁化膜110及びキャップ層14の一部分上に設けられていてもよい。
側壁導電膜15の記憶層11及びキャップ層14に接しない側の面は、側壁絶縁膜19に覆われている。
例えば、導電層15の下部電極側(基板側)の端部(下端)は、トンネルバリア層12に接する。導電層15の上部電極側(基板と反対側)の端部(上端)は、基板表面に対して垂直方向において異方性付与膜130とキャップ層14との界面より上部電極側に位置している。
基板表面に対して平行方向における側壁導電膜15の寸法(膜厚)t1の2倍と記憶層11の寸法W2との和の値(W2+2×t1)は、トンネルバリア層12(参照層11)の寸法W1より小さい。これによって、側壁導電膜15が、トンネルバリア層12や参照層10の側面に接触するのを防止される。したがって、側壁導電膜15が、記憶層11と参照層10との電流パスとなるのを、防止できる。
本実施形態のMTJ素子1Aにおいて、側壁導電膜15を介して、キャップ層14と磁化膜110とが電気的に接続される。これによって、キャップ層14と磁化膜110との間(上部電極17Bと磁化膜110との間)に、異方性付与膜(MgO膜)を経由しない電流パスが、形成される。
本実施形態のMTJ素子1Aに、書き込み電流又は読み出し電流が供給された時に、図1を用いて説明したように、MTJ素子1Aに供給された電流の大部分は、低抵抗の側壁導電膜15内を経由して、磁化膜110とキャップ層(及び上部電極)14との間を流れる。高抵抗の異方性付与膜130と磁化膜110との界面を通過する電流は、ほとんどない、或いは、導電層15内を流れる電流に比較して非常に小さい。
その結果として、記憶層11(磁化膜110)の垂直磁気異方性の向上のために高抵抗(又は絶縁性)の材料からなる異方性付与膜130が、磁化膜110に接するようにMTJ素子1A内に設けられていたとしても、その異方性付与膜130に起因した電流の低減は、抑制される。
また、側壁導電膜15によって、異方性付与膜130と磁化膜110との間に発生する寄生抵抗を実質的に無視できるので、その寄生抵抗に起因するMTJ素子1AのMR比の劣化を、抑制できる。また、側壁導電膜15によって、異方性付与膜130を経由しない電流経路がMTJ素子1A内に形成されるため、異方性付与膜(MgO膜)130の膜厚を厚くでき、磁化膜110に界面磁気異方性を印加するための異方性付与膜130の膜質を向上できる。
以上のように、本実施形態のMTJ素子1Aは、記憶層11内の磁化膜110に接する異方性付与膜130によって、記憶層11の垂直磁気異方性及び熱安定性を向上できる。それとともに、本実施形態のMTJ素子1Aは、異方性付与膜130を挟む磁化膜110と導電層14,17Bとを側壁導電膜150によって電気的に直接接続することによって、異方性付与膜130に起因したMTJ素子の動作のための書き込み電流及び読み出し電流の増大を、抑制できる。
以上のように、第1の実施形態の磁気抵抗効果素子は、素子の特性を向上できる。
(b) 製造方法
図4乃至図6を用いて、第1の実施形態の磁気抵抗効果素子の製造方法について、説明する。
図4乃至図6は、第1の実施形態の磁気抵抗効果素子の製造方法における各工程の断面工程図を、それぞれ示している。
図4に示されるように、磁気抵抗効果素子(MTJ素子)の構成部材として、導電層17Z、磁性層10Z、非磁性層12Z、磁化膜110及び非磁性膜130Z、キャップ層14Z、及び、ハードマスク17Bが、スパッタ法によって、基板79上に、順次積層される。基板79は、例えば、シリコン基板上の絶縁膜(例えば、層間絶縁膜)である。
導電層17Zは、下部電極及び下地層となる層である。導電層17Zには、例えば、Taが用いられる。磁性層10Zは、参照層となる層である。参照層としての磁性層10Zには、フェリ磁性体(例えば、TbCoFe)などが用いられる。非磁性層12Zは、トンネルバリア層となる層である。トンネルバリア層としての非磁性層12Zには、例えば、MgO、又は、MgOを主成分とする化合物が用いられる。
本実施形態において、磁化膜110Z及び非磁性層130Zは、記憶層となる層である。磁化膜110Zには、Co、Fe及びBのうち少なくとも1つを含む磁性合金(例えば、CoFeB)が用いられる。非磁性膜130Zには、例えば、MgO、又は、MgOを主成分とする化合物が用いられる。
非磁性膜130Zの膜厚はトンネルバリア層120の膜厚より厚くてもよいし、薄くてもよい。磁性層10Z及び磁化膜110Zは、単層膜でもよいし、積層膜(人工格子)でもよい。
キャップ層14Zには、例えば、Ruなどが用いられる。ハードマスク17Bは、導電層17Bからなる。ハードマスクとしての導電層17Bには、例えば、Ta、又は、Taを含む積層膜が用いられる。ハードマスク17Bが金属から形成されることによって、ハードマスク17BをMTJ素子の上部電極として用いることができる。
このように、MTJ素子を形成するための積層構造1Zが、基板79に形成される。
尚、シフト調整層や界面層が、積層構造1Z内の所定の位置に、形成されてもよい。
積層構造1Zが、形成された後、ハードマスクとしての導電層17Bが、フォトリソグラフィ及びエッチングによって、所定の形状(例えば、円柱状)にパターニングされる。ここで、ハードマスクとしての導電層17Bは、形成されるべき記憶層のパターン(サイズ)に対応するように、パターニングされる。
図5に示されるように、パターニングされた導電層17Bをマスクに用いて、キャップ層14、非磁性層130及び磁化膜110が、例えば、イオンミリングなどの異方性エッチングによって、マスク側から順次加工(パターニング)される。
非磁性層12Zはストッパとして用いられ、記憶層11より下方(基板79側)の層は、加工されない。
イオンミリングのためのイオンビーム900A,900Bは、基板79表面に対して平行方向に基板79を回転させながら、基板79表面に対して斜め方向から照射される。尚、RIE(Reactive Ion Etching)及びガスクラスターイオンビーム(GCIB:Gas Cluster Ion Beam)を用いて、各層14,130,110が加工されてもよい。
これによって、非磁性層130及び磁化膜110を含む記憶層11が、形成される。
イオンビームによるキャップ層14及び記憶層11の加工時、キャップ層14及び磁化膜11に起因する導電性の飛散物が、キャップ層14と記憶層11との間にまたがるように、キャップ層14及び記憶層11の側面上に、付着する。これによって、記憶層11の側面上に付着した残渣(再付着物)が、キャップ層13と磁化膜110とを接続する側壁導電膜15として、キャップ層14及び記憶層11の側面上に、形成される。
尚、再付着物からなる側壁導電膜15がキャップ層14及び記憶層11の側面上に形成されるように、基板79の表面に対するイオンビーム900A,900Bの入射角が適宜設定される。
図6に示されるように、加工されたハードマスク(上部電極)17B、キャップ層14、記憶層11及び側壁導電膜15を覆うように、絶縁膜が堆積される。堆積された絶縁膜に対してエッチバックが施される。これによって、側壁絶縁膜19が、キャップ層14及び記憶層11の側面上に形成される。側壁絶縁膜19が側壁導電膜15に直接接触するように、側壁絶縁膜19が側壁導電膜15上に形成される。側壁絶縁膜19は、導電性の側壁膜15を介して、キャップ層14及び記憶層11の側面を覆う。
