JP5865021B2 - Circuit board inspection equipment - Google Patents

Circuit board inspection equipment Download PDF

Info

Publication number
JP5865021B2
JP5865021B2 JP2011246205A JP2011246205A JP5865021B2 JP 5865021 B2 JP5865021 B2 JP 5865021B2 JP 2011246205 A JP2011246205 A JP 2011246205A JP 2011246205 A JP2011246205 A JP 2011246205A JP 5865021 B2 JP5865021 B2 JP 5865021B2
Authority
JP
Japan
Prior art keywords
voltage
measurement
measured
sample
voltage value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011246205A
Other languages
Japanese (ja)
Other versions
JP2013104663A (en
Inventor
林太郎 村山
林太郎 村山
章弘 塩入
章弘 塩入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2011246205A priority Critical patent/JP5865021B2/en
Publication of JP2013104663A publication Critical patent/JP2013104663A/en
Application granted granted Critical
Publication of JP5865021B2 publication Critical patent/JP5865021B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、4端子対法による計測が行える回路基板検査装置に関し、さらに詳しく言えば、4端子対法での計測時におけるプローブ(導電接触ピン)のコンタクトチェックの技術に関するものである。   The present invention relates to a circuit board inspection apparatus that can perform measurement by the four-terminal pair method, and more particularly, to a technique for contact check of a probe (conductive contact pin) at the time of measurement by the four-terminal pair method.

回路基板に存在する導体パターン,実装部品や素子等(以下、これらを「被測定試料」という。)のインピーダンスを測定する方法の一つとして4端子法がある。   There is a four-terminal method as one of methods for measuring the impedance of conductor patterns, mounted parts, elements, etc. (hereinafter referred to as “samples to be measured”) present on a circuit board.

4端子法においては、図5の模式図に示すように、基本的な構成として、測定信号を発生する測定信号源1と、電圧検出手段としての電圧計2と、電流検出手段としての電流計3とを備える。   In the four-terminal method, as shown in the schematic diagram of FIG. 5, as a basic configuration, a measurement signal source 1 that generates a measurement signal, a voltmeter 2 as a voltage detection means, and an ammeter as a current detection means 3.

プローブとしては、測定信号源1から被測定試料DUTに流れる測定電流径路に内に含まれる2つの電流プローブP1,P2(P1が高電位Hc側で、P2が低電位Lc側)と、被測定試料DUTの電圧検出径路内に含まれる2つの電圧プローブP3,P4(P3が高電位Hp側で、P2が低電位Lp側)の4つのプローブが用いられる。   As probes, two current probes P1 and P2 (P1 is on the high potential Hc side and P2 is on the low potential Lc side) included in the measurement current path that flows from the measurement signal source 1 to the measurement sample DUT, and the measurement target Four probes of two voltage probes P3 and P4 (P3 is on the high potential Hp side and P2 is on the low potential Lp side) included in the voltage detection path of the sample DUT are used.

なお、これらの各プローブは構造的には変わらないが、本明細書では、説明の便宜上、電流系統側のものを電流プローブと言い、電圧系統側のものを電圧プローブと言う。   Although these probes are not structurally different, in the present specification, for convenience of explanation, the current system side is referred to as a current probe, and the voltage system side is referred to as a voltage probe.

測定にあたっては、測定信号源1から電流プローブP1,P2を介して被測定試料DUTに例えば定電流を流し、これによって被測定試料DUTの両端に発生する電圧を電圧プローブP3,P4を介して電圧計2で測定し、電流計3による電流値と電圧計2による電圧値とに基づいて、被測定試料DUTのインピーダンスZを測定する。   In measurement, for example, a constant current is passed from the measurement signal source 1 to the sample DUT to be measured via the current probes P1 and P2, and the voltage generated at both ends of the sample DUT by this is applied to the voltage via the voltage probes P3 and P4. The impedance Z of the sample DUT to be measured is measured based on the current value obtained by the ammeter 3 and the voltage value obtained by the voltmeter 2.

この4端子法によれば、測定系の電気配線(リード線)の配線抵抗や被測定試料との接触抵抗の影響をほとんど排除することができるが、測定電流径路に流れる電流によって発生する磁束が電圧検出径路をよぎると、検出電圧に誤差が生じ、この誤差がインピーダンス測定値に含まれることになる。   According to this four-terminal method, the influence of the wiring resistance of the electrical wiring (lead wire) of the measurement system and the contact resistance with the sample to be measured can be almost eliminated, but the magnetic flux generated by the current flowing through the measurement current path is If the voltage detection path is crossed, an error occurs in the detection voltage, and this error is included in the impedance measurement value.

この現象は、特に高い周波数の測定電流で測定を行う高周波測定時に問題となる。なお、測定系の電気配線に、同軸ケーブル(シールド被覆線)を使用しても、静電シールドの効果はあるが、上記のような電磁誘導に対しては有効ではない。   This phenomenon becomes a problem particularly during high-frequency measurement in which measurement is performed with a high-frequency measurement current. Even if a coaxial cable (shielded wire) is used for the electrical wiring of the measurement system, there is an effect of electrostatic shielding, but it is not effective for electromagnetic induction as described above.

この電磁誘導による問題は、4端子対法によって解決することができる。4端子対法に関する文献としては例えば特許文献1があるが、図6に4端子対法による測定状態を模式的に示し、これについて説明する。   This problem due to electromagnetic induction can be solved by the four-terminal pair method. As a document related to the four-terminal pair method, for example, there is Patent Document 1, and FIG. 6 schematically shows a measurement state by the four-terminal pair method, which will be described.

図6を参照して、4端子対法の場合、電流プローブP1,P2の電気配線として同軸ケーブルC1,C2を用い、同様に、電圧プローブP3,P4の電気配線にも同軸ケーブルC3,C4を用いる。そして、各同軸ケーブルC1〜C4の各外部導体(シールド被覆線)Sのすべてを各プローブの基端付近でリード線5にて接続し短絡する。   Referring to FIG. 6, in the case of the four-terminal pair method, coaxial cables C1 and C2 are used as the electric wires for current probes P1 and P2, and similarly, coaxial cables C3 and C4 are used for the electric wires of voltage probes P3 and P4. Use. Then, all the outer conductors (shield covered wires) S of the respective coaxial cables C1 to C4 are connected and short-circuited by the lead wires 5 in the vicinity of the base ends of the respective probes.

動作について説明すると、4端子対法には、低電位側の電圧プローブP4を仮想接地(0電位)とする自動平衡ブリッジ法が適用され、測定信号源1よりHcラインを介して被測定試料DUTに測定電圧Vを印加すると(この印加電圧はHpラインと同じ)、被測定試料DUTにはV/Zなる測定電流が流れる。この測定電流は電流計3を通り、そのまま逆向きに外部導体C2,C1を流れて測定信号源1に戻る(図6の電流の流れ方向を示す矢印参照)。   The operation will be described. In the four-terminal pair method, an automatic balanced bridge method in which the voltage probe P4 on the low potential side is set to virtual ground (0 potential) is applied, and the sample DUT to be measured from the measurement signal source 1 via the Hc line. When the measurement voltage V is applied to (this applied voltage is the same as that of the Hp line), a measurement current V / Z flows through the sample DUT to be measured. This measurement current passes through the ammeter 3 and flows through the outer conductors C2 and C1 in the opposite directions and returns to the measurement signal source 1 (see the arrow indicating the current flow direction in FIG. 6).

このとき、被測定試料DUTの反対側では、LcがLp(=仮想接地の0電位)となるようにヌルループ方式による帰還制御回路FCが動作する。したがって、被測定試料DUTには、電圧計2の両端と同じ電圧がかかるため、電圧計2の示す値は、被測定試料DUTの両端電圧と同じとなる。   At this time, on the opposite side of the DUT to be measured, the feedback control circuit FC by the null loop system operates so that Lc becomes Lp (= 0 potential of virtual ground). Therefore, since the same voltage is applied to the sample DUT to be measured at both ends of the voltmeter 2, the value indicated by the voltmeter 2 is the same as the voltage across the sample DUT to be measured.

このように、4端子対法によれば、測定電流径路内において、測定電流の往路と復路とが重ね合わされるため、上記4端子法の利点を維持しながら、測定電流により生ずる磁束の影響(電磁誘導)を軽減することができる。   Thus, according to the four-terminal pair method, the forward and backward paths of the measurement current are overlapped in the measurement current path, so that the influence of the magnetic flux generated by the measurement current (while maintaining the advantages of the four-terminal method ( Electromagnetic induction) can be reduced.

なお、各同軸ケーブルC1〜C4の各外部導体Sのすべてをリード線5にて接続しているのは、上記電圧を測定する際に、それに関与するHp,Lpの各外部導体Sの電位が確定していない状態は好ましくない、等の理由による。   Note that all of the outer conductors S of the coaxial cables C1 to C4 are connected by the lead wire 5 because the potentials of the Hp and Lp outer conductors S involved in measuring the voltage are as follows. For example, an undefined state is not preferable.

ところで、測定周波数が高くなると、測定経路長と信号波長との関係から、ある条件下では測定経路内に定在波が発生し、ブリッジ回路のバランスがくずれることがある。この場合には、完全な4端子測定ではなくなるため、4端子測定時には無視できたプローブの接触抵抗の影響を受けることがある。   By the way, when the measurement frequency is increased, a standing wave may be generated in the measurement path under certain conditions due to the relationship between the measurement path length and the signal wavelength, and the balance of the bridge circuit may be lost. In this case, since it is not a complete four-terminal measurement, it may be influenced by the contact resistance of the probe that could be ignored during the four-terminal measurement.

この点に関し、特許文献2には、コンタクトチェックを行うため、低圧電圧端子Lpに判定電流を注入して低圧電流端子Lcの電位を測定することにより、被測定試料DUTと低圧電圧端子Lpおよび低圧電流端子Lcとの接触を判定する接触判定回路を備えるインピーダンス測定装置が提案されている。   In this regard, in Patent Document 2, in order to perform a contact check, a determination current is injected into the low-voltage voltage terminal Lp and the potential of the low-voltage current terminal Lc is measured. An impedance measuring device including a contact determination circuit that determines contact with the current terminal Lc has been proposed.

これによれば、接触判定回路の構成が簡単で、コンタクトチェックを短時間で判定でき、被測定試料DUTの電気的特異による制約が少なく、また、被測定試料DUTとのエネルギー授受が小さい等の利点がある。   According to this, the configuration of the contact determination circuit is simple, the contact check can be determined in a short time, there are few restrictions due to the electrical singularity of the sample DUT to be measured, and energy exchange with the sample DUT to be measured is small. There are advantages.

しかしながら、接触判定回路は、基本的に反転増幅器,判定電流注入手段およびA/Dコンバータよりなり、その構成が簡単ではあるものの、測定器本体であるインピーダンス測定装置にコンタクトチェックのための専用回路を付加しているため、その分、コストアップは否めない。また、測定中にコンタクトチェックを行うことができない、という問題がある。   However, the contact determination circuit basically consists of an inverting amplifier, determination current injection means, and an A / D converter. Although its configuration is simple, a dedicated circuit for contact check is provided in the impedance measuring apparatus which is the measuring instrument body. Since it is added, the cost increase cannot be denied. In addition, there is a problem that contact check cannot be performed during measurement.

特開平2−122274号公報Japanese Patent Laid-Open No. 2-122274 特許第3262819号公報Japanese Patent No. 3262819

したがって、本発明の課題は、4端子対法による計測が行える回路基板検査装置において、プローブのコンタクトチェックのための専用回路が不要であり、また、測定中においても適宜コンタクトチェックが行えるようにすることにある。   Accordingly, an object of the present invention is to provide a circuit board inspection apparatus that can perform measurement by the four-terminal pair method, and does not require a dedicated circuit for probe contact check, and can perform contact check appropriately even during measurement. There is.

上記課題を解決するため、本発明は、測定信号源および電圧検出手段を含む測定部と、上記測定信号源と被測定試料との間の測定電流径路に含まれる第1,第2の電流プローブおよび上記電圧検出手段と上記被測定試料との間の電圧検出径路に含まれる第1,第2の電圧プローブと、上記測定部からの測定信号に基づいて上記被測定試料のパラメータを算出する制御部とを備え、4端子対法による計測を行うため、上記各電流プローブおよび上記各電圧プローブの上記測定部に至る電気配線に同軸ケーブルが用いられるとともに、上記各同軸ケーブルの外部導体同士が所定の導通手段を介して相互に接続されている回路基板検査装置において、
少なくとも上記第1,第2の電圧プローブに用いられる各同軸ケーブルには、その内部導体と外部導体との間に、インピーダンスマッチング用の抵抗素子とスイッチとを含む直列回路が接続されており、上記制御部は、上記スイッチがオフであるときの上記内部導体と上記外部導体間の電圧値を第1の電圧値と、上記スイッチがオンであるときの上記内部導体と上記外部導体間の電圧値を第2の電圧値として、上記第1の電圧値と上記第2の電圧値とが実質的に等しい場合には、上記被測定試料に対する上記第1,第2の電圧プローブの接触状態が良好であると判定し、上記第1の電圧値と上記第2の電圧値とが異なる場合には、上記被測定試料に対する上記第1,第2の電圧プローブの接触状態が不良であると判定することを特徴としている。
In order to solve the above-described problems, the present invention provides a measurement unit including a measurement signal source and voltage detection means, and first and second current probes included in a measurement current path between the measurement signal source and the sample to be measured. And control for calculating parameters of the sample to be measured based on measurement signals from the first and second voltage probes included in the voltage detection path between the voltage detection means and the sample to be measured and the measurement unit. A coaxial cable is used for the electrical wiring leading to the measurement part of each current probe and each voltage probe, and the outer conductors of each coaxial cable are connected to each other in a predetermined manner. In the circuit board inspection apparatus connected to each other through the conduction means of
Each coaxial cable used for at least the first and second voltage probes has a series circuit including a resistance element for impedance matching and a switch connected between the inner conductor and the outer conductor, control unit, a voltage value between the inner conductor and the outer conductor when the switch is off and the first voltage value, the internal conductor and the voltage between the external conductors when the switch is on value as the second voltage value, the contact of the first case of the voltage value and the second voltage value is substantially equal to, the first with respect to the sample to be measured, the second voltage probe When it is determined that the state is good and the first voltage value and the second voltage value are different, the contact state of the first and second voltage probes with respect to the sample to be measured is poor. as determining means determines that That.

また、上記制御部は、上記測定信号源から出力される測定信号の特定周波数を境として、上記スイッチをオンからオフもしくはオフからオンに切り替える。   The control unit switches the switch from on to off or from off to on, with a specific frequency of the measurement signal output from the measurement signal source as a boundary.

本発明によれば、高周波領域においても、測定経路に定在波が発生しないようにするため、少なくとも第1,第2の電圧プローブに用いられる各同軸ケーブルには、その内部導体と外部導体との間に、インピーダンスマッチング用の抵抗素子とスイッチとを含む直列回路が接続され、このスイッチは、高周波領域における特定の周波数を境にしてオンからオフもしくはオフからオンに切り替えられるが、その際、スイッチがオフであるときに得られる内部導体と外部導体間の第1の電圧値と、スイッチがオンであるときに得られる内部導体と外部導体間の第2の電圧値とに基づいて、各電圧プローブのコンタクトチェックを行うことができる。したがって、コンタクトチェックを行うための専用回路が不要であり、また、測定中においてもコンタクトチェックを行うことができる。   According to the present invention, in order to prevent a standing wave from being generated in the measurement path even in a high frequency region, at least each of the coaxial cables used in the first and second voltage probes includes an inner conductor and an outer conductor. Between, a series circuit including a resistance element for impedance matching and a switch is connected, and this switch is switched from on to off or from off to on at a specific frequency in the high frequency region. Based on the first voltage value between the inner and outer conductors obtained when the switch is off and the second voltage value between the inner and outer conductors obtained when the switch is on, The contact check of the voltage probe can be performed. Therefore, a dedicated circuit for performing a contact check is unnecessary, and the contact check can be performed even during measurement.

(a)本発明の回路基板検査装置の基本的な構成を示す模式図、(b)本発明に適用される4端子対計測法によるプローブの構成例を示す模式図。(A) The schematic diagram which shows the basic composition of the circuit board test | inspection apparatus of this invention, (b) The schematic diagram which shows the structural example of the probe by the 4-terminal pair measuring method applied to this invention. 上記4端子対計測法によるプローブを含む自動平衡ブリッジを示す回路図。The circuit diagram which shows the automatic balance bridge containing the probe by the said 4 terminal pair measurement method. 高電位側の電圧プローブを例にして、その接触抵抗とインピーダンスマッチング用抵抗素子との関係を説明するための模式図。The schematic diagram for demonstrating the relationship between the contact resistance and the impedance matching resistance element by taking the voltage probe on the high potential side as an example. 測定周波数と被測定試料のインピーダンスとの関係を示すグラフで、(a)接触良好時における波形を示すグラフ、(b)接触不良時における波形を示すグラフ。The graph which shows the relationship between a measurement frequency and the impedance of a to-be-measured sample, (a) The graph which shows the waveform at the time of contact favorable, (b) The graph which shows the waveform at the time of poor contact. 4端子法による測定状態を示す模式図。The schematic diagram which shows the measurement state by a 4-terminal method. 4端子対法による測定状態を示す模式図。The schematic diagram which shows the measurement state by 4 terminal pair method.

次に、図1ないし図4により、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。   Next, an embodiment of the present invention will be described with reference to FIGS. 1 to 4, but the present invention is not limited to this.

まず、図1(a)を参照して、本発明の回路基板検査装置の構成を概略的に説明すると、この回路基板検査装置は、X−Y型もしくはフライング型と呼ばれる検査装置で、基本的な構成として、制御部10と、測定部20と、一対の可動アーム31,32と、可動アームの移動機構41,42とを備える。   First, the configuration of the circuit board inspection apparatus of the present invention will be schematically described with reference to FIG. 1A. This circuit board inspection apparatus is an inspection apparatus called an XY type or flying type, and is basically As a simple configuration, the control unit 10, the measurement unit 20, a pair of movable arms 31 and 32, and movable arm moving mechanisms 41 and 42 are provided.

制御部10には、例えばマイクロコンピュータが用いられ、その記憶部には、被検査回路基板A上に存在する被測定試料DUTについての検査プログラムや、良否判定用の基準データ等が設定される。また、制御部10は、測定部20からの測定信号に基づいて、被測定試料DUTのパラメータ(例えば、インピーダンス)を算出し、好ましくは、その良否判定等を行う。   For example, a microcomputer is used as the control unit 10, and an inspection program for the sample DUT to be measured existing on the circuit board A to be inspected, reference data for pass / fail judgment, and the like are set in the storage unit. Further, the control unit 10 calculates a parameter (for example, impedance) of the sample DUT to be measured based on the measurement signal from the measurement unit 20, and preferably performs quality determination or the like.

図2に示すように、測定部20は、先の図6で説明したのと同じく、4端子対法による測定を行うための測定信号源1、電圧検出手段としての電圧計2、電流検出手段としての電流計3およびヌルループ方式による帰還制御回路FC等を備え、この測定には、低電位Lp側の電圧プローブP4を仮想接地とする自動平衡ブリッジ法が適用される。   As shown in FIG. 2, the measurement unit 20 includes a measurement signal source 1 for performing measurement by the four-terminal pair method, a voltmeter 2 as voltage detection means, and current detection means, as described in FIG. The automatic balance bridge method using the voltage probe P4 on the low potential Lp side as a virtual ground is applied to this measurement.

可動アーム31,32は、それらの移動機構41,42によりX−Y−Z方向に駆動される。可動アーム31,32の移動制御信号は、制御部10から移動機構41,42に与えられる。図示しないが、可動アーム31,32のほかに、別の可動アーム(例えば、ガードプローブ用の可動アーム等)が設けられてもよい。   The movable arms 31 and 32 are driven in the XYZ directions by the moving mechanisms 41 and 42. The movement control signals of the movable arms 31 and 32 are given from the control unit 10 to the movement mechanisms 41 and 42. Although not shown, in addition to the movable arms 31 and 32, another movable arm (for example, a movable arm for a guard probe) may be provided.

なお、X−Y方向とは、可動アーム31,32が図1に示す被検査回路基板Aの基板面と平行な面に沿って動く方向(図1の紙面左右方向を例えばX方向とすれば、図1の紙面と直交する方向がY方向)であり、Z方向とは、被検査回路基板Aの基板面と直交する垂直方向(図1において上下方向)である。   The XY direction is a direction in which the movable arms 31 and 32 move along a plane parallel to the substrate surface of the circuit board A to be inspected shown in FIG. 1 (if the left-right direction in FIG. 1 is the X direction, for example). 1 is a Y direction), and the Z direction is a vertical direction (vertical direction in FIG. 1) orthogonal to the substrate surface of the circuit board A to be inspected.

検査プローブには、図1(b)に示す4端子対法による4本のプローブP1〜P4が用いられる。このうち、先の図6で説明したのと同じく、P1,P2が被測定試料DUTに対する測定電流径路に含まれる電流プローブで、P3,P4が被測定試料DUTの電圧検出径路に含まれる電圧プローブである。   As the inspection probe, four probes P1 to P4 based on the four-terminal pair method shown in FIG. 1B are used. Among these, as described above with reference to FIG. 6, P1 and P2 are current probes included in the measurement current path for the sample DUT to be measured, and P3 and P4 are voltage probes included in the voltage detection path of the sample DUT to be measured. It is.

電流プローブP1,P2,電圧プローブP3,P4には、同じ構造のプローブが用いられてよい。なお、説明するうえで、これらの各プローブを区別する必要がない場合には、単にプローブということがある。   Probes having the same structure may be used for the current probes P1, P2, and the voltage probes P3, P4. In the description, when it is not necessary to distinguish between these probes, they may be simply referred to as probes.

プローブP1,P2,P3およびP4は、それぞれ同軸ケーブルC1,C2,C3およびC4の各内部導体ILを介して測定部20に接続される。   The probes P1, P2, P3, and P4 are connected to the measurement unit 20 via the inner conductors IL of the coaxial cables C1, C2, C3, and C4, respectively.

電流プローブP1,P2のうち、電流プローブP1が高電位(Hi)側で測定信号源1のHc端子に接続され、電流プローブP2は低電位(Low)側として電流検出系のLc端子側に接続される。   Of the current probes P1 and P2, the current probe P1 is connected to the Hc terminal of the measurement signal source 1 on the high potential (Hi) side, and the current probe P2 is connected to the Lc terminal side of the current detection system as the low potential (Low) side. Is done.

同様に、電圧プローブP3,P4のうち、電圧プローブP3が高電位側で電圧計2のHp端子に接続され、電圧プローブP4は低電位側として電圧検出系のLp端子側に接続される。   Similarly, of the voltage probes P3 and P4, the voltage probe P3 is connected to the Hp terminal of the voltmeter 2 on the high potential side, and the voltage probe P4 is connected to the Lp terminal side of the voltage detection system as the low potential side.

同軸ケーブルC1〜C4の各内部導体ILは、その各一端がプローブP1〜P4の基端b側に接続され、各他端が測定部20に接続されるが、各同軸ケーブルC1〜C4の外部導体(シールド被覆線)S同士は、プローブP1〜P4の基端b側付近において例えばリード線5により相互に接続される。   Each of the inner conductors IL of the coaxial cables C1 to C4 has one end connected to the proximal end b side of the probes P1 to P4 and the other end connected to the measuring unit 20, but the outer sides of the coaxial cables C1 to C4 The conductors (shield covered wires) S are connected to each other by, for example, lead wires 5 in the vicinity of the base end b side of the probes P1 to P4.

プローブP1〜P4のうち、好ましくは、高電位側の電流プローブP1および高電位側の電圧プローブP3が一方の可動アーム32側のプローブ保持部32aに支持され、低電位側の電流プローブP2および低電位側の電圧プローブP4が他方の可動アーム31側のプローブ保持部31aに支持される。この場合、可動アーム31,32は、電圧プローブP3,P4間に架け渡されているリード線5の長さ以下の間隔を保って移動する。   Of the probes P1 to P4, the high potential side current probe P1 and the high potential side voltage probe P3 are preferably supported by the probe holding portion 32a on the one movable arm 32 side, and the low potential side current probe P2 and the low potential side current probe P2 are low. The voltage probe P4 on the potential side is supported by the probe holding portion 31a on the other movable arm 31 side. In this case, the movable arms 31 and 32 move with an interval equal to or shorter than the length of the lead wire 5 spanned between the voltage probes P3 and P4.

ところで、測定周波数が例えば数10MHz帯と高くなると、測定経路長と信号波長との関係から、ある条件下では測定経路内に定在波が発生し、ブリッジ回路のバランスがくずれ、完全な4端子測定ではなくなるため、4端子測定時には無視できたプローブの接触抵抗の影響を受けることがある。   By the way, when the measurement frequency is as high as several tens of MHz, for example, a standing wave is generated in the measurement path under certain conditions due to the relationship between the measurement path length and the signal wavelength, and the balance of the bridge circuit is lost. Since it is not a measurement, it may be affected by the contact resistance of the probe, which could be ignored during 4-terminal measurement.

そこで、本発明では、図2に示すように、電流プローブP1のHc端子および電流プローブP2のLc端子の各々に、インピーダンスマッチング用の抵抗素子R0とスイッチSW1の並列回路21を接続する。   Therefore, in the present invention, as shown in FIG. 2, the parallel circuit 21 of the impedance matching resistance element R0 and the switch SW1 is connected to each of the Hc terminal of the current probe P1 and the Lc terminal of the current probe P2.

また、電圧プローブP3のHp端子および電圧プローブP4のLp端子については、その内部導体ILと外部導体Sとの間に、インピーダンスマッチング用の抵抗素子R0とスイッチSW2の直列回路22を接続するようにしている。   For the Hp terminal of the voltage probe P3 and the Lp terminal of the voltage probe P4, the series circuit 22 of the impedance matching resistance element R0 and the switch SW2 is connected between the internal conductor IL and the external conductor S. ing.

これによれば、測定周波数や測定経路長にかかわらず、信号の反射による定在波の発生が抑えられ、測定信号を送電端から受電端に正確に伝えることが可能となり、高周波領域においても、高確度な測定を行うことができる。   According to this, regardless of the measurement frequency and measurement path length, the occurrence of standing waves due to signal reflection is suppressed, and the measurement signal can be accurately transmitted from the power transmission end to the power reception end. Highly accurate measurement can be performed.

この種の測定装置としては、アジレントテクノロジー社の110MHzプレシジョン・インピーダンスアナライザ4294Aが知られている。   As this type of measuring apparatus, a 110 MHz precision impedance analyzer 4294A manufactured by Agilent Technologies is known.

その説明書によれば、各抵抗素子R0の抵抗値は50Ωであり、ケーブル延長なしの場合で15MHz,1m/2mケーブル延長時には5MHz以上でスイッチSW1をオフ、スイッチSW2をオンとし、それ以下の周波数では、スイッチSW1をオン、スイッチSW2をオフとすることが記載されている。   According to the instructions, the resistance value of each resistance element R0 is 50Ω, and when the cable is not extended, the switch SW1 is turned off at 5 MHz or more and the switch SW2 is turned on when the cable is extended at 15 MHz or 1 m / 2 m. In terms of frequency, it is described that the switch SW1 is turned on and the switch SW2 is turned off.

本発明では、電圧プローブP3,P4のコンタクトチェックをインピーダンスマッチング用の直列回路22に含まれているスイッチSW2を利用して行う。これについて、図3に示されている高電位Hp側の電圧プローブP3により説明する。同図において、R1は電圧プローブP3の接触抵抗で、V0は被測定試料DUTに印加される検査電圧である。   In the present invention, the contact check of the voltage probes P3 and P4 is performed using the switch SW2 included in the impedance matching series circuit 22. This will be described with reference to the voltage probe P3 on the high potential Hp side shown in FIG. In the figure, R1 is a contact resistance of the voltage probe P3, and V0 is an inspection voltage applied to the sample DUT to be measured.

スイッチSW2がオフでインピーダンスマッチングが行われないとき、実質的にR0=∞であるから、電圧計2の指示値VはV0を示す。   When the switch SW2 is OFF and impedance matching is not performed, since R0 = ∞ is substantially satisfied, the indication value V of the voltmeter 2 indicates V0.

これに対して、スイッチSW2がオンでインピーダンスマッチングが行われたとき、電圧計2の指示値Vは、V={R0/(R0+R1)}×V0となる。   On the other hand, when the switch SW2 is on and impedance matching is performed, the indication value V of the voltmeter 2 is V = {R0 / (R0 + R1)} × V0.

ここで、接触抵抗R1=0Ω(もしくはR1≒0Ω)であれば、電圧計2の指示値Vは、V=V0(もしくはV≒V0)となるが、接触抵抗R1≫0Ωのときには、電圧計2の指示値Vは、V≠V0となり、指示値Vに誤差が生ずる。   Here, if the contact resistance R1 = 0Ω (or R1≈0Ω), the indication value V of the voltmeter 2 is V = V0 (or V≈V0), but if the contact resistance R1 >> 0Ω, the voltmeter The instruction value V of 2 is V ≠ V0, and an error occurs in the instruction value V.

したがって、測定信号が低周波領域から高周波領域に入って、例えば15MHzもしくは5MHz以上の時点でインピーダンスマッチングが行われ、スイッチSW2がオフからオンに転じられた際、接触抵抗R1がほぼ0Ωで、電圧計2の指示値VがV=V0(もしくはV≒V0)あれば、図4(a)に示すように、被測定試料DUTのインピーダンスZは、インピーダンスマッチングの前後において連続した波形となる。   Therefore, when the measurement signal enters the high frequency region from the low frequency region and impedance matching is performed at, for example, 15 MHz or 5 MHz or more, and the switch SW2 is turned from off to on, the contact resistance R1 is approximately 0Ω, If the instruction value V of the total 2 is V = V0 (or V≈V0), as shown in FIG. 4A, the impedance Z of the sample DUT to be measured has a continuous waveform before and after impedance matching.

これに対して、接触抵抗R1がR1≫0Ωの場合には、電圧計2の指示値VがV≠V0となることから、図4(b)に示すように、被測定試料DUTのインピーダンスZは、インピーダンスマッチングの前後において不連続の波形となる。なお、図4(a),(b)に示す波形は、被測定試料DUTをコンデンサとした場合のものである。   On the other hand, when the contact resistance R1 is R1 >> 0Ω, the indication value V of the voltmeter 2 is V ≠ V0. Therefore, as shown in FIG. 4B, the impedance Z of the sample DUT to be measured Becomes a discontinuous waveform before and after impedance matching. Note that the waveforms shown in FIGS. 4A and 4B are obtained when the sample DUT to be measured is a capacitor.

ちなみに、被測定試料DUTのインピーダンスZは、電流計3により測定される電流をIとして、Z=V/Iにより求められることから、スイッチSW2がオンされた時点でVが変化すると、それに応じてZも変化する。   Incidentally, the impedance Z of the sample DUT to be measured is obtained by Z = V / I, where I is the current measured by the ammeter 3, and accordingly, when V changes when the switch SW2 is turned on, Z also changes.

電圧プローブP4のLp端子側も同様に、その内部導体ILと外部導体Sとの間における電圧を図示しない電圧測定手段にて測定し、スイッチSW2がオフからオン(もしくはオンからオフ)に転じた時点での電圧を監視することにより、コンタクトチェックを行うことができる。   Similarly, on the Lp terminal side of the voltage probe P4, the voltage between the inner conductor IL and the outer conductor S is measured by a voltage measuring means (not shown), and the switch SW2 is turned from off to on (or from on to off). A contact check can be performed by monitoring the voltage at the time.

インピーダンスマッチングを行う周波数はあらかじめ分かっているため、被測定試料DUTのインピーダンスZの波形を監視し、インピーダンスマッチング周波数において、その波形が不連続である場合には、接触不良の可能性が高いため、コンタクトエラー(接触不良)と判定する。なお、Hp端子およびLp端子の内部導体ILと外部導体S間の電圧を監視するようにしてもよい。   Since the frequency for performing impedance matching is known in advance, the waveform of the impedance Z of the sample DUT to be measured is monitored. If the waveform is discontinuous at the impedance matching frequency, there is a high possibility of contact failure. A contact error (contact failure) is determined. Note that the voltage between the inner conductor IL and the outer conductor S of the Hp terminal and the Lp terminal may be monitored.

1 測定信号源
2 電圧検出手段(電圧計)
3 電流検出手段(電流計)
5 リード線(導通手段)
10 制御部
20 測定部
31,32 可動アーム
41,42 移動機構
A 被検査回路基板
DUT 被測定試料
P1,P2 電流プローブ
P3,P4 電圧プローブ
C1〜C4 同軸ケーブル
IL 内部導体
S 外部導体(シールド被覆線)
FC 帰還制御回路
R0 インピーダンスマッチング用の抵抗素子
SW1,SW2 スイッチ
1 Measurement signal source 2 Voltage detection means (voltmeter)
3 Current detection means (Ammeter)
5 Lead wire (conduction means)
DESCRIPTION OF SYMBOLS 10 Control part 20 Measurement part 31, 32 Movable arm 41, 42 Movement mechanism A Circuit board to be inspected DUT Sample to be measured P1, P2 Current probe P3, P4 Voltage probe C1-C4 Coaxial cable IL Inner conductor S Outer conductor (Shield covered wire) )
FC feedback control circuit R0 impedance matching resistor SW1, SW2 switch

Claims (2)

測定信号源および電圧検出手段を含む測定部と、上記測定信号源と被測定試料との間の測定電流径路に含まれる第1,第2の電流プローブおよび上記電圧検出手段と上記被測定試料との間の電圧検出径路に含まれる第1,第2の電圧プローブと、上記測定部からの測定信号に基づいて上記被測定試料のパラメータを算出する制御部とを備え、4端子対法による計測を行うため、上記各電流プローブおよび上記各電圧プローブの上記測定部に至る電気配線に同軸ケーブルが用いられるとともに、上記各同軸ケーブルの外部導体同士が所定の導通手段を介して相互に接続されている回路基板検査装置において、
少なくとも上記第1,第2の電圧プローブに用いられる各同軸ケーブルには、その内部導体と外部導体との間に、インピーダンスマッチング用の抵抗素子とスイッチとを含む直列回路が接続されており、
上記制御部は、上記スイッチがオフであるときの上記内部導体と上記外部導体間の電圧値を第1の電圧値と、上記スイッチがオンであるときの上記内部導体と上記外部導体間の電圧値を第2の電圧値として、上記第1の電圧値と上記第2の電圧値とが実質的に等しい場合には、上記被測定試料に対する上記第1,第2の電圧プローブの接触状態が良好であると判定し、上記第1の電圧値と上記第2の電圧値とが異なる場合には、上記被測定試料に対する上記第1,第2の電圧プローブの接触状態が不良であると判定することを特徴とする回路基板検査装置。
A measurement unit including a measurement signal source and a voltage detection unit; first and second current probes included in a measurement current path between the measurement signal source and the sample to be measured; the voltage detection unit; and the sample to be measured. A first and second voltage probes included in a voltage detection path between and a control unit that calculates the parameters of the sample to be measured based on a measurement signal from the measurement unit, and is measured by a four-terminal pair method. For this purpose, a coaxial cable is used for the electrical wiring leading to the measurement section of each current probe and each voltage probe, and the outer conductors of each coaxial cable are connected to each other via a predetermined conduction means. Circuit board inspection equipment
Each coaxial cable used for at least the first and second voltage probes has a series circuit including a resistance element for impedance matching and a switch connected between the inner conductor and the outer conductor,
The control unit, the switch is a voltage value between the internal conductor and the external conductor when is off and the first voltage value, between said inner conductor and said outer conductor when said switch is on a voltage value as the second voltage value, the first when the voltage value and the second voltage value is substantially equal to, the first with respect to the sample to be measured, the second voltage probe When it is determined that the contact state is good and the first voltage value and the second voltage value are different, the contact state of the first and second voltage probes with respect to the sample to be measured is poor. circuit board inspection apparatus and judging that there is.
上記制御部は、上記測定信号源から出力される測定信号の特定周波数を境として、上記スイッチをオンからオフもしくはオフからオンに切り替えることを特徴とする請求項1に記載の回路基板検査装置。 The circuit board inspection apparatus according to claim 1, wherein the control unit switches the switch from on to off or from off to on, with a specific frequency of the measurement signal output from the measurement signal source as a boundary.
JP2011246205A 2011-11-10 2011-11-10 Circuit board inspection equipment Expired - Fee Related JP5865021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011246205A JP5865021B2 (en) 2011-11-10 2011-11-10 Circuit board inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011246205A JP5865021B2 (en) 2011-11-10 2011-11-10 Circuit board inspection equipment

Publications (2)

Publication Number Publication Date
JP2013104663A JP2013104663A (en) 2013-05-30
JP5865021B2 true JP5865021B2 (en) 2016-02-17

Family

ID=48624333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011246205A Expired - Fee Related JP5865021B2 (en) 2011-11-10 2011-11-10 Circuit board inspection equipment

Country Status (1)

Country Link
JP (1) JP5865021B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11067658B2 (en) 2018-09-13 2021-07-20 Samsung Electronics Co., Ltd. Probe card inspection wafer, probe card inspection system, and method of inspecting probe card

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6421463B2 (en) * 2014-06-02 2018-11-14 日本電産リード株式会社 Substrate inspection apparatus and substrate inspection method
JP6491852B2 (en) * 2014-10-30 2019-03-27 日置電機株式会社 Circuit element measuring device
JP7221026B2 (en) * 2018-11-06 2023-02-13 日置電機株式会社 Impedance measuring device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2957596B2 (en) * 1989-05-24 1999-10-04 日本ヒューレット・パッカード株式会社 Circuit element measuring device
JP3562623B2 (en) * 1998-10-07 2004-09-08 横河電機株式会社 Measuring device
JP4448732B2 (en) * 2004-05-14 2010-04-14 日置電機株式会社 Circuit board inspection equipment
JP4838193B2 (en) * 2007-05-10 2011-12-14 日置電機株式会社 Circuit board inspection equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11067658B2 (en) 2018-09-13 2021-07-20 Samsung Electronics Co., Ltd. Probe card inspection wafer, probe card inspection system, and method of inspecting probe card

Also Published As

Publication number Publication date
JP2013104663A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
US9244145B2 (en) System and method for measuring near field information of device under test
JP5865021B2 (en) Circuit board inspection equipment
Schneider et al. Pre-compliance test method for radiated emissions of automotive components using scattering parameter transfer functions
JP5430500B2 (en) Circuit board inspection equipment
JP2012132738A (en) Circuit board inspection device
JP5538107B2 (en) Circuit board inspection probe unit and circuit board inspection apparatus
WO2022244246A1 (en) Device for detecting ic noise resistance amount, method for detecting ic noise resistance amount, and method for measuring internal impedance of ic
Chen et al. Partial discharge detection on power equipment using a magneto-resistive sensor
CN105425014A (en) Time domain measurement system, time domain measurement calibration system and time domain measurement calibration verification system for board-level radio frequency current
JP6918659B2 (en) Circuit board inspection equipment
JP5480740B2 (en) Circuit board inspection equipment
KR101354031B1 (en) Impedance measurement apparatus
Zhu et al. IV Method Based PDN Impedance Measurement Technique and Associated Probe Design
JP5624452B2 (en) Circuit board inspection equipment
KR101849248B1 (en) Circuit board inspection device
TW200918914A (en) Testing system module
JPH034179A (en) Electric testing method by contact probe
JP5723707B2 (en) Circuit board inspection equipment
JP4751687B2 (en) Electrical measuring device
TWI580980B (en) Method of measuring electrical length in semiconductor testing apparatus and method of conductive region of wafer alignment
KR101125613B1 (en) Apparatus and method for defect inspection of conductor using phase measurement of alternative current signal
US8704545B2 (en) Determination of properties of an electrical device
JP2012132737A (en) Circuit board inspection device
RU75477U1 (en) DEVICE FOR DETERMINING THE COEFFICIENT OF TRANSFORMATION OF THE CURRENT, FLOWING ON THE ELEMENTS OF THE EXTERNAL SURFACE OF THE SPACE VEHICLE, TO THE VOLTAGE OF ELECTROMAGNETIC TARGET IN FRAGES OF ON-BOARD CABLE
Bozzini et al. Fault detection and identification methods used for the LHC cryomagnets and related cabling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151009

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151225

R150 Certificate of patent or registration of utility model

Ref document number: 5865021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees