JP5430500B2 - Circuit board inspection equipment - Google Patents

Circuit board inspection equipment Download PDF

Info

Publication number
JP5430500B2
JP5430500B2 JP2010133733A JP2010133733A JP5430500B2 JP 5430500 B2 JP5430500 B2 JP 5430500B2 JP 2010133733 A JP2010133733 A JP 2010133733A JP 2010133733 A JP2010133733 A JP 2010133733A JP 5430500 B2 JP5430500 B2 JP 5430500B2
Authority
JP
Japan
Prior art keywords
probe
voltage
current
measurement
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010133733A
Other languages
Japanese (ja)
Other versions
JP2011257340A (en
Inventor
秀彦 満木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2010133733A priority Critical patent/JP5430500B2/en
Publication of JP2011257340A publication Critical patent/JP2011257340A/en
Application granted granted Critical
Publication of JP5430500B2 publication Critical patent/JP5430500B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Tests Of Electronic Circuits (AREA)

Description

本発明は、回路基板の検査に用いられるプローブ(導電接触ピン)を所定方向に移動可能な可動アームに支持してなるX−Y型(もしくはフライング型等)と呼ばれる回路基板検査装置おいて、4端子対法による測定を可能とする技術に関するものである。   The present invention relates to a circuit board inspection apparatus called an XY type (or flying type) in which a probe (conductive contact pin) used for inspection of a circuit board is supported by a movable arm movable in a predetermined direction. The present invention relates to a technique that enables measurement by the four-terminal pair method.

回路基板に存在する導体パターン,実装部品や素子等(以下、これらを「被測定試料」という)のインピーダンスを測定する方法の一つとして4端子法がある。   There is a four-terminal method as one of methods for measuring the impedance of conductor patterns, mounted parts, elements, etc. (hereinafter referred to as “samples to be measured”) present on a circuit board.

4端子法においては、図3の模式図に示すように、基本的な構成として、測定信号を発生する測定信号源1と、電圧検出手段としての電圧計2と、電流検出手段としての電流計3とを備える。   In the four-terminal method, as shown in the schematic diagram of FIG. 3, as a basic configuration, a measurement signal source 1 that generates a measurement signal, a voltmeter 2 as a voltage detection means, and an ammeter as a current detection means 3.

プローブとしては、測定信号源1から被測定試料DUTに流れる測定電流径路に内に含まれる2つの電流プローブP1,P2(P1が高電位Hc側で、P2が低電位Lc側)と、被測定試料DUTの電圧検出径路内に含まれる2つの電圧プローブP3,P4(P3が高電位Hp側で、P2が低電位Lp側)の4つのプローブが用いられる。   As probes, two current probes P1 and P2 (P1 is on the high potential Hc side and P2 is on the low potential Lc side) included in the measurement current path that flows from the measurement signal source 1 to the measurement sample DUT, and the measurement target Four probes of two voltage probes P3 and P4 (P3 is on the high potential Hp side and P2 is on the low potential Lp side) included in the voltage detection path of the sample DUT are used.

なお、これらの各プローブは構造的には変わらないが、本明細書では、説明の便宜上、電流系統側のものを電流プローブと言い、電圧系統側のものを電圧プローブと言う。   Although these probes are not structurally different, in the present specification, for convenience of explanation, the current system side is referred to as a current probe, and the voltage system side is referred to as a voltage probe.

測定にあたっては、測定信号源1から電流プローブP1,P2を介して被測定試料DUTに例えば定電流を流し、これによって被測定試料DUTの両端に発生する電圧を電圧プローブP3,P4を介して電圧計2で測定し、電流計3による電流値と電圧計2による電圧値とに基づいて、被測定試料DUTのインピーダンスZを測定する。   In measurement, for example, a constant current is passed from the measurement signal source 1 to the sample DUT to be measured via the current probes P1 and P2, and the voltage generated at both ends of the sample DUT by this is applied to the voltage via the voltage probes P3 and P4. The impedance Z of the sample DUT to be measured is measured based on the current value obtained by the ammeter 3 and the voltage value obtained by the voltmeter 2.

この4端子法によれば、測定系の電気配線(リード線)の配線抵抗や被測定試料との接触抵抗の影響をほとんど排除することができるが、測定電流径路に流れる電流によって発生する磁束が電圧検出径路をよぎると、検出電圧に誤差が生じ、この誤差がインピーダンス測定値に含まれることになる。   According to this four-terminal method, the influence of the wiring resistance of the electrical wiring (lead wire) of the measurement system and the contact resistance with the sample to be measured can be almost eliminated, but the magnetic flux generated by the current flowing through the measurement current path If the voltage detection path is crossed, an error occurs in the detection voltage, and this error is included in the impedance measurement value.

この現象は、特に高い周波数の測定電流で測定を行う高周波測定時に問題となる。なお、測定系の電気配線に、同軸ケーブル(シールド被覆線)を使用しても、静電シールドの効果はあるが、上記のような電磁誘導に対しては有効ではない。   This phenomenon becomes a problem particularly during high-frequency measurement in which measurement is performed with a high-frequency measurement current. Even if a coaxial cable (shielded wire) is used for the electrical wiring of the measurement system, there is an effect of electrostatic shielding, but it is not effective for electromagnetic induction as described above.

この電磁誘導による問題は、4端子対法によって解決することができる。図4に、4端子対法の接続状態を模式的に示す。   This problem due to electromagnetic induction can be solved by the four-terminal pair method. FIG. 4 schematically shows the connection state of the four-terminal pair method.

図4を参照して、4端子対法の場合、電流プローブP1,P2の電気配線として同軸ケーブルC1,C2を用い、同様に、電圧プローブP3,P4の電気配線にも同軸ケーブルC3,C4を用いる。そして、各同軸ケーブルC1〜C4の各外部導体(シールド被覆線)Sのすべてを各プローブの基端付近でリード線5にて接続し短絡する。   Referring to FIG. 4, in the case of the four-terminal pair method, coaxial cables C1 and C2 are used as the electric wires for current probes P1 and P2, and similarly, coaxial cables C3 and C4 are used for the electric wires of voltage probes P3 and P4. Use. Then, all the outer conductors (shield covered wires) S of the respective coaxial cables C1 to C4 are connected and short-circuited by the lead wires 5 in the vicinity of the base ends of the respective probes.

動作について、測定信号源1よりHcラインを介して被測定試料DUTに測定電圧Vを印加すると(この印加電圧はHpラインと同じ)、被測定試料DUTにはV/Zなる測定電流が流れる。この測定電流は電流計3を通り、そのまま逆向きに外部導体を流れて測定信号源1に戻る(図4の電流の流れ方向を示す矢印参照)。   In terms of operation, when a measurement voltage V is applied from the measurement signal source 1 to the sample DUT to be measured via the Hc line (this applied voltage is the same as that of the Hp line), a measurement current V / Z flows through the sample DUT to be measured. This measurement current passes through the ammeter 3 and flows through the outer conductor in the reverse direction and returns to the measurement signal source 1 (see the arrow indicating the current flow direction in FIG. 4).

このとき、被測定試料DUTの反対側では、LpがLc(=GND)となるように帰還制御回路FCが動作する。したがって、被測定試料DUTには、電圧計2の両端と同じ電圧がかかるため、電圧計2の示す値は、被測定試料DUTの両端電圧と同じとなる。   At this time, on the opposite side of the sample DUT to be measured, the feedback control circuit FC operates so that Lp becomes Lc (= GND). Therefore, since the same voltage is applied to the sample DUT to be measured at both ends of the voltmeter 2, the value indicated by the voltmeter 2 is the same as the voltage across the sample DUT to be measured.

このように、4端子対法によれば、測定電流径路内において、測定電流の往路と復路とが重ね合わされるため、上記4端子法の利点を維持しながら、測定電流により生ずる磁束の影響(電磁誘導)を軽減することができる。   Thus, according to the four-terminal pair method, the forward and backward paths of the measurement current are overlapped in the measurement current path, so that the influence of the magnetic flux generated by the measurement current (while maintaining the advantages of the four-terminal method ( Electromagnetic induction) can be reduced.

なお、各同軸ケーブルC1〜C4の各外部導体Sのすべてをリード線5にて接続しているのは、上記電圧を測定する際に、それに関与するHp,Lpの各外部導体Sの電位が確定していない状態は好ましくない、等の理由による。   Note that all of the outer conductors S of the coaxial cables C1 to C4 are connected by the lead wire 5 because the potentials of the Hp and Lp outer conductors S involved in measuring the voltage are as follows. For example, an undefined state is not preferable.

ところで、X−Y型回路基板装置では、例えば特許文献1に記載されているように、回路基板上を所定方向(X,YおよびZ方向)に移動し得る少なくとも2つの可動アームを備え、その各可動アームにプローブを支持させ、あらかじめ設定されている検査プログラムにしたがって、各可動アームを移動させて回路基板上の被測定試料の検査を行うようにしている。   By the way, the XY type circuit board device includes at least two movable arms capable of moving in a predetermined direction (X, Y, and Z directions) on the circuit board as described in Patent Document 1, for example. A probe is supported on each movable arm, and each sample is measured on the circuit board by moving each movable arm according to a preset inspection program.

このように、各可動アームが自由に移動可能であるため、従来のX−Y型回路基板装置では、各プローブP1〜P4の同軸ケーブルC1〜C4のすべての外部導体Sを各プローブの基端付近でリード線5にて短絡する4端子対法による測定を物理的に行うことができない。   Thus, since each movable arm is freely movable, in the conventional XY type circuit board device, all the external conductors S of the coaxial cables C1 to C4 of the probes P1 to P4 are connected to the base ends of the probes. The measurement by the four-terminal pair method in which the lead wire 5 is short-circuited in the vicinity cannot be physically performed.

特開2002−14132号公報JP 2002-14132 A

したがって、本発明の課題は、X−Y型(もしくはフライング型等)と呼ばれる回路基板検査装置おいて、4端子対法による測定を可能とすることにある。   Therefore, an object of the present invention is to enable measurement by a four-terminal pair method in a circuit board inspection apparatus called an XY type (or flying type).

上記課題を解決するため、本発明は、測定信号源および電圧検出手段を含む測定部と、上記測定信号源と被測定試料との間の測定電流径路に含まれる第1,第2の電流プローブおよび上記電圧検出手段と上記被測定試料との間の電圧検出径路に含まれる第1,第2の電圧プローブと、所定の上記プローブが取り付けられ、移動機構により任意方向に駆動される第1,第2の可動アームと、上記測定部からの測定信号に基づいて上記被測定試料のパラメータ解析および/または良否判別を行うとともに、上記移動機構を介して上記各可動アームの動きを制御する制御部とを備えている回路基板検査装置において、上記第1の可動アーム側に、上記第1の電流プローブおよび上記第1の電圧プローブが支持され、上記第2の可動アーム側に、上記第2の電流プローブおよび上記第2の電圧プローブが支持され、上記各電流プローブおよび上記各電圧プローブの上記測定部に至る電気配線に同軸ケーブルが用いられ、4端子対法により上記各同軸ケーブルの外部導体のすべてが上記プローブの基端付近でリード線により接続されており、上記制御部は、上記各可動アームの間隔を常にそれらの間に掛け渡されている上記リード線の配線長の範囲内として、上記移動機構を介して上記各可動アームの移動を制御することを特徴としている。   In order to solve the above-described problems, the present invention provides a measurement unit including a measurement signal source and voltage detection means, and first and second current probes included in a measurement current path between the measurement signal source and the sample to be measured. And the first and second voltage probes included in the voltage detection path between the voltage detection means and the sample to be measured, and the first and second voltage probes that are attached to the predetermined probe and are driven in an arbitrary direction by a moving mechanism. A control unit that performs parameter analysis and / or quality determination of the sample to be measured based on a measurement signal from the second movable arm and the measurement unit, and controls movement of each movable arm via the moving mechanism The first current probe and the first voltage probe are supported on the first movable arm side, and the second movable arm side has the above-described circuit board inspection apparatus. 2 current probes and the second voltage probe are supported, and a coaxial cable is used for electrical wiring to each current probe and the measurement portion of each voltage probe. All of the conductors are connected by lead wires in the vicinity of the proximal end of the probe, and the control unit always keeps the distance between the movable arms within the range of the wiring length of the lead wires that are spanned between them. As described above, the movement of each movable arm is controlled via the movement mechanism.

本発明の好ましい態様によれば、上記第1の可動アーム側に支持される上記第1の電流プローブおよび上記第1の電圧プローブがともに高電位側で、上記第2の可動アーム側に支持される上記第2の電流プローブおよび上記第2の電圧プローブがともに低電位側である。   According to a preferred aspect of the present invention, both the first current probe and the first voltage probe supported on the first movable arm side are supported on the high potential side and on the second movable arm side. Both the second current probe and the second voltage probe are on the low potential side.

また、本発明の好ましい態様によれば、上記可動アームの間隔が、上記リード線の配線長以上に広がらないようにするため、上記可動アーム間に、上記リード線の配線長よりも短いワイヤ等の上記リード線よりも強靱な連結手段が設けられる。   Further, according to a preferred aspect of the present invention, in order to prevent the distance between the movable arms from extending beyond the wiring length of the lead wire, a wire or the like shorter than the wiring length of the lead wire is provided between the movable arms. A connection means stronger than the above lead wire is provided.

本発明によれば、4端子対法によって同軸ケーブルの外部導体同士がプローブの基端付近でリード線で接続された第1,第2の電流プローブと第1,第2の電圧プローブのうちの、第1の電流プローブおよび上記第1の電圧プローブを一方の第1の可動アーム側に支持させ、残りの第2の電流プローブおよび第2の電圧プローブを他方の第2の可動アーム側に支持させ、各可動アームの間隔を常にそれらの間に掛け渡されているリード線の配線長の範囲内として、各可動アームの移動を制御するようにしたことにより、X−Y型回路基板検査装置においても、4端子対法による測定を行うことができる。   According to the present invention, of the first and second current probes and the first and second voltage probes in which the outer conductors of the coaxial cable are connected by the lead wire near the proximal end of the probe by the four-terminal pair method. The first current probe and the first voltage probe are supported on one first movable arm side, and the remaining second current probe and second voltage probe are supported on the other second movable arm side. And the movement of each movable arm is controlled so that the distance between the movable arms is always within the range of the wiring length of the lead wire spanned between them. In, measurement by the four-terminal pair method can be performed.

(a)X−Y型回路基板検査装置の基本的な構成を示す模式図、(b)4端子対法によるプローブの構成例を示す模式図。(A) A schematic diagram showing a basic configuration of an XY type circuit board inspection apparatus, (b) a schematic diagram showing a configuration example of a probe by a four-terminal pair method. 本発明の実施形態を示す模式図。The schematic diagram which shows embodiment of this invention. 4端子法の接続状態を示す模式図。The schematic diagram which shows the connection state of the 4-terminal method. 4端子対法の接続状態を示す模式図。The schematic diagram which shows the connection state of a 4 terminal pair method.

次に、図1および図2により、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。   Next, an embodiment of the present invention will be described with reference to FIGS. 1 and 2, but the present invention is not limited to this.

まず、図1(a)を参照して、本発明の回路基板検査装置の構成を概略的に説明すると、この回路基板検査装置は、X−Y型もしくはフライング型と呼ばれる検査装置で、基本的な構成として、制御部10と、測定部20と、一対の可動アーム31,32と、可動アームの移動機構41,42とを備える。検査プローブには、図1(b)に示す4端子対法による4本のプローブP1〜P4が用いられる。   First, the configuration of the circuit board inspection apparatus of the present invention will be schematically described with reference to FIG. 1A. This circuit board inspection apparatus is an inspection apparatus called an XY type or flying type, and is basically As a simple configuration, the control unit 10, the measurement unit 20, a pair of movable arms 31 and 32, and movable arm moving mechanisms 41 and 42 are provided. As the inspection probe, four probes P1 to P4 based on the four-terminal pair method shown in FIG. 1B are used.

制御部10には、例えばマイクロコンピュータが用いられ、その記憶部には、回路基板A上に存在する被測定試料DUTについての検査プログラムや、良否判定用の基準データ等が設定される。また、制御部10は、測定部20からの測定信号に基づいて、被測定試料DUTのパラメータ(例えば、インピーダンス)を演算し、その良否判定等を行う。   For example, a microcomputer is used as the control unit 10, and an inspection program for the DUT to be measured existing on the circuit board A, reference data for pass / fail determination, and the like are set in the storage unit. In addition, the control unit 10 calculates a parameter (for example, impedance) of the sample DUT to be measured based on the measurement signal from the measurement unit 20, and performs pass / fail determination or the like.

測定部20は、先の図4で説明したように、4端子対法による測定を行うための測定信号源1、電圧検出手段としての電圧計2、電流検出手段としての電流計3および帰還制御回路FC等を備える。   As described above with reference to FIG. 4, the measurement unit 20 includes the measurement signal source 1 for performing measurement by the four-terminal pair method, the voltmeter 2 as the voltage detection means, the ammeter 3 as the current detection means, and feedback control. A circuit FC is provided.

可動アーム31,32は、それらの移動機構41,42によりX,YおよびZ方向に駆動される。可動アーム31,32の移動制御信号は、制御部10から移動機構41,42に与えられる。図示しないが、可動アーム31,32のほかに、別の可動アーム(例えば、ガードプローブ用の可動アーム等)が設けられてもよい。   The movable arms 31 and 32 are driven in the X, Y and Z directions by the moving mechanisms 41 and 42. The movement control signals of the movable arms 31 and 32 are given from the control unit 10 to the movement mechanisms 41 and 42. Although not shown, in addition to the movable arms 31 and 32, another movable arm (for example, a movable arm for a guard probe) may be provided.

図1(b)に示す検査プローブのうち、先の図4で説明したのと同じく、P1,P2が被測定試料DUTに対する測定電流径路に含まれる電流プローブで、P3,P4が被測定試料DUTの電圧検出径路に含まれる電圧プローブである。   Among the inspection probes shown in FIG. 1B, P1 and P2 are current probes included in the measurement current path with respect to the sample DUT to be measured, and P3 and P4 are samples DUT to be measured, as described in FIG. This is a voltage probe included in the voltage detection path.

電流プローブと電圧プローブには、同じ構造のプローブが用いられてよい。なお、説明するうえで、電流プローブ,電圧プローブの区別を必要としない場合には、単にプローブという。   A probe having the same structure may be used for the current probe and the voltage probe. In the description, when it is not necessary to distinguish between current probes and voltage probes, they are simply referred to as probes.

プローブP1,P2,P3およびP4は、それぞれ同軸ケーブルC1,C2,C3およびC4の各内部導体ILを介して測定部20に接続される。   The probes P1, P2, P3, and P4 are connected to the measurement unit 20 via the inner conductors IL of the coaxial cables C1, C2, C3, and C4, respectively.

図4を参照して、電流プローブP1,P2のうち、電流プローブP1が高電位(Hi)側で測定信号源のHc端子に接続され、電流プローブP2は低電位(Low)側として電流計のLc端子側に接続される。   Referring to FIG. 4, of the current probes P1 and P2, the current probe P1 is connected to the Hc terminal of the measurement signal source on the high potential (Hi) side, and the current probe P2 is connected to the low potential (Low) side of the ammeter. Connected to the Lc terminal side.

同様に、電圧プローブP3,P4のうち、電圧プローブP3が高電位側で電圧計2のHp端子に接続され、電圧プローブP3は低電位側として電圧検出系のLp端子側に接続される。   Similarly, of the voltage probes P3 and P4, the voltage probe P3 is connected to the Hp terminal of the voltmeter 2 on the high potential side, and the voltage probe P3 is connected to the Lp terminal side of the voltage detection system as the low potential side.

同軸ケーブルC1〜C4の各内部導体ILは、その各一端が測定部20に接続され、各他端がプローブP1〜P4の基端b側に接続されるが、同軸ケーブルC1〜C4の各外部導体(シールド被覆線)S同士は、各プローブP1〜P4の基端b側付近においてリード線5により接続され、相互に短絡されている。   Each of the inner conductors IL of the coaxial cables C1 to C4 has one end connected to the measuring unit 20 and the other end connected to the base end b side of the probes P1 to P4. The conductors (shield covered wires) S are connected by the lead wire 5 in the vicinity of the base end b side of each of the probes P1 to P4 and are short-circuited to each other.

本発明では、この4端子対法による検査プローブ(P1〜P4)を所定方向に移動可能な可動アームに支持させて、X−Y型の回路基板検査装置で被測定試料DUTのインピーダンス測定を可能とする。   In the present invention, the inspection probe (P1 to P4) based on the four-terminal pair method is supported on a movable arm movable in a predetermined direction, and the impedance of the DUT to be measured can be measured with an XY type circuit board inspection apparatus. And

そのため、この実施形態では、図2に示すように、4本のプローブを2つに分け、高電位側の電流プローブP1と高電位側の電圧プローブP3とを一方の可動アーム32側に取り付け、低電位側の電流プローブP2と低電位側の電圧プローブP4とを他方の可動アーム31側に取り付ける。   Therefore, in this embodiment, as shown in FIG. 2, the four probes are divided into two, and a high potential side current probe P1 and a high potential side voltage probe P3 are attached to one movable arm 32 side, The low potential side current probe P2 and the low potential side voltage probe P4 are attached to the other movable arm 31 side.

そして、各プローブP1〜P4を同軸ケーブルC1〜C4を介して測定部20に接続したのち、同軸ケーブルC1〜C4のプローブ側の端部の外皮をはぎ取って各外部導体Sを露出させて、その各外部導体S同士を、もしくは測定部20に接続する前にあらかじめ露出された各外部導体S同士を、図1(b)に示すように、プローブの基端b側付近でリード線5により接続する。   And after connecting each probe P1-P4 to the measurement part 20 via coaxial cable C1-C4, stripping the outer shell of the edge part by the side of the probe of coaxial cable C1-C4, exposing each external conductor S, Connect the external conductors S to each other or the external conductors S exposed in advance before connecting to the measuring unit 20 by the lead wire 5 near the base end b side of the probe as shown in FIG. To do.

この態様では、図2に示すように、各可動アーム31,32の間に、一部のリード線、この実施形態では電圧プローブP3,P4間のリード線5aが掛け渡されることになり、これでは、可動アーム31,32を任意に移動させた場合、リード線5aが断線することがあり得る。   In this embodiment, as shown in FIG. 2, a part of the lead wires, in this embodiment, the lead wires 5a between the voltage probes P3 and P4 are spanned between the movable arms 31 and 32. Then, when the movable arms 31 and 32 are arbitrarily moved, the lead wire 5a may be disconnected.

この点を考慮して、この実施形態において、制御部10は、可動アーム31,32の間隔を、常に、それらの間に掛け渡されているリード線5aの配線長の範囲内として、移動機構41,42を介して可動アーム31,32の移動範囲を制御するようにしている。   In consideration of this point, in this embodiment, the control unit 10 always sets the distance between the movable arms 31 and 32 within the range of the wiring length of the lead wire 5a spanned between them. The moving ranges of the movable arms 31 and 32 are controlled via the 41 and 42.

このように、この実施形態によれば、可動アーム31,32の間に掛け渡されているリード線5aの配線長の範囲内で、可動アーム31,32を移動させるようにしていることにより、被測定試料DUTの形状や大きさ等に対する対応性が良好となる。   As described above, according to this embodiment, the movable arms 31 and 32 are moved within the range of the wiring length of the lead wire 5a spanned between the movable arms 31 and 32. Correspondence to the shape, size, etc. of the sample DUT to be measured is improved.

なお、リード線5aの断線に対する保護対策として、図示しないが、可動アーム31,32の間隔がリード線5aの配線長以上に広がらないようにするため、可動アーム31,32間に、リード線5aの配線長よりも短いワイヤ等の強靱な連結手段を設けることが好ましい。   As a protective measure against the disconnection of the lead wire 5a, although not shown, the lead wire 5a is interposed between the movable arms 31 and 32 so that the distance between the movable arms 31 and 32 is not larger than the wiring length of the lead wire 5a. It is preferable to provide a strong connection means such as a wire shorter than the wiring length.

また、一方の可動アームと他方の可動アームとに、それぞれ電流プローブと電圧プローブとを支持させることを前提として、場合によっては、それらの高電位側と低電位側とを入れ替えてもよい。   Further, on the premise that the current probe and the voltage probe are supported by one movable arm and the other movable arm, respectively, the high potential side and the low potential side may be interchanged in some cases.

1 測定信号源
2 電圧検出手段(電圧計)
3 電流検出手段(電流計)
5 リード線
10 制御部
20 測定部
31,32 可動アーム
41,42 移動機構
A 回路基板
P1,P2 電流プローブ
P3,P4 電圧プローブ
C1〜C4 同軸ケーブル
IL 内部導体
S 外部導体(シールド被覆線)
FC 帰還制御回路
DUT 被測定試料
1 Measurement signal source 2 Voltage detection means (voltmeter)
3 Current detection means (Ammeter)
5 Lead wire 10 Control unit 20 Measurement unit 31, 32 Movable arm 41, 42 Moving mechanism A Circuit board P1, P2 Current probe P3, P4 Voltage probe C1-C4 Coaxial cable IL Internal conductor S External conductor (shielded wire)
FC feedback control circuit DUT DUT

Claims (3)

測定信号源および電圧検出手段を含む測定部と、上記測定信号源と被測定試料との間の測定電流径路に含まれる第1,第2の電流プローブおよび上記電圧検出手段と上記被測定試料との間の電圧検出径路に含まれる第1,第2の電圧プローブと、所定の上記プローブが取り付けられ、移動機構により任意方向に駆動される第1,第2の可動アームと、上記測定部からの測定信号に基づいて上記被測定試料のパラメータ解析および/または良否判別を行うとともに、上記移動機構を介して上記各可動アームの動きを制御する制御部とを備えている回路基板検査装置において、
上記第1の可動アーム側に、上記第1の電流プローブおよび上記第1の電圧プローブが支持され、上記第2の可動アーム側に、上記第2の電流プローブおよび上記第2の電圧プローブが支持され、上記各電流プローブおよび上記各電圧プローブの上記測定部に至る電気配線に同軸ケーブルが用いられ、4端子対法により上記各同軸ケーブルの外部導体のすべてが上記プローブの基端付近でリード線により接続されており、
上記制御部は、上記各可動アームの間隔を常にそれらの間に掛け渡されている上記リード線の配線長の範囲内として、上記移動機構を介して上記各可動アームの移動を制御することを特徴とする回路基板検査装置。
A measurement unit including a measurement signal source and a voltage detection unit; first and second current probes included in a measurement current path between the measurement signal source and the sample to be measured; the voltage detection unit; and the sample to be measured. The first and second voltage probes included in the voltage detection path between the first and second movable arms which are attached to the predetermined probe and are driven in an arbitrary direction by the moving mechanism, and the measurement unit. In a circuit board inspection apparatus comprising a control unit that performs parameter analysis and / or pass / fail determination of the sample to be measured based on the measurement signal and controls movement of each movable arm via the moving mechanism,
The first current probe and the first voltage probe are supported on the first movable arm side, and the second current probe and the second voltage probe are supported on the second movable arm side. A coaxial cable is used for the electrical wiring leading to the measurement part of each current probe and each voltage probe, and all of the outer conductors of each coaxial cable are lead wires near the proximal end of the probe by the four-terminal pair method. Connected by
The control unit controls the movement of each movable arm via the movement mechanism, with the interval between the movable arms being always within the range of the wiring length of the lead wire spanned between them. A circuit board inspection apparatus.
上記第1の可動アーム側に支持される上記第1の電流プローブおよび上記第1の電圧プローブがともに高電位側で、上記第2の可動アーム側に支持される上記第2の電流プローブおよび上記第2の電圧プローブがともに低電位側であることを特徴とする請求項1に記載の回路基板検査装置。   The first current probe supported on the first movable arm side and the first voltage probe are both on the high potential side, and the second current probe supported on the second movable arm side and the above The circuit board inspection apparatus according to claim 1, wherein both of the second voltage probes are on a low potential side. 上記可動アームの間隔が、上記リード線の配線長以上に広がらないようにするため、上記可動アーム間に、上記リード線の配線長よりも短いワイヤ等の上記リード線よりも強靱な連結手段が設けられていることを特徴とする請求項1または2に記載の回路基板検査装置。   In order to prevent the distance between the movable arms from extending beyond the wiring length of the lead wire, there is a connection means stronger than the lead wire such as a wire shorter than the wiring length of the lead wire between the movable arms. The circuit board inspection apparatus according to claim 1, wherein the circuit board inspection apparatus is provided.
JP2010133733A 2010-06-11 2010-06-11 Circuit board inspection equipment Expired - Fee Related JP5430500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010133733A JP5430500B2 (en) 2010-06-11 2010-06-11 Circuit board inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010133733A JP5430500B2 (en) 2010-06-11 2010-06-11 Circuit board inspection equipment

Publications (2)

Publication Number Publication Date
JP2011257340A JP2011257340A (en) 2011-12-22
JP5430500B2 true JP5430500B2 (en) 2014-02-26

Family

ID=45473651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010133733A Expired - Fee Related JP5430500B2 (en) 2010-06-11 2010-06-11 Circuit board inspection equipment

Country Status (1)

Country Link
JP (1) JP5430500B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130411A1 (en) * 2017-12-26 2019-07-04 株式会社Fuji Measurement device
JP7221026B2 (en) * 2018-11-06 2023-02-13 日置電機株式会社 Impedance measuring device
JP7315372B2 (en) * 2019-05-10 2023-07-26 日置電機株式会社 Impedance measurement system and impedance measurement method
CN113341913A (en) * 2021-05-24 2021-09-03 无锡职业技术学院 Comprehensive detection device for electric appliance control box

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2698615B2 (en) * 1988-07-05 1998-01-19 日本ヒューレット・パッカード株式会社 Circuit element measuring device
JP3862783B2 (en) * 1996-06-27 2006-12-27 アジレント・テクノロジーズ・インク Impedance measuring device
JP4448732B2 (en) * 2004-05-14 2010-04-14 日置電機株式会社 Circuit board inspection equipment

Also Published As

Publication number Publication date
JP2011257340A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5797502B2 (en) Continuity inspection device and continuity inspection method
JP5430500B2 (en) Circuit board inspection equipment
JP5627442B2 (en) Circuit board inspection equipment
CN103116045B (en) DC-AC probe card topology
JP5865021B2 (en) Circuit board inspection equipment
Schneider et al. Pre-compliance test method for radiated emissions of automotive components using scattering parameter transfer functions
JP5538107B2 (en) Circuit board inspection probe unit and circuit board inspection apparatus
JP4448732B2 (en) Circuit board inspection equipment
JP5480740B2 (en) Circuit board inspection equipment
JP6918659B2 (en) Circuit board inspection equipment
JPS6226428B2 (en)
JP5624452B2 (en) Circuit board inspection equipment
KR101849248B1 (en) Circuit board inspection device
KR101354031B1 (en) Impedance measurement apparatus
JP5611023B2 (en) Circuit board inspection equipment
JP5723707B2 (en) Circuit board inspection equipment
CN203572870U (en) Miniature resistance-type very high frequency current probe
JP4751687B2 (en) Electrical measuring device
TWM431327U (en) High-frequency test probe card
JP5474392B2 (en) Circuit board inspection apparatus and circuit board inspection method
US8704545B2 (en) Determination of properties of an electrical device
JP6169435B2 (en) Substrate inspection apparatus and substrate inspection method
JP2024040140A (en) Shunt resistor and modular chip interconnect
JP6312086B2 (en) Probe unit and measuring device
JP2022008080A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5430500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees