JP5818509B2 - Valve device - Google Patents

Valve device Download PDF

Info

Publication number
JP5818509B2
JP5818509B2 JP2011115751A JP2011115751A JP5818509B2 JP 5818509 B2 JP5818509 B2 JP 5818509B2 JP 2011115751 A JP2011115751 A JP 2011115751A JP 2011115751 A JP2011115751 A JP 2011115751A JP 5818509 B2 JP5818509 B2 JP 5818509B2
Authority
JP
Japan
Prior art keywords
valve
outlet
inlet
valve body
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011115751A
Other languages
Japanese (ja)
Other versions
JP2012241877A (en
Inventor
友也 東家
友也 東家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2011115751A priority Critical patent/JP5818509B2/en
Publication of JP2012241877A publication Critical patent/JP2012241877A/en
Application granted granted Critical
Publication of JP5818509B2 publication Critical patent/JP5818509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lift Valve (AREA)
  • Check Valves (AREA)
  • Safety Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Description

本発明は、ヒートポンプ式冷暖房システム等に組み込まれて使用されるバルブ装置に係り、特に、閉弁状態において弁室内の流体が高圧となった場合に、該流体を逃がすことのできる逃がし弁の機能を備えた電動弁や電磁弁等のバルブ装置に関する。   The present invention relates to a valve device used by being incorporated in a heat pump type air conditioning system or the like, and in particular, a function of a relief valve that can release the fluid when the fluid in the valve chamber becomes high pressure in the closed state. The present invention relates to a valve device such as an electric valve or a solenoid valve provided with the

従来より、ヒートポンプ式冷暖房システムとして、圧縮機、室外熱交換器、室内熱交換器、四方切換弁等の他、省エネ効率等を向上させるため、通常は一つでよい膨張弁を二つ備え、さらに、圧力損失を可及的に低減するため、それら二つの膨張弁にそれぞれ並列に逆止弁を組み込んだもの(逆止弁付き膨張弁としたもの)が知られている(例えば、下記特許文献1の図6を参照)。   Conventionally, as a heat pump type air conditioning system, in addition to a compressor, an outdoor heat exchanger, an indoor heat exchanger, a four-way switching valve, etc., in order to improve energy saving efficiency, etc. Furthermore, in order to reduce pressure loss as much as possible, a valve in which a check valve is incorporated in parallel with each of these two expansion valves (an expansion valve with a check valve) is known (for example, the following patent) (See FIG. 6 of Document 1).

また、最近では、その二つの逆止弁付き膨張弁のうちの少なくとも一方を電子制御式電動弁に置き換えることが考えられている(下記特許文献2を参照)。   Recently, it has been considered to replace at least one of the two expansion valves with a check valve with an electronically controlled motor-operated valve (see Patent Document 2 below).

かかる逆止弁付き膨張弁として働く電子制御式電動弁を備えたヒートポンプ式冷暖房システムの一例を図11に示す。図示例のヒートポンプ式冷暖房システム100は、圧縮機101、四方切換弁102、室外熱交換器103、室内熱交換器104の他、上記二つの逆止弁付き膨張弁の一方である逆止弁106B付き膨張弁106、上記二つの逆止弁付き膨張弁の他方として働く電子制御式電動弁10’、ディストリビュータ108、冷媒回収用タンク120、メンテナンス用のサービスバルブ(手動操作)121、122を備えている。   FIG. 11 shows an example of a heat pump type air conditioning system equipped with such an electronically controlled electric valve that functions as an expansion valve with a check valve. The illustrated heat pump air conditioning system 100 includes a compressor 101, a four-way switching valve 102, an outdoor heat exchanger 103, an indoor heat exchanger 104, and a check valve 106B that is one of the two expansion valves with check valves. Equipped with an expansion valve 106, an electronically controlled electric valve 10 'acting as the other of the two expansion valves with check valve, a distributor 108, a refrigerant recovery tank 120, and maintenance service valves (manual operation) 121 and 122. Yes.

詳細には、二つのサービスバルブ121、122(通常は全開状態)より右側の室外側(室外熱交換器103側)に電動弁10’及び冷媒回収用タンク120が配置され、二つのサービスバルブ121、122より左側の室内側(室内熱交換器104側)に逆止弁106B付き膨張弁106配置されている。逆止弁付き膨張弁106の膨張弁106Aとしては感温式(機械式)のものが用いられており、この膨張弁106Aに並列に逆止弁106Bが配置されている。   Specifically, the motor-operated valve 10 ′ and the refrigerant recovery tank 120 are arranged outside the two service valves 121 and 122 (normally in a fully open state) on the right side of the outdoor side (outdoor heat exchanger 103 side). The expansion valve 106 with the check valve 106B is disposed on the indoor side (the indoor heat exchanger 104 side) on the left side of the first and second 122. As the expansion valve 106A of the expansion valve 106 with a check valve, a temperature-sensitive (mechanical) type is used, and a check valve 106B is arranged in parallel with the expansion valve 106A.

この冷暖房システム100においては、冷房運転時には、圧縮機101で圧縮された冷媒は、図の実線矢印で示される如くに、四方切換弁102(のポートa→d)を介して室外熱交換器103に導入され、ここで外気と熱交換して凝縮し、この凝縮した冷媒がディストリビュータ108、電動弁10’(このときは最大開度)、及びサービスバルブ121を介して膨張弁106に流入し、ここで断熱膨張した後、室内熱交換機104に流入し、室内熱交換機104にて室内空気と熱交換して蒸発し、室内を冷房する。室内熱交換機104を出た冷媒は、サービスバルブ122及び四方切換弁102(のポートb→c)を介して圧縮機101に吸入される。   In the cooling / heating system 100, during the cooling operation, the refrigerant compressed by the compressor 101 passes through the four-way switching valve 102 (port a → d) of the outdoor heat exchanger 103 as indicated by the solid line arrow in the figure. Here, heat is exchanged with the outside air to condense, and the condensed refrigerant flows into the expansion valve 106 via the distributor 108, the electric valve 10 ′ (in this case, the maximum opening), and the service valve 121, Here, after adiabatic expansion, the air flows into the indoor heat exchanger 104, heat is exchanged with the indoor air in the indoor heat exchanger 104, evaporates, and the room is cooled. The refrigerant leaving the indoor heat exchanger 104 is sucked into the compressor 101 via the service valve 122 and the four-way switching valve 102 (port b → c thereof).

それに対し、暖房運転時には、圧縮機101で圧縮された冷媒は、図の破線矢印で示される如くに、四方切換弁102(のポートa→b)、サービスバルブ122を介して室内熱交換器104に導入され、ここで室内空気と熱交換して凝縮し、室内を暖房した後、逆止弁106Bを通って(膨張弁106Aをバイパスして)、電動弁10(このときは冷媒温度に応じて開度調整)に流入し、ここで減圧された後、ディストリビュータ108を介して室外熱交換器103に導入され、ここで蒸発した後、四方切換弁102(のポートd→c)を介して圧縮機101に吸入される。   On the other hand, during the heating operation, the refrigerant compressed by the compressor 101 passes through the four-way switching valve 102 (port a → b) and the service valve 122, as indicated by the broken line arrow in the figure, and the indoor heat exchanger 104. In this case, the heat is exchanged with room air to condense, heat the room, and then pass through the check valve 106B (bypassing the expansion valve 106A). The pressure is reduced here, and then introduced into the outdoor heat exchanger 103 via the distributor 108 and evaporates, and then passes through the four-way switching valve 102 (port d → c). It is sucked into the compressor 101.