例えば、側壁絶縁膜19は、ALD(Atomic Layer Deposition)法によってコンフォーマルに形成された密な窒化シリコン(SiN)又は窒化アルミニウム(AlN)であることが好ましい。
キャップ層14及び記憶層11の側面が側壁絶縁膜19に覆われた状態で、非磁性層12Z、磁性層10Z及び導電層17Zに対するエッチング(イオンミリング)が実行される。その側面が側壁絶縁膜19に覆われた上部電極/キャップ層17B,14及び記憶層11が、所定の形状のトンネルバリア層及び参照層を形成するためのマスクとして用いられて、非磁性層12Z、磁性層10Z及び導電層17Zが、順次加工される。尚、トンネルバリア層12及び参照層10が所定の寸法を有するように、側壁絶縁膜19の膜厚が調整されることが好ましい。
これによって、図3に示されるように、トンネルバリア層12、参照層10及び下部電極17Aが、記憶層11の下方に形成される。
記憶層11下方の磁性層10Z及び導電層17Zの加工時において、上部電極/キャップ層17B,14及び記憶層11の側面は、側壁絶縁膜19に覆われている。そのため、側壁絶縁膜19によって、磁性層10Z及び導電層17Zに起因する残渣(再付着物)が、記憶層11の側面上に直接堆積されるのを防止できる。これによって、導電性の残渣によって、記憶層11と参照層10とがショートするのを防止できる。
以上の製造工程によって、本実施形態のMTJ素子1Aが形成される。
本実施形態のMTJ素子の製造方法において、記憶層11内の磁化膜110が、界面磁気異方性を発現させる2つの非磁性膜12,130に挟まれるように、形成される。
これによって、磁化膜110の上面及び底面のそれぞれにおいて、磁化膜110と非磁性層12,130との間に界面磁気異方性が生じる。この結果として、2つの非磁性層12,130間の磁化膜110の垂直磁気異方性が向上し、形成されたMTJ素子1Aの熱安定性やMR比が向上する。
本実施形態のMTJ素子の製造方法において、上部電極/キャップ層17B,14と記憶層11内の磁化膜110とを電気的に接続するように、導電性の側壁膜15が、上部電極/キャップ層17B,14及び記憶層11の側面上に、形成される。
これによって、MTJ素子1Aの動作時に、MTJ素子1Aを流れる電流は、高抵抗の異方性付与膜130を経由せずに、低抵抗の側壁導電膜15を経由して、上部電極17Bと磁化膜110との間を流れる。この結果として、形成されたMTJ素子1Aにおける、異方性付与膜130に起因する電流の損失を、抑制できる。また、電流経路となる側壁導電膜15が形成されることによって、異方性付与膜130の寄生抵抗に起因するMTJ素子1AのMR比の劣化を、抑制できる。
本実施形態のMTJ素子の製造方法において、イオンビームによるキャップ層14及び記憶層11の加工時に、キャップ層14及び記憶層11の側面上に付着した残渣からなる膜(再付着物)が、側壁導電膜15として、キャップ層14及び記憶層11の側面上に、形成される。このように、エッチング(イオンミリング)により発生した残渣が、キャップ層14(上部電極17B)と記憶層11(磁化膜110)とを接続する側壁導電膜15として用いられることよって、側壁導電膜15の形成のために、MTJ素子の製造工程が増加するのを防止できる。
以上のように、第1の実施形態の磁気抵抗効果素子の製造方法によれば、素子特性の向上した磁気抵抗効果素子を提供できる。
(B) 第2の実施形態
図7乃至図10を参照して、第2の実施形態の磁気抵抗効果素子について、説明する。本実施形態の磁気抵抗効果素子において、第1の実施形態の磁気抵抗効果素子と実質的に同じ構成を有する構成に関しては同じ符号を付し、その構成の説明は、必要に応じて行う。
(b1) 構造
図7及び図8を用いて、第2の実施形態の磁気抵抗効果素子の構造について、説明する。
図7は、第2の実施形態の磁気抵抗効果素子の平面構造を示し、図8は、第2の実施形態の磁気抵抗効果素子の断面構造を示している。
図7及び図8に示されるように、本実施形態の磁気抵抗効果素子(MTJ素子)1Bは、ボトムフリー型(又はトップピン型ともよばれる)の構造を有している。
すなわち、参照層10が、トンネルバリア層12を挟んで、記憶層11上に積層されている。記憶層11は、下部電極17A上に設けられている。下部電極17Aは、記憶層11の結晶性を向上させるための下地層(図示せず)を含んでもよい。
図7及び図8に示されるように、基板表面に対して平行方向における記憶層11の寸法WBが、基板表面に対して平行方向における参照層10の寸法WAより大きい。
また、基板表面に対して平行方向におけるトンネルバリア層12の寸法は、記憶層11の寸法WBと実質的に同じであり、参照層10の寸法WAより大きい。
参照層10の側面上に、側壁絶縁膜19Xが設けられている。側壁絶縁膜19Xの底面は、トンネルバリア層12の上面に接触する。側壁絶縁膜19Xには、例えば、窒化シリコン又は窒化アルミニウムが、用いられる。
第1の実施形態と同様に、記憶層11は、異方性付与膜(例えば、MgO膜)130を含み、磁化膜(例えば、CoFeB膜)110がトンネルバリア層12と異方性付与膜130とに挟まれている。これによって、膜面に対して垂直方向における磁化膜110の両面に界面磁気異方性エネルギーが与えられ、記憶層11の垂直磁気異方性が、向上される。
そして、記憶層11及び下部電極17Aの側面上に、電流経路としての導電層(電流経路膜)15が設けられている。導電層15は、下部電極17Aと記憶層11内の磁化膜110とを接続する。尚、導電層15の上端は、トンネルバリア層12の底面より参照層側にあってもよい。但し、導電層15は磁化膜110と下部電極17Aとを電気的に接続できればよいので、トンネルバリア層12の底面(記憶層11の上面)より基板側にあることが好ましい。
導電層15と参照層10とのショートは、参照層11の側面を覆う側壁絶縁膜19Xによって防止されている。
本実施形態のMTJ素子1Bにおいて、MTJ素子1Bに供給される電流(書き込み電流及び読み出し電流)の大部分は、側壁導電膜15を経由して、磁化膜110と下部電極17Aとの間を流れる。それゆえ、記憶層11内に設けられた高抵抗の異方性付与膜130に起因する寄生抵抗の影響は、緩和される。
この結果として、実施形態のMTJ素子1Bは、異方性付与膜130の悪影響無しに、異方性付与膜130による磁性層11の磁気異方性の向上及び熱安定性の向上が、得られる。
したがって、第2の実施形態の磁気抵抗効果素子は、第1の実施形態と同様の効果が得られる。
(b2) 製造方法
図9及び図10を用いて、第2の実施形態の磁気抵抗効果素子の製造方法について、説明する。尚、本実施形態において、第1の実施形態で述べた製造工程と実質的に同じ工程に関する説明は、省略する。
図9及び図10は、第2の実施形態の磁気抵抗効果素子の製造方法の各工程を示す断面工程図である。
図9に示されるように、基板79上に、磁気抵抗効果素子(MTJ素子)の構成部材が、順次堆積される。
本実施形態において、下部電極となる導電層17Z上に、記憶層11Zとなる材料が、形成される。導電層17Z上に、異方性付与膜としての非磁性膜(例えば、MgO)130Zが堆積される。非磁性層130Z上に、磁化膜(例えば、CoFeB)110Zが堆積される。磁化膜110Z上に、トンネルバリア層となる非磁性層(例えば、MgO)12Zが堆積される。
例えば、導電層17Zが、異方性付与膜130Zに対して格子不整合の小さい下地層を、導電層17Zの上面側(異方性付与膜に接する側)に含むことによって、異方性付与膜130Z及び磁化膜11Zの結晶性を改善することができる。
磁化膜110Z上の非磁性層12Z上に、参照層となる磁性層10及びキャップ層14及びハードマスク17Bが順次堆積される。
そして、パターニングされたハードマスク17Bに基づいて、非磁性層12Zをエッチングのストッパに用いて、キャップ層14と参照層10とが、所定の形状に加工される。
参照層10が加工された後、非磁性層12Zが加工される前に、例えば、CVD法及びエッチバックを用いて、側壁絶縁膜19Xが、参照層10、キャップ層14及びハードマスク(上部電極)17Bの側面上に、形成される。
図10に示されるように、側壁絶縁膜19X及びハードマスク17Bをマスクに用いて、露出している非磁性層12Z及びその下方の各層110,130,17Aが、イオンビーム901によって、エッチングされる。非磁性層12Zより下方の部材のエッチングは、基板表面に対して斜め方向からのイオンビーム901の照射によって実行されてもよいし、基板表面に対して垂直方向からのイオンビーム901の照射によって実行されてもよい。
このエッチングによって、図10に示されるように、トンネルバリア層12、記憶層11及び下部電極17Aが、形成される。下部電極17A上の記憶層11は、磁化膜110及び異方性付与膜130を含む。
例えば、下部電極17Aの加工時、下部電極17Aを形成する導電体が、イオンビーム901による下部電極17Aに対するスパッタリングによって飛散し、飛散した導電体が再付着物15として、異方性付与膜130の側面をまたがるように、磁化膜110及び下部電極17Aの側面上に、形成される。
これによって、記憶層11の磁化膜110と下部電極17Aとを電気的に接続する導電層(電流経路膜)15が、記憶層11及び下部電極17Aの側面上に形成される。
下部電極17Aの加工時において、トンネルバリア層12より上方の参照層10及び上部電極17Bの側面は、側壁絶縁膜19に覆われている。そのため、下部電極17Aに起因する導電性の再付着物が、参照層10及び上部電極17Bの側面上に、直接付着することはない。それゆえ、下部電極17Bに起因する再付着物によって、参照層10と記憶層11とのショートは、発生しない。
この後、第1の実施形態と同様の工程によって、MTJ素子を覆う保護膜、層間絶縁膜などが、順次形成され、第2の実施形態のMTJ素子が、形成される。
以上のように、本実施形態のMTJ素子の製造方法において、図7及び図8に示されるボトムフリー型のMTJ素子1Bが形成される。
本実施形態のMTJ素子の製造方法において、記憶層11内の磁化膜110が、トンネルバリア層12と異方性付与膜130とに挟まれるように、形成される。
ボトムフリー型のMTJ素子の記憶層11において、下部電極17Aのエッチング時に発生した再付着物によって、異方性付与膜130の側面をまたいで磁化膜110と下部電極17Aとを導通させる導電層15が、記憶層11及び下部電極17Aの側面上に形成される。
本実施形態において、下部電極17Aの加工時に発生する再付着物から側壁導電膜15が形成されるため、MTJ素子の製造工程は、増加しない。
以上の製造方法によって形成された第2の実施形態のMTJ素子1Bは、第1の実施形態と同様と、異方性付与膜130による記憶層11の界面磁気異方性の向上によって、MTJ素子1Bの熱安定性を向上できるとともに、側壁導電膜(電流経路膜)15によって、異方性付与膜130に起因したMTJ素子1Bに供給される電流の損失を、抑制できる。
以上のように、第2の実施形態の磁気抵抗効果素子及びその製造方法は、第1の実施形態と同様に、素子特性を向上できる。
(C) 変形例
図11乃至図14を参照して、実施形態の磁気抵抗効果素子及びその製造方法の変形例について、説明する。尚、本変形例において、第1及び第2の実施形態で述べた構成要素、機能及び工程と、実質的に同じものに関する説明は、必要に応じて行う。
(c1) 変形例1
図11を用いて、実施形態の磁気抵抗効果素子の変形例の一例について、説明する。
図11は、実施形態の磁気抵抗効果素子の変形例の断面構造を示している。
図11に示されるように、MTJ素子の記憶層11は、複数の異方性付与膜130,131を含んでいてもよい。
図11のMTJ素子の記憶層11Aは、複数の磁性膜110,111と複数の異方性付与膜130,131とが交互に積層された積層構造を有する。
これによって、界面磁気異方性に起因する記憶層11Aの垂直磁気異方性を向上できる。
記憶層11内の複数の異方性付与膜130,131をまたがるように、電流経路としての導電層15が、記憶層11内の複数の磁化膜110,111及びキャップ層14(又は、電極17B)の側面上に、設けられている。
それゆえ、記憶層11が複数の異方性付与膜130,131を含んでいたとしても、記憶層11A内の磁化膜とキャップ層14(電極17B)とを接続する導電層15によって、高抵抗の異方性付与膜130,131に起因する寄生抵抗の影響を、緩和できる。
尚、図11においては、トップフリー型のMTJ素子が示されているが、ボトムフリー型のMTJ素子の記憶層が、磁化膜と異方性付与膜との積層構造になっていてもよい。
(c2) 変形例2
図12を用いて、実施形態の磁気抵抗効果素子の変形例について、説明する。
図12は、実施形態の磁気抵抗効果素子の変形例の断面構造を示している。
図12に示されるように、参照層10Xに対して異方性付与膜139が設けられてもよい。
この場合、参照層10Xは、磁化膜100と異方性付与膜139とを含む。
参照層10X内の磁化膜100は、界面磁気異方性の発現に起因する膜面に対して垂直な磁化異方性を有する。参照層10X内の磁化膜100は、トンネルバリア層12と異方性付与膜139とに挟まれている。これによって、磁化膜100の垂直磁気異方性が向上する。
そして、参照層10内の異方性付与膜139の側面をまたがるように、参照層の側面上と下地層(下部電極)と、導電層15Aが設けられている。
これによって、参照層10内の磁化膜100が界面磁気異方性によって垂直磁気異方性を発現する磁性層である場合、異方性付与膜139によって、参照層10X内の磁化膜100の垂直磁気異方性が向上する。参照層10Xは、磁化反転しきい値を大きくするために磁化膜100の膜厚(体積)が大きくされるので、異方性付与膜139による磁化膜100の磁気異方性の向上の影響は大きい。
尚、図12において、参照層10と記憶層11との両方に、異方性付与膜130,139が設けられた例が示されているが、記憶層11側に異方性付与膜を設けずに、参照層10内のみに異方性付与膜が設けられてもよい。
また、図12において、トップフリー型のMTJ素子の参照層10Xが異方性付与膜を含む構造が示されているが、図8に示されるようなボトムフリー型のMTJ素子の参照層が、異方性付与膜を含んでいてもよい。
(c3) 変形例3
図13を用いて、実施形態の磁気抵抗効果素子の製造方法の変形例について、説明する。図13は、実施形態の磁気抵抗効果素子の製造方法の変形例の一工程を示す断面工程図である。
MTJ素子を加工するための積層構造(被加工層)に対するイオンビームの照射方向を、基板表面に対して傾斜させた場合、被加工層の上面だけでなく、被加工層の側面にイオンビームが照射される。傾斜イオンビームエッチングは、エッチングされた部材の飛散物が、被加工層の側面上に再付着するとともに、被加工層に再付着した物質をその側面上から除去できる。そのため、傾斜イオンビームエッチングで磁気抵抗効果素子が加工される場合、基板に対するイオンビームの入射角の大きさに応じて、被加工層の側面上に付着する物質の量は、低減する。
イオンビームの入射角が、基板表面に対して垂直方向になるにしたがって、被加工層の側面に対するエッチング量が減少し、被加工層の側面上に付着(残存)する物質の量が増大する。
図13に示されるように、導電性の被加工層の再付着物によって記憶層の側面上に導電層(電流経路膜)が形成される場合、基板表面に対して垂直方向から照射されるイオンビーム909を用いて、導電層を形成するための部材(磁性層又は電極)がエッチングされてもよい。これによって、異方性付与膜を含む記憶層の側面上に堆積される付着物の量が増大する。
これによって、異方性付与膜130の側面をまたいで記憶層11内の磁化膜110と電極(キャップ層)とを接続する導電層15を、効率化よく形成できる。
その結果として、電流経路としての導電層15の膜厚が厚くなり、その導電層15の抵抗値を低減できる。
したがって、記憶層11と電極17Bとの間を流れる電流を増大できる。
(c4) 変形例4
図14を用いて、実施形態の磁気抵抗効果素子の製造方法の変形例について、説明する。図14は、実施形態の磁気抵抗効果素子の製造方法の変形例の一工程を示す断面工程図である。
上述の例では、導電性の再付着物を利用して、記憶層及び電極の側面上に側壁導電膜(電流経路膜)が形成された例が示されている。
但し、導電層の堆積及び加工によって、異方性付与膜をブリッジして記憶層内の磁化膜と電極(及びキャップ層)とを接続する導電層が形成されてもよい。
例えば、図14に示されるように、トンネルバリア層12Zをストッパとして、所定の形状の記憶層11が形成される。
その後、側壁導電膜を形成するための導電層15Zが、スパッタ法を用いて、加工された記憶層11及びハードマスク/キャップ層17B,14を覆うように、堆積される。これによって、導電層15Zが、ハードマスク17B、キャップ層14の側面上、異方性付与膜130の側面上、磁性膜110の側面上に堆積される。また、導電層15Zは、ハードマスク17Bの上面上及びトンネルバリア層12Zの上面上に、堆積される。
導電層15Zには、例えば、Co、Fe、Ta、Ti、TaN、TiN及びこれらの積層膜のうち1つが用いられる。
導電層15Zが、記憶層11、ハードマスク/キャップ層(導電層)14,17Bの側面上に自己整合的に残存するように、例えば、導電層15Zに対してイオンビーム910が照射され、堆積された導電層15Zがエッチバックされる。
これによって、異方性付与膜130の側面をまたいで記憶層11内の磁化膜130と導電層14,17Bとを接続する側壁導電膜(電流経路膜)が、記憶層11及び導電層14,17Bの側面上形成される。
このように、側壁導電膜15が膜堆積技術で形成されることによって、均一な膜質の側壁導電膜15を形成できる。また、側壁導電膜15が膜堆積技術で形成された場合、再付着物を利用した側壁導電膜に比較して、側壁導電膜15の膜厚の制御が、容易になる。この結果として、側壁導電膜15の抵抗値を低減でき、より効率的に、導電層(キャップ層及び電極)14,17Bと磁化膜(記憶層)110との間に電流を流すことができる。
尚、異方性付与膜130を挟む磁化膜110と導電層14,17Bとを接続するための側壁導電膜15は、再付着物からなる導電層と再付着物とは別途に堆積された導電層との積層膜でもよい。
以上のように、図11乃至図14を用いて説明した実施形態の変形例の磁気抵抗効果素子によれば、第1及び第2の実施形態と同様の効果が得られ、磁気抵抗効果素子の素子特性を向上できる。
(4) 適用例
図15及び図16を参照して、実施形態の磁気抵抗効果素子の適用例について、説明する。尚、上述の実施形態で述べた構成と実質的に同じ構成に関しては、同じ符号を付し、その構成の説明は、必要に応じて行う。
上述の実施形態の磁気抵抗効果素子は、磁気メモリ、例えば、MRAM(Magnetoresistive Random Access Memory)のメモリ素子として、用いられる。本適用例において、STT型MRAM(Spin-torque transfer MRAM)が例示される。
図15は、本適用例のMRAMのメモリセルアレイ及びその近傍の回路構成を示す図である。
図15に示されるように、メモリセルアレイ9は、複数のメモリセルMCを含む。
複数のメモリセルMCは、メモリセルアレイ9内にアレイ状に配置される。メモリセルアレイ9内には、複数のビット線BL,bBL及び複数のワード線WLが設けられている。ビット線BL,bBLはカラム方向に延在し、ワード線WLはロウ方向に延在する。2本のビット線BL,bBLは、1組のビット線対を形成している。
メモリセルMCは、ビット線BL,bBL及びワード線WLに接続されている。
カラム方向に配列されている複数のメモリセルMCは、共通のビット線対BL,bBLに接続されている。ロウ方向に配列されている複数のメモリセルMCは、共通のワード線WLに接続されている。
メモリセルMCは、例えば、メモリ素子としての1つの磁気抵抗効果素子(MTJ素子)1と、1つの選択スイッチ2とを含む。メモリセルMC内のMTJ素子1には、第1又は第2の実施形態(又は変形例)で述べられた磁気抵抗効果素子(MTJ素子)1が用いられている。
選択スイッチ2は、例えば、電界効果トランジスタ(Field Effect Transistor)である。以下では、選択スイッチ2としての電界効果トランジスタのことを、選択トランジスタ2とよぶ。
MTJ素子1の一端は、ビット線BLに接続され、MTJ素子1の他端は、選択トランジスタ2の電流経路の一端(ソース/ドレイン)に接続されている。選択トランジスタ2の電流経路の他端(ドレイン/ソース)は、ビット線bBLに接続されている。選択トランジスタ2の制御端子(ゲート)は、ワード線WLに接続されている。
ワード線WLの一端は、ロウ制御回路4に接続される。ロウ制御回路4は、外部からのアドレス信号に基づいて、ワード線WLの活性化/非活性化を制御する。
ビット線BL,bBLの一端及び他端には、カラム制御回路3A,3Bが接続される。カラム制御回路3A,3Bは、外部からのアドレス信号に基づいて、ビット線BL,bBLの活性化/非活性化を制御する。
書き込み回路5A,5Bは、カラム制御回路3A,3Bをそれぞれ介して、ビット線BL,bBLの一端及び他端に接続される。書き込み回路5A,5Bは、書き込み電流IWRを生成するための電流源や電圧源などのソース回路、書き込み電流IWRを吸収するためのシンク回路を、それぞれ有する。
STT型MRAMにおいて、書き込み回路5A,5Bは、データの書き込み時、外部から選択されたメモリセル(以下、選択セル)に対して、書き込み電流を供給する。
書き込み回路5A,5Bは、MTJ素子1に対するデータの書き込み時、選択セルに書き込まれるデータに応じて、書き込み電流をメモリセルMC内のMTJ素子1に双方向に流す。即ち、MTJ素子1に書き込むデータに応じて、ビット線BLからビット線bBLに向かう書き込み電流IWR、或いは、ビット線bBLからビット線BLに向かう書き込み電流IWRが、書き込み回路5A,5Bから出力される。
読み出し回路6Aは、カラム制御回路3A,3Bを介して、ビット線BL,bBLの一端に接続される。読み出し回路6Aは、読み出し電流を発生する電圧源又は電流源や、読み出し信号の検知及び増幅を行うセンスアンプ、データを一時的に保持するラッチ回路などを含んでいる。読み出し回路6Aは、MTJ素子1に対するデータの読み出し時、選択セルに対して、読み出し電流を供給する。読み出し電流の電流値は、読み出し電流によって記録層の磁化が反転しないように、書き込み電流IWRの電流値(磁化反転しきい値)より小さい。
読み出し電流が供給されたMTJ素子1の抵抗値の大きさに応じて、読み出しノードにおける電流値又は電位が異なる。この抵抗値の大きさに応じた変動量(読み出し信号、読み出し出力)に基づいて、MTJ素子1が記憶するデータが判別される。
尚、図15に示される例において、読み出し回路6Aは、メモリセルアレイ9のカラム方向の一端側に設けられているが、2つの読み出し回路が、メモリセルアレイ9のカラム方向の一端及び他端にそれぞれ設けられてもよい。
例えば、メモリセルアレイ9と同じチップ内に、例えば、バッファ回路、ステートマシン(制御回路)、又は、ECC(Error Checking and Correcting)回路などが、設けられてもよい。
図16は、本適用例のMRAMのメモリセルアレイ9内に設けられるメモリセルMCの構造の一例を示す断面図である。
メモリセルMCは、半導体基板70のアクティブ領域AA内に形成される。アクティブ領域AAは、半導体基板70の素子分離領域に埋め込まれた絶縁膜71によって、区画されている。
半導体基板70上に、複数の層間絶縁膜79A,79B,79Cが積層されている。MTJ素子1Aは、層間絶縁膜79C内に設けられている。
MTJ素子1Aの上端は、上部電極17Bを介してビット線76(BL)に接続される。また、MTJ素子1Aの下端は、下部電極17A、層間絶縁膜79A内に埋め込まれたコンタクトプラグ72Bを介して、選択トランジスタ2のソース/ドレイン拡散層64に接続される。選択トランジスタ2のソース/ドレイン拡散層63は、コンタクトプラグ72Aを介してビット線75(bBL)に接続される。
ソース/ドレイン拡散層64及びソース/ドレイン拡散層63間のアクティブ領域AA表面上には、ゲート絶縁膜61を介して、ゲート電極62が形成される。ゲート電極62は、ロウ方向に延在し、ワード線WLとして用いられる。
尚、MTJ素子1Aは、プラグ72B直上に設けられているが、中間配線層を用いて、コンタクトプラグ直上からずれた位置(例えば、選択トランジスタのゲート電極上方)に配置されてもよい。
図16において、1つのアクティブ領域AA内に1つのメモリセルが設けられた例が示されている。しかし、2つのメモリセルが1つのビット線bBL及びソース/ドレイン拡散層63を共有するように、2つのメモリセルがカラム方向に隣接して1つのアクティブ領域AA内に設けられてもよい。これによって、メモリセルMCのセルサイズが縮小される。
図16において、選択トランジスタ2は、プレーナ構造の電界効果トランジスタが示されている。ただし、選択トランジスタの構造は、これに限定されない。例えば、RCAT(Recess Channel Array Transistor)やFinFETなどのように、3次元構造の電界効果トランジスタが、選択トランジスタとして用いられてもよい。RCATは、ゲート電極が、半導体領域内の溝(リセス)内にゲート絶縁膜を介して埋め込まれた構造を有する。FinFETは、ゲート電極が、短冊状の半導体領域(フィン)にゲート絶縁膜を介して立体交差した構造を有する。
図16に示されるように、MTJ素子1Aの記憶層11は、磁化膜110と異方性付与膜130とを含む。これによって、記憶層11内の磁化膜110は、異方性付与膜130とトンネルバリア層12とに挟まれ、トンネルバリア層12側及び異方性付与膜139側の磁化膜110の両面において、磁化膜110に対する界面磁気異方性が発現する。このため、記憶層11(磁化膜110)の垂直磁気異方性が向上し、MTJ素子1Aの熱安定性及びMR比が向上する。
さらに、MTJ素子1Aにおいて、異方性付与膜130の側面をまたがるように、磁化膜110の側面上及びキャップ層14を含む上部電極17Bの側面上に、側壁導電膜(電流経路膜)15が設けられている。これによって、磁化膜110と上部電極14,17Bとが直接導通し、異方性付与膜130を経由しない電流経路が、MTJ素子1A内における磁化膜110と上部電極14,17Bとの間に形成される。
このため、記憶層11としての磁化膜110の垂直磁気異方性の向上のために、異方性付与膜130がMTJ素子1A内に設けられたとしても、異方性付与膜130に起因する電流の損失は、抑制される。この結果として、本実施形態のMTJ素子1Aを含むMRAMの動作時に、MTJ素子1Aに供給される書き込み電流及び読み出し電流が増大するのを、抑制できる。
また、電流経路としての側壁導電膜15によって、異方性付与膜130に起因する記憶層11内の寄生抵抗は、実質的に無視でき、その寄生抵抗が原因のMTJ素子1AのMR比の低下を、抑制できる。その結果として、MRAMにおけるデータの読み出しの信頼性が向上する。
尚、図16において、第1の実施形態のMTJ素子1Aが、メモリセルMCに用いられた例が示されているが、第2の実施形態又は変形例で示されたMTJ素子が、メモリセルMCに用いられてもよい。
以上のように、本実施形態の磁気抵抗効果素子を用いたMRAM(磁気メモリ)は、その動作特性を向上でき、消費電力の増大を抑制できる。
[その他]
上述の各実施形態の磁気抵抗効果素子は、MRAM以外の磁気メモリに適用されてもよい。実施形態で述べた磁気抵抗効果素子を用いた磁気メモリは、例えば、DRAM、SRAMなどの代替メモリとして、用いられる。
例えば、本実施形態の磁気抵抗効果素子を用いた磁気メモリ(例えば、STT−MRAM)は、SSD(Solid State Drive)などのストレージデバイスのキャッシュメモリとして、適用できる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1:磁気抵抗効果素子、10:参照層,11:記憶層、12:トンネルバリア層、110:磁化膜、130:非磁性膜、15:側壁膜。

Claims (6)

  1. 第1及び第2の導電層と、
    前記第1及び第2の導電層間において前記第1の導電層側に設けられ、磁化の向きが可変な第1の磁性層と、
    前記第1及び第2の導電層間において前記第2の導電層側に設けられ、磁化の向きが不変な第2の磁性層と、
    酸化マグネシウムを主成分として含み、前記第1及び第2の磁性層間に設けられたトンネルバリア層と、
    前記第1の磁性層内に設けられ、前記トンネルバリア層側の第1の面と前記第1の面に対向する第2の面とを有し、膜面に対して垂直方向の磁気異方性を有する第1の磁化膜と、
    酸化マグネシウムを主成分として含み、前記第1の磁性層内において前記第1の磁化膜の前記第2の面側に設けられ、前記第1の磁化膜に対して界面磁気異方性を生じさせる第1の非磁性膜と、
    前記第1の磁性層内において前記第1の導電層と前記第1の非磁性膜と間に設けられ、膜面に対して垂直な磁気異方性を有する第2の磁化膜と、
    酸化マグネシウムを主成分として含み、前記第1の磁性層内において前記第2の磁化膜と前記第1の導電層との間に設けられ、前記第2の磁化膜に対して界面磁気異方性を生じさせる第2の非磁性膜と、
    前記第1及び第2の磁化膜と前記第1の導電層とを導通させる第3の導電層と、
    を具備し、
    前記第1の非磁性膜の膜厚は、前記トンネルバリア層の膜厚より厚く、
    前記第1の非磁性膜の抵抗値は、前記トンネルバリア層の抵抗値より高い、
    ことを特徴とする磁気抵抗効果素子。
  2. 第1及び第2の導電層と、
    前記第1及び第2の導電層間において前記第1の導電層側に設けられ、磁化の向きが可変な第1の磁性層と、
    前記第1及び第2の導電層間において前記第2の導電層側に設けられ、磁化の向きが不変な第2の磁性層と、
    前記第1及び第2の磁性層間に設けられたトンネルバリア層と、
    前記第1の磁性層内に設けられ、前記トンネルバリア層側の第1の面と前記第1の面に対向する第2の面とを有し、膜面に対して垂直方向の磁気異方性を有する第1の磁化膜と、
    前記第1の磁性層内において前記第1の磁化膜の前記第2の面側に設けられ、前記第1の磁化膜に対して界面磁気異方性を生じさせる第1の非磁性膜と、
    前記第1の磁化膜と前記第1の導電層とを導通させる第3の導電層と、
    を具備し、
    前記トンネルバリア層及び前記第1の非磁性膜は、同じ材料を主成分に含み、
    前記第1の非磁性膜の膜厚は、前記トンネルバリア層の膜厚より厚く、
    前記第1の非磁性膜の抵抗値は、前記トンネルバリア層の抵抗値より高い、
    ことを特徴とする磁気抵抗効果素子。
  3. 前記第1の磁性層は、
    前記第1の導電層と前記第1の非磁性膜と間に設けられ、膜面に対して垂直な磁気異方性を有する第2の磁化膜と、
    前記第2の磁化膜と前記第1の導電層との間に設けられ、前記第2の磁化膜に対して界面磁気異方性を生じさせる第2の非磁性膜と、
    を含むことを特徴とする請求項2に記載の磁気抵抗効果素子。
  4. 前記トンネルバリア層及び前記第1の非磁性膜は、酸化マグネシウムを主成分とする絶縁膜である、ことを特徴とする請求項2又は3に記載の磁気抵抗効果素子。
  5. 前記第1の磁性層は、前記第2の磁性層の上方に設けられ、
    前記第3の導電層は、前記第1の磁性層が含む元素と同じ元素を含む、ことを特徴とする請求項2乃至4のいずれか1項に記載の磁気抵抗効果素子。
  6. 磁化膜と第1の材料を主成分とする非磁性膜とを含む第1の磁性層と、第2の磁性層と、前記第1及び第2の磁性層間に形成された前記第1の材料を主成分とするトンネルバリア層と、前記第1の磁性層上の第1の導電層とを含み、前記磁化膜が前記トンネルバリア層と前記トンネルバリア層より厚く且つ前記トンネルバリア層より抵抗値の高い前記非磁性膜との間に挟まれる積層構造を、第2の導電層上に形成する工程と、
    前記第1の導電層を、所定の形状に加工する工程と、
    前記第1の導電層をマスクに用いて、前記第1の磁性層を加工し、前記第1の磁性層の加工によって発生した再付着物からなる第3の導電層を、前記磁化膜の側面上、前記非磁性膜の側面上及び前記第1の導電層の側面上に形成する工程と
    前記加工された第1の磁性層の側面を覆うように、側壁絶縁膜を形成する工程と、
    前記側壁絶縁膜で覆われた前記第1の磁性層をマスクに用いて、前記トンネルバリア層、前記第2の磁性層及び前記第2の導電層を加工する工程と、
    を具備することを特徴とする磁気抵抗効果素子の製造方法。
JP2013060724A 2013-03-22 2013-03-22 磁気抵抗効果素子及び磁気抵抗効果素子の製造方法 Active JP5865858B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013060724A JP5865858B2 (ja) 2013-03-22 2013-03-22 磁気抵抗効果素子及び磁気抵抗効果素子の製造方法
US14/015,374 US9042166B2 (en) 2013-03-22 2013-08-30 Magnetoresistive effect element and method of manufacturing magnetoresistive effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013060724A JP5865858B2 (ja) 2013-03-22 2013-03-22 磁気抵抗効果素子及び磁気抵抗効果素子の製造方法

Publications (2)

Publication Number Publication Date
JP2014187169A JP2014187169A (ja) 2014-10-02
JP5865858B2 true JP5865858B2 (ja) 2016-02-17

Family

ID=51568553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013060724A Active JP5865858B2 (ja) 2013-03-22 2013-03-22 磁気抵抗効果素子及び磁気抵抗効果素子の製造方法

Country Status (2)

Country Link
US (1) US9042166B2 (ja)
JP (1) JP5865858B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11296146B2 (en) 2019-09-10 2022-04-05 Kioxia Corporation Magnetoresistive memory device and method of manufacturing magnetoresistive memory device

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5680045B2 (ja) * 2012-11-14 2015-03-04 株式会社東芝 磁気抵抗素子及び磁気メモリ
KR102067151B1 (ko) 2013-07-25 2020-01-17 에스케이하이닉스 주식회사 전자 장치 및 그 제조 방법
US9105572B2 (en) * 2013-09-09 2015-08-11 Hiroyuki Kanaya Magnetic memory and manufacturing method thereof
US9070869B2 (en) * 2013-10-10 2015-06-30 Avalanche Technology, Inc. Fabrication method for high-density MRAM using thin hard mask
JP6139444B2 (ja) * 2014-03-18 2017-05-31 株式会社東芝 磁気抵抗効果素子、磁気抵抗効果素子の製造方法及び磁気メモリ
US9525125B1 (en) * 2015-08-20 2016-12-20 International Business Machines Corporation Linear magnetoresistive random access memory device with a self-aligned contact above MRAM nanowire
KR102482373B1 (ko) * 2015-11-24 2022-12-29 삼성전자주식회사 자기 저항 메모리 장치 및 그 제조 방법
JP2017126613A (ja) * 2016-01-12 2017-07-20 株式会社東芝 磁気抵抗効果素子及びその製造方法
US9711713B1 (en) * 2016-01-15 2017-07-18 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure, electrode structure and method of forming the same
JP6216403B2 (ja) 2016-03-22 2017-10-18 株式会社東芝 磁気記憶素子及び不揮発性記憶装置
US9704919B1 (en) 2016-06-24 2017-07-11 Qualcomm Incorporated High aspect ratio vertical interconnect access (via) interconnections in magnetic random access memory (MRAM) bit cells
CN107565015A (zh) * 2016-07-06 2018-01-09 中电海康集团有限公司 一种基于金属孔的磁性随机存取存储器结构及其金属孔、金属层制造工艺
WO2019049244A1 (ja) * 2017-09-06 2019-03-14 Tdk株式会社 トンネル磁気抵抗効果素子及び磁気メモリ
JP6658982B2 (ja) * 2017-10-16 2020-03-04 Tdk株式会社 トンネル磁気抵抗効果素子、磁気メモリ、及び内蔵型メモリ
US10622547B2 (en) 2017-12-01 2020-04-14 Everspin Technologies, Inc. Magnetic memory using spin-orbit torque
JPWO2020045655A1 (ja) * 2018-08-30 2021-10-14 国立大学法人東北大学 磁気抵抗効果素子、磁気メモリ、及び、該磁気抵抗効果素子の成膜方法
US11195840B2 (en) * 2018-09-28 2021-12-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method and structures pertaining to improved ferroelectric random-access memory (FeRAM)
US11723213B2 (en) 2018-09-28 2023-08-08 Taiwan Semiconductor Manufacturing Company, Ltd. Method and structures pertaining to improved ferroelectric random-access memory (FeRAM)
US11646143B2 (en) * 2019-05-21 2023-05-09 International Business Machines Corporation Magnetic multi-layers containing MgO sublayers as perpendicularly magnetized magnetic electrodes for magnetic memory technology
US11094878B2 (en) * 2019-06-18 2021-08-17 International Business Machines Corporation Short circuit reduction in magnetic tunnel junctions
US11758821B2 (en) * 2019-07-17 2023-09-12 Industrial Technology Research Institute Magnetic memory structure
CN112531103B (zh) * 2019-09-19 2023-05-26 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
WO2021118634A1 (en) * 2019-12-09 2021-06-17 Siemens Industry Software Inc. Memory built-in self-test with automated reference trim feedback for memory sensing
CN115700064A (zh) * 2020-06-10 2023-02-03 索尼半导体解决方案公司 磁阻效应元件、半导体装置和电子设备

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6956766B2 (en) 2002-11-26 2005-10-18 Kabushiki Kaisha Toshiba Magnetic cell and magnetic memory
JP4264533B2 (ja) * 2003-01-06 2009-05-20 ソニー株式会社 不揮発性磁気メモリ装置及びその製造方法
EP1737055B1 (en) 2004-03-12 2012-01-11 Japan Science and Technology Agency Magnetoresistive element and its manufacturing method
KR100875707B1 (ko) 2004-08-27 2008-12-23 도쿠리쓰교세이호징 가가쿠 기주쓰 신코 기코 자기저항소자 및 그 제조 방법
US20070187785A1 (en) * 2006-02-16 2007-08-16 Chien-Chung Hung Magnetic memory cell and manufacturing method thereof
JP2008218829A (ja) 2007-03-06 2008-09-18 Toshiba Corp 磁気抵抗素子及びその製造方法
JP2008294420A (ja) 2007-04-24 2008-12-04 Toshiba Corp 磁気抵抗素子及びその製造方法
US7919826B2 (en) 2007-04-24 2011-04-05 Kabushiki Kaisha Toshiba Magnetoresistive element and manufacturing method thereof
JP2009076778A (ja) 2007-09-21 2009-04-09 Fujitsu Ltd 磁気抵抗効果素子および磁気抵抗デバイス
JP2009094104A (ja) 2007-10-03 2009-04-30 Toshiba Corp 磁気抵抗素子
JP2010034153A (ja) 2008-07-25 2010-02-12 Toshiba Corp 磁気ランダムアクセスメモリおよびその書き込み方法
JP2010097977A (ja) 2008-10-14 2010-04-30 Fujitsu Ltd トンネル磁気抵抗効果素子及びトンネルバリア層の製造方法
JP2010147213A (ja) 2008-12-18 2010-07-01 Fujitsu Ltd 磁気抵抗効果素子とその製造方法、磁気再生ヘッド、および情報記憶装置
US7989224B2 (en) * 2009-04-30 2011-08-02 International Business Machines Corporation Sidewall coating for non-uniform spin momentum-transfer magnetic tunnel junction current flow
US20100315869A1 (en) * 2009-06-15 2010-12-16 Magic Technologies, Inc. Spin torque transfer MRAM design with low switching current
US8513749B2 (en) * 2010-01-14 2013-08-20 Qualcomm Incorporated Composite hardmask architecture and method of creating non-uniform current path for spin torque driven magnetic tunnel junction
US8981502B2 (en) * 2010-03-29 2015-03-17 Qualcomm Incorporated Fabricating a magnetic tunnel junction storage element
JP2012038815A (ja) 2010-08-04 2012-02-23 Toshiba Corp 磁気抵抗素子の製造方法
JP5740878B2 (ja) * 2010-09-14 2015-07-01 ソニー株式会社 記憶素子、メモリ装置
US9006704B2 (en) * 2011-02-11 2015-04-14 Headway Technologies, Inc. Magnetic element with improved out-of-plane anisotropy for spintronic applications
JP2013016587A (ja) * 2011-07-01 2013-01-24 Toshiba Corp 磁気抵抗効果素子及びその製造方法
JP2013060724A (ja) 2011-09-12 2013-04-04 Jfe Engineering Corp ビル・マンション用緊急時電源・水源システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11296146B2 (en) 2019-09-10 2022-04-05 Kioxia Corporation Magnetoresistive memory device and method of manufacturing magnetoresistive memory device
US11818898B2 (en) 2019-09-10 2023-11-14 Kioxia Corporation Magnetoresistive memory device and method of manufacturing magnetoresistive memory device

Also Published As

Publication number Publication date
JP2014187169A (ja) 2014-10-02
US20140284736A1 (en) 2014-09-25
US9042166B2 (en) 2015-05-26

Similar Documents

Publication Publication Date Title
JP5865858B2 (ja) 磁気抵抗効果素子及び磁気抵抗効果素子の製造方法
US8508979B2 (en) Magnetic recording element and nonvolatile memory device
JP6139444B2 (ja) 磁気抵抗効果素子、磁気抵抗効果素子の製造方法及び磁気メモリ
US8803267B2 (en) Magnetoresistive element and magnetoresistive memory
US20170117027A1 (en) Top pinned sot-mram architecture with in-stack selector
JP6137744B2 (ja) 磁気抵抗素子及び磁気メモリ
US8937832B2 (en) Magnetic memory
US8531875B2 (en) Magnetic memory
US20180309048A1 (en) Magnetoresistive effect element and magnetic memory
US20120070695A1 (en) Magnetoresistive element
US9305576B2 (en) Magnetoresistive element
JP2016018964A (ja) 磁気抵抗効果素子
TWI699758B (zh) 磁性記憶體
JP2015176926A (ja) 磁気記憶素子及び不揮発性記憶装置
US10340311B2 (en) Magnetoresistive effect element with magnetic layers and magnetic memory
TWI627772B (zh) 電阻變化記憶體
TW202147650A (zh) 磁性記憶體裝置
US20170338402A1 (en) Noble metal cap layer for a metal oxide cap of a magnetic tunnel junction structure
US10170519B2 (en) Magnetoresistive element and memory device
KR102353133B1 (ko) 캡핑된 자기 메모리
JP2012244051A (ja) 磁気抵抗素子及び磁気記憶装置
JP2013055088A (ja) 磁気抵抗素子及び磁気記憶装置
JP2014143315A (ja) 磁気メモリおよびその製造方法
US20240016066A1 (en) Memory device and method of fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151228

R151 Written notification of patent or utility model registration

Ref document number: 5865858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350