JP5841061B2 - Conductive composition and method for producing conductive film - Google Patents

Conductive composition and method for producing conductive film Download PDF

Info

Publication number
JP5841061B2
JP5841061B2 JP2012539715A JP2012539715A JP5841061B2 JP 5841061 B2 JP5841061 B2 JP 5841061B2 JP 2012539715 A JP2012539715 A JP 2012539715A JP 2012539715 A JP2012539715 A JP 2012539715A JP 5841061 B2 JP5841061 B2 JP 5841061B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
alkyl group
repeating unit
conductive composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012539715A
Other languages
Japanese (ja)
Other versions
JPWO2012053474A1 (en
Inventor
剛史 大高
剛史 大高
浩志 福本
浩志 福本
智史 山下
山下  智史
陽一 神田
陽一 神田
Original Assignee
ソルベイ ユーエスエイ インコーポレイテッド
ソルベイ ユーエスエイ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソルベイ ユーエスエイ インコーポレイテッド, ソルベイ ユーエスエイ インコーポレイテッド filed Critical ソルベイ ユーエスエイ インコーポレイテッド
Priority to JP2012539715A priority Critical patent/JP5841061B2/en
Publication of JPWO2012053474A1 publication Critical patent/JPWO2012053474A1/en
Application granted granted Critical
Publication of JP5841061B2 publication Critical patent/JP5841061B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/129Ceramic dielectrics containing a glassy phase, e.g. glass ceramic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/516Charge transport ion-conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)

Description

本発明は、導電性組成物に関する。更に詳しくは、導電性高分子と特定の化学構造のドーパントを含む導電性組成物;導電性組成物を用いてなる固体電解コンデンサ用電極;導電性組成物を用いてなる固体電解コンデンサ;および導電性組成物から形成される導電性被膜の製造方法に関する。   The present invention relates to a conductive composition. More specifically, a conductive composition containing a conductive polymer and a dopant having a specific chemical structure; an electrode for a solid electrolytic capacitor using the conductive composition; a solid electrolytic capacitor using the conductive composition; The present invention relates to a method for producing a conductive film formed from a conductive composition.

近年、フレキシブルな基材上に低温で導電性を付与できる導電性高分子化合物の開発が試みられており、導電機能材料、発光機能材料および光電変換機能材料等への適用が期待されている。   In recent years, attempts have been made to develop conductive polymer compounds that can impart conductivity at low temperatures on flexible substrates, and application to conductive functional materials, light-emitting functional materials, photoelectric conversion functional materials, and the like is expected.

従来、導電性被膜を与える導電性高分子としては、ドーパントとしてスルホン酸基を有する化合物が適していることが知られている(例えば、特許文献1および2参照)。   Conventionally, it is known that a compound having a sulfonic acid group as a dopant is suitable as a conductive polymer that gives a conductive film (see, for example, Patent Documents 1 and 2).

特許文献1では、ドーパントとしてポリスチレンスルホン酸を用いた水分散コロイド状の塗液が提案されている。しかしながら、本塗液はきわめて親水性が高く、本塗液を用いて作製された導電性被膜は吸湿性が高く、この吸湿により発生する強酸性の水素イオンが被膜と接触する金属等を腐食する等の問題がある。また、本塗液で得られる導電被膜の導電率は100S/cm程度であり、導電機能材料に応用するために必要な導電率として十分とはいえない。   Patent Document 1 proposes a water-dispersed colloidal coating liquid using polystyrene sulfonic acid as a dopant. However, this coating solution is extremely hydrophilic, and the conductive film produced using this coating solution has high hygroscopicity, and the strongly acidic hydrogen ions generated by this moisture absorption corrode metals and the like that come into contact with the coating. There are problems such as. Moreover, the electrical conductivity of the conductive film obtained by this coating liquid is about 100 S / cm, and it cannot be said that it is enough as an electrical conductivity required for applying to a conductive functional material.

また、特許文献2では、ドーパントとしてスルホン酸基を有する重縮合化合物を用いた方法が提案されており、電解酸化重合を行うことにより良好な導電性を示す膜が得られている。しかしながら、本塗液で得られる導電被膜の導電率は100S/cm程度であり、導電機能材料に応用するために必要な導電率として十分とはいえない。   Patent Document 2 proposes a method using a polycondensation compound having a sulfonic acid group as a dopant, and a film showing good conductivity is obtained by performing electrolytic oxidation polymerization. However, the electric conductivity of the conductive film obtained with the present coating liquid is about 100 S / cm, and it cannot be said that the electric conductivity required for application to the conductive functional material is sufficient.

特開平7−90060号公報Japanese Patent Laid-Open No. 7-90060 特開2007−224182号公報JP 2007-224182 A

本発明は、腐食性が小さく、かつ導電率の高い導電性被膜を作製可能な導電性組成物を提供することを目的とする。   An object of this invention is to provide the electroconductive composition which can produce a conductive film with low corrosivity and high electrical conductivity.

本発明は、チオフェン繰り返し単位のうちの少なくとも一部が、
下記一般式(1)で示されるポリエーテル基(a)、
炭素数1〜15であるアルコキシ基(b)、
炭素数2〜19であるアルコキシアルキル基(c)並びに
炭素数1〜15であるアルキル基、又は該アルキル基の水素原子が前記ポリエーテル基(a)で置換されたアルキル基(d)
からなる群から選ばれる少なくとも1つの基でチオフェン環の3位及び/又は4位が置換されたチオフェン繰り返し単位(α)である置換ポリチオフェン(P)並びに三酸化硫黄錯体を含有することを特徴とする導電性組成物(A)である。
In the present invention, at least some of the thiophene repeating units are
A polyether group (a) represented by the following general formula (1),
An alkoxy group (b) having 1 to 15 carbon atoms,
An alkoxyalkyl group (c) having 2 to 19 carbon atoms and an alkyl group having 1 to 15 carbon atoms, or an alkyl group (d) in which a hydrogen atom of the alkyl group is substituted with the polyether group (a)
It contains a substituted polythiophene (P) which is a thiophene repeating unit (α) substituted at the 3-position and / or 4-position of the thiophene ring with at least one group selected from the group consisting of: and a sulfur trioxide complex. The conductive composition (A).

Figure 0005841061
Figure 0005841061

式中、ORは炭素数2〜4のオキシアルキレン基を表し、Rは炭素数1〜15のアルキル基を表し、kは1〜9の整数である。In the formula, OR 1 represents an oxyalkylene group having 2 to 4 carbon atoms, R 2 represents an alkyl group having 1 to 15 carbon atoms, and k is an integer of 1 to 9.

本発明の導電性組成物は、腐食性が小さいことから腐食が起こりやすい金属等へのコーティングができるとともに、その導電被膜が高導電性であるため、各種導電機能材料への応用が期待できる。   The conductive composition of the present invention can be coated on a metal or the like which is easily corroded because of its low corrosivity, and since the conductive film is highly conductive, application to various conductive functional materials can be expected.

本発明の導電性組成物(A)は、チオフェン繰り返し単位のうちの少なくとも一部が、上記ポリエーテル基(a)、上記アルコキシ基(b)、上記アルコキシアルキル基(c)又は上記アルキル基(d)で、チオフェン環の3位及び/又は4位が置換されたチオフェン繰り返し単位(α)(本明細書中、「チオフェン繰り返し単位(α)」ともいう。)である置換ポリチオフェン(P)及びドーパントとしての三酸化硫黄錯体を含有する。   In the conductive composition (A) of the present invention, at least a part of the thiophene repeating units is composed of the polyether group (a), the alkoxy group (b), the alkoxyalkyl group (c) or the alkyl group ( a substituted polythiophene (P) that is a thiophene repeating unit (α) (also referred to as “thiophene repeating unit (α)” in the present specification) substituted at the 3-position and / or 4-position of the thiophene ring in d) Contains sulfur trioxide complex as a dopant.

上記ポリエーテル基(a)としては、上記一般式(1)で示され、炭素数2〜4のオキシアルキレン基からなる繰り返し単位を有し、その繰り返し単位数が1〜9であり、片末端が炭素数1〜15のアルコキシ基であるポリエーテル基である。
炭素数2〜4のオキシアルキレン基としては、オキシエチレン基、オキシプロピレン基及びオキシブチレン等が挙げられる。
As said polyether group (a), it has the repeating unit which is shown by the said General formula (1), and consists of a C2-C4 oxyalkylene group, The repeating unit number is 1-9, One terminal Is a polyether group which is an alkoxy group having 1 to 15 carbon atoms.
Examples of the oxyalkylene group having 2 to 4 carbon atoms include an oxyethylene group, an oxypropylene group, and oxybutylene.

末端の炭素数1〜15のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−、iso−、sec−又はtert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基、ドデシルオキシ基、トリデシルオキシ基、テトラデシルオキシ基及びペンタデシルオキシ基等が挙げられる。   Examples of the terminal alkoxy group having 1 to 15 carbon atoms include methoxy group, ethoxy group, propoxy group, isopropoxy group, n-, iso-, sec- or tert-butoxy group, pentyloxy group, hexyloxy group, heptyloxy Group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, undecyloxy group, dodecyloxy group, tridecyloxy group, tetradecyloxy group and pentadecyloxy group.

上記アルコキシ基(b)としては、前記ポリエーテル基(a)で例示したものと同様の炭素数1〜15のアルコキシ基が挙げられる。   As said alkoxy group (b), the C1-C15 alkoxy group similar to what was illustrated by the said polyether group (a) is mentioned.

上記アルコキシアルキル基(c)としては、炭素数1〜15のアルコキシ基で置換された炭素数1〜4のアルキル基が挙げられる。炭素数1〜15のアルコキシ基としては、前記ポリエーテル基(a)において例示したものと同様のものが挙げられ、炭素数1〜4のアルキル基としては、メチル基、エチル基、n−又はiso−プロピル基及びn−、sec−、iso−又はtert−ブチル基等が挙げられる。   As said alkoxyalkyl group (c), the C1-C4 alkyl group substituted by the C1-C15 alkoxy group is mentioned. Examples of the alkoxy group having 1 to 15 carbon atoms include those exemplified in the polyether group (a). Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, n- or Examples thereof include an iso-propyl group and an n-, sec-, iso- or tert-butyl group.