次に、上記した如くの冷暖房システム100に用いられる電子制御式電動弁10’の一例を図10を参照しながら説明する。図示例の電動弁10’は、下部大径部25aと上部小径部25bを有し、前記下部大径部25aの下端部に特定形状(それぞれ所定の中心角を持つ二段の逆円錐台状)の弁体部24が一体に設けられた弁軸25と、弁室21を有する弁本体20と、この弁本体20にその下端部が密封接合されたキャン40と、このキャン40の内周に所定の間隙αをあけて配在されたロータ30と、このロータ30を回転駆動すべく前記キャン40に外嵌されたステータ50と、前記ロータ30と前記弁体部24との間に配在され、前記ロータ30の回転を利用して前記弁体部24を前記弁口22aに接離させるねじ送り機構とを備え、弁体部24のリフト量を変化させることにより冷媒の通過流量を調整するようになっている。   Next, an example of the electronically controlled motor-operated valve 10 'used in the air conditioning system 100 as described above will be described with reference to FIG. The motor-operated valve 10 'in the illustrated example has a lower large-diameter portion 25a and an upper small-diameter portion 25b, and has a specific shape (two-stage inverted truncated cone shape each having a predetermined center angle) at the lower end portion of the lower large-diameter portion 25a. ), A valve body 20 having a valve chamber 21, a can 40 having a lower end sealed and joined to the valve body 20, and an inner periphery of the can 40 Between the rotor 30 and the valve body 24, and the rotor 30 that is externally fitted to the can 40 for rotationally driving the rotor 30. And a screw feed mechanism that uses the rotation of the rotor 30 to bring the valve body portion 24 into and out of contact with the valve port 22a, and by changing the lift amount of the valve body portion 24, the flow rate of the refrigerant is changed. It comes to adjust.

前記弁本体20の弁室21には、前記弁体部24が接離する弁口(オリフィス)22aが形成された弁座22が設けられ、側方に導管継手からなる第1入出口11が設けられ、また、弁本体20の下部には、前記弁口22aに連なって導管継手からなる第2入出口12が設けられている。   The valve chamber 21 of the valve body 20 is provided with a valve seat 22 in which a valve port (orifice) 22a for contacting and separating the valve body portion 24 is formed, and a first inlet / outlet 11 made of a conduit joint is formed on the side. In addition, a second inlet / outlet 12 made of a conduit joint is provided at the lower portion of the valve body 20 and is connected to the valve port 22a.

前記ステータ50は、ヨーク51、ボビン52、ステータコイル53,53、及び樹脂モールドカバー56等で構成され、前記ロータ30やステータ50等でステッピングモータが構成され、該ステッピングモータやねじ送り機構等で前記弁口22aに対する前記弁体部24のリフト量(=弁開度)を調整するための昇降駆動機構が構成される。なお、ステータ50の下端部には回り止め具46が設けられるとともに、弁本体20の側部には前記回り止め具46を係止するため管状係止具47が固着されている。   The stator 50 includes a yoke 51, a bobbin 52, stator coils 53 and 53, a resin mold cover 56, and the like. A stepping motor is configured by the rotor 30, the stator 50, and the like. An elevating drive mechanism for adjusting the lift amount (= valve opening degree) of the valve body portion 24 with respect to the valve port 22a is configured. A rotation stopper 46 is provided at the lower end of the stator 50, and a tubular locking tool 47 is secured to the side of the valve body 20 to lock the rotation stopper 46.

前記ロータ30には、支持リング36が一体的に結合されるとともに、この支持リング36に、前記弁軸25及びガイドブッシュ26の外周に配在された下方開口で筒状の弁軸ホルダ32の上部突部がかしめ固定され、これにより、ロータ30、支持リング36及び弁軸ホルダ32が一体的に連結されている。   A support ring 36 is integrally coupled to the rotor 30, and a cylindrical valve shaft holder 32 is formed on the support ring 36 at a lower opening disposed on the outer periphery of the valve shaft 25 and the guide bush 26. The upper protrusion is caulked and fixed, whereby the rotor 30, the support ring 36, and the valve shaft holder 32 are integrally connected.

前記ねじ送り機構は、弁本体20に設けられた嵌合穴42にその下端部26aが圧入固定されるとともに、弁軸25(の下部大径部25a)が摺動自在に内挿された筒状のガイドブッシュ26の外周に形成された固定ねじ部(雄ねじ部)28と、前記弁軸ホルダ32の内周に形成されて前記固定ねじ部28に螺合せしめられた移動ねじ部(雌ねじ部)38とから構成されている。   The screw feed mechanism is a cylinder in which a lower end portion 26a is press-fitted and fixed in a fitting hole 42 provided in the valve body 20, and a valve shaft 25 (a lower large diameter portion 25a thereof) is slidably inserted. A fixed screw portion (male screw portion) 28 formed on the outer periphery of the guide bush 26 and a moving screw portion (female screw portion) formed on the inner periphery of the valve shaft holder 32 and screwed into the fixed screw portion 28. 38).

また、前記ガイドブッシュ26の上部小径部26bが弁軸ホルダ32の上部に内挿されるとともに、弁軸ホルダ32の天井部中央(に形成された通し穴)に弁軸25の上部小径部25bが挿通せしめられている。弁軸25の上部小径部25bの上端部にはプッシュナット33が圧入固定されている。   The upper small diameter portion 26b of the guide bush 26 is inserted into the upper portion of the valve shaft holder 32, and the upper small diameter portion 25b of the valve shaft 25 is formed at the center of the ceiling portion of the valve shaft holder 32 (through hole formed therein). It is inserted. A push nut 33 is press-fitted and fixed to the upper end portion of the upper small diameter portion 25 b of the valve shaft 25.

また、前記弁軸25は、該弁軸25の上部小径部25bに外挿され、かつ、弁軸ホルダ32の天井部と弁軸25における下部大径部25aの上端段丘面との間に縮装された圧縮コイルばねからなる閉弁ばね34によって、常時下方(閉弁方向)に付勢されている。弁軸ホルダ32の天井部上でプッシュナット33の外周には、コイルばねからなる復帰ばね35が設けられている。   The valve shaft 25 is extrapolated to the upper small diameter portion 25b of the valve shaft 25, and is contracted between the ceiling portion of the valve shaft holder 32 and the upper terrace surface of the lower large diameter portion 25a of the valve shaft 25. The valve closing spring 34 composed of a mounted compression coil spring is always urged downward (in the valve closing direction). A return spring 35 formed of a coil spring is provided on the outer periphery of the push nut 33 on the ceiling portion of the valve shaft holder 32.

前記ガイドブッシュ26には、前記ロータ30が所定の閉弁位置まで回転下降せしめられた際、それ以上の回転下降を阻止するための回転下降ストッパ機構の一方を構成する下ストッパ体(固定ストッパ)27が固着され、弁軸ホルダ32には前記ストッパ機構の他方を構成する上ストッパ体(移動ストッパ)37が固着されている。   The guide bush 26 has a lower stopper body (fixed stopper) that constitutes one of rotation lowering stopper mechanisms for preventing further rotation lowering when the rotor 30 is rotated and lowered to a predetermined valve closing position. 27 is fixed, and an upper stopper body (moving stopper) 37 constituting the other of the stopper mechanism is fixed to the valve shaft holder 32.

なお、前記閉弁ばね34は、弁体部24が弁口22aに着座する閉弁状態において所要のシール圧を得るため(漏れ防止)、及び、弁体部24が弁口22aに衝接した際の衝撃を緩和するために配備されている。   The valve closing spring 34 obtains a required sealing pressure in a closed state where the valve body 24 is seated on the valve port 22a (leakage prevention), and the valve body 24 is in contact with the valve port 22a. Deployed to mitigate impact.

このような構成とされた電動弁10’にあっては、ステータコイル53,53に第1態様で通電励磁パルスを供給することにより、弁本体20に固定されたガイドブッシュ26に対し、ロータ30及び弁軸ホルダ32が一方向に回転せしめられ、ガイドブッシュ26の固定ねじ部28と弁軸ホルダ32の移動ねじ部38とのねじ送りにより、例えば弁軸ホルダ32が下方に移動して弁体部24が弁口22aに押し付けられて弁口22aが閉じられる(全閉状態)。   In the motor-operated valve 10 ′ configured as described above, the rotor 30 is made to the guide bush 26 fixed to the valve body 20 by supplying energization excitation pulses to the stator coils 53, 53 in the first mode. The valve shaft holder 32 is rotated in one direction, and, for example, the valve shaft holder 32 is moved downward by the screw feed between the fixing screw portion 28 of the guide bush 26 and the moving screw portion 38 of the valve shaft holder 32, so that the valve body. The portion 24 is pressed against the valve port 22a to close the valve port 22a (fully closed state).

弁口22aが閉じられた時点では、上ストッパ体37は未だ下ストッパ体27に衝接しておらず、弁体部24が弁口22aを閉じたままロータ30及び弁軸ホルダ32はさらに回転下降する。この場合、弁軸25(弁体部24)は下降しないが、弁軸ホルダ32は下降するため、閉弁ばね34が所定量圧縮せしめられ、その結果、弁体部24が弁口22aに強く押し付けられるとともに、弁軸ホルダ32の回転下降により、上ストッパ体37が下ストッパ体27に衝接し、その後ステータコイル53,53に対するパルス供給が続行されても弁軸ホルダ32の回転下降は強制的に停止される。   When the valve port 22a is closed, the upper stopper body 37 is not yet in contact with the lower stopper body 27, and the rotor 30 and the valve shaft holder 32 are further rotated and lowered while the valve body portion 24 is closed. To do. In this case, the valve shaft 25 (valve body portion 24) does not descend, but the valve shaft holder 32 descends, so that the valve closing spring 34 is compressed by a predetermined amount. As a result, the valve body portion 24 is strongly against the valve port 22a. The upper stopper body 37 comes into contact with the lower stopper body 27 by the lowering of the rotation of the valve shaft holder 32, and the lowering of the valve shaft holder 32 is forced even if the pulse supply to the stator coils 53, 53 is continued thereafter. To be stopped.

一方、ステータコイル53,53に第2態様で通電励磁パルスを供給すると、弁本体20に固定されたガイドブッシュ26に対し、ロータ30及び弁軸ホルダ32が前記と逆方向に回転せしめられ、ガイドブッシュ26の固定ねじ部28と弁軸ホルダ32の移動ねじ部38とのねじ送りにより、今度は弁軸ホルダ32が上方に移動する。この場合、弁軸ホルダ32の回転上昇開始時点(パルス供給開始時点)では、閉弁ばね34が前記のように所定量圧縮せしめられているので、閉弁ばね34が前記所定量分伸長するまでは、前記弁体部24が弁口22aからは離れず閉弁状態(リフト量=0)のままである。そして、閉弁ばね34が前記所定量分伸長した後、弁軸ホルダ32がさらに回転上昇せしめられると、前記弁体部24が弁口22aから離れて弁口22aが開かれ、冷媒が弁口22aを通過する。この場合、ロータ30の回転量により弁体部24のリフト量、言い換えれば、弁口22aの実効開口面積(=弁開度)を任意に細かく調整することができ、ロータ30の回転量は供給パルス数により制御されるため、冷媒流量を高精度に制御することができる(詳細は、下記特許文献1等を参照)。   On the other hand, when the energization excitation pulse is supplied to the stator coils 53, 53 in the second mode, the rotor 30 and the valve shaft holder 32 are rotated in the opposite direction to the guide bush 26 fixed to the valve body 20, and the guides are guided. Due to the screw feed between the fixing screw portion 28 of the bush 26 and the moving screw portion 38 of the valve shaft holder 32, the valve shaft holder 32 is now moved upward. In this case, since the valve closing spring 34 is compressed by a predetermined amount as described above at the time when the rotation of the valve shaft holder 32 starts to rise (when pulse supply starts), until the valve closing spring 34 is extended by the predetermined amount. The valve body 24 does not leave the valve port 22a and remains in the closed state (lift amount = 0). Then, after the valve closing spring 34 is extended by the predetermined amount, when the valve shaft holder 32 is further rotated up, the valve body portion 24 is separated from the valve port 22a, the valve port 22a is opened, and the refrigerant is supplied to the valve port. Pass 22a. In this case, the lift amount of the valve body 24, in other words, the effective opening area (= valve opening degree) of the valve port 22a can be arbitrarily finely adjusted by the rotation amount of the rotor 30, and the rotation amount of the rotor 30 is supplied. Since it is controlled by the number of pulses, the refrigerant flow rate can be controlled with high precision (for details, refer to Patent Document 1 below).

したがって、かかる構成の電動弁10’を前記ヒートポンプ式冷暖房システム100に逆止弁付き膨張弁に代えて組み込む場合には、冷媒が一方向に流されるとき(冷房運転時)は、圧力損失を可及的に低減すべく最大開度(最大リフト量)とされ、冷媒が他方向に流されるとき(暖房運転時)は、流量制御を行なうべくその開度(リフト量)を所定値以下の特定範囲で細かく制御するようにされる(詳細は下記特許文献2を参照)。   Therefore, when the motor-operated valve 10 ′ having such a configuration is incorporated in the heat pump air conditioning system 100 in place of the expansion valve with a check valve, pressure loss is allowed when the refrigerant flows in one direction (cooling operation). The maximum opening (maximum lift amount) is set to be reduced as much as possible, and when the refrigerant is flowed in the other direction (during heating operation), the opening (lift amount) is specified to be equal to or less than a predetermined value for flow control. The range is finely controlled (refer to Patent Document 2 below for details).

ところで、上記した如くの電動弁10’を備えたヒートポンプ式冷暖房システム100では、メンテナンス時において冷媒が室内側へ漏洩すると、システム内の全冷媒が室内に洩れ、酸欠状態になるおそれがあるので、メンテナンス時には、次のような操作を行う。   By the way, in the heat pump type air conditioning system 100 provided with the electric valve 10 ′ as described above, if the refrigerant leaks into the room during maintenance, all the refrigerant in the system may leak into the room and be in an oxygen deficient state. During maintenance, the following operations are performed.

すなわち、メンテナンス時には、サービスバルブ121を閉じ、サービスバルブ122を開いたままとし、四方切換弁102を冷房運転時と同じ状態(a→d、b→c)、電動弁10’を全閉状態(非通電状態)として、圧縮機101を起動し、室内側から冷媒を吸い出して室外側へ吐出させる。これにより、室外側配管内の冷媒圧力が大きくなり、この冷媒圧力(高圧)が電動弁10’の第2入出口12から弁軸25(弁体部24)に作用し、弁軸25(弁体部24)が閉弁ばね34の付勢力に抗して押し上げられ、冷媒の一部は、電動弁10’の第2入出口12→弁口22a→弁室21→第1入出口11を通って冷媒回収用タンク120に回収される(このとき電動弁10’は逃がし弁のように働く)。略全冷媒がタンク120を含む室外側(サービスバルブ122と121との間)に集められたら、サービスバルブ122を閉じ、圧縮機101を停止し、所要のメンテナンス作業を行う。   That is, at the time of maintenance, the service valve 121 is closed, the service valve 122 is kept open, the four-way switching valve 102 is in the same state as in the cooling operation (a → d, b → c), and the electric valve 10 ′ is fully closed ( In the non-energized state), the compressor 101 is started, the refrigerant is sucked out from the indoor side and discharged to the outdoor side. As a result, the refrigerant pressure in the outdoor pipe increases, and this refrigerant pressure (high pressure) acts on the valve shaft 25 (valve body portion 24) from the second inlet / outlet 12 of the motor-operated valve 10 ′, and the valve shaft 25 (valve) The body portion 24) is pushed up against the urging force of the valve closing spring 34, and a part of the refrigerant passes through the second inlet / outlet 12 → the valve port 22a → the valve chamber 21 → the first inlet / outlet 11 of the electric valve 10 ′. Then, the refrigerant is recovered in the refrigerant recovery tank 120 (at this time, the motor-operated valve 10 'works like a relief valve). When substantially all the refrigerant is collected outside the room including the tank 120 (between the service valves 122 and 121), the service valve 122 is closed, the compressor 101 is stopped, and the necessary maintenance work is performed.

特開2010−249246号公報JP 2010-249246 A 特開2009−14056号公報JP 2009-14056 A

上記した如くにして、メンテナンス時にタンク120に冷媒を回収した後において、外気温度が上昇すると、タンク120内の冷媒圧力が増大する。この場合、タンク120の出口側は、サービスバルブ121と電動弁10’により閉塞されているため、タンク120内の冷媒圧力が増大すると、冷媒が外部に漏出する等の不具合が発生するおそれがある。これを避けるには、例えば、電動弁10’をパイパスする流路を設け、該流路に所定圧以上で開く逃がし弁(リリーフ弁)を介装する方策が考えられるが、かかる方策では、配管や継手類などの部品の点数が増大するとともに、配管接続作業にも多大な手間と時間がかかり、システムのコストアップを招くとともに、その逃がし弁を含む電動弁の占有スペースが増大し、実質的に電動弁の大型化を招くことになる。   As described above, when the outside air temperature rises after the refrigerant is collected in the tank 120 during maintenance, the refrigerant pressure in the tank 120 increases. In this case, since the outlet side of the tank 120 is closed by the service valve 121 and the motor-operated valve 10 ′, when the refrigerant pressure in the tank 120 increases, there is a possibility that problems such as leakage of the refrigerant to the outside may occur. . In order to avoid this, for example, a measure for providing a passage for bypassing the motor-operated valve 10 ′ and providing a relief valve (relief valve) that opens at a predetermined pressure or more in the passage can be considered. The number of parts such as joints and joints increases, and piping connection work takes a lot of time and effort, increasing the cost of the system and increasing the space occupied by the motorized valve including the relief valve. This leads to an increase in the size of the motor-operated valve.

また、上記図示例とは逆に電動弁10’の第2入出口12をタンク120に接続し、第1入出口11をディストリビュータ108に接続すれば、タンク120内の冷媒圧力が高くなったとき、電動弁10’を自動的に開かせてタンク120内の冷媒(圧力)を室外側に逃がすことが可能となるが、このようにすると、冷媒回収時及び冷房運転時とは逆流れの暖房運転時において細やかな流量制御を行うことが難しくなる(低圧力で開弁してしまうため)。   In contrast to the illustrated example, when the second inlet / outlet 12 of the motor-operated valve 10 ′ is connected to the tank 120 and the first inlet / outlet 11 is connected to the distributor 108, the refrigerant pressure in the tank 120 increases. It is possible to automatically open the motor-operated valve 10 'and allow the refrigerant (pressure) in the tank 120 to escape to the outside of the room. In this way, the heating is performed in the reverse direction from that during refrigerant recovery and cooling operation. It becomes difficult to perform fine flow rate control during operation (because the valve opens at low pressure).

本発明は、上記事情に鑑みてなされたもので、その目的とするところは、大きなコストアップや大型化を招くことなく、閉弁状態において弁室内の流体が所定圧以上となった場合に、当該バルブ装置を含むシステムに破損等が生じないように防護すべく、該弁室から流体を自動的に逃がすことのできる電動弁や電磁弁等のバルブ装置を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is that when the fluid in the valve chamber becomes a predetermined pressure or higher in the closed state without incurring a large cost increase or an increase in size, An object of the present invention is to provide a valve device such as a motor-operated valve or an electromagnetic valve that can automatically release fluid from the valve chamber in order to protect the system including the valve device from being damaged.

前記の目的を達成すべく、本発明に係るバルブ装置は、基本的には、第1入出口、弁室、及び第2入出口が設けられた弁本体と、該弁本体における前記弁室と第2入出口との間に配在された主弁口を有するとともに逆止弁口が形成される主弁座部材と、前記弁室から前記主弁口を介して前記第2入出口へ流れる流量を調整すべく前記弁室内に配在された弁体部を有する弁軸と、前記弁室内に前記逆止弁口を開閉可能に前記弁軸の軸方向に沿って移動可能に配在されるフロート型の逆止弁体と、前記流量調整を行うべく前記弁体部を昇降させる昇降駆動機構とを備え、前記主弁座部材は軸方向に移動可能とされるとともに、前記弁室に前記主弁座部材が接離する逃がし弁口を有する逃がし弁座が設けられ、該逃がし弁座と、前記主弁座部材と、該主弁座部材を前記逃がし弁口を閉じる方向に付勢するばね部材とで、前記主弁口が前記弁体部により閉じられている全閉状態で、前記弁室内の流体圧力が所定圧以上となった場合に、前記弁室内の圧力を前記第2入出口へ自動的に逃がす逃がし弁が構成され、前記逆止弁口と前記逆止弁体とで、前記第1入出口から第2入出口への流れは阻止するが前記第2入出口から第1入出口への流れは許容する逆止弁が構成される。 In order to achieve the above object, a valve device according to the present invention basically includes a valve body provided with a first inlet / outlet, a valve chamber, and a second inlet / outlet, and the valve chamber in the valve body. A main valve seat member having a main valve port disposed between the second inlet and the outlet and having a check valve port formed therein , and flows from the valve chamber to the second inlet / outlet through the main valve port; A valve shaft having a valve body portion arranged in the valve chamber to adjust the flow rate, and a check valve port that can be opened and closed in the valve chamber so as to be movable along the axial direction of the valve shaft. A float type check valve body and an elevating drive mechanism for elevating and lowering the valve body portion to adjust the flow rate , and the main valve seat member is movable in the axial direction, and is provided in the valve chamber. A relief valve seat having a relief valve port to which the main valve seat member contacts and separates is provided; the relief valve seat; and the main valve seat member; And a spring member that urges the main valve seat member in a direction to close the relief valve port, and the main valve port is closed by the valve body, and the fluid pressure in the valve chamber is equal to or higher than a predetermined pressure. A relief valve configured to automatically release the pressure in the valve chamber to the second inlet / outlet, and the check valve port and the check valve body form a second valve from the first inlet / outlet. flow to inlet and outlet flows from said but prevents the second inlet and outlet to the first inlet and outlet is Ru configured check valve that allows.

この場合、好ましい態様では、前記弁室に前記逆止弁体の軸方向位置を規制するストッパが設けられ、前記弁室内の流体圧力が所定圧以上となった場合に、前記主弁座部材が前記逆止弁体から離れて前記逆止弁口が開かれるようにされる。   In this case, in a preferred embodiment, the valve chamber is provided with a stopper for regulating the axial position of the check valve body, and when the fluid pressure in the valve chamber becomes a predetermined pressure or more, the main valve seat member is The check valve port is opened away from the check valve body.

他の好ましい態様では、前記主弁口が前記逆止弁体に設けられ、前記逆止弁体の動作が前記弁体部の位置に依存するようにされる。   In another preferred embodiment, the main valve port is provided in the check valve body, and the operation of the check valve body depends on the position of the valve body portion.

前記昇降駆動機構は、好ましくは、前記弁体部のリフト量を制御するためのロータ及びステータ等からなるステッピングモータと、前記ロータの回転を前記弁軸の昇降運動に変換するねじ送り機構とを備える。   The elevating drive mechanism preferably includes a stepping motor including a rotor and a stator for controlling the lift amount of the valve body, and a screw feed mechanism for converting the rotation of the rotor into the elevating motion of the valve shaft. Prepare.

本発明に係るバルブ装置では、逃がし弁座と、主弁座部材と、該主弁座部材を逃がし弁口を閉じる方向に付勢するばね部材とで逃がし弁が構成されているので、弁口が弁体部により閉じられている全閉状態で、弁室の圧力が所定圧以上となったときは、上記逃がし弁が開き、第1入出口からの流体を第2入出口へ逃がすことができ、大型化を招くことなく、逃がし弁の機能を低コストで付加することができる。   In the valve device according to the present invention, the relief valve is constituted by the relief valve seat, the main valve seat member, and the spring member that urges the main valve seat member in the direction to close the valve mouth, Is closed by the valve body, and when the pressure in the valve chamber exceeds a predetermined pressure, the relief valve opens and fluid from the first inlet / outlet can escape to the second inlet / outlet. The function of the relief valve can be added at low cost without increasing the size.

また、逃がし弁は弁本体内に設けられるので、当該バルブ装置をパイパスするように逃がし弁を設ける場合等に比して、逃がし弁を含む電動弁の大きさ(占有スペース)を小さくすることができるとともに、追加の配管部品や配管接続作業が不要となり、システムのコストを抑えることができる。   Further, since the relief valve is provided in the valve body, the size (occupied space) of the motor-operated valve including the relief valve can be reduced as compared with the case where the relief valve is provided so as to bypass the valve device. In addition, additional piping parts and piping connection work are not required, and the system cost can be reduced.

さらに、前述した図11に示されるヒートポンプ式冷暖房システムにおいて、従来の電動弁に代えて用いることにより、メンテナンス時にタンクに冷媒を回収した後において、外気温度が上昇して、タンク内の冷媒圧力が増大しても、タンク内の冷媒圧力を電動弁内の逃がし弁で自動的に逃がすことができ、冷媒が外部に漏出する等の不具合の発生を未然に防ぐことができる。   Furthermore, in the heat pump type air conditioning system shown in FIG. 11 described above, by using instead of the conventional motor-operated valve, after the refrigerant is collected in the tank at the time of maintenance, the outside air temperature rises and the refrigerant pressure in the tank is increased. Even if it increases, the refrigerant pressure in the tank can be automatically released by the relief valve in the motor-operated valve, and the occurrence of problems such as leakage of the refrigerant to the outside can be prevented.

本発明に係るバルブ装置(電動弁)の第1実施例を示す主要部断面図。BRIEF DESCRIPTION OF THE DRAWINGS The principal part sectional drawing which shows 1st Example of the valve apparatus (electric valve) which concerns on this invention. 第1実施例の電動弁において弁室の圧力が所定圧より高い状態を示す主要部断面図。The principal part sectional drawing which shows the state in which the pressure of a valve chamber is higher than predetermined pressure in the motor operated valve of 1st Example. 第2実施例の電動弁の全閉状態を示す主要部断面図。Sectional drawing of the principal part which shows the fully closed state of the motor operated valve of 2nd Example. 第2実施例の電動弁の第1流れ方向全開状態を示す主要部断面図。The principal part sectional drawing which shows the 1st flow direction full open state of the motor operated valve of 2nd Example. 第2実施例の電動弁の第2流れ方向全開状態を示す主要部断面図。The principal part sectional drawing which shows the 2nd flow direction full open state of the motor operated valve of 2nd Example. 第2実施例の電動弁において弁室の圧力が所定圧より高い状態を示す主要部断面図。The principal part sectional drawing which shows the state in which the pressure of a valve chamber is higher than predetermined pressure in the motor operated valve of 2nd Example. 第3実施例の電動弁の全閉状態を示す主要部断面図。Sectional drawing of the principal part which shows the fully closed state of the motor operated valve of 3rd Example. 第3実施例の電動弁において弁室の圧力が所定圧より高い状態を示す主要部断面図。The principal part sectional drawing which shows the state in which the pressure of a valve chamber is higher than predetermined pressure in the motor operated valve of 3rd Example. 第4実施例の電動弁の全閉状態を示す主要部断面図。Sectional drawing of the principal part which shows the fully closed state of the motor operated valve of 4th Example. 従来の電動弁の一例を示す縦断面図。The longitudinal cross-sectional view which shows an example of the conventional motor operated valve. ヒートポンプ式冷暖房システムの一例を示す概略構成図。The schematic block diagram which shows an example of a heat pump type | formula air conditioning system.

以下、本発明の実施形態を図面を参照しながら説明する。
図1は、本発明に係るバルブ装置の第1実施例を示す主要部断面図である。図示実施例のバルブ装置(電動弁10A)は、図11に示されるヒートポンプ式冷暖房システム100において従来例の電動弁10’に代えて用いられるもので、その基本構成は、前述した図10に示される従来例の電動弁10’と略同じであるので、ここでは、図10に示される従来例の電動弁10’の各部に対応する部分には同一の符号を付して重複説明を省略し、以下は、主要部(特徴部分)を中心に説明する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view of the main part showing a first embodiment of a valve device according to the present invention. The valve device (electric valve 10A) of the illustrated embodiment is used in place of the electric valve 10 'of the conventional example in the heat pump type air conditioning system 100 shown in FIG. 11, and its basic configuration is shown in FIG. 10 is substantially the same as the conventional motor-operated valve 10 ′, and therefore, the portions corresponding to the respective parts of the motor-operated valve 10 ′ of the conventional example shown in FIG. In the following, the main part (characteristic part) will be mainly described.

図示第1実施例の電動弁10Aは、第1入出口11、弁室21、及び流通口12aを有する第2入出口12が設けられた弁本体20と、この弁本体20における弁室21と第2入出口12との間に配在された主弁口63を有する主弁座部材62と、弁室21から主弁口63を介して第2流出口12へ流れる流量を調整すべく弁室21内に配在された弁体部24を有する弁軸25と、を備える。   The motorized valve 10A of the illustrated first embodiment includes a valve body 20 provided with a first inlet / outlet 11, a valve chamber 21, and a second inlet / outlet 12 having a flow port 12a, and a valve chamber 21 in the valve body 20; A main valve seat member 62 having a main valve port 63 disposed between the second inlet / outlet 12 and a valve for adjusting the flow rate flowing from the valve chamber 21 through the main valve port 63 to the second outlet port 12. And a valve shaft 25 having a valve body portion 24 disposed in the chamber 21.

前記主弁座部材62は、概略鍔状部付き円筒状とされ、弁室21の下方に設けられた下部室61内を軸方向(上下方向)に摺動可能に配在されている。   The main valve seat member 62 is substantially cylindrical with a bowl-shaped portion, and is slidable in the axial direction (vertical direction) in the lower chamber 61 provided below the valve chamber 21.

弁室21の下部には、主弁座部材62の円錐状外周面部62aが接離する逃がし弁口66を有するリング状の逃がし弁座65が圧入等により固着されている。   A ring-shaped relief valve seat 65 having a relief valve port 66 with which the conical outer peripheral surface portion 62a of the main valve seat member 62 contacts and separates is fixed to the lower portion of the valve chamber 21 by press fitting or the like.

ここでは、前記逃がし弁座65と、主弁座部材62と、この主弁座部材62を逃がし弁口66を閉じる方向(上向き)に付勢する圧縮コイルばね67とで逃がし弁60が構成されている。   Here, the relief valve 60 is constituted by the relief valve seat 65, the main valve seat member 62, and the compression coil spring 67 that urges the main valve seat member 62 in the direction of closing the valve port 66 (upward). ing.

かかる逃がし弁60では、図1に示される如くに、主弁口63が弁体部24により閉じられている全閉状態で、弁室21内の流体(冷媒)圧力が所定圧以上となると、図2に示される如くに、それを構成する主弁座部材62が弁室21内の圧力によって圧縮コイルばね67の付勢力に抗して押し下げられる(逃がし弁60では、主弁座部材62が弁体のように動作する)。   In the relief valve 60, as shown in FIG. 1, when the main valve port 63 is closed by the valve body 24 and the fluid (refrigerant) pressure in the valve chamber 21 exceeds a predetermined pressure, As shown in FIG. 2, the main valve seat member 62 constituting it is pushed down against the urging force of the compression coil spring 67 by the pressure in the valve chamber 21 (in the relief valve 60, the main valve seat member 62 is Behaves like a disc).

これにより、図2(B)に拡大図示されているように、弁室21内の高圧は、主弁座部材62の円錐状外周面部62aと逃がし弁座65(逃がし弁口66)との間に形成される隙間や下部室61壁面と主弁座部材62の鍔状部外周面との摺動面隙間を通って第2入出口12へ自動的に逃がされるとともに、弁体部24と主弁口63との間に形成される隙間も通って第2入出口12へ自動的に逃がされる。   2B, the high pressure in the valve chamber 21 is generated between the conical outer peripheral surface portion 62a of the main valve seat member 62 and the relief valve seat 65 (relief valve port 66). And is automatically released to the second inlet / outlet 12 through the clearance formed between the lower chamber 61 and the sliding surface between the wall surface of the lower chamber 61 and the outer peripheral surface of the bowl-shaped portion of the main valve seat member 62. It is automatically released to the second inlet / outlet 12 through a gap formed between the valve port 63 and the valve port 63.

このように、本実施例の電動弁10Aでは、逃がし弁座65と、主弁座部材62と、コイルばね67とで逃がし弁60が構成されているので、主弁口63が弁体部24により閉じられている全閉状態で、弁室21の圧力が所定圧以上となったときは、上記逃がし弁60が開き、第1入出口11からの流体を第2入出口12へ逃がすことができ、大型化を招くことなく、逃がし弁の機能を低コストで付加することができる。   Thus, in the motor operated valve 10A of the present embodiment, the relief valve 60 is configured by the relief valve seat 65, the main valve seat member 62, and the coil spring 67, so the main valve port 63 is the valve body portion 24. When the pressure in the valve chamber 21 becomes equal to or higher than a predetermined pressure in the fully closed state, the relief valve 60 is opened, and the fluid from the first inlet / outlet 11 can be released to the second inlet / outlet 12. The function of the relief valve can be added at low cost without increasing the size.

また、逃がし弁60は弁本体20内に設けられるので、当該電動弁10Aをパイパスするように逃がし弁を設ける場合等に比して、逃がし弁を含む電動弁の大きさ(占有スペース)を小さくすることができるとともに、追加の配管部品や配管接続作業が不要となり、システムのコストを抑えることができる。   Further, since the relief valve 60 is provided in the valve main body 20, the size (occupied space) of the motor-operated valve including the relief valve is smaller than when a relief valve is provided so as to bypass the motor-operated valve 10A. In addition, additional piping parts and piping connection work are not required, and the cost of the system can be reduced.

さらに、前述した図11に示されるヒートポンプ式冷暖房システム100において、従来の電動弁10’に代えて用いることにより、メンテナンス時にタンク120に冷媒を回収した後において、外気温度が上昇して、タンク120内の冷媒圧力が増大しても、タンク120内の冷媒圧力を電動弁10A内の逃がし弁60で自動的に逃がすことができ、冷媒が外部に漏出する等の不具合の発生を未然に防ぐことができる。   Furthermore, in the heat pump type air conditioning system 100 shown in FIG. 11 described above, by using instead of the conventional motor-operated valve 10 ′, after the refrigerant is collected in the tank 120 during maintenance, the outside air temperature rises and the tank 120 Even if the refrigerant pressure in the tank increases, the refrigerant pressure in the tank 120 can be automatically released by the relief valve 60 in the motor-operated valve 10A, thereby preventing the occurrence of problems such as leakage of refrigerant to the outside. Can do.

次に、第2実施例の電動弁10Bを、図3(全閉状態)、図4(第1流れ方向全開状態)、図5(第2流れ方向全開状態)、及び図6(弁室の圧力が所定圧より高い状態)を参照しながら説明する。図3〜図6において、図1及び図2と同一の符号は、同一又は同等部分を示している。本第2実施例の電動弁10Bでは、第1実施例における逃がし弁60の機能に加えて、逆止弁の機能が付加されている。   Next, the electric valve 10B of the second embodiment is shown in FIG. 3 (fully closed state), FIG. 4 (first flow direction fully opened state), FIG. 5 (second flow direction fully opened state), and FIG. This will be described with reference to a state where the pressure is higher than a predetermined pressure. 3 to 6, the same reference numerals as those in FIGS. 1 and 2 indicate the same or equivalent parts. In the motor operated valve 10B of the second embodiment, a check valve function is added in addition to the function of the relief valve 60 in the first embodiment.

すなわち、前記主弁座部材62に、複数個の逆止弁口72、72、・・・が同一円周上に形成されるとともに、弁室21内に逆止弁口72、72、・・・を開閉可能なフロート型の逆止弁体75が軸方向に摺動自在に配在されている。   That is, a plurality of check valve ports 72, 72,... Are formed on the same circumference in the main valve seat member 62, and the check valve ports 72, 72,. A float-type check valve body 75 capable of opening and closing is disposed so as to be slidable in the axial direction.

逆止弁体75は、弁室21壁面に摺接する上部大径部75aと下部小径部75bとを有し、その中央には弁軸25が緩く挿通せしめられる縦貫穴75cが形成され、下部小径部75bには縦貫穴75cと弁室21とを連通するように複数個の横穴75dが放射状に形成されている。第1入出口11から弁室21に流入した流体は、横穴75dや縦貫穴75cを介して弁室天井部21dと逆止弁体75上面との間に形成される背圧室73に導かれる。   The check valve body 75 has an upper large diameter portion 75a and a lower small diameter portion 75b that are in sliding contact with the wall surface of the valve chamber 21, and a vertical through hole 75c into which the valve shaft 25 is loosely inserted is formed at the center. A plurality of lateral holes 75d are radially formed in the portion 75b so as to communicate the longitudinal through hole 75c and the valve chamber 21. The fluid flowing into the valve chamber 21 from the first inlet / outlet 11 is guided to the back pressure chamber 73 formed between the valve chamber ceiling portion 21d and the upper surface of the check valve body 75 via the horizontal hole 75d and the vertical through hole 75c. .

ここで、流体が第1入出口11から第2入出口12へ流される第1流れ方向のときは、逆止弁体75は主弁座部材62に押し付けられて逆止弁口72、72、・・・を閉じる(図3、図4)。   Here, when the fluid flows in the first flow direction from the first inlet / outlet 11 to the second inlet / outlet 12, the check valve body 75 is pressed against the main valve seat member 62 to check valve ports 72, 72, Is closed (FIGS. 3 and 4).

それに対し、流体が第2入出口12から第1入出口11へ流される第2流れ方向のときは、逆止弁体75は主弁座部材62から離れ、弁室天井部21dに接当するまで浮き上がって逆止弁口72、72、・・・を開く(図5)。なお、図5においては、弁軸25は最下降位置であるが、上昇位置にあっても、第2流れ方向のときは逆止弁体75は上昇することができる。   On the other hand, when the fluid flows in the second flow direction from the second inlet / outlet 12 to the first inlet / outlet 11, the check valve body 75 is separated from the main valve seat member 62 and contacts the valve chamber ceiling 21d. And the check valve ports 72, 72,... Are opened (FIG. 5). In FIG. 5, the valve shaft 25 is in the lowest lowered position, but the check valve body 75 can be raised in the second flow direction even in the raised position.

したがって、主弁座部材62に形成された逆止弁口72と逆止弁体75とで、第1入出口11から第2入出口12への流れは阻止するが第2入出口12から第1入出口11への流れは許容する逆止弁70が構成されている。   Accordingly, the check valve port 72 and the check valve body 75 formed in the main valve seat member 62 prevent the flow from the first inlet / outlet 11 to the second inlet / outlet 12, but from the second inlet / outlet 12 to the second valve 12. A check valve 70 that allows the flow to the 1 inlet / outlet 11 is configured.

なお、本実施例の電動弁10Bでは、弁本体20内に逃がし弁座65’が一体に設けられ、弁本体20の下端部には管継手やばね受け等を兼ねる蓋状部材20Cが螺合せしめられている。   In the motor-operated valve 10B of the present embodiment, a relief valve seat 65 ′ is integrally provided in the valve body 20, and a lid-like member 20C that also serves as a pipe joint, a spring receiver, and the like is screwed to the lower end portion of the valve body 20. I'm hurt.

かかる構成の電動弁10Bにおいても、図3に示される如くに、主弁口63が弁体部24により閉じられている全閉状態で、弁室21内の流体(冷媒)圧力が所定圧以上となると、図6に示される如くに、それを構成する主弁座部材62が弁室21内の圧力によって圧縮コイルばね67の付勢力に抗して押し下げられる。この場合、逆止弁体75は主弁座部材62と一体的に押し下げられるので逆止弁口72は閉じたままである。   Also in the electric valve 10B having such a configuration, as shown in FIG. 3, the fluid (refrigerant) pressure in the valve chamber 21 is equal to or higher than a predetermined pressure in the fully closed state where the main valve port 63 is closed by the valve body portion 24. Then, as shown in FIG. 6, the main valve seat member 62 constituting it is pushed down against the urging force of the compression coil spring 67 by the pressure in the valve chamber 21. In this case, since the check valve body 75 is pushed down integrally with the main valve seat member 62, the check valve port 72 remains closed.

これにより、図6(B)に拡大図示されているように、弁室21内の高圧は、主弁座部材62の円錐状外周面部62aと逃がし弁座65(逃がし弁口66)との間に形成される隙間や下部室61壁面と主弁座部材62の鍔状部外周面との摺動面隙間を通って第2入出口12へ自動的に逃がされるとともに、弁体部24と主弁口63との間に形成される隙間も通って第2入出口12へ自動的に逃がされる。   6B, the high pressure in the valve chamber 21 is generated between the conical outer peripheral surface portion 62a of the main valve seat member 62 and the relief valve seat 65 (relief valve port 66). And is automatically released to the second inlet / outlet 12 through the clearance formed between the lower chamber 61 and the sliding surface between the wall surface of the lower chamber 61 and the outer peripheral surface of the bowl-shaped portion of the main valve seat member 62. It is automatically released to the second inlet / outlet 12 through a gap formed between the valve port 63 and the valve port 63.

このように、本第2実施例の電動弁10Bにおいても、第1実施例と同様な作用効果が得られることに加えて、逆止弁70の機能を備えているので、省エネ効率の向上、圧力損失の低減化等を一層図ることができる。   Thus, in the motor operated valve 10B of the second embodiment, in addition to obtaining the same operation effect as the first embodiment, the function of the check valve 70 is provided, so that the energy saving efficiency is improved. The pressure loss can be further reduced.

図7、図8は、第3実施例の電動弁10Cを示している。図7及び図8において、図1〜図6と同一の符号は、同一又は同等部分を示している。この電動弁10Cでは、逆止弁体75の軸方向位置(下降位置)を規制すべく、例えば、弁室21の内壁面部に環状溝78が形成されるとともに、該環状溝78にC形止め輪等からなるストッパ79が装着されている。   7 and 8 show a motor operated valve 10C of the third embodiment. 7 and 8, the same reference numerals as those in FIGS. 1 to 6 denote the same or equivalent parts. In the electric valve 10C, for example, an annular groove 78 is formed in the inner wall surface of the valve chamber 21 in order to restrict the axial position (lowering position) of the check valve body 75, and a C-shaped stopper is formed in the annular groove 78. A stopper 79 made of a wheel or the like is attached.

このような構成の電動弁10Cでは、図8に示される如くに、弁室21内の流体圧力が所定圧以上となった場合に、第1、第2実施例と同様に、主弁座部材62が弁室21内の圧力によって圧縮コイルばね67の付勢力に抗して押し下げられるが、逆止弁体75がストッパ79に係止されるため、主弁座部材62が逆止弁体75から離れ、逆止弁口72も開かれる。そのため、弁室21内の高圧は、主弁座部材62の円錐状外周面部62aと逃がし弁座65’(逃がし弁口66)との間に形成される隙間や下部室61壁面と主弁座部材62の鍔状部外周面との摺動面隙間、弁体部24と主弁口63との間に形成される隙間に加えて、逆止弁口72からも第2入出口12へ逃がされることになる。   In the motor-operated valve 10C having such a configuration, as shown in FIG. 8, when the fluid pressure in the valve chamber 21 becomes equal to or higher than a predetermined pressure, the main valve seat member is the same as in the first and second embodiments. 62 is pushed down against the urging force of the compression coil spring 67 by the pressure in the valve chamber 21. However, since the check valve body 75 is locked to the stopper 79, the main valve seat member 62 is checked. The check valve port 72 is also opened. Therefore, the high pressure in the valve chamber 21 is caused by a gap formed between the conical outer peripheral surface portion 62a of the main valve seat member 62 and the relief valve seat 65 ′ (relief valve port 66) or the wall surface of the lower chamber 61 and the main valve seat. In addition to the clearance between the sliding surface of the member 62 and the outer peripheral surface of the bowl-shaped portion and the clearance formed between the valve body 24 and the main valve port 63, the check valve port 72 also escapes to the second inlet / outlet 12. Will be.

図9は、第4実施例の電動弁10Dを示している。この電動弁10Dでは、主弁口63が逆止弁体75’に設けられ、逆止弁体75’の動作が弁体部24の位置に依存するようにされている。   FIG. 9 shows an electric valve 10D of the fourth embodiment. In the electric valve 10D, the main valve port 63 is provided in the check valve body 75 ', and the operation of the check valve body 75' depends on the position of the valve body portion 24.

上記第3、第4実施例の電動弁10C、10Dにおいても、第1、第2実施例と略同様な作用効果が得られる。   In the motor-operated valves 10C and 10D of the third and fourth embodiments, substantially the same effects as those of the first and second embodiments can be obtained.

なお、上記実施例では、本発明に係る電動弁をヒートポンプ式冷暖房システムに組み込んだ場合を例示したが、本発明に係る電動弁の用途は、ヒートポンプ式冷暖房システムに限られないことは勿論である。   In addition, in the said Example, although the case where the motor operated valve which concerns on this invention was integrated in the heat pump type | formula air conditioning system was illustrated, the use of the motor operated valve which concerns on this invention is not restricted to a heat pump type air conditioning system. .

また、上記の各実施例は、本発明のバルブ装置を電動弁に適用した事例を示したものであるが、本発明は、これのみに限定されることはなく、電磁弁等のバルブ装置にも適用可能であることは言うまでもない。   In addition, each of the above embodiments shows an example in which the valve device of the present invention is applied to an electric valve. However, the present invention is not limited to this example, and the valve device such as an electromagnetic valve is used. It goes without saying that is also applicable.

10 電動弁
11 第1入出口
12 第2入出口
20 弁本体
21 弁室
24 弁体部
25 弁軸
30 ロータ
40 キャン
50 ステータ
60 逃がし弁
62 主弁座部材
63 弁口
65 逃がし弁座
67 圧縮コイルばね
70 逆止弁
72 逆止弁口
75 逆止弁体
79 ストッパ
DESCRIPTION OF SYMBOLS 10 Motorized valve 11 1st inlet / outlet 12 2nd inlet / outlet 20 Valve main body 21 Valve chamber 24 Valve body part 25 Valve shaft 30 Rotor 40 Can 50 Stator 60 Relief valve 62 Main valve seat member 63 Valve port 65 Relief valve seat 67 Compression coil Spring 70 Check valve 72 Check valve port 75 Check valve body 79 Stopper

Claims (4)

第1入出口、弁室、及び第2入出口が設けられた弁本体と、該弁本体における前記弁室と第2入出口との間に配在された主弁口を有するとともに逆止弁口が形成される主弁座部材と、前記弁室から前記主弁口を介して前記第2入出口へ流れる流量を調整すべく前記弁室内に配在された弁体部を有する弁軸と、前記弁室内に前記逆止弁口を開閉可能に前記弁軸の軸方向に沿って移動可能に配在されるフロート型の逆止弁体と、前記流量調整を行うべく前記弁体部を昇降させる昇降駆動機構とを備えたバルブ装置であって、
前記主弁座部材は軸方向に移動可能とされるとともに、前記弁室に前記主弁座部材が接離する逃がし弁口を有する逃がし弁座が設けられ、該逃がし弁座と、前記主弁座部材と、該主弁座部材を前記逃がし弁口を閉じる方向に付勢するばね部材とで、前記主弁口が前記弁体部により閉じられている全閉状態で、前記弁室内の流体圧力が所定圧以上となった場合に、前記弁室内の圧力を前記第2入出口へ自動的に逃がす逃がし弁が構成され
前記逆止弁口と前記逆止弁体とで、前記第1入出口から第2入出口への流れは阻止するが前記第2入出口から第1入出口への流れは許容する逆止弁が構成されることを特徴とするバルブ装置。
A valve body having a first inlet / outlet, a valve chamber, and a second inlet / outlet, and a main valve port disposed between the valve chamber and the second inlet / outlet in the valve body and a check valve A main valve seat member in which a mouth is formed, and a valve shaft having a valve body portion disposed in the valve chamber to adjust a flow rate flowing from the valve chamber to the second inlet / outlet through the main valve port A float-type check valve body arranged to be movable along the axial direction of the valve shaft so that the check valve port can be opened and closed in the valve chamber, and the valve body portion for adjusting the flow rate. A valve device including an elevating drive mechanism for elevating and lowering;
The main valve seat member is movable in the axial direction, and a relief valve seat having a relief valve port for contacting and separating the main valve seat member is provided in the valve chamber, the relief valve seat, and the main valve A fluid member in the valve chamber in a fully closed state in which the main valve port is closed by the valve body portion with a seat member and a spring member that urges the main valve seat member in a direction to close the relief valve port A relief valve configured to automatically release the pressure in the valve chamber to the second inlet / outlet when the pressure exceeds a predetermined pressure ;
The check valve and the check valve body prevent a flow from the first inlet / outlet to the second inlet / outlet but allow a flow from the second inlet / outlet to the first inlet / outlet. There valve device according to claim Rukoto configured.
前記弁室に前記逆止弁体の軸方向位置を規制するストッパが設けられ、前記弁室内の流体圧力が所定圧以上となった場合に、前記主弁座部材が前記逆止弁体から離れて前記逆止弁口が開かれるようにされていることを特徴とする請求項に記載のバルブ装置。 A stopper for regulating the axial position of the check valve body is provided in the valve chamber, and the main valve seat member is separated from the check valve body when the fluid pressure in the valve chamber becomes a predetermined pressure or more. The valve device according to claim 1 , wherein the check valve port is opened. 前記主弁口が前記逆止弁体に設けられ、前記逆止弁体の動作が前記弁体部の位置に依存するようにされていることを特徴とする請求項又はに記載のバルブ装置。 The valve according to claim 1 or 2 , wherein the main valve port is provided in the check valve body, and the operation of the check valve body depends on the position of the valve body portion. apparatus. 前記昇降駆動機構は、前記弁体部のリフト量を制御するためのロータ及びステータ等からなるステッピングモータと、前記ロータの回転を前記弁軸の昇降運動に変換するねじ送り機構とを備えていることを特徴とする請求項1からのいずれかに記載のバルブ装置。 The lifting drive mechanism includes a stepping motor including a rotor and a stator for controlling the lift amount of the valve body, and a screw feed mechanism that converts the rotation of the rotor into a lifting motion of the valve shaft. The valve device according to any one of claims 1 to 3 , wherein:
JP2011115751A 2011-05-24 2011-05-24 Valve device Active JP5818509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011115751A JP5818509B2 (en) 2011-05-24 2011-05-24 Valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011115751A JP5818509B2 (en) 2011-05-24 2011-05-24 Valve device

Publications (2)

Publication Number Publication Date
JP2012241877A JP2012241877A (en) 2012-12-10
JP5818509B2 true JP5818509B2 (en) 2015-11-18

Family

ID=47463806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011115751A Active JP5818509B2 (en) 2011-05-24 2011-05-24 Valve device

Country Status (1)

Country Link
JP (1) JP5818509B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106440565A (en) * 2016-11-24 2017-02-22 海信科龙电器股份有限公司 Throttling assembly for air conditioner and air conditioner

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104117317B (en) * 2014-08-08 2016-08-24 长兴华强电子有限公司 A kind of discharge hole structure of vacuum stirring bucket
CN107504253A (en) * 2016-06-14 2017-12-22 上海瓦姆石油天然气管业有限公司 A kind of Automatic Water System for hydraulic press pressure test
CN108518515A (en) * 2018-06-11 2018-09-11 宣城市益成电子科技有限公司 A kind of automation valve arrangement for eluting water integration apparatus
IT201800007616A1 (en) * 2018-07-30 2020-01-30 Tecomec Srl By-pass and pressure regulation valve
JP7409982B2 (en) * 2020-07-02 2024-01-09 株式会社鷺宮製作所 Electric valve and refrigeration cycle system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4615909Y1 (en) * 1966-12-07 1971-06-02
JP2003314724A (en) * 2002-04-18 2003-11-06 Shimadzu Corp Flow control valve
JP5022120B2 (en) * 2007-07-03 2012-09-12 株式会社不二工機 Motorized valves for air conditioning systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106440565A (en) * 2016-11-24 2017-02-22 海信科龙电器股份有限公司 Throttling assembly for air conditioner and air conditioner

Also Published As

Publication number Publication date
JP2012241877A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
JP6194157B2 (en) Motorized valve
JP5818509B2 (en) Valve device
JP5572330B2 (en) Motorized valve
JP5738029B2 (en) Compound valve
JP2012172749A (en) Valve apparatus
US8763419B2 (en) Motor-operated valve and refrigeration cycle using the same
JP5657424B2 (en) Motorized valve
JP5802539B2 (en) Compound valve
JP5022120B2 (en) Motorized valves for air conditioning systems
JP5802540B2 (en) Compound valve
CN109578660B (en) Electric valve
JP4570484B2 (en) Composite valve, heat pump type air conditioner and control method thereof
JP2016535833A (en) Adjustable refrigerant pump
JP4881137B2 (en) Flow control valve and refrigeration cycle
KR102139095B1 (en) Electronic expansion valve
KR101909496B1 (en) Valve being used as both check valve and electronic expansion valve, cooling and heating system, and heat pump system
EP2650575A1 (en) Composite valve
JP5836689B2 (en) Motorized valve
JP2010249247A (en) Motor-operated valve and refrigeration cycle using the same
JP2012241809A (en) Motor-operated valve
JP5881452B2 (en) Compound valve
JP6194403B2 (en) Motorized valve
JP5881451B2 (en) Compound valve
KR101969578B1 (en) Valve being used as both check valve and electronic expansion valve and having selectable ports, and cooling and heating system
JP6991222B2 (en) Screw compressor for commercial vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150929

R150 Certificate of patent or registration of utility model

Ref document number: 5818509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250