チオフェン繰り返し単位(α)が有するアルキル基(d)としては、炭素数1〜15の直鎖又は分岐アルキル基、例えば、メチル基、n−又はiso−プロピル基、n−、iso−、sec−又はtert−ブチル基、n−又はiso−ペンチル基、シクロペンチル基、n−又はiso−ヘキシル基、シクロヘキシル基、n−又はiso−ヘプチル基、n−又はiso−オクチル基、2−エチルヘキシル基、n−又はiso−ノニル基、n−又はiso−デシル基、n−又はiso−ウンデシル基、n−又はiso−ドデシル基、n−又はiso−トリデシル基、n−又はiso−テトラデシル基及びn−又はiso−ペンタデシル基が挙げられる。
アルキル基(d)としては、上記アルキル基の水素原子が前記ポリエーテル基(a)で置換されたアルキル基であってもよい。
As the alkyl group (d) of the thiophene repeating unit (α), a linear or branched alkyl group having 1 to 15 carbon atoms, for example, a methyl group, an n- or iso-propyl group, n-, iso-, sec- Or tert-butyl group, n- or iso-pentyl group, cyclopentyl group, n- or iso-hexyl group, cyclohexyl group, n- or iso-heptyl group, n- or iso-octyl group, 2-ethylhexyl group, n -Or iso-nonyl, n- or iso-decyl, n- or iso-undecyl, n- or iso-dodecyl, n- or iso-tridecyl, n- or iso-tetradecyl and n- or An iso-pentadecyl group is mentioned.
The alkyl group (d) may be an alkyl group in which a hydrogen atom of the alkyl group is substituted with the polyether group (a).

本発明における置換ポリチオフェン(P)が有するチオフェン繰り返し単位(α)として、導電性の観点から好ましいのは、下記一般式(2)で表される繰り返し単位(α1)、下記一般式(3)で表される繰り返し単位(α2)又は下記一般式(4)で表される繰り返し単位(α3)である。   As the thiophene repeating unit (α) of the substituted polythiophene (P) in the present invention, the repeating unit (α1) represented by the following general formula (2) and the following general formula (3) are preferable from the viewpoint of conductivity. It is a repeating unit (α3) represented by the repeating unit (α2) or the following general formula (4).

Figure 0005841061
Figure 0005841061

上記一般式(2)におけるOR及び一般式(3)におけるORは、それぞれ独立に、オキシエチレン基又はオキシプロピレン基を表し、導電性の観点から好ましいのはオキシエチレン基である。OR 3 in the general formula (2) and OR 6 in the general formula (3) each independently represent an oxyethylene group or an oxypropylene group, and an oxyethylene group is preferred from the viewpoint of conductivity.

上記一般式(2)〜(4)におけるR、R及びRは、それぞれ独立に、炭素数1〜12の直鎖又は分岐のアルキル基(例えば、メチル基、n−又はiso−プロピル基、n−、iso−、sec−又はtert−ブチル基、n−又はiso−ペンチル基、シクロペンチル基、n−又はiso−ヘキシル基、シクロヘキシル基、n−又はiso−ヘプチル基、n−又はiso−オクチル基、2−エチルヘキシル基、n−又はiso−ノニル基、n−又はiso−デシル基、n−又はiso−ウンデシル基及びn−又はiso−ドデシル基)を表す。R 4 , R 7 and R 8 in the general formulas (2) to (4) are each independently a linear or branched alkyl group having 1 to 12 carbon atoms (for example, a methyl group, n- or iso-propyl). Group, n-, iso-, sec- or tert-butyl group, n- or iso-pentyl group, cyclopentyl group, n- or iso-hexyl group, cyclohexyl group, n- or iso-heptyl group, n- or iso -Octyl group, 2-ethylhexyl group, n- or iso-nonyl group, n- or iso-decyl group, n- or iso-undecyl group and n- or iso-dodecyl group).

後述のnが1以上の場合、Rとして導電性の観点から好ましいのは、炭素数1〜6の直鎖又は分岐のアルキル基、更に好ましいのは、炭素数1〜4の直鎖又は分岐のアルキル基である。
nが0の場合、Rとして導電性の観点から好ましいのは、炭素数3〜12の直鎖又は分岐のアルキル基、更に好ましいのは、炭素数6〜12の直鎖又は分岐のアルキル基である。
When n described later is 1 or more, R 4 is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, more preferably a linear or branched group having 1 to 4 carbon atoms, from the viewpoint of conductivity. It is an alkyl group.
When n is 0, R 4 is preferably a linear or branched alkyl group having 3 to 12 carbon atoms, more preferably a linear or branched alkyl group having 6 to 12 carbon atoms, from the viewpoint of conductivity. It is.

後述のmが1以上の場合、Rとして導電性の観点から好ましいのは、炭素数1〜6の直鎖又は分岐のアルキル基、更に好ましいのは、炭素数1〜4の直鎖又は分岐のアルキル基である。
mが0の場合、Rとして導電性の観点から好ましいのは、炭素数3〜12の直鎖又は分岐のアルキル基、更に好ましいのは、炭素数6〜12の直鎖又は分岐のアルキル基である。
When m described later is 1 or more, R 7 is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, more preferably a linear or branched group having 1 to 4 carbon atoms, from the viewpoint of conductivity. It is an alkyl group.
When m is 0, R 7 is preferably a linear or branched alkyl group having 3 to 12 carbon atoms, more preferably a linear or branched alkyl group having 6 to 12 carbon atoms, from the viewpoint of conductivity. It is.

として溶剤溶解性及び導電性の観点から好ましいのは、炭素数3〜12の直鎖又は分岐のアルキル基、更に好ましいのは、炭素数6〜12の直鎖又は分岐のアルキル基である。R 8 is preferably a linear or branched alkyl group having 3 to 12 carbon atoms, more preferably a linear or branched alkyl group having 6 to 12 carbon atoms, from the viewpoint of solvent solubility and conductivity. .

上記一般式(3)におけるRは炭素数1〜4の直鎖又は分岐のアルキレン基(例えば、メチレン基、エチレン基、1,2−又は1,3−プロピレン基及び1,2−、1,3−、2,3−又は1,4−ブチレン基)を表し、溶剤溶解性及び導電性の観点から好ましいのは、炭素数1〜3の直鎖又は分岐のアルキレン基、更に好ましいのは、メチレン基又はエチレン基である。R 5 in the general formula (3) is a linear or branched alkylene group having 1 to 4 carbon atoms (for example, a methylene group, an ethylene group, a 1,2- or 1,3-propylene group, and a 1,2--1, , 3-, 2,3- or 1,4-butylene group), preferably from the viewpoint of solvent solubility and conductivity, a linear or branched alkylene group having 1 to 3 carbon atoms, more preferably , A methylene group or an ethylene group.

上記一般式(2)又は(3)におけるn及びmは、それぞれ独立に、0〜5の整数である。nは、溶剤溶解性及び導電性の観点から、1〜5であることが好ましく、更に好ましくは、2〜5である。mは、溶剤溶解性及び導電性の観点から、0〜4であることが好ましく、更に好ましくは、mは0〜3である。   N and m in the general formula (2) or (3) are each independently an integer of 0 to 5. n is preferably 1 to 5 and more preferably 2 to 5 from the viewpoints of solvent solubility and conductivity. m is preferably 0 to 4 from the viewpoint of solvent solubility and conductivity, and more preferably m is 0 to 3.

本発明における置換ポリチオフェン(P)は上記チオフェン繰り返し単位(α)のみからなっていてもよいし、置換されていないチオフェン繰り返し単位を含んでいてもよい。   The substituted polythiophene (P) in the present invention may be composed of only the thiophene repeating unit (α) or may contain an unsubstituted thiophene repeating unit.

置換ポリチオフェン(P)における上記チオフェン繰り返し単位(α)の含有量は、溶剤溶解性の観点から、置換ポリチオフェン(P)の重量に基づいて、好ましくは50〜100重量%、更に好ましくは60〜100重量%、特に好ましくは70〜100重量%である。   The content of the thiophene repeating unit (α) in the substituted polythiophene (P) is preferably 50 to 100% by weight, more preferably 60 to 100%, based on the weight of the substituted polythiophene (P), from the viewpoint of solvent solubility. % By weight, particularly preferably 70 to 100% by weight.

本発明における置換ポリチオフェン(P)は、それぞれの繰り返し単位に相当するモノマーのアニオン重合や酸化重合等、公知の方法で合成することができる。   The substituted polythiophene (P) in the present invention can be synthesized by a known method such as anionic polymerization or oxidative polymerization of monomers corresponding to the respective repeating units.

上記チオフェン繰り返し単位(α)に相当するモノマーとしては、チオフェン環の3位及び/又は4位が上記ポリエーテル基(a)、上記アルコキシ基(b)、上記アルコキシアルキル基(c)又は上記アルキル基(d)で置換され、2位と5位がハロゲン原子で置換されたチオフェン等が挙げられる。
置換されていないチオフェン繰り返し単位に相当するモノマーとしては、チオフェンが挙げられる。
As the monomer corresponding to the thiophene repeating unit (α), the polyether group (a), the alkoxy group (b), the alkoxyalkyl group (c) or the alkyl is located at the 3-position and / or 4-position of the thiophene ring. And thiophene substituted with the group (d) and substituted with a halogen atom at the 2-position and 5-position.
Examples of the monomer corresponding to the unsubstituted thiophene repeating unit include thiophene.

導電性組成物(A)中の置換ポリチオフェン(P)の含有量は、溶解性の観点から導電性組成物(A)の重量に基づいて、0.1〜20重量%が好ましく、更に好ましくは1.0〜6.0重量%である。置換ポリチオフェン(P)の含有量が多すぎる場合、凝集物が生じ、塗工性が悪化するため好ましくない。また、置換ポリチオフェン(P)の含有量が少なすぎる場合、均一な導電被膜の形成が困難になるため好ましくない。   The content of the substituted polythiophene (P) in the conductive composition (A) is preferably 0.1 to 20% by weight, more preferably based on the weight of the conductive composition (A) from the viewpoint of solubility. 1.0 to 6.0% by weight. When there is too much content of substituted polythiophene (P), since an aggregate will arise and coating property will deteriorate, it is unpreferable. Moreover, when there is too little content of substituted polythiophene (P), since formation of a uniform conductive film becomes difficult, it is unpreferable.

本発明における置換ポリチオフェン(P)の立体規則性(Regioregularity:RR)は、通常50%以上、導電性の観点から好ましくは80%以上、更に好ましくは90%以上である。   The stereoregularity (Regorregularity: RR) of the substituted polythiophene (P) in the present invention is usually 50% or more, preferably 80% or more, more preferably 90% or more from the viewpoint of conductivity.

本発明における立体規則性(RR)の定義を以下に説明する。
置換ポリチオフェン(P)の結合の種類は下記の一般化学式に示すように、HT−HT結合(B1)、TT−HT結合(B2)、HT−HH結合(B3)、TT−HH結合(B4)の4種類ある。尚ここで、HTはヘッドtoテール、TTはテールtoテール、HHはヘッドtoヘッドの略称である。
The definition of stereoregularity (RR) in the present invention will be described below.
As shown in the following general chemical formula, the type of bond of the substituted polythiophene (P) is HT-HT bond (B1), TT-HT bond (B2), HT-HH bond (B3), TT-HH bond (B4). There are four types. Here, HT is an abbreviation for head to tail, TT is an abbreviation for tail to tail, and HH is an abbreviation for head to head.

Figure 0005841061
Figure 0005841061

上記4つの結合形式の化学式中のRは、それぞれ独立に上記ポリエーテル基(a)、上記アルコキシ基(b)、上記アルコキシアルキル基(c)又は上記アルキル基(d)を表す。   R in the chemical formulas of the four bond types independently represents the polyether group (a), the alkoxy group (b), the alkoxyalkyl group (c), or the alkyl group (d).

本発明における置換ポリチオフェン(P)の立体規則性(RR)は、置換ポリチオフェン(P)中のHT−HT結合(B1)の割合(%)で定義され、下記数式(1)により算出される。
立体規則性(RR)=B1×100/(B1+B2+B3+B4) (1)
ただし、B1:HT−HT結合の個数、B2:TT−HT結合の個数、B3:HT−HH結合の個数、B4:TT−HH結合の個数を表す。
The stereoregularity (RR) of the substituted polythiophene (P) in the present invention is defined by the ratio (%) of the HT-HT bond (B1) in the substituted polythiophene (P), and is calculated by the following mathematical formula (1).
Stereoregularity (RR) = B1 × 100 / (B1 + B2 + B3 + B4) (1)
Where B1: HT-HT bond number, B2: TT-HT bond number, B3: HT-HH bond number, B4: TT-HH bond number.

具体的には、これらの結合が有するプロトンは、核磁気共鳴法(H−NMR)でそれぞれ特有のケミカルシフト(δ)を示すので、4種類の結合に該当するケミカルシフトにおけるピークの積分値から算出することができる。
一般式(3)で表される繰り返し単位(α3)を有するポリチオフェン誘導体の場合、具体的には、HT−HT結合(B1):δ=6.98、TT−HT結合(B2):δ=7.00、HT−HH結合(B3):δ=7.02、TT−HH結合(B4):δ=7.05を示す。よって(B1)、(B2)、(B3)、(B4)特有のケミカルシフトにおけるピークの積分値S1、S2、S3、S4を計算し、その積分値の和に対する(B1)特有のケミカルシフトにおけるピークの積分値S1の割合(%)から立体規則性(RR)を下記数式(2)を用いて算出する。
立体規則性(RR)=S1×100/(S1+S2+S3+S4) (2)
なお、上記H−NMRの測定は、測定機器:AVANCEIII400型デジタルNMR[ブルカ−・バイオスピン(株)製]を用いて、測定溶媒:重クロロホルム、測定温度:27℃、の条件で行った。
Specifically, since the protons of these bonds have their respective chemical shifts (δ) by nuclear magnetic resonance ( 1 H-NMR), the integrated values of the peaks at the chemical shifts corresponding to the four types of bonds. It can be calculated from
In the case of the polythiophene derivative having the repeating unit (α3) represented by the general formula (3), specifically, HT-HT bond (B1): δ = 6.98, TT-HT bond (B2): δ = 7.00, HT-HH bond (B3): δ = 7.02, TT-HH bond (B4): δ = 7.05. Therefore, the integral values S1, S2, S3, and S4 of the peaks at the chemical shifts specific to (B1), (B2), (B3), and (B4) are calculated, and the (B1) specific chemical shift with respect to the sum of the integral values is calculated. The stereoregularity (RR) is calculated from the ratio (%) of the peak integration value S1 using the following formula (2).
Stereoregularity (RR) = S1 × 100 / (S1 + S2 + S3 + S4) (2)
The 1 H-NMR measurement was performed under the conditions of measuring solvent: deuterated chloroform, measuring temperature: 27 ° C. using a measuring instrument: AVANCEIII400 type digital NMR [manufactured by Bruker Biospin Co., Ltd.]. .

導電性高分子である置換ポリチオフェン(P)は、ドーパントとしての三酸化硫黄錯体に対して電子を供与して、ドーパントとともに電荷移動錯体を形成する。この電荷移動錯体が電子のキャリヤとして導電性を発現するため、三酸化硫黄錯体の濃度は高い方がよいが、過剰だと導電性が低下する。従って、三酸化硫黄錯体の使用量は、置換ポリチオフェン(P)に対して5〜300重量%が好ましく、更に好ましくは10〜150重量%である。   The substituted polythiophene (P), which is a conductive polymer, donates electrons to the sulfur trioxide complex as a dopant to form a charge transfer complex together with the dopant. Since this charge transfer complex exhibits conductivity as an electron carrier, the concentration of the sulfur trioxide complex is preferably high, but if it is excessive, the conductivity is lowered. Therefore, the use amount of the sulfur trioxide complex is preferably 5 to 300% by weight, more preferably 10 to 150% by weight with respect to the substituted polythiophene (P).

三酸化硫黄錯体は、三酸化硫黄と、エーテル、アミド、アミン及びスルフィドなどのルイス塩基との錯体である。エーテル・三酸化硫黄錯体としては三酸化硫黄ジオキサン錯体、三酸化硫黄ジオキソラン錯体、三酸化硫黄ジメチルエーテル錯体、三酸化硫黄エチルメチルエーテル錯体、三酸化硫黄ジエチルエーテル錯体等、アミド・三酸化硫黄錯体としては、三酸化硫黄N,N−ジメチルホルムアミド錯体等、アミン・三酸化硫黄錯体としては、三酸化硫黄ピリジン錯体、三酸化硫黄トリエチルアミン錯体、三酸化硫黄トリメチルアミン錯体、三酸化硫黄N−エチルジイソプロピルアミン錯体等、スルフィド・三酸化硫黄錯体としては、三酸化硫黄ジメチルスルフィド錯体、三酸化硫黄エチルメチルスルフィド錯体、三酸化硫黄ジエチルスルフィド錯体等が挙げられる。これらの中で、導電性の観点からアミド・三酸化硫黄錯体及びアミン・三酸化硫黄錯体が好ましく、アミド・三酸化硫黄錯体の中では三酸化硫黄N,N−ジメチルホルムアミド錯体、アミン・三酸化硫黄錯体の中では三酸化硫黄ピリジン錯体が更に好ましい。   The sulfur trioxide complex is a complex of sulfur trioxide and a Lewis base such as ether, amide, amine and sulfide. As ether / sulfur trioxide complex, sulfur trioxide dioxane complex, sulfur trioxide dioxolane complex, sulfur trioxide dimethyl ether complex, sulfur trioxide ethyl methyl ether complex, sulfur trioxide diethyl ether complex, etc. , Sulfur trioxide N, N-dimethylformamide complex, etc. As amine / sulfur trioxide complex, sulfur trioxide pyridine complex, sulfur trioxide triethylamine complex, sulfur trioxide trimethylamine complex, sulfur trioxide N-ethyldiisopropylamine complex, etc. Examples of the sulfide / sulfur trioxide complex include sulfur trioxide dimethyl sulfide complex, sulfur trioxide ethylmethyl sulfide complex, and sulfur trioxide diethyl sulfide complex. Of these, amide / sulfur trioxide complexes and amine / sulfur trioxide complexes are preferable from the viewpoint of conductivity. Among the amide / sulfur trioxide complexes, sulfur trioxide N, N-dimethylformamide complexes, amine / sulfur trioxides are preferred. Of the sulfur complexes, sulfur trioxide pyridine complexes are more preferred.

本発明の導電性組成物(A)はドーパントとして三酸化硫黄錯体を含有し、本発明の効果を損なわない範囲で更にその他のドーパント及び有機溶剤を含有することができる。   The conductive composition (A) of the present invention contains a sulfur trioxide complex as a dopant, and can further contain other dopants and organic solvents as long as the effects of the present invention are not impaired.

他のドーパントとしては、例えば、無機酸(硫酸及び硝酸等)、ハロゲンイオン類(ヨウ素、臭素及び塩素等)、ハロゲン化物イオン類(テトラフロロホウ素及び過塩素酸等)、キノン化合物[クロラニル酸、p−クロラニル、p−ベンゾキノン、p−キノンジオキシム、ジクロロジシアノキノン(DDQ)、p−ナフトキノン、アントラキノン、クロロアントラキノン及びp−トルキノン等)、アルキル置換有機スルホン酸イオン類(メタンスルホン酸及びドデシルスルホン酸等)、環状スルホン酸イオン類(カンファースルホン酸イオン等)、アルキル置換又は無置換のベンゼンモノ又はジスルホン酸イオン類(ベンゼンスルホン酸、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸及びベンゼンジスルホン酸等)、スルホン酸基を1〜4個有するナフタレンスルホン酸のアルキル置換イオン類又は無置換イオン類(2−ナフタレンスルホン酸及び1,7−ナフタレンジスルホン酸等)、アントラセンスルホン酸イオン、アントラキノンスルホン酸イオン、アルキル置換又は無置換のビフェニルスルホン酸イオン類(アルキルビフェニルスルホン酸及びビフェニルジスルホン酸等)及び置換又は無置換の芳香族高分子スルホン酸イオン類(ポリスチレンスルホン酸及びナフタレンスルホン酸ホルマリン縮合体等)が挙げられる。   Other dopants include, for example, inorganic acids (such as sulfuric acid and nitric acid), halogen ions (such as iodine, bromine and chlorine), halide ions (such as tetrafluoroboron and perchloric acid), quinone compounds [chloranilic acid, p-chloranil, p-benzoquinone, p-quinonedioxime, dichlorodicyanoquinone (DDQ), p-naphthoquinone, anthraquinone, chloroanthraquinone and p-toluquinone), alkyl-substituted organic sulfonate ions (methanesulfonic acid and dodecylsulfone) Acid), cyclic sulfonate ions (camphor sulfonate ions, etc.), alkyl-substituted or unsubstituted benzene mono- or disulfonate ions (benzene sulfonic acid, paratoluene sulfonic acid, dodecyl benzene sulfonic acid, benzene disulfonic acid, etc.) Sulfonic acid group 1 to 4 naphthalene sulfonic acid alkyl-substituted or unsubstituted ions (2-naphthalene sulfonic acid and 1,7-naphthalenedisulfonic acid, etc.), anthracene sulfonic acid ion, anthraquinone sulfonic acid ion, alkyl-substituted or unsubstituted And biphenyl sulfonic acid ions (alkyl biphenyl sulfonic acid and biphenyl disulfonic acid etc.) and substituted or unsubstituted aromatic polymer sulfonic acid ions (polystyrene sulfonic acid and naphthalene sulfonic acid formalin condensate etc.).

他のドーパントの使用量は、置換ポリチオフェン(P)に対して0〜1100重量%が好ましく、更に好ましくは10〜600重量%である。   The amount of other dopant used is preferably 0 to 1100% by weight, more preferably 10 to 600% by weight, based on the substituted polythiophene (P).

本発明の導電性組成物(A)は、上述のとおり、更に有機溶剤を含有してもよい。導電性組成物(A)を基質に塗布後、必要に応じて加熱処理を行うことにより有機溶剤を除去して導電被膜を作製することができる。有機溶剤としては、沈殿物のない均一溶液を得るために、置換ポリチオフェン(P)に対する良溶剤と、ドーパントに対する良溶剤を混合して用いることが好ましい。   As described above, the conductive composition (A) of the present invention may further contain an organic solvent. After apply | coating an electroconductive composition (A) to a board | substrate, an organic solvent can be removed by performing heat processing as needed, and a conductive film can be produced. As the organic solvent, it is preferable to use a good solvent for the substituted polythiophene (P) and a good solvent for the dopant in order to obtain a uniform solution having no precipitate.

置換ポリチオフェン(P)に対する良溶剤としては、炭素数1〜10の塩素系、アミド系、エーテル系、芳香族炭化水素系、アルコール系、ケトン系及び硫黄系溶剤等が挙げられ、好ましいものは、クロロホルム、塩化メチレン、ジメチルホルムアミド、N−メチルピロリドン、テトラヒドロフラン(以下、THFと略記)、1,3−ジオキソラン、トルエン、メタノール、アセトン、メチルエチルケトン、γ−ブチロラクトン、シクロペンタノン、シクロヘキサノン、ジメチルスルホキシド及びこれらの混合物等が挙げられる。   Examples of the good solvent for the substituted polythiophene (P) include chlorine-based, amide-based, ether-based, aromatic hydrocarbon-based, alcohol-based, ketone-based, and sulfur-based solvents having 1 to 10 carbon atoms. Chloroform, methylene chloride, dimethylformamide, N-methylpyrrolidone, tetrahydrofuran (hereinafter abbreviated as THF), 1,3-dioxolane, toluene, methanol, acetone, methyl ethyl ketone, γ-butyrolactone, cyclopentanone, cyclohexanone, dimethyl sulfoxide and these And the like.

置換ポリチオフェン(P)に対する良溶剤と置換ポリチオフェン(P)とを混合した溶液中の上記良溶剤の含有量は、溶液中、0〜99重量%が好ましく、さらに好ましくは50〜98重量%である。   The content of the good solvent in the mixed solution of the good solvent and the substituted polythiophene (P) with respect to the substituted polythiophene (P) is preferably 0 to 99% by weight, more preferably 50 to 98% by weight in the solution. .

ドーパントに対する良溶剤としては、メタノール、エタノール、2−プロパノール、エチレングリコール、N−メチルピロリドン、THF、γ−ブチロラクトン及びシクロペンタノン等が挙げられる。これらのうち、溶解安定性の観点から好ましいのは、メタノール、エタノール、2−プロパノール及びγ−ブチロラクトンである。   Examples of the good solvent for the dopant include methanol, ethanol, 2-propanol, ethylene glycol, N-methylpyrrolidone, THF, γ-butyrolactone, and cyclopentanone. Of these, methanol, ethanol, 2-propanol and γ-butyrolactone are preferable from the viewpoint of dissolution stability.

ドーパントに対する良溶剤とドーパントとを混合した溶液中の上記良溶剤の含有量は、溶液中、0〜99重量%が好ましく、さらに好ましくは、50〜98重量%である。   As for content of the said good solvent in the solution which mixed the good solvent and dopant with respect to a dopant, 0 to 99 weight% is preferable in a solution, More preferably, it is 50 to 98 weight%.

置換ポリチオフェン(P)とドーパントを混合する際に均一溶液を得るためには、置換ポリチオフェン(P)の溶剤溶液とドーパントの溶剤溶液をそれぞれ調製してから混合することが好ましい。In order to obtain a uniform solution when the substituted polythiophene (P) and the dopant are mixed, it is preferable to prepare a solvent solution of the substituted polythiophene (P) and a solvent solution of the dopant and then mix them.

本発明の導電性組成物(A)を用いて導電被膜を製造する際には、これらの溶剤を除去する必要がある。沸点の低い溶剤の場合は、常温での自然乾燥、循風乾燥による加熱乾燥で溶剤を除去するが、沸点の高い溶剤の場合は、減圧乾燥機による加熱乾燥が好ましい。   When producing a conductive film using the conductive composition (A) of the present invention, it is necessary to remove these solvents. In the case of a solvent having a low boiling point, the solvent is removed by natural drying at room temperature or heat drying by circulating drying, but in the case of a solvent having a high boiling point, heat drying by a vacuum dryer is preferable.

本発明の導電性組成物(A)は、特に固体電解コンデンサ用電極に好適である。固体電解コンデンサでは、アルミニウム等の酸化皮膜をエッチングすることで多孔性皮膜とし、この表面に導電性高分子層を形成して電極(陰極)としたコンデンサが使用されているが、導電性高分子の前駆体モノマーを含む分散液を塗布する方法やドデシルベンゼンスルホン酸をドーパントとして用いて導電性高分子のポリピロールを溶剤に溶解させたものを塗布する方法等の従来の方法では、コンデンサの生産効率が非常に悪く、また、コンデンサの容量を効率よく高めることができず、更にドーパントが酸であり電極の腐食による耐電圧の低下やリーク電流の増大という問題がある。   The conductive composition (A) of the present invention is particularly suitable for a solid electrolytic capacitor electrode. A solid electrolytic capacitor is a capacitor in which an oxide film such as aluminum is etched to form a porous film, and a conductive polymer layer is formed on this surface to form an electrode (cathode). In conventional methods, such as a method of applying a dispersion containing a precursor monomer of a polymer, or a method of applying a polymer obtained by dissolving polypyrrole of a conductive polymer in a solvent using dodecylbenzenesulfonic acid as a dopant, the production efficiency of the capacitor In addition, the capacity of the capacitor cannot be increased efficiently, and the dopant is an acid, and there is a problem that the withstand voltage is reduced and the leakage current is increased due to electrode corrosion.

これに対し、本発明の導電性組成物(A)は、有機溶剤に完全に溶解しており、かつ、導電性も高いため、簡便な工程で導電性高分子を多孔体皮膜に含浸させ、効率的にコンデンサ容量を高めることができると共に、ドーパントが酸ではないため、腐食の恐れがない。   On the other hand, since the conductive composition (A) of the present invention is completely dissolved in an organic solvent and has high conductivity, a porous polymer film is impregnated with a conductive polymer in a simple process, Capacitor capacity can be increased efficiently, and since the dopant is not an acid, there is no risk of corrosion.

本発明の導電性組成物(A)を基質に塗布後、加熱処理を行うことにより、耐電圧が高くリーク電流が少ない固体電解コンデンサ用電極を得ることができる。   By applying the conductive composition (A) of the present invention to a substrate and then performing a heat treatment, an electrode for a solid electrolytic capacitor having a high withstand voltage and a small leakage current can be obtained.

基質への導電性組成物(A)の塗布方法としては、スピンコート法、ドロップキャスト法、ディップコート法及び基質を導電性組成物(A)に含浸する方法等が挙げられる。また、基質としては、プラスチック、ガラス、金属、ゴム、セラミックス及び紙等が挙げられる。   Examples of the method for applying the conductive composition (A) to the substrate include spin coating, drop casting, dip coating, and a method of impregnating the conductive composition (A) with the substrate. Examples of the substrate include plastic, glass, metal, rubber, ceramics, and paper.

導電性の観点から、基質表面に形成される導電性組成物(A)を乾燥して得られる膜の厚さは0.05〜100μmであることが好ましく、更に好ましくは、0.1〜50μmである。被膜が0.05μmより薄いと十分な導電性が得られない場合がある。また、100μmを超えると形成時にひび割れや剥離が生じやすくなる等の問題が生じることがある。   From the viewpoint of conductivity, the thickness of the film obtained by drying the conductive composition (A) formed on the substrate surface is preferably 0.05 to 100 μm, more preferably 0.1 to 50 μm. It is. If the coating is thinner than 0.05 μm, sufficient conductivity may not be obtained. On the other hand, if the thickness exceeds 100 μm, there may be a problem that cracking or peeling tends to occur during formation.

本発明の導電性組成物(A)を用いて高導電性の導電被膜を得るためには、加熱処理温度は100〜190℃であることが好ましく、更に好ましくは110〜170℃である。100℃より低い温度の場合、十分な強度及び導電性が得られない場合がある。また、190℃より高い温度の場合、導電性が悪化する可能性がある。   In order to obtain a highly conductive conductive film using the conductive composition (A) of the present invention, the heat treatment temperature is preferably 100 to 190 ° C, more preferably 110 to 170 ° C. When the temperature is lower than 100 ° C., sufficient strength and conductivity may not be obtained. Moreover, when the temperature is higher than 190 ° C., the conductivity may be deteriorated.

加熱時間は、加熱温度、導電性組成物(A)中の置換ポリチオフェン(P)の濃度に応じて適宜選択されるが、通常は0.5〜8時間であり、好ましくは1〜4時間である。加熱時間が短すぎると、上記の導電性組成物(A)から得られる導電被膜の導電性が十分ではない場合がある。   The heating time is appropriately selected according to the heating temperature and the concentration of the substituted polythiophene (P) in the conductive composition (A), but is usually 0.5 to 8 hours, preferably 1 to 4 hours. is there. When heating time is too short, the electroconductivity of the conductive film obtained from said electroconductive composition (A) may not be enough.

本発明の導電性組成物(A)は、含有するドーパントが酸ではないため低腐食性であり、かつ導電性に優れており、簡便な塗工のみで導電被膜を作製できるため有用である。特に、簡便な工程で導電性高分子を多孔質皮膜に含浸させて効率的にコンデンサ容量を高めることができ、耐電圧が高くリーク電流が少ない固体電解コンデンサを作製できるため有用である。   The conductive composition (A) of the present invention is useful because it contains a non-acid dopant and is low in corrosiveness and excellent in conductivity, and can produce a conductive film only by simple coating. In particular, it is useful because a capacitor film can be efficiently increased by impregnating a porous film with a conductive polymer by a simple process, and a solid electrolytic capacitor having a high withstand voltage and a small leakage current can be produced.

以下、実施例及び比較例により本発明を更に説明するが、本発明はこれらに限定されるものではない。以下、部は重量部を示す。   Hereinafter, although an example and a comparative example explain the present invention further, the present invention is not limited to these. Hereinafter, a part shows a weight part.

<製造例1>:ポリ[3−(1,4,7,10−テトラオキサウンデシル)チオフェン](P−1)の合成
(1)3−(1,4,7,10−テトラオキサウンデシル)チオフェンの合成:
N,N−ジメチルホルムアミド50部に水素化ナトリウム(パラフィンに濃度60重量%で分散させたもの)6.0部を分散させ、そこにトリエチレングリコールモノメチルエーテル36.9部を滴下した。反応溶液は発泡し、白濁した。発泡が収まったところで、反応溶液に3−ブロモチオフェン24.5部と臭化銅(I)2.0部を順に加えた。反応溶液を110℃まで加熱し、2時間反応させた。反応終了後、室温まで放冷し、1mol/Lの塩化アンモニウム水溶液50部を加え、酢酸エチル50部を使って分液ロートに移した後、水層を分離した。更に有機層を蒸留水30部で2回洗浄した後、酢酸エチルを留去し、3−(1,4,7,10−テトラオキサウンデシル)チオフェン34.0部を得た。
<Production Example 1>: Synthesis of poly [3- (1,4,7,10-tetraoxaundecyl) thiophene] (P-1) (1) 3- (1,4,7,10-tetraoxaun Synthesis of (decyl) thiophene:
6.0 parts of sodium hydride (dispersed in paraffin at a concentration of 60% by weight) was dispersed in 50 parts of N, N-dimethylformamide, and 36.9 parts of triethylene glycol monomethyl ether was added dropwise thereto. The reaction solution foamed and became cloudy. When foaming subsided, 24.5 parts of 3-bromothiophene and 2.0 parts of copper (I) bromide were sequentially added to the reaction solution. The reaction solution was heated to 110 ° C. and reacted for 2 hours. After completion of the reaction, the mixture was allowed to cool to room temperature, 50 parts of a 1 mol / L ammonium chloride aqueous solution was added, the mixture was transferred to a separatory funnel using 50 parts of ethyl acetate, and the aqueous layer was separated. Further, the organic layer was washed twice with 30 parts of distilled water, and then ethyl acetate was distilled off to obtain 34.0 parts of 3- (1,4,7,10-tetraoxaundecyl) thiophene.

(2)2,5−ジブロモ−3−(1,4,7,10−テトラオキサウンデシル)チオフェンの合成:
上記の3−(1,4,7,10−テトラオキサウンデシル)チオフェン7.4部とN−ブロモスクシンイミド10.7部をTHF40部に溶解させ、室温で2時間反応させた。酢酸エチル50部を使ってグラスフィルターで沈殿物を除去し、THFと酢酸エチルを留去した。得られた混合物をシリカゲルカラムで精製することにより、2,5−ジブロモ−3−(1,4,7,10−テトラオキサウンデシル)チオフェン10.5部を得た。
(2) Synthesis of 2,5-dibromo-3- (1,4,7,10-tetraoxaundecyl) thiophene:
7.4 parts of the above 3- (1,4,7,10-tetraoxaundecyl) thiophene and 10.7 parts of N-bromosuccinimide were dissolved in 40 parts of THF and reacted at room temperature for 2 hours. The precipitate was removed with a glass filter using 50 parts of ethyl acetate, and THF and ethyl acetate were distilled off. The obtained mixture was purified with a silica gel column to obtain 10.5 parts of 2,5-dibromo-3- (1,4,7,10-tetraoxaundecyl) thiophene.

(3)ポリ[3−(1,4,7,10−テトラオキサウンデシル)チオフェン]の合成:
上記の2,5−ジブロモ−3−(1,4,7,10−テトラオキサウンデシル)チオフェン8.1部をTHF150部に溶かした後、1mol/LのメチルマグネシウムブロマイドTHF溶液21部を加え、75℃で30分反応させた。その反応溶液に[1,3−ビス(ジフェニルホスフィノ)プロパン]−ジクロロニッケル(II)0.1部を加え、75℃のまま、更に5時間反応させた。反応溶液を室温まで放冷した後、メタノール20部を加えた。溶剤を留去した後、反応混合物をソックスレー抽出器に移し、メタノール150部とヘキサン150部で順に洗浄した。最後に残留物をクロロホルム150部で抽出し、溶剤を留去してポリ[3−(1,4,7,10−テトラオキサウンデシル)チオフェン](P−1)3.1部を得た。前述のH−NMRを用いた方法で算出した立体規則性は96.3%であった。
(3) Synthesis of poly [3- (1,4,7,10-tetraoxaundecyl) thiophene]:
After dissolving 8.1 parts of 2,5-dibromo-3- (1,4,7,10-tetraoxaundecyl) thiophene in 150 parts of THF, 21 parts of a 1 mol / L methylmagnesium bromide THF solution was added. And reacted at 75 ° C. for 30 minutes. To the reaction solution, 0.1 part of [1,3-bis (diphenylphosphino) propane] -dichloronickel (II) was added, and the mixture was further reacted at 75 ° C. for 5 hours. The reaction solution was allowed to cool to room temperature, and 20 parts of methanol was added. After distilling off the solvent, the reaction mixture was transferred to a Soxhlet extractor and washed in order with 150 parts of methanol and 150 parts of hexane. Finally, the residue was extracted with 150 parts of chloroform, and the solvent was distilled off to obtain 3.1 parts of poly [3- (1,4,7,10-tetraoxaundecyl) thiophene] (P-1). . The stereoregularity calculated by the aforementioned method using 1 H-NMR was 96.3%.

<製造例2>:ポリ[3−(1,4,7,10,13,16,19−ヘプタオキサエイコシル)チオフェン](P−2)の合成
製造例1の(1)において、トリエチレングリコールモノメチルエーテルをヘキサエチレングリコールモノメチルエーテル(東京化成社製)としたこと以外は製造例1と同様の実験操作を行い、立体規則性が95.1%であるポリ[3−(1,4,7,10,13,16,19−ヘプタオキサエイコシル)チオフェン](P−2)2.9部を得た。
尚、トリエチレングリコールモノメチルエーテルをヘキサエチレングリコールモノメチルエーテルに変更するに際して、反応成分のモル比及び非反応成分(溶剤等)の重量比が、製造例1における場合と同等となるように各原料の量を調整して実験操作を行った。
<Production Example 2>: Synthesis of poly [3- (1,4,7,10,13,16,19-heptaoxaeicosyl) thiophene] (P-2) In (1) of Production Example 1, triethylene was synthesized. Poly [3- (1, 4, 7,10,13,16,19-heptaoxaeicosyl) thiophene] (P-2) 2.9 parts.
In addition, when changing triethylene glycol monomethyl ether to hexaethylene glycol monomethyl ether, the molar ratio of the reaction components and the weight ratio of the non-reaction components (solvents, etc.) are the same as those in Production Example 1. The experiment was performed with the amount adjusted.

<製造例3>:ポリ(3−ヘプチルオキシチオフェン)(P−3)の合成
製造例1の(1)において、トリエチレングリコールモノメチルエーテルを1−ヘプタノールとしたこと以外は製造例1と同様の実験操作を行い、立体規則性が95.4%であるポリ(3−ヘプチルオキシチオフェン)(P−3)2.7部を得た。
<Production Example 3>: Synthesis of poly (3-heptyloxythiophene) (P-3) In Production Example 1 (1), except that triethylene glycol monomethyl ether was changed to 1-heptanol, the same as Production Example 1 Experimental operation was performed to obtain 2.7 parts of poly (3-heptyloxythiophene) (P-3) having a stereoregularity of 95.4%.

<製造例4>:ポリ{3−(2,5−ジオキサヘプチル)チオフェン}(P−4)の合成
(1)3−ブロモメチルチオフェンの合成:
3−メチルチオフェン[東京化成工業(株)製]5部(50.9mmol)、N−ブロモスクシンイミド9.97部(56.0mmol)、ジベンゾイルパーオキサイド[東京化成工業(株)製]0.12部(0.50mmol)をベンゼン30部に溶解させた後、100℃まで昇温し、4時間反応させた。反応終了後、室温まで放冷し、1Mのチオ硫酸ナトリウム水溶液30部を加え、分液ロートに移した後、水層を分離した。更に有機層を蒸留水30部で2回洗浄した後、ベンゼンを留去し、3−ブロモメチルチオフェン6.32部(35.7mmol)を得た。
<Production Example 4>: Synthesis of poly {3- (2,5-dioxaheptyl) thiophene} (P-4) (1) Synthesis of 3-bromomethylthiophene:
3-methylthiophene [Tokyo Chemical Industry Co., Ltd.] 5 parts (50.9 mmol), N-bromosuccinimide 9.97 parts (56.0 mmol), dibenzoyl peroxide [Tokyo Chemical Industry Co., Ltd.] 0. After 12 parts (0.50 mmol) was dissolved in 30 parts of benzene, the temperature was raised to 100 ° C. and reacted for 4 hours. After completion of the reaction, the mixture was allowed to cool to room temperature, 30 parts of 1M aqueous sodium thiosulfate solution was added, and the mixture was transferred to a separatory funnel, and then the aqueous layer was separated. Further, the organic layer was washed twice with 30 parts of distilled water, and then benzene was distilled off to obtain 6.32 parts (35.7 mmol) of 3-bromomethylthiophene.

(2)3−(2,5−ジオキサヘプチル)チオフェンの合成:
2−エトキシエタノール3.54部(39.3mmol)をTHF15部に溶解させ、そこに水素化ナトリウム(60%パラフィン分散)を加えた。上記の3−ブロモメチルチオフェン6.32部(35.7mmol)をTHF15部に溶かし、2時間かけて滴下した後、100℃まで昇温し、4時間反応させた。反応終了後、室温まで放冷し、蒸留水30部を加え、分液ロートに移した後、水層を分離した。更に有機層を蒸留水30部で2回洗浄した後、THFを留去し、得られた混合物をシリカゲルカラムで精製することにより、3−(2,5−ジオキサヘプチル)チオフェン5.68部(30.5mmol)を得た。
(2) Synthesis of 3- (2,5-dioxaheptyl) thiophene:
3.54 parts (39.3 mmol) of 2-ethoxyethanol was dissolved in 15 parts of THF, and sodium hydride (60% paraffin dispersion) was added thereto. 6.32 parts (35.7 mmol) of the above 3-bromomethylthiophene was dissolved in 15 parts of THF, added dropwise over 2 hours, then heated to 100 ° C. and reacted for 4 hours. After completion of the reaction, the mixture was allowed to cool to room temperature, 30 parts of distilled water was added, and the mixture was transferred to a separatory funnel, and the aqueous layer was separated. Further, the organic layer was washed twice with 30 parts of distilled water, THF was distilled off, and the resulting mixture was purified with a silica gel column to obtain 5.68 parts of 3- (2,5-dioxaheptyl) thiophene. (30.5 mmol) was obtained.

(3)2,5−ジブロモ−3−(2,5−ジオキサペンチル)チオフェンの合成:
上記の3−(2,5−ジオキサヘプチル)チオフェン5.68部(30.5mmol)とN−ブロモスクシンイミド11.9部(67.1mmol)をTHFに溶解させ、室温で2時間反応させた。酢酸エチル50部を使ってグラスフィルターで沈殿物を除去し、THFと酢酸エチルを留去した。得られた混合物をシリカゲルカラムで精製することにより、2,5−ジブロモ−3−(2,5−ジオキサヘプチル)チオフェン8.11部(23.6mmol)を得た。
(3) Synthesis of 2,5-dibromo-3- (2,5-dioxapentyl) thiophene:
5.68 parts (30.5 mmol) of 3- (2,5-dioxaheptyl) thiophene and 11.9 parts (67.1 mmol) of N-bromosuccinimide were dissolved in THF and reacted at room temperature for 2 hours. . The precipitate was removed with a glass filter using 50 parts of ethyl acetate, and THF and ethyl acetate were distilled off. The obtained mixture was purified with a silica gel column to obtain 8.11 parts (23.6 mmol) of 2,5-dibromo-3- (2,5-dioxaheptyl) thiophene.

(4)ポリ{3−(2,5−ジオキサヘプチル)チオフェン}の合成:
上記の2,5−ジブロモ−3−(2,5−ジオキサヘプチル)チオフェン8.11部(23.6mmol)をTHF30部に溶かした後、メチルマグネシウムブロマイドTHF溶液25部を加え、75℃で30分反応させた。その反応溶液に[1,3−ビス(ジフェニルホスフィノ)プロパン]−ジクロロニッケル(II)0.127部を加え、75℃のまま、さらに、2時間反応させた。反応溶液を室温まで放冷した後、メタノール5部を加えた。反応混合物をソックスレー抽出機に移し、メタノール150部とヘキサン150部で順に洗浄した。最後に残留物をクロロホルム150部で抽出し、溶剤を留去して、立体規則性が94.6%であるポリ{3−(2,5−ジオキサヘプチル)チオフェン}(P−4)2.85部を得た。
(4) Synthesis of poly {3- (2,5-dioxaheptyl) thiophene}:
After dissolving 8.11 parts (23.6 mmol) of the above 2,5-dibromo-3- (2,5-dioxaheptyl) thiophene in 30 parts of THF, 25 parts of methylmagnesium bromide THF solution was added, and the mixture was heated at 75 ° C. The reaction was performed for 30 minutes. To the reaction solution, 0.127 part of [1,3-bis (diphenylphosphino) propane] -dichloronickel (II) was added, and the reaction was further continued for 2 hours at 75 ° C. The reaction solution was allowed to cool to room temperature, and 5 parts of methanol was added. The reaction mixture was transferred to a Soxhlet extractor and washed sequentially with 150 parts of methanol and 150 parts of hexane. Finally, the residue was extracted with 150 parts of chloroform, the solvent was distilled off, and poly {3- (2,5-dioxaheptyl) thiophene} (P-4) 2 having a stereoregularity of 94.6% .85 parts were obtained.

<製造例5>:ポリ(3−ドデシルチオフェン)(P−5)の合成
製造例1の(3)において、2,5−ジブロモ−3−(1,4,7,10−テトラオキサウンデシル)チオフェンを2,5−ジブロモ−3−ドデシルチオフェン(アルドリッチ社製)としたこと以外は製造例1と同様の実験操作を行い、立体規則性が96.4%であるポリ(3−ドデシルチオフェン)(P−5)3.5部を得た。
<Production Example 5>: Synthesis of poly (3-dodecylthiophene) (P-5) In Production Example 1, (3), 2,5-dibromo-3- (1,4,7,10-tetraoxaundecyl) ) Poly (3-dodecylthiophene) having the same stereoregularity as 96.4% except that thiophene was changed to 2,5-dibromo-3-dodecylthiophene (manufactured by Aldrich). ) (P-5) 3.5 parts were obtained.

<実施例1〜16>
表1に記載の配合部数の製造例1〜5で得られた置換ポリチオフェン(P−1)〜(P−5)、表1に示した三酸化硫黄錯体及び有機溶剤を配合することにより、本発明導電性組成物(A−1)〜(A−16)を得た。
<Examples 1 to 16>
By blending the substituted polythiophenes (P-1) to (P-5) obtained in Production Examples 1 to 5 with the number of blended parts shown in Table 1 and the sulfur trioxide complex and organic solvent shown in Table 1, Invention conductive compositions (A-1) to (A-16) were obtained.

Figure 0005841061
Figure 0005841061

<比較例1>
置換ポリチオフェン(P−1)1.0部、クロラニル酸0.3部及び有機溶剤として1,3−ジオキソラン30.0部を配合することにより、比較用の導電性組成物(A’−1)を得た。
<Comparative Example 1>
By adding 1.0 part of substituted polythiophene (P-1), 0.3 part of chloranilic acid and 30.0 parts of 1,3-dioxolane as an organic solvent, a conductive composition for comparison (A′-1) Got.

<比較例2>
ポリチオフェンの水分散体として知られている、「PEDOT/PSS」(H.C.スタルク社製のBaytron−P;3,4―エチレンジオキシチオフェンを高分子量ポリスチレンスルホン酸水溶液中で重合してなる導電性ポリマー)をそのまま比較用の導電性組成物(A’−2)とした。
<Comparative Example 2>
Known as an aqueous dispersion of polythiophene, “PEDOT / PSS” (Baytron-P; manufactured by HC Starck Co .; 3,4-ethylenedioxythiophene is polymerized in a high molecular weight polystyrenesulfonic acid aqueous solution. The conductive polymer) was used as it was as a comparative conductive composition (A′-2).

<比較例3>
置換ポリチオフェン(P−1)1.0部、p−トルエンスルホン酸鉄2.7部並びに有機溶剤として1,3−ジオキソラン32.3部及びメタノール8.4部を配合することにより、比較用の導電性組成物(A’−3)を得た。
<Comparative Example 3>
By blending 1.0 part of substituted polythiophene (P-1), 2.7 parts of iron p-toluenesulfonate and 32.3 parts of 1,3-dioxolane as an organic solvent and 8.4 parts of methanol, A conductive composition (A′-3) was obtained.

実施例1〜16の導電性組成物(A−1)〜(A−16)及び比較用の導電性組成物(A’−1)〜(A’−3)を用いて、導電被膜を作製し導電性の評価を以下の方法で行った。結果を表1に示す。   Using the conductive compositions (A-1) to (A-16) of Examples 1 to 16 and the comparative conductive compositions (A′-1) to (A′-3), conductive films were produced. The conductivity was evaluated by the following method. The results are shown in Table 1.

[導電被膜の作製方法]
実施例1〜16の導電性組成物(A−1)〜(A−16)及び比較用の導電性組成物(A’−1)〜(A’−3)をガラス基板上にドクターブレードを用いて3cm×7cmの長方形パターンに塗布して、室温で30分減圧乾燥した後、170℃で60分間ホットプレートで加熱して導電被膜を得た。
[Method for producing conductive film]
Conductive compositions (A-1) to (A-16) of Examples 1 to 16 and comparative conductive compositions (A'-1) to (A'-3) were placed on a glass substrate with a doctor blade. It was applied to a 3 cm × 7 cm rectangular pattern, dried under reduced pressure at room temperature for 30 minutes, and then heated on a hot plate at 170 ° C. for 60 minutes to obtain a conductive film.

[導電性評価方法]
得られた導電被膜の表面抵抗をJIS K 7194「導電性プラスチックの4探針法による抵抗率試験方法」に準拠して測定した。
次に、導電被膜の膜厚をレーザー顕微鏡(キーエンス社製VK−8700)を用いて測定し、表面抵抗と膜厚から導電被膜の導電率を算出した。
[Conductivity evaluation method]
The surface resistance of the obtained conductive film was measured in accordance with JIS K 7194 “Resistivity Test Method by Conductive Plastic 4-Probe Method”.
Next, the film thickness of the conductive film was measured using a laser microscope (VK-8700 manufactured by Keyence Corporation), and the conductivity of the conductive film was calculated from the surface resistance and the film thickness.

実施例1〜16の導電性組成物(A−1)〜(A−16)及び比較用の導電性組成物(A’−1)〜(A’−3)10mLをガラス製の容器に入れ、その溶液中にITO付ガラス基板(1cm×1cm×0.1mm)を浸漬させガラス容器を密閉した。保管温度25℃、保管時間:150時間 の条件で保管した後に、ITO付ガラス基板を取り出し、THFで洗浄した。洗浄後のITO付ガラス基板のITO表面の腐食状態を顕微鏡(株式会社キーエンス製デジタルマイクロスコープVHX)で観察し、以下の基準で評価した。その結果を表1に示す。
<腐食性評価基準>
○(腐食がみられない)
×(腐食がみられる)
表1に示す通り、本発明の導電性組成物は腐食性がないことを示された。
10 mL of the conductive compositions (A-1) to (A-16) of Examples 1 to 16 and the conductive compositions (A′-1) to (A′-3) for comparison are placed in a glass container. The glass substrate with ITO (1 cm × 1 cm × 0.1 mm) was immersed in the solution to seal the glass container. After storing under conditions of storage temperature 25 ° C. and storage time: 150 hours, the glass substrate with ITO was taken out and washed with THF. The corrosion state of the ITO surface of the glass substrate with ITO after washing was observed with a microscope (Digital Microscope VHX manufactured by Keyence Corporation) and evaluated according to the following criteria. The results are shown in Table 1.
<Corrosion evaluation criteria>
○ (No corrosion)
× (corrosion is seen)
As shown in Table 1, the conductive composition of the present invention was shown not to be corrosive.

[コンデンサ特性の評価方法]
(1)陽極上の誘電体膜の作製
陽極金属としてのアルミニウムエッチド箔(サイズ:4×3.3mm)を、3重量%アジピン酸アンモニウム水溶液に浸漬し、定電流定電圧電源装置を用いて0.53mA/secの条件で、0Vから40Vまで上げた後、40Vの定電圧を40分間印加して化成処理し、該アルミニウムエッチド箔の表面に酸化皮膜からなる誘電体膜を形成した。これを脱イオン水の流水により10分洗浄してから105℃で5分乾燥を行ない、陽極金属と誘電体膜とからなる陽極を作製した。得られた陽極を前記アジピン酸アンモニウム水溶液中に浸漬し、120Hzで静電容量測定し、その値である4.2μFを理論静電容量とした。
[Evaluation method of capacitor characteristics]
(1) Production of dielectric film on anode An aluminum etched foil (size: 4 × 3.3 mm) as an anode metal is immersed in a 3 wt% ammonium adipate aqueous solution, and a constant current constant voltage power supply device is used. After raising from 0 V to 40 V under the condition of 0.53 mA / sec, a constant voltage of 40 V was applied for 40 minutes for chemical conversion treatment to form a dielectric film made of an oxide film on the surface of the aluminum etched foil. This was washed with running deionized water for 10 minutes and then dried at 105 ° C. for 5 minutes to produce an anode composed of an anode metal and a dielectric film. The obtained anode was immersed in the aqueous ammonium adipate solution, and the capacitance was measured at 120 Hz. The value of 4.2 μF was taken as the theoretical capacitance.

(2)固体電解コンデンサ用電極の作製
導電性組成物(A−1)〜(A−16)及び(A’−1)〜(A’−3)を陽極を浸漬し、引き上げた後、室温で30分減圧乾燥を行うことにより、電解質層を形成し固体電解コンデンサ用電極を作製した。
(3)電解コンデンサの作製
上記で得られた電解質層の上に、カーボンペースト[日本黒鉛(株)製の「バニーハイトFU」]を塗布、乾燥後、更に、銀ペースト[日本黒鉛(株)製の「エブリオームME」]を塗布乾燥し、陰極を形成した。銀ペーストからリード線を引き出し、端子を接続した。
(2) Production of Electrode for Solid Electrolytic Capacitor Conductive Compositions (A-1) to (A-16) and (A′-1) to (A′-3) were immersed in an anode, pulled up, and then room temperature. And 30 minutes under reduced pressure, an electrolyte layer was formed and a solid electrolytic capacitor electrode was produced.
(3) Production of Electrolytic Capacitor A carbon paste [“Bunny Height FU” manufactured by Nippon Graphite Co., Ltd.] is applied on the electrolyte layer obtained above, dried, and further silver paste [manufactured by Nippon Graphite Co., Ltd.]. “Everyome ME”] was applied and dried to form a cathode. Lead wires were pulled out from the silver paste, and terminals were connected.

(4)測定及び評価
得られた電解コンデンサの120Hzでの静電容量及び100kHzでの内部抵抗をLCRメーターで測定し、リークの有無及び耐電圧を以下の基準で評価した。
<リークの評価基準>
LCRメーターで測定時に、リーク電流が低下せずに静電容量、内部抵抗が測定できなかったものを×とし、リーク電流が低下して静電容量、内部抵抗が測定できたものを○とした。
<耐電圧の評価基準>
直流電源装置[高砂製作所製GP0650−05R]で0.2mAの低電流モードで電圧を印加、自動昇圧し、放電により電圧が急落する直前の電圧を耐電圧とした。
(4) Measurement and evaluation The capacitance at 120 Hz and the internal resistance at 100 kHz of the obtained electrolytic capacitor were measured with an LCR meter, and the presence or absence of leakage and withstand voltage were evaluated according to the following criteria.
<Evaluation criteria for leaks>
When measuring with an LCR meter, the capacitance and internal resistance could not be measured because the leakage current did not decrease. .
<Evaluation criteria for withstand voltage>
A direct current power supply [GP0650-05R manufactured by Takasago Seisakusho] applied a voltage in a low current mode of 0.2 mA, automatically boosted, and the voltage immediately before the voltage suddenly dropped due to discharge was regarded as a withstand voltage.

本発明の導電性組成物を使用した固体電解コンデンサは、コンデンサとして必要な低い内部抵抗を維持したまま、理論静電容量(4.2μF)近くの値が得られている。これに対して比較例1の導電性組成物を使用したコンデンサでは、ドーパントが酸であるため、電極内部で腐食が発生し、リークが大きく、測定不能であった。また比較例2の固体電解コンデンサ用導電性組成物を使用したコンデンサでは、導電性高分子が分散体として溶液内に存在しているため、細孔内部で目詰まりが起こり、導電性高分子が十分に含浸できていない。そのため内部抵抗が高く、かつ、理論静電容量の1/10程度しか得られなかった。比較例3では、容量は不足し、内部抵抗も大きい。また耐電圧も実施例1〜16に比べて低かった。
表1に示す通り、本発明の導電性組成物は導電性が高いことが示された。
The solid electrolytic capacitor using the conductive composition of the present invention has a value close to the theoretical capacitance (4.2 μF) while maintaining the low internal resistance necessary for the capacitor. On the other hand, in the capacitor using the conductive composition of Comparative Example 1, since the dopant was an acid, corrosion occurred inside the electrode, leakage was large, and measurement was impossible. In the capacitor using the conductive composition for a solid electrolytic capacitor of Comparative Example 2, since the conductive polymer is present in the solution as a dispersion, clogging occurs in the pores, and the conductive polymer is Not fully impregnated. Therefore, the internal resistance was high and only about 1/10 of the theoretical capacitance was obtained. In Comparative Example 3, the capacity is insufficient and the internal resistance is large. Moreover, the withstand voltage was also low compared with Examples 1-16.
As shown in Table 1, it was shown that the conductive composition of the present invention has high conductivity.

本発明の導電性組成物(A)は、腐食性が小さいことから腐食が起こりやすい金属等へのコーティングができるとともに、その導電被膜が高導電性であるため、各種導電機能材料への応用が期待できる。特に、固体電解コンデンサ用電極として有用である。   The conductive composition (A) of the present invention can be applied to metals and the like that are susceptible to corrosion because of its low corrosivity, and its conductive film is highly conductive, so it can be applied to various conductive functional materials. I can expect. In particular, it is useful as an electrode for a solid electrolytic capacitor.

Claims (10)

チオフェン繰り返し単位のうちの少なくとも一部が、
下記一般式(1)で示されるポリエーテル基(a)、
炭素数1〜15であるアルコキシ基(b)、
炭素数2〜19であるアルコキシアルキル基(c)並びに
炭素数1〜15であるアルキル基、又は該アルキル基の水素原子が前記ポリエーテル基(a)で置換されたアルキル基(d)
からなる群から選ばれる少なくとも1つの基でチオフェン環の3位及び/又は4位が置換されたチオフェン繰り返し単位(α)である置換ポリチオフェン(P)並びに三酸化硫黄錯体を含有することを特徴とする導電性組成物(A)。
Figure 0005841061
[式中、ORは炭素数2〜4のオキシアルキレン基を表し、Rは炭素数1〜15のアルキル基を表し、kは1〜9の整数である。]
At least some of the thiophene repeat units are
A polyether group (a) represented by the following general formula (1),
An alkoxy group (b) having 1 to 15 carbon atoms,
An alkoxyalkyl group (c) having 2 to 19 carbon atoms and an alkyl group having 1 to 15 carbon atoms, or an alkyl group (d) in which a hydrogen atom of the alkyl group is substituted with the polyether group (a)
It contains a substituted polythiophene (P) which is a thiophene repeating unit (α) substituted at the 3-position and / or 4-position of the thiophene ring with at least one group selected from the group consisting of: and a sulfur trioxide complex. Conductive composition (A).
Figure 0005841061
Wherein, OR 1 represents an oxyalkylene group having 2 to 4 carbon atoms, R 2 represents an alkyl group having 1 to 15 carbon atoms, k is an integer of 1 to 9. ]
前記チオフェン繰り返し単位(α)が、一般式(2)で表される繰り返し単位(α1)、一般式(3)で表される繰り返し単位(α2)又は一般式(4)で表される繰り返し単位(α3)である請求項1記載の導電性組成物。
Figure 0005841061
[式中、OR及びORはそれぞれ独立にオキシエチレン基又はオキシプロピレン基を表し、R、R及びRはそれぞれ独立に炭素数1〜12の直鎖又は分岐のアルキル基を表し、Rは炭素数1〜4の直鎖又は分岐のアルキレン基を表し、n及びmはそれぞれ独立に0〜5の整数である。]
The thiophene repeating unit (α) is a repeating unit (α1) represented by the general formula (2), a repeating unit (α2) represented by the general formula (3) or a repeating unit represented by the general formula (4). The conductive composition according to claim 1, which is (α3).
Figure 0005841061
[Wherein, OR 3 and OR 6 each independently represent an oxyethylene group or an oxypropylene group, and R 4 , R 7 and R 8 each independently represent a linear or branched alkyl group having 1 to 12 carbon atoms. , R 5 represents a linear or branched alkylene group having 1 to 4 carbon atoms, and n and m are each independently an integer of 0 to 5. ]
前記繰り返し単位(α1)が、一般式(2)におけるORがオキシエチレン基であり、nが0の場合にはRが炭素数3〜12の直鎖又は分岐のアルキル基であり、nが1以上の場合にはRが炭素数1〜6の直鎖又は分岐のアルキル基であるものであり、前記繰り返し単位(α2)が、一般式(3)におけるRが炭素数1〜3の直鎖又は分岐のアルキレン基であって、ORがオキシエチレン基であり、mが0の場合にはRが炭素数3〜12の直鎖又は分岐のアルキル基であり、mが1以上の場合にはRが炭素数1〜6の直鎖又は分岐のアルキル基であるものであり、前記繰り返し単位(α3)が、一般式(4)におけるRが炭素数3〜12の直鎖又は分岐のアルキル基であるものである請求項2記載の導電性組成物。In the repeating unit (α1), OR 3 in the general formula (2) is an oxyethylene group, and when n is 0, R 4 is a linear or branched alkyl group having 3 to 12 carbon atoms, n Is 1 or more, R 4 is a linear or branched alkyl group having 1 to 6 carbon atoms, and the repeating unit (α2) is represented by R 5 in the general formula (3) having 1 to 1 carbon atoms. 3 is a linear or branched alkylene group, wherein OR 6 is an oxyethylene group, and when m is 0, R 7 is a linear or branched alkyl group having 3 to 12 carbon atoms, and m is In the case of 1 or more, R 7 is a linear or branched alkyl group having 1 to 6 carbon atoms, and the repeating unit (α3) is represented by R 8 in the general formula (4) having 3 to 12 carbon atoms. The conductive composition according to claim 2, which is a linear or branched alkyl group. 前記置換ポリチオフェン(P)における前記チオフェン繰り返し単位(α)の含有量が、置換ポリチオフェン(P)中、50〜100重量%である請求項1〜3のいずれか1項に記載の導電性組成物。   Content of the said thiophene repeating unit ((alpha)) in the said substituted polythiophene (P) is 50-100 weight% in substituted polythiophene (P), The electrically conductive composition of any one of Claims 1-3. . 前記置換ポリチオフェン(P)中のヘッドtoテール−ヘッドtoテール結合の百分率で定義される立体規則性が、90%以上である請求項1〜4のいずれか1項に記載の導電性組成物。   The electrically conductive composition according to any one of claims 1 to 4, wherein the stereoregularity defined by a percentage of head-to-tail-head-to-tail bonds in the substituted polythiophene (P) is 90% or more. 三酸化硫黄錯体が、三酸化硫黄N,N−ジメチルホルムアミド錯体、三酸化硫黄ピリジン錯体及び三酸化硫黄トリエチルアミン錯体からなる群から選択される少なくとも1種の三酸化硫黄錯体である請求項1〜5のいずれか1項に記載の導電性組成物。   The sulfur trioxide complex is at least one sulfur trioxide complex selected from the group consisting of sulfur trioxide N, N-dimethylformamide complex, sulfur trioxide pyridine complex and sulfur trioxide triethylamine complex. The conductive composition according to any one of the above. 前記置換ポリチオフェン(P)の重量に基づく三酸化硫黄錯体の含有量が、5〜300重量%である請求項1〜6のいずれか1項に記載の導電性組成物。   Content of the sulfur trioxide complex based on the weight of the said substituted polythiophene (P) is 5-300 weight%, The electrically conductive composition of any one of Claims 1-6. 請求項1〜7のいずれか1項に記載の導電性組成物を用いてなる固体電解コンデンサ用電極。   The electrode for solid electrolytic capacitors which uses the electroconductive composition of any one of Claims 1-7. 請求項1〜7のいずれか1項に記載の導電性組成物を用いてなる固体電解コンデンサ。   The solid electrolytic capacitor which uses the electroconductive composition of any one of Claims 1-7. 請求項1〜7のいずれか1項に記載の導電性組成物を基質に塗布後、加熱処理する工程を含む導電性被膜の製造方法。   The manufacturing method of an electroconductive film including the process of heat-processing after apply | coating the electrically conductive composition of any one of Claims 1-7 to a substrate.
JP2012539715A 2010-10-20 2011-10-17 Conductive composition and method for producing conductive film Expired - Fee Related JP5841061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012539715A JP5841061B2 (en) 2010-10-20 2011-10-17 Conductive composition and method for producing conductive film

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010235421 2010-10-20
JP2010235421 2010-10-20
JP2011134412 2011-06-16
JP2011134412 2011-06-16
JP2011161206 2011-07-22
JP2011161206 2011-07-22
PCT/JP2011/073812 WO2012053474A1 (en) 2010-10-20 2011-10-17 Conductive composition and method for producing conductive coating film
JP2012539715A JP5841061B2 (en) 2010-10-20 2011-10-17 Conductive composition and method for producing conductive film

Publications (2)

Publication Number Publication Date
JPWO2012053474A1 JPWO2012053474A1 (en) 2014-02-24
JP5841061B2 true JP5841061B2 (en) 2016-01-06

Family

ID=45975185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012539715A Expired - Fee Related JP5841061B2 (en) 2010-10-20 2011-10-17 Conductive composition and method for producing conductive film

Country Status (5)

Country Link
JP (1) JP5841061B2 (en)
CN (1) CN103154077B (en)
SG (1) SG189334A1 (en)
TW (1) TWI470002B (en)
WO (1) WO2012053474A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104637687B (en) * 2015-02-06 2017-07-14 肇庆绿宝石电子科技股份有限公司 A kind of manufacture method of high pressure solid electrolyte aluminium electrolutic capacitor
CN107337782B (en) * 2016-12-29 2021-04-20 江苏苏博特新材料股份有限公司 Cement-based material dispersant suitable for low-temperature construction and preparation method thereof
JP6991471B2 (en) 2017-01-03 2022-02-03 ビーエーエスエフ ソシエタス・ヨーロピア Pyridine sulfur trioxide complex as an electrolyte component for high voltage batteries
CN109651600A (en) * 2018-11-12 2019-04-19 深圳烯湾科技有限公司 A kind of preparation method of poly- 3- hexyl thiophene
CN110079057B (en) * 2019-04-30 2020-01-21 深圳市华星光电技术有限公司 Transparent conductive material, manufacturing method thereof and manufacturing method of transparent conductive film
CN110218298B (en) * 2019-06-10 2021-12-24 华东师范大学 Soluble thiophene copolymer and preparation method and application thereof
CN115594618B (en) * 2022-09-27 2024-04-02 山东农业大学 High-conductivity anion-doped plastic crystal solid electrolyte material and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3880120T2 (en) * 1987-12-07 1993-10-14 Solvay Conductive polymers of aromatic heterocyclic compounds substituted with ether groups, processes for their preparation, apparatus comprising these polymers, and monomers which enable such polymers to be obtained.
CN1252138C (en) * 1997-11-28 2006-04-19 昭和电工株式会社 Solid electrolytic capacitor and process for production thereof
CN100469775C (en) * 2003-12-10 2009-03-18 日产化学工业株式会社 Sulfoxyalkylthiophene compound and process for producing the same
JP2006310159A (en) * 2005-04-28 2006-11-09 Fuji Photo Film Co Ltd Solid electrolyte, electrode membrane assembly, fuel cell, and manufacturing method of solid electrolyte
TWI313690B (en) * 2005-11-30 2009-08-21 Univ Nat Taiwan Conductive starburst polymer, conductive starburst block copolymer, and method for forming the same
JP2009209259A (en) * 2008-03-04 2009-09-17 Nec Tokin Corp Electroconductive polymer and solid electrolytic capacitor using it
JP5113663B2 (en) * 2008-07-31 2013-01-09 三井化学株式会社 Organic acid-containing composition and organic electroluminescence device using the same
JP5422936B2 (en) * 2008-07-31 2014-02-19 日本ゼオン株式会社 Cyclopentene ring-opening polymer rubber and process for producing the same
JP2010248487A (en) * 2009-03-24 2010-11-04 Sanyo Chem Ind Ltd Electroconductive coating composition, and method for producing electroconductive coating film

Also Published As

Publication number Publication date
TW201229086A (en) 2012-07-16
CN103154077A (en) 2013-06-12
TWI470002B (en) 2015-01-21
WO2012053474A1 (en) 2012-04-26
SG189334A1 (en) 2013-05-31
JPWO2012053474A1 (en) 2014-02-24
CN103154077B (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP5841061B2 (en) Conductive composition and method for producing conductive film
JP2010161228A (en) Solid-state electrolytic capacitor and manufacturing method thereof
JP2011086393A (en) Conductive polymer suspension aqueous solution and its manufacturing method, conductive polymer material, electrolytic capacitor, and its manufacturing method
JP5745881B2 (en) Solid electrolytic capacitor
JP2013247312A (en) Conductive polymer for solid electrolytic capacitor
JP2010248487A (en) Electroconductive coating composition, and method for producing electroconductive coating film
JP5872451B2 (en) Electrolyte material composition, electrolyte material composition formed from the electrolyte material composition and use thereof
US11183340B2 (en) Method for manufacturing solid electrolytic capacitor
JP2011138814A (en) Electrolytic capacitor and method of manufacturing the same
JP5575041B2 (en) Conductive polymer suspension and method for producing the same, conductive organic material, and electrolytic capacitor and method for producing the same
TWI520997B (en) The solid electrolytic capacitor with a solid electrolyte with an additive composition, a solid electrolytic capacitor using a solid electrolyte composition, a solid electrolytic capacitor with a conductive electrolyte precursor composition, a solid electrolytic capacitor with a conductive coating, and a method for producing a solid Electrolytic capacitor of a solid electrolytic capacitor
JP6223703B2 (en) Conductive polymer solution and method for producing the same, conductive polymer material, and solid electrolytic capacitor
JP2014037508A (en) Conductive composition and conductive film
JP6266236B2 (en) Conductive polymer solution and manufacturing method thereof, conductive polymer material, solid electrolytic capacitor and manufacturing method thereof
JP2014037504A (en) Conductive composition and conductive film
JP5327844B2 (en) Electrolytic polymerization liquid for forming conductive polymer, conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JP6324031B2 (en) Conductive polymer solution, conductive polymer composition, and solid electrolytic capacitor
JP2017004986A (en) Solid electrolyte additive for solid electrolytic capacitor
JP2015199787A (en) Conductive polymer solution, method for producing the same, conductive polymer material and solid electrolytic capacitor
JP2005154481A (en) Conductive polymer and its use
JP2023056135A (en) Method for manufacturing conductive polymer dispersion and method for manufacturing solid electrolytic capacitor
JP2011108835A (en) Solid electrolytic capacitor, and method of manufacturing the same
JP2017004984A (en) Solid electrolyte additive for solid electrolytic capacitor
JP2012012426A (en) Oxidant for producing electroconductive polymer, solid electrolytic capacitor using the same, and method for manufacturing the solid electrolytic capacitor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140917

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150914

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151112

R150 Certificate of patent or registration of utility model

Ref document number: 5841061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees