JP5657424B2 - Motorized valve - Google Patents

Motorized valve Download PDF

Info

Publication number
JP5657424B2
JP5657424B2 JP2011038673A JP2011038673A JP5657424B2 JP 5657424 B2 JP5657424 B2 JP 5657424B2 JP 2011038673 A JP2011038673 A JP 2011038673A JP 2011038673 A JP2011038673 A JP 2011038673A JP 5657424 B2 JP5657424 B2 JP 5657424B2
Authority
JP
Japan
Prior art keywords
valve
valve body
port
shaft
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011038673A
Other languages
Japanese (ja)
Other versions
JP2012172836A (en
Inventor
裕介 荒井
裕介 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2011038673A priority Critical patent/JP5657424B2/en
Publication of JP2012172836A publication Critical patent/JP2012172836A/en
Application granted granted Critical
Publication of JP5657424B2 publication Critical patent/JP5657424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lift Valve (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Description

本発明は、ヒートポンプ式冷暖房システム等に使用するのに好適な電動弁に係り、特に、小流量時の流量制御精度の向上と制御可能流量の増大化・圧力損失の低減化の両方を効果的に図ることのできる電動弁に関する。   The present invention relates to a motor-operated valve suitable for use in a heat pump type air conditioning system and the like, and in particular, it is effective to improve both flow rate control accuracy at a small flow rate, increase controllable flow rate, and reduce pressure loss. The present invention relates to a motor-operated valve that can be achieved.

一般的なヒートポンプ式冷暖房システムでは、冷媒は冷房運転時と暖房運転時とでは逆方向に流されるようにされており、このヒートポンプ式冷暖房システムとして、圧縮機、室外熱交換器、室内熱交換器、四方切換弁等の他、省エネ効率等を向上させるため、通常は一つでよい膨張弁を二つを備え、さらに、圧力損失を可及的に低減するため、それら二つの膨張弁にそれぞれ並列に逆止弁を組み込んだもの(逆止弁付き膨張弁としたもの)が知られている(例えば、下記特許文献1の図6を参照)。   In a general heat pump type air conditioning system, the refrigerant flows in the opposite direction during the cooling operation and the heating operation. As this heat pump type air conditioning system, a compressor, an outdoor heat exchanger, an indoor heat exchanger are used. In addition to four-way switching valves, etc., in order to improve energy-saving efficiency, etc., normally two expansion valves are sufficient, and in order to reduce pressure loss as much as possible, each of these two expansion valves A valve that incorporates a check valve in parallel (an expansion valve with a check valve) is known (see, for example, FIG. 6 of Patent Document 1 below).

また、最近では、その二つの逆止弁付き膨張弁のうちの少なくとも一方を電子制御式電動弁に置き換えることが考えられている(下記特許文献2を参照)。かかる逆止弁付き膨張弁に代えて用いられる電子制御式電動弁の一例を図5に示す。   Recently, it has been considered to replace at least one of the two expansion valves with a check valve with an electronically controlled motor-operated valve (see Patent Document 2 below). An example of an electronically controlled motor-operated valve used in place of the check valve-equipped expansion valve is shown in FIG.

図示例の電動弁10’は、下部大径部25aと上部小径部25bを有する弁軸と、弁室21を有する弁本体20と、この弁本体20にその下端部が密封接合されたキャン40と、このキャン40の内周に所定の間隙αをあけて配在されたロータ30と、このロータ30を回転駆動すべく前記キャン40に外嵌されたステータ50と、を備えている。   The motor-operated valve 10 'in the illustrated example includes a valve shaft having a lower large-diameter portion 25a and an upper small-diameter portion 25b, a valve main body 20 having a valve chamber 21, and a can 40 having a lower end sealed to the valve main body 20. And a rotor 30 disposed with a predetermined gap α on the inner periphery of the can 40, and a stator 50 externally fitted to the can 40 for rotationally driving the rotor 30.

前記弁軸25は、その下部大径部25aの下端部に特定形状(それぞれ所定の中心角を持つ二段の逆円錐台状)の弁体部24が一体に設けられており、本電動弁10’では、この弁体部24のリフト量を変化させることにより冷媒の通過流量を制御するようになっている。   The valve shaft 25 is integrally provided with a valve body portion 24 having a specific shape (a two-stage inverted truncated cone shape each having a predetermined center angle) at the lower end portion of the lower large-diameter portion 25a. In 10 ', the flow rate of the refrigerant is controlled by changing the lift amount of the valve body 24.

前記弁本体20の弁室21には、その下部に前記弁体部24が接離する弁口(オリフィス)22a付き弁座22が設けられるとともに、その側部に第1流入口11が開口せしめられ、また、弁本体20の下部には、前記弁口22aに連なって第1流出口12が設けられている。   The valve chamber 21 of the valve body 20 is provided with a valve seat 22 with a valve port (orifice) 22a to which the valve body portion 24 contacts and separates at a lower portion thereof, and the first inlet 11 is opened at a side portion thereof. In addition, a first outlet 12 is provided in the lower part of the valve main body 20 so as to continue to the valve port 22a.

前記ステータ50は、ヨーク51、ボビン52、ステータコイル53、及び樹脂モールドカバー56等で構成され、前記ロータ30やステータ50等でステッピングモータが構成され、該ステッピングモータや後述する送りねじ(雌ねじ部38、雄ねじ部28)等で前記弁口22aに対する弁体部24のリフト量(=開度)を調整するための昇降駆動機構が構成される。   The stator 50 is composed of a yoke 51, a bobbin 52, a stator coil 53, a resin mold cover 56, and the like. A stepping motor is composed of the rotor 30, the stator 50, and the like. 38, a male screw portion 28) and the like constitute an elevation drive mechanism for adjusting the lift amount (= opening degree) of the valve body portion 24 with respect to the valve port 22a.

前記ロータ30には、支持リング36が一体的に結合されるとともに、この支持リング36に、ガイドブッシュ26の外周に配在された下方開口で筒状の弁軸ホルダ32の上部突部がかしめ固定され、これにより、ロータ30、支持リング36及び弁軸ホルダ32が一体的に連結されている。   A support ring 36 is integrally coupled to the rotor 30, and an upper protrusion of the cylindrical valve shaft holder 32 is caulked to the support ring 36 at a lower opening disposed on the outer periphery of the guide bush 26. Thus, the rotor 30, the support ring 36, and the valve shaft holder 32 are integrally connected.

また、弁本体20の上部に設けられた嵌合穴42には、筒状のガイドブッシュ26の下端部が圧入固定され、このガイドブッシュ26には弁軸25(の下部大径部25a)が摺動自在に内挿されている。また、前記ロータ30の回転を利用して前記弁軸25(弁体部24)を昇降させるべく、前記ガイドブッシュ26の外周に雄ねじ部28が形成され、前記弁軸ホルダ32の内周には雌ねじ部38が形成されており、それら雄ねじ部28と雌ねじ部38とで送りねじが構成されている。   A lower end portion of a cylindrical guide bush 26 is press-fitted and fixed in a fitting hole 42 provided in the upper portion of the valve body 20, and the valve shaft 25 (the lower large diameter portion 25 a thereof) is fixed to the guide bush 26. It is slidably inserted. In addition, a male screw portion 28 is formed on the outer periphery of the guide bush 26 to raise and lower the valve shaft 25 (valve body portion 24) using the rotation of the rotor 30, and on the inner periphery of the valve shaft holder 32. A female screw portion 38 is formed, and the male screw portion 28 and the female screw portion 38 constitute a feed screw.

また、前記ガイドブッシュ26の上部小径部26bが弁軸ホルダ32の上部に内挿されるとともに、弁軸ホルダ32の天井部中央(に形成された通し穴)に弁軸25の上部小径部25bが挿通せしめられている。弁軸25の上部小径部25bの上端部にはプッシュナット33が圧入固定されている。   The upper small diameter portion 26b of the guide bush 26 is inserted into the upper portion of the valve shaft holder 32, and the upper small diameter portion 25b of the valve shaft 25 is formed at the center of the ceiling portion of the valve shaft holder 32 (through hole formed therein). It is inserted. A push nut 33 is press-fitted and fixed to the upper end portion of the upper small diameter portion 25 b of the valve shaft 25.

また、前記弁軸25は、該弁軸25の上部小径部25bに外挿され、かつ、弁軸ホルダ32の天井部と弁軸25における下部大径部25aの上端段丘面との間に縮装された圧縮コイルばねからなる閉弁ばね34によって、常時下方(閉弁方向)に付勢されている。弁軸ホルダ32の天井部上でプッシュナット33の外周には、コイルばねからなる復帰ばね35が設けられている。   The valve shaft 25 is extrapolated to the upper small diameter portion 25b of the valve shaft 25, and is contracted between the ceiling portion of the valve shaft holder 32 and the upper terrace surface of the lower large diameter portion 25a of the valve shaft 25. The valve closing spring 34 composed of a mounted compression coil spring is always urged downward (in the valve closing direction). A return spring 35 formed of a coil spring is provided on the outer periphery of the push nut 33 on the ceiling portion of the valve shaft holder 32.

前記ガイドブッシュ26には、前記ロータ30が所定の閉弁位置まで回転下降せしめられた際、それ以上の回転下降を阻止するための回転下降ストッパ機構の一方を構成する下ストッパ体(固定ストッパ)27が固着され、弁軸ホルダ32には前記ストッパ機構の他方を構成する上ストッパ体(移動ストッパ)37が固着されている。   The guide bush 26 has a lower stopper body (fixed stopper) that constitutes one of rotation lowering stopper mechanisms for preventing further rotation lowering when the rotor 30 is rotated and lowered to a predetermined valve closing position. 27 is fixed, and an upper stopper body (moving stopper) 37 constituting the other of the stopper mechanism is fixed to the valve shaft holder 32.

なお、前記閉弁ばね34は、弁体部24が弁口22aに着座する閉弁状態において所要のシール圧を得るため(漏れ防止)、及び、弁体部24が弁口22aに衝接した際の衝撃を緩和するために配備されている。   The valve closing spring 34 obtains a required sealing pressure in a closed state where the valve body 24 is seated on the valve port 22a (leakage prevention), and the valve body 24 is in contact with the valve port 22a. Deployed to mitigate impact.

このような構成とされた電動弁10’にあっては、ステータ50に第1態様で通電励磁パルスを供給することにより、弁本体20に固定されたガイドブッシュ26に対し、ロータ30及び弁軸ホルダ32が一方向に回転せしめられ、ねじ部28、38のねじ送りにより、例えば弁軸ホルダ32が下方に移動して弁体部24が弁口22aに押し付けられて弁口22aが閉じられる。   In the motor-operated valve 10 ′ configured as described above, the rotor 30 and the valve shaft are connected to the guide bush 26 fixed to the valve body 20 by supplying the energization excitation pulse to the stator 50 in the first mode. The holder 32 is rotated in one direction, and by screw feed of the screw portions 28 and 38, for example, the valve shaft holder 32 moves downward, the valve body portion 24 is pressed against the valve port 22a, and the valve port 22a is closed.

弁口22aが閉じられた時点では、上ストッパ体37は未だ下ストッパ体27に衝接しておらず、弁体部24が弁口22aを閉じたままロータ30及び弁軸ホルダ32はさらに回転下降する。この場合、弁軸25(弁体部24)は下降しないが、弁軸ホルダ32は下降するため、閉弁ばね34が所定量圧縮せしめられ、その結果、弁体部24が弁口22aに強く押し付けられるとともに、弁軸ホルダ32の回転下降により、上ストッパ体37が下ストッパ体27に衝接し、その後ステータコイル53,53に対するパルス供給が続行されても弁軸ホルダ32の回転下降は強制的に停止される(全閉状態)。   When the valve port 22a is closed, the upper stopper body 37 is not yet in contact with the lower stopper body 27, and the rotor 30 and the valve shaft holder 32 are further rotated and lowered while the valve body portion 24 is closed. To do. In this case, the valve shaft 25 (valve body portion 24) does not descend, but the valve shaft holder 32 descends, so that the valve closing spring 34 is compressed by a predetermined amount. As a result, the valve body portion 24 is strongly against the valve port 22a. The upper stopper body 37 comes into contact with the lower stopper body 27 by the lowering of the rotation of the valve shaft holder 32, and the lowering of the valve shaft holder 32 is forced even if the pulse supply to the stator coils 53, 53 is continued thereafter. Is stopped (fully closed).

一方、この全閉状態からステータ50に第2態様で通電励磁パルスを供給すると、弁本体20に固定されたガイドブッシュ26に対し、ロータ30及び弁軸ホルダ32が前記と逆方向に回転せしめられ、ねじ部28、38のねじ送りにより、今度は弁軸ホルダ32が上方に移動する。この場合、弁軸ホルダ32の回転上昇開始時点(パルス供給開始時点)では、閉弁ばね34が前記のように所定量圧縮せしめられているので、閉弁ばね34が前記所定量分伸長するまでは、前記弁体部24が弁口22aからは離れず閉弁状態(リフト量=0)のままである。そして、閉弁ばね34が前記所定量分伸長した後、弁軸ホルダ32がさらに回転上昇せしめられると、前記弁体部24が弁口22aから離れて弁口22aが開かれ、冷媒が弁口22aを通過する。   On the other hand, when the energization excitation pulse is supplied to the stator 50 from the fully closed state in the second mode, the rotor 30 and the valve shaft holder 32 are rotated in the opposite direction to the guide bush 26 fixed to the valve body 20. The valve shaft holder 32 is now moved upward by the screw feed of the screw portions 28 and 38. In this case, since the valve closing spring 34 is compressed by a predetermined amount as described above at the time when the rotation of the valve shaft holder 32 starts to rise (when pulse supply starts), until the valve closing spring 34 is extended by the predetermined amount. The valve body 24 does not leave the valve port 22a and remains in the closed state (lift amount = 0). Then, after the valve closing spring 34 is extended by the predetermined amount, when the valve shaft holder 32 is further rotated up, the valve body portion 24 is separated from the valve port 22a, the valve port 22a is opened, and the refrigerant is supplied to the valve port. Pass 22a.

この場合、ロータ30の回転量により弁体部24のリフト量、言い換えれば、弁口22aの実効開口面積(=弁開度)を任意に細かく調整することができ、ロータ30の回転量は供給パルス数により制御されるため、冷媒流量を高精度に制御することができる。   In this case, the lift amount of the valve body 24, in other words, the effective opening area (= valve opening degree) of the valve port 22a can be arbitrarily finely adjusted by the rotation amount of the rotor 30, and the rotation amount of the rotor 30 is supplied. Since it is controlled by the number of pulses, the refrigerant flow rate can be controlled with high accuracy.

したがって、かかる構成の電動弁10’を前記ヒートポンプ式冷暖房システムに逆止弁付き膨張弁に代えて組み込む場合には、冷媒が一方向に流されるとき(例えば冷房運転時)は、圧力損失を可及的に低減すべく最大開度(最大リフト量)とされ、冷媒が他方向に流されるとき(例えば暖房運転時)は、流量制御を行なうべくその開度(リフト量)を所定値以下の特定範囲で細かく制御するようにされる(詳細は下記特許文献2を参照)。   Therefore, when the motor-operated valve 10 ′ having such a configuration is incorporated in the heat pump type air conditioning system in place of the expansion valve with a check valve, pressure loss is allowed when the refrigerant flows in one direction (for example, during cooling operation). The maximum opening (maximum lift amount) is set to be reduced as much as possible, and when the refrigerant is flowed in the other direction (for example, during heating operation), the opening (lift amount) is set to a predetermined value or less to perform flow control. Fine control is performed within a specific range (for details, refer to Patent Document 2 below).

特開2010−249246号公報JP 2010-249246 A 特開2009−14056号公報JP 2009-14056 A

ところで、電気自動車(EV)やプラグインハイブリッド車(PHV)等に配備されるヒートポンプ式冷暖房システム(カーエアコン)では、車室を冷房する以外に搭載バッテリを冷却する必要もあって、冷房運転時と暖房運転時のいずれも冷媒が一方向(同方向)に流されるため、前記従来例の電動弁10’のように、冷媒が冷房運転時と暖房運転時とでは逆方向に流されるシステム用に作られた電動弁では対応できないおそれがある。   By the way, in a heat pump type air conditioning system (car air conditioner) installed in an electric vehicle (EV), a plug-in hybrid vehicle (PHV), etc., it is necessary to cool the mounted battery in addition to cooling the passenger compartment. Since the refrigerant flows in one direction (same direction) both during the heating operation and the heating operation, for the system in which the refrigerant flows in the opposite direction during the cooling operation and the heating operation as in the motor-operated valve 10 ′ of the conventional example. There is a possibility that the motorized valve made in the above cannot cope.

また、前記従来例の電動弁10’では、小流量時の流量制御精度の向上と制御可能流量の増大化とは二律背反するものとなる。すなわち、弁口の口径(実効開口面積)が図示例のままであると、小流量時の流量制御精度は高くできるが、システム中に流す冷媒の流量(制御可能流量)を増大させようとすると、弁開度を最大にしても弁口部分が抵抗となって圧力損失が大きくなり、逆に、弁口の口径を大きくすると制御可能流量の増大化・圧力損失の低減化は図れるものの、小流量時の流量制御精度が低下する。   In the conventional motor-operated valve 10 ', the improvement in the flow rate control accuracy at a small flow rate and the increase in the controllable flow rate are contradictory. That is, if the diameter of the valve port (effective opening area) remains as in the illustrated example, the flow rate control accuracy at a small flow rate can be increased, but if the flow rate of refrigerant flowing through the system (controllable flow rate) is to be increased. However, even if the valve opening is maximized, the pressure at the valve port becomes resistance and the pressure loss increases. Conversely, increasing the valve port diameter increases the controllable flow rate and reduces the pressure loss. The flow control accuracy at the time of flow decreases.

本発明は、上記事情に鑑みてなされたもので、その目的とするところは、流体(冷媒)が一方向に流されるもとで、小流量時の流量制御精度の向上と制御可能流量の増大化・圧力損失の低減化の両方を効果的に図ることのできる電動弁を提供することにある。   The present invention has been made in view of the above circumstances, and its object is to improve flow control accuracy at a small flow rate and increase a controllable flow rate while a fluid (refrigerant) flows in one direction. It is to provide an electric valve that can effectively achieve both reduction of pressure and reduction of pressure loss.

前記の目的を達成すべく、本発明に係る電動弁は、基本的には、弁軸と、該弁軸を昇降させるためのロータ、ステータ、送りねじ等からなる昇降駆動機構と、下から順に第1弁口、弁室、及び第2弁口が設けられた弁本体とを備え、前記弁軸の下部に、前記第1弁口を開閉するための第1弁体が軸方向に相対移動可能な状態で配在され、かつ、該第1弁体の前記弁軸に対する下動限界位置を定める第1係止部材が設けられるとともに、前記第1弁体を前記第1係止部材側に付勢する第1ばね部材が設けられ、前記弁軸における前記第1弁体より上側に、前記第2弁口を開閉するための第2弁体が軸方向に相対移動可能な状態で配在され、かつ、該第2弁体の前記弁軸に対する上動限界位置を定める第2係止部材が設けられるとともに、前記第2弁体を前記第2係止部材側に付勢する第2ばね部材が設けられ、前記第1弁口及び第2弁口のうちの一方は実効開口面積が小、他方は実効開口面積が大とされ、前記弁軸が最下降位置から所定位置へ上昇するまでは、前記第1弁体が前記第1弁口を閉じるとともに、前記第2弁体が前記第2弁口の開度を変化させ、前記弁軸を前記所定位置からさらに上昇させると、前記第2弁体が前記第2弁口を閉じるとともに、前記第1弁体が前記第1弁口の開度を変化させるように構成されていることを特徴としている。   In order to achieve the above object, the motor-operated valve according to the present invention basically includes a valve shaft, an elevating drive mechanism composed of a rotor, a stator, a feed screw and the like for elevating the valve shaft, and in order from the bottom. And a valve body provided with a first valve port, a valve chamber, and a second valve port, and a first valve body for opening and closing the first valve port is relatively moved in the axial direction below the valve shaft. A first locking member that is arranged in a possible state and that defines a lower limit position of the first valve body relative to the valve shaft is provided, and the first valve body is disposed on the first locking member side. A first spring member to be urged is provided, and a second valve body for opening and closing the second valve port is disposed above the first valve body in the valve shaft in a state in which the second valve body is relatively movable in the axial direction. And a second locking member that defines an upper movement limit position of the second valve body with respect to the valve shaft is provided, and A second spring member that biases the valve body toward the second locking member is provided, and one of the first valve port and the second valve port has a small effective opening area, and the other has a large effective opening area. The first valve body closes the first valve port and the second valve body changes the opening of the second valve port until the valve shaft rises from the lowest position to a predetermined position. When the valve shaft is further raised from the predetermined position, the second valve body closes the second valve port and the first valve body changes the opening degree of the first valve port. It is characterized by being.

好ましい態様では、前記第1弁体及び第2弁体のうちの、実効開口面積が小の弁口を開閉する方の弁体がニードル型とされ、実効開口面積が大の弁口を開閉する方の弁体がポペット型とされる。   In a preferred embodiment, of the first valve body and the second valve body, a valve body that opens and closes a valve opening with a small effective opening area is a needle type, and opens and closes a valve opening with a large effective opening area. The valve body on the side is a poppet type.

他の好ましい態様では、前記弁室に流入口が開口せしめられ、前記第1弁口に連なって第1流出口が設けられるとともに、前記第2弁口に連なって第2流出口が設けられる。   In another preferred embodiment, an inflow port is opened in the valve chamber, a first outflow port is provided to be connected to the first valve port, and a second outflow port is provided to be connected to the second valve port.

この場合、好ましい態様では、前記第1流出口の下流側が盲蓋で閉塞されるとともに、前記第1流出口と第2流出口とが連通路を介して連通せしめられる。   In this case, in a preferred embodiment, the downstream side of the first outlet is closed with a blind cover, and the first outlet and the second outlet are communicated with each other via a communication path.

本発明に係る電動弁は、より具体的には、弁軸と、該弁軸を昇降させるためのロータ、ステータ、送りねじ等からなる昇降駆動機構と、下から順に、実効開口面積が小の第1弁口、弁室、及び実効開口面積が大の第2弁口が設けられた弁本体とを備え、前記弁軸の下部に、前記第1弁口を開閉するためのニードル型の第1弁体が軸方向に相対移動可能な状態で配在され、かつ、該第1弁体の前記弁軸に対する下動限界位置を定める第1係止部材が設けられるとともに、前記第1弁体を前記第1係止部材側に付勢する第1ばね部材が設けられ、前記弁軸における前記第1弁体より上側に、前記第2弁口を開閉するためのポペット型の第2弁体が軸方向に相対移動可能な状態で配在され、かつ、該第2弁体の前記弁軸に対する上動限界位置を定める第2係止部材が設けられるとともに、前記第2弁体を前記第2係止部材側に付勢する第2ばね部材が設けられ、前記弁軸が最下降位置から所定位置へ上昇するまでは、前記第1弁体が前記第1弁口を閉じるとともに、前記第2弁体が前記第2弁口の開度を変化させる大流量制御状態をとり、前記弁軸を前記所定位置からさらに上昇させると、前記第2弁体が前記第2弁口を閉じるとともに、前記第1弁体が前記第1弁口の開度を変化させる小流量制御状態をとるように構成されていることを特徴としている。   More specifically, the motor-operated valve according to the present invention has a valve shaft, an elevating drive mechanism including a rotor, a stator, a feed screw, and the like for elevating the valve shaft, and an effective opening area in order from the bottom. A valve body having a first valve port, a valve chamber, and a second valve port having a large effective opening area, and a needle-type second for opening and closing the first valve port at a lower portion of the valve shaft. The first valve body is disposed in a state in which the one valve body is relatively movable in the axial direction, and a first locking member is provided for determining a lower limit position of the first valve body relative to the valve shaft, and the first valve body A first spring member for urging the first valve member toward the first locking member, and a poppet-type second valve body for opening and closing the second valve port above the first valve body in the valve shaft. Are arranged in a state in which relative movement is possible in the axial direction, and the upper movement limit position of the second valve body with respect to the valve shaft is determined. A second locking member is provided, and a second spring member for urging the second valve body toward the second locking member is provided, until the valve shaft rises from the lowest position to a predetermined position. The first valve body closes the first valve port, and the second valve body takes a large flow rate control state in which the opening degree of the second valve port is changed, and the valve shaft is further raised from the predetermined position. Then, the second valve body closes the second valve port, and the first valve body is configured to take a small flow rate control state in which the opening degree of the first valve port is changed. It is said.

本発明に係る電動弁では、弁軸が最下降位置から所定位置へ上昇するまでは、第1弁体が第1弁口を閉じるとともに、第2弁体が第2弁口の開度を変化させる大流量制御状態をとり、弁軸を所定位置からさらに上昇させると、第2弁体が第2弁口を閉じるとともに、第1弁体が第1弁口の開度を変化させる小流量制御状態をとるようにされているので、冷媒が一方向に流されるもとで、小流量時の流量制御精度の向上と制御可能流量の増大化・圧力損失の低減化の両方を効果的に図ることができる。   In the electric valve according to the present invention, the first valve body closes the first valve port and the second valve body changes the opening degree of the second valve port until the valve shaft rises from the lowest position to the predetermined position. Small flow rate control in which the second valve body closes the second valve opening and the first valve body changes the opening degree of the first valve opening when the valve shaft is further raised from a predetermined position. Since the refrigerant is flown in one direction, both the improvement of the flow control accuracy at a small flow rate, the increase of the controllable flow rate, and the reduction of the pressure loss are effectively achieved. be able to.

本発明に係る電動弁の一実施例における第1の動作状態を示す主要部拡大断面図。The principal part expanded sectional view which shows the 1st operation state in one Example of the motor operated valve which concerns on this invention. 本発明に係る電動弁の一実施例における第2の動作状態を示す主要部拡大断面図。The principal part expanded sectional view which shows the 2nd operation state in one Example of the motor operated valve which concerns on this invention. 本発明に係る電動弁の一実施例における第3の動作状態を示す主要部拡大断面図。The principal part expanded sectional view which shows the 3rd operation state in one Example of the motor operated valve which concerns on this invention. 図1に示される電動弁における冷媒流量(開度)とパルス数(回転量)との関係の一例を示す図。The figure which shows an example of the relationship between the refrigerant | coolant flow volume (opening) and the number of pulses (rotation amount) in the motor operated valve shown in FIG. 従来の電動弁の一例を示す縦断面図。The longitudinal cross-sectional view which shows an example of the conventional motor operated valve.

以下、本発明の実施形態を図面を参照しながら説明する。
図1、図2、図3は、本発明に係る電動弁の一実施例を示す主要部拡大断面図であり、各図は異なる動作状態を示している。図示実施例の電動弁10のステータ(ステッピングモータ)50部分は、図5に示される従来例の電動弁10’のものとほぼ同じであるので、該部分は省略している。また、従来例の電動弁10’のモータ部分以外の各部に対応する部分には同一の符号を付して重複説明を省略し、以下は、主要部(特徴部分)である弁軸の下部及び弁本体を中心に説明する。
Embodiments of the present invention will be described below with reference to the drawings.
1, 2, and 3 are enlarged cross-sectional views of a main part showing an embodiment of a motor-operated valve according to the present invention, and each drawing shows different operating states. The stator (stepping motor) 50 portion of the motor-operated valve 10 of the illustrated embodiment is substantially the same as that of the motor-operated valve 10 ′ of the conventional example shown in FIG. Further, parts corresponding to the respective parts other than the motor part of the motor-driven valve 10 ′ of the conventional example are denoted by the same reference numerals, and redundant description will be omitted. The description will focus on the valve body.

図示実施例の電動弁10は、大流量化を図るべく、従来例の電動弁10’の弁本体20より大きな直方体状の弁本体15を備えている。該弁本体15の中央には、それを縦貫するように上から順に、段付き穴14、弁室21、小口径(実効開口面積が小)の第1弁口22a付き第1弁座22、第1流出口12が設けられている。   The motor-operated valve 10 of the illustrated embodiment includes a rectangular parallelepiped valve body 15 larger than the valve body 20 of the motor-operated valve 10 'of the conventional example in order to increase the flow rate. In the center of the valve body 15, in order from the top so as to pass through the valve body 15, a stepped hole 14, a valve chamber 21, a first valve seat 22 with a first valve port 22 a having a small diameter (effective opening area is small) A first outlet 12 is provided.

前記段付き穴14は、上から順に、大径嵌合穴部14a、中間空所14b、小径嵌合穴部14cからなり、大径嵌合穴部14aには前記従来例の電動弁10’における弁本体20の上部に相当するブッシュ保持体18が圧入等により内嵌固定され、中間空所14bの側部には第2流出口13が開口せしめられ、小径嵌合穴部14cには、大口径(実効開口面積が大)の第2弁口23a付き第2弁座23が圧入等により内嵌固定されている。   The stepped hole 14 includes, in order from the top, a large-diameter fitting hole 14a, an intermediate space 14b, and a small-diameter fitting hole 14c. The large-diameter fitting hole 14a includes the electric valve 10 ′ of the conventional example. The bush holding body 18 corresponding to the upper part of the valve body 20 is fitted and fixed by press fitting or the like, the second outlet 13 is opened at the side of the intermediate space 14b, and the small diameter fitting hole 14c has A second valve seat 23 with a second valve port 23a having a large diameter (large effective opening area) is fitted and fixed by press-fitting or the like.

前記弁室21は、その下部に、前記第1弁座22を底部とする段付きの小径下部室21bが延設されており、また、弁室21の側部には流入口11が開口せしめられている。   The valve chamber 21 is provided with a stepped small-diameter lower chamber 21b with the first valve seat 22 at the bottom, and the inlet 11 is opened at the side of the valve chamber 21. It has been.

前記第1流出口12の下部は、圧入、螺合等により盲蓋19が固着されて閉塞されており、また、第1流出口12と第2流出口13とは連通路16を介して連通せしめられている。   The lower part of the first outlet 12 is closed by a blind cover 19 fixed by press fitting, screwing or the like, and the first outlet 12 and the second outlet 13 communicate with each other via a communication path 16. I'm hurt.

一方、前記弁軸25の下部には、段付き円筒状の弁体収容室43が設けられている。この弁体収容室43には、前記第1弁座22に離接して第1弁口22aを開閉するためのニードル型の鍔状部44a付き第1弁体44(以下、ニードル弁体44と称す)が軸方向に相対移動可能な状態で配在され、また、弁体収容室43の下部には、前記ニードル弁体44(の鍔状部44a)を抜け止め係止する、言い換えれば、該ニードル弁体44の弁軸25に対する下動限界位置を定めるスリーブ状の第1係止部材46が圧入等により内嵌固定されている。   On the other hand, a stepped cylindrical valve body accommodating chamber 43 is provided at the lower portion of the valve shaft 25. The valve body accommodating chamber 43 includes a first valve body 44 with a needle-shaped hook-shaped portion 44a (hereinafter referred to as a needle valve body 44) for opening and closing the first valve port 22a while being separated from and contacting the first valve seat 22. And the needle valve body 44 (the hook-shaped portion 44a) is secured to the lower portion of the valve body housing chamber 43, in other words, A sleeve-like first locking member 46 that determines a lower limit position of the needle valve body 44 relative to the valve shaft 25 is fitted and fixed by press fitting or the like.

また、弁体収容室43の天井部43aとニードル弁体44(の鍔状部44a)との間には、ニードル弁体44を下向きに付勢する第1コイルばね61が縮装されている。さらに、弁軸25が図1に示される位置まで下降した際には、弁軸25の上部に配在された閉弁ばね34(図5参照)の付勢力により、弁体収容室43の肩部(段差部)43bがニードル弁体44の鍔状部44a上面外周に当接してそれを押圧するようになっている。   A first coil spring 61 that biases the needle valve body 44 downward is provided between the ceiling 43a of the valve body storage chamber 43 and the needle valve body 44 (the hook-shaped portion 44a). . Further, when the valve shaft 25 is lowered to the position shown in FIG. 1, the shoulder of the valve body accommodating chamber 43 is urged by the urging force of the valve closing spring 34 (see FIG. 5) disposed on the upper portion of the valve shaft 25. The portion (stepped portion) 43b comes into contact with and presses the outer periphery of the upper surface of the flange-shaped portion 44a of the needle valve body 44.

前記弁軸25における弁体収容室43より上側には、前記第2弁座23に離接して第2弁口23aを開閉するためのポペット型(円形厚板状)の第2弁体45(以下、ポペット弁体45と称す)が軸方向に相対移動可能な状態で外挿され、また、弁軸25におけるポペット弁体45より上側には、該ポペット弁体45の前記弁軸25に対する上動限界位置を定めるスリーブ状の第2係止部材47が圧入等により外嵌固定されている。また、弁軸25における弁体収容室43の上部外周に設けられた弁軸鍔状部48とポペット弁体45との間には、ポペット弁体45を上向きに付勢する第2コイルばね62が縮装されている。   A poppet-type (circular thick plate-shaped) second valve body 45 (opening and closing the second valve port 23a by opening and closing the second valve seat 23 on the valve shaft 25 above the valve body housing chamber 43 ( (Hereinafter referred to as a poppet valve body 45) is inserted in an axially movable state, and above the poppet valve body 45 in the valve shaft 25, the poppet valve body 45 is located above the valve shaft 25. A sleeve-like second locking member 47 for defining the movement limit position is fitted and fixed by press fitting or the like. Further, a second coil spring 62 that urges the poppet valve body 45 upward is provided between the valve shaft flange 48 provided on the outer periphery of the valve body housing chamber 43 in the valve shaft 25 and the poppet valve body 45. Is being disguised.

また、前記弁軸鍔状部48と弁室21下部に設けられた段付きの小径下部室21bの段丘面部(段差部)21cとの間には、ねじ部28、38からなる送りねじのバックラッシュ(遊び)を無くすべく、弁軸25を上向きに付勢する圧縮コイルばね63が縮装されている。   Further, between the valve shaft flange 48 and the terrace surface portion (step portion) 21c of the stepped small-diameter lower chamber 21b provided at the lower portion of the valve chamber 21, a back of the feed screw including the screw portions 28 and 38 is provided. In order to eliminate rush (play), a compression coil spring 63 that biases the valve shaft 25 upward is contracted.

このような構成とされた本実施例の電動弁10にあっては、従来例の電動弁10’と同様に、ステータ50に通電励磁パルスを供給することにより、ガイドブッシュ26に対し、ロータ30及び弁軸ホルダ32が回転しながら昇降せしめられ、それに伴って弁軸25が昇降せしめられる。この場合、ロータ30の回転量はステータ50への供給パルス数に応じたものとなるため、上記バルス数(回転量)により、弁軸25・弁体44、45の昇降位置、すなわち、該電動弁10を通過する冷媒流量を制御することができる。   In the motor-operated valve 10 of the present embodiment having such a configuration, the rotor 30 is applied to the guide bush 26 by supplying an energizing excitation pulse to the stator 50 as in the motor-operated valve 10 ′ of the conventional example. The valve shaft holder 32 is raised and lowered while rotating, and the valve shaft 25 is raised and lowered accordingly. In this case, since the amount of rotation of the rotor 30 depends on the number of pulses supplied to the stator 50, the lifted position of the valve shaft 25 and the valve bodies 44, 45, that is, the electric motor is driven by the number of pulses (rotation amount). The flow rate of the refrigerant passing through the valve 10 can be controlled.

以下、本実施例の電動弁10の動作を、冷媒流量(開度)とパルス数(回転量)との関係の一例を示す図4を参照しながら説明する。   Hereinafter, the operation of the motor-operated valve 10 of this embodiment will be described with reference to FIG. 4 showing an example of the relationship between the refrigerant flow rate (opening degree) and the number of pulses (rotation amount).

ここでは、図1に示される状態は、第1弁口22aが閉、第2弁口23aが開の状態(パルス数(回転量)が0の状態)であり、図2に示される状態は、第1弁口22a及び第2弁口23aが共に閉の状態、図3に示される状態は、第1弁口22aが開、第2弁口23aが閉の状態である。   Here, the state shown in FIG. 1 is a state where the first valve port 22a is closed and the second valve port 23a is opened (a state where the number of pulses (rotation amount) is 0), and the state shown in FIG. The first valve port 22a and the second valve port 23a are both closed, and the state shown in FIG. 3 is a state where the first valve port 22a is open and the second valve port 23a is closed.

図1に示されるパルス数(回転量)が0の状態では、弁軸25及びニードル弁体44が最下降位置まで下降せしめられており(図5に示された上ストッパ体37が下ストッパ体27に衝接して下降が停止された状態)、弁軸25の上部に配在された閉弁ばね34の付勢力により、弁体収容室43の肩部(段差部)43bがニードル弁体44の鍔状部44a上面外周に当接してそれを押圧し、ニードル弁体44が第1弁座22に強く押し付けられ、第1弁口22aは全閉状態とされる。   When the number of pulses (rotation amount) shown in FIG. 1 is 0, the valve shaft 25 and the needle valve body 44 are lowered to the lowest position (the upper stopper body 37 shown in FIG. 5 is the lower stopper body). 27, the lowering of the valve shaft 25 is stopped, and the shoulder (stepped portion) 43b of the valve body housing chamber 43 is moved to the needle valve body 44 by the urging force of the valve closing spring 34 disposed on the upper portion of the valve shaft 25. The needle valve body 44 is strongly pressed against the first valve seat 22, and the first valve port 22a is fully closed.

一方、ポペット弁体45は第2係止部材47に当接係止された上動限界位置にあり、第2弁座23から下方に大きく離れており、第2弁口23aは全開状態とされる。したがって、この状態では、冷媒は入出口11→弁室21→第2弁口23a→中間空所14b→第2流出口13へと流れ、その流量は最大のFc(大流量)となる。   On the other hand, the poppet valve body 45 is in the upper movement limit position abutted and locked to the second locking member 47, and is greatly separated downward from the second valve seat 23, and the second valve port 23a is fully opened. The Therefore, in this state, the refrigerant flows from the inlet / outlet 11 → the valve chamber 21 → the second valve port 23 a → the intermediate space 14 b → the second outlet 13, and the flow rate becomes the maximum Fc (large flow rate).

上記図1に示される状態からパルス数を増加させていくと、パルス数がTiになるまでは、弁軸25の上昇に合わせてポペット弁体45が第2弁座23に近づけられ、第2弁口23aの冷媒流量(開度)が一定の下り勾配をもって滑らかに減少していく。このパルス数が0からTiになるまでは、弁軸25は所定位置(図2に示される位置)まで上昇するが、ニードル弁体44は第1コイルばね61の付勢力により第1弁座22に押し付けられており、第1弁口22aは閉じられたままである。   When the number of pulses is increased from the state shown in FIG. 1, the poppet valve body 45 is brought closer to the second valve seat 23 as the valve shaft 25 rises until the number of pulses reaches Ti. The refrigerant flow rate (opening degree) of the valve port 23a smoothly decreases with a constant downward gradient. Until the number of pulses changes from 0 to Ti, the valve shaft 25 rises to a predetermined position (position shown in FIG. 2). However, the needle valve body 44 is moved to the first valve seat 22 by the urging force of the first coil spring 61. The first valve port 22a remains closed.

そして、パルス数がTiになると、図2に示されるようにポペット弁体45が第2弁座23に接当して第2弁口23aが閉じられる。ここで、パルス数がTiからTjの間の期間は、ニードル弁体44の鍔状部44aと第1係止部材46との間に隙間βが残っているので(図2参照)、ニードル弁体44は引き上げられない。したがって、パルス数がTiからTjになるまでは、第1弁口22a及び第2弁口23は共に閉じられており、冷媒流量(開度)は0となる。   When the pulse number becomes Ti, the poppet valve body 45 comes into contact with the second valve seat 23 and the second valve port 23a is closed as shown in FIG. Here, since the gap β remains between the flange 44a of the needle valve body 44 and the first locking member 46 during the period between the number of pulses Ti and Tj (see FIG. 2), the needle valve The body 44 cannot be pulled up. Therefore, until the pulse number changes from Ti to Tj, both the first valve port 22a and the second valve port 23 are closed, and the refrigerant flow rate (opening) becomes zero.

続いて、パルス数をTjから増加させていくと、図3に示されるようにニードル弁体44の鍔状部44aに第1係止部材46が接当して、弁軸25の上昇に合わせてニードル弁体44が引き上げられ、第1弁口22aが開かれ、冷媒は流入口11→弁室21→第1弁口22a→第1流出口12→連通路16→第2流出口13へと流れる。このときは、第1弁口22aの冷媒流量(開度)が一定の緩やかな上り勾配をもって滑らかに増大していくので、流量をきめ細かく制御することができる。なお、パルス数をTjから増加させて弁軸25を上昇させると、第2コイルばね62が圧縮されてポペット弁体45は第2弁座23に強く押し付けられる(第2弁口23aは閉じたまま)。   Subsequently, when the number of pulses is increased from Tj, the first locking member 46 comes into contact with the flange 44a of the needle valve body 44 as shown in FIG. The needle valve body 44 is pulled up, the first valve port 22a is opened, and the refrigerant flows from the inlet 11 to the valve chamber 21 to the first valve port 22a to the first outlet 12 to the communication passage 16 to the second outlet 13. And flow. At this time, the flow rate (opening) of the refrigerant at the first valve port 22a increases smoothly with a constant gradual upward gradient, so that the flow rate can be finely controlled. When the number of pulses is increased from Tj to raise the valve shaft 25, the second coil spring 62 is compressed and the poppet valve body 45 is strongly pressed against the second valve seat 23 (the second valve port 23a is closed). Leave).

以上のように、本実施例の電動弁10においては、小口径の第1弁口22aをニードル弁体44で開閉するとともに、大口径の第2弁口23aをポペット弁体45で開閉するようにされ、かつ、弁軸25が最下降位置(図1に示される位置)から所定位置(図2に示される位置)へ上昇するまでは、ニードル弁体44により第1弁口22aが閉じられるとともに、第2弁口23の流量(開度)がポペット弁体45によりリニヤに制御される大流量制御状態をとり、弁軸25を前記所定位置からさらに上昇させると、ポペット弁体45により第2弁口23aが閉じられるとともに、第1弁口22aの流量(開度)がニードル弁体44によりリニヤに制御される小流量制御状態をとるようにされているので、冷媒が一方向に流されるもとで、小流量時の流量制御精度の向上と制御可能流量の増大化・圧力損失の低減化の両方を効果的に図ることができる。   As described above, in the motor-operated valve 10 according to the present embodiment, the first valve port 22a having a small diameter is opened and closed by the needle valve body 44, and the second valve port 23a having a large diameter is opened and closed by the poppet valve body 45. The first valve port 22a is closed by the needle valve body 44 until the valve shaft 25 rises from the lowest lowered position (position shown in FIG. 1) to a predetermined position (position shown in FIG. 2). At the same time, when the flow rate (opening) of the second valve port 23 is linearly controlled by the poppet valve body 45 and the valve shaft 25 is further raised from the predetermined position, the poppet valve body 45 Since the two valve ports 23a are closed and the flow rate (opening degree) of the first valve port 22a is linearly controlled by the needle valve body 44, the refrigerant flows in one direction. In a small stream It is possible to both reduce the increase of the flow rate control accuracy and increased reduction and pressure loss of a controllable flow rate of the effective.

なお、上記実施例において、盲蓋19及び連通路16を省いて、小流量時は、冷媒を第2流出口13を介することなく第1流出口12より流すようにしてもよい。   In the above embodiment, the blind lid 19 and the communication path 16 may be omitted, and the refrigerant may be flowed from the first outlet 12 without passing through the second outlet 13 at a small flow rate.

また、パルス数がTiからTjに至るまでは第1弁口22a及び第2弁口23aは、両方共に閉じるものとして説明したが、上記TiからTjに至るまでの間においても、第1弁口22a及び第2弁口23aは共に開いたままの構成とすることも可能である。   In addition, the first valve port 22a and the second valve port 23a are both closed until the pulse number reaches Ti to Tj. However, the first valve port may also be closed between Ti and Tj. Both 22a and the second valve port 23a can be configured to remain open.

10 電動弁
11 流入口
12 第1流出口
13 第2流出口
15 弁本体
16 連通路
19 盲蓋
21 弁室
22 第1弁座
22a 第1弁口
23 第2弁座
23a 第2弁口
25 弁軸
30 ロータ
40 キャン
43 弁体収容室
44 ニードル弁体(第1弁体)
45 ポペット弁体(第2弁体)
46 第1係止部材
47 第2係止部材
50 ステータ
61 第1コイルばね
62 第2コイルばね
DESCRIPTION OF SYMBOLS 10 Motorized valve 11 Inflow port 12 1st outflow port 13 2nd outflow port 15 Valve main body 16 Communication path 19 Blind lid 21 Valve chamber 22 1st valve seat 22a 1st valve port 23 2nd valve seat 23a 2nd valve port 25 Valve Shaft 30 Rotor 40 Can 43 Valve body storage chamber 44 Needle valve body (first valve body)
45 Poppet valve body (second valve body)
46 First locking member 47 Second locking member 50 Stator 61 First coil spring 62 Second coil spring

Claims (5)

弁軸と、該弁軸を昇降させるためのロータ、ステータ、送りねじ等からなる昇降駆動機構と、下から順に第1弁口、弁室、及び第2弁口が設けられた弁本体とを備え、
前記弁軸の下部に、前記第1弁口を開閉するための第1弁体が軸方向に相対移動可能な状態で配在され、かつ、該第1弁体の前記弁軸に対する下動限界位置を定める第1係止部材が設けられるとともに、前記第1弁体を前記第1係止部材側に付勢する第1ばね部材が設けられ、
前記弁軸における前記第1弁体より上側に、前記第2弁口を開閉するための第2弁体が軸方向に相対移動可能な状態で配在され、かつ、該第2弁体の前記弁軸に対する上動限界位置を定める第2係止部材が設けられるとともに、前記第2弁体を前記第2係止部材側に付勢する第2ばね部材が設けられ、
前記第1弁口及び第2弁口のうちの一方は実効開口面積が小、他方は実効開口面積が大とされ、前記弁軸が最下降位置から所定位置へ上昇するまでは、前記第1弁体が前記第1弁口を閉じるとともに、前記第2弁体が前記第2弁口の開度を変化させ、前記弁軸を前記所定位置からさらに上昇させると、前記第2弁体が前記第2弁口を閉じるとともに、前記第1弁体が前記第1弁口の開度を変化させるように構成された電動弁。
A valve shaft, a lifting drive mechanism including a rotor, a stator, a feed screw, and the like for moving the valve shaft up and down, and a valve body provided with a first valve port, a valve chamber, and a second valve port in order from the bottom Prepared,
A first valve body for opening and closing the first valve port is disposed at a lower portion of the valve shaft so as to be relatively movable in the axial direction, and a lower limit of the first valve body relative to the valve shaft A first locking member for determining the position, and a first spring member for biasing the first valve body toward the first locking member;
A second valve body for opening and closing the second valve port is disposed above the first valve body in the valve shaft so as to be relatively movable in the axial direction, and the second valve body A second locking member for determining an upper movement limit position with respect to the valve shaft is provided, and a second spring member for biasing the second valve body toward the second locking member is provided,
One of the first valve port and the second valve port has a small effective opening area, and the other has a large effective opening area. Until the valve shaft rises from the lowest position to a predetermined position, the first When the valve body closes the first valve port, the second valve body changes the opening of the second valve port, and when the valve shaft is further raised from the predetermined position, the second valve body is A motor-operated valve configured to close the second valve port and cause the first valve body to change an opening degree of the first valve port.
前記第1弁体及び第2弁体のうちの、実効開口面積が小の弁口を開閉する方の弁体がニードル型とされ、実効開口面積が大の弁口を開閉する方の弁体がポペット型とされていることを特徴とする請求項1に記載の電動弁。   Of the first valve body and the second valve body, a valve body that opens and closes a valve opening having a small effective opening area is a needle type, and a valve body that opens and closes a valve opening having a large effective opening area. The motor-operated valve according to claim 1, wherein the valve is a poppet type. 前記弁室に流入口が開口せしめられ、前記第1弁口に連なって第1流出口が設けられるとともに、前記第2弁口に連なって第2流出口が設けられていることを特徴とする請求項1又は2に記載の電動弁。   An inflow port is opened in the valve chamber, a first outflow port is provided to be connected to the first valve port, and a second outflow port is provided to be connected to the second valve port. The motor-operated valve according to claim 1 or 2. 前記第1流出口の下流側が盲蓋で閉塞されるとともに、前記第1流出口と第2流出口とが連通路を介して連通せしめられていることを特徴とする請求項3に記載の電動弁。   4. The electric motor according to claim 3, wherein a downstream side of the first outlet is closed with a blind cover, and the first outlet and the second outlet are communicated with each other via a communication path. valve. 弁軸と、該弁軸を昇降させるためのロータ、ステータ、送りねじ等からなる昇降駆動機構と、下から順に、実効開口面積が小の第1弁口、弁室、及び実効開口面積が大の第2弁口が設けられた弁本体とを備え、
前記弁軸の下部に、前記第1弁口を開閉するためのニードル型の第1弁体が軸方向に相対移動可能な状態で配在され、かつ、該第1弁体の前記弁軸に対する下動限界位置を定める第1係止部材が設けられるとともに、前記第1弁体を前記第1係止部材側に付勢する第1ばね部材が設けられ、
前記弁軸における前記第1弁体より上側に、前記第2弁口を開閉するためのポペット型の第2弁体が軸方向に相対移動可能な状態で配在され、かつ、該第2弁体の前記弁軸に対する上動限界位置を定める第2係止部材が設けられるとともに、前記第2弁体を前記第2係止部材側に付勢する第2ばね部材が設けられ、
前記弁軸が最下降位置から所定位置へ上昇するまでは、前記第1弁体が前記第1弁口を閉じるとともに、前記第2弁体が前記第2弁口の開度を変化させる大流量制御状態をとり、前記弁軸を前記所定位置からさらに上昇させると、前記第2弁体が前記第2弁口を閉じるとともに、前記第1弁体が前記第1弁口の開度を変化させる小流量制御状態をとるように構成された電動弁。
A valve shaft, a lifting drive mechanism composed of a rotor, a stator, a feed screw and the like for raising and lowering the valve shaft, and a first valve port having a small effective opening area, a valve chamber, and a large effective opening area in order from the bottom. A valve body provided with a second valve opening,
A needle-type first valve body for opening and closing the first valve port is disposed at a lower portion of the valve shaft so as to be relatively movable in the axial direction, and the first valve body with respect to the valve shaft A first locking member for defining a lower movement limit position is provided, and a first spring member for biasing the first valve body toward the first locking member is provided,
A poppet type second valve body for opening and closing the second valve port is disposed above the first valve body in the valve shaft so as to be relatively movable in the axial direction, and the second valve A second locking member for determining an upper movement limit position of the body relative to the valve shaft is provided, and a second spring member for biasing the second valve body toward the second locking member is provided,
The first valve body closes the first valve port and the second valve body changes the opening degree of the second valve port until the valve shaft rises from the lowest position to a predetermined position. When the control state is taken and the valve shaft is further raised from the predetermined position, the second valve body closes the second valve port and the first valve body changes the opening degree of the first valve port. Motorized valve configured to take a small flow control state.
JP2011038673A 2011-02-24 2011-02-24 Motorized valve Active JP5657424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011038673A JP5657424B2 (en) 2011-02-24 2011-02-24 Motorized valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011038673A JP5657424B2 (en) 2011-02-24 2011-02-24 Motorized valve

Publications (2)

Publication Number Publication Date
JP2012172836A JP2012172836A (en) 2012-09-10
JP5657424B2 true JP5657424B2 (en) 2015-01-21

Family

ID=46975920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011038673A Active JP5657424B2 (en) 2011-02-24 2011-02-24 Motorized valve

Country Status (1)

Country Link
JP (1) JP5657424B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5727347B2 (en) * 2011-10-18 2015-06-03 太平洋工業株式会社 Flow control valve
US9157540B2 (en) * 2013-01-28 2015-10-13 Tescom Corporation Fluid regulator with integrated rapid pressurization bypass valve
KR101803343B1 (en) 2016-05-27 2017-12-01 주식회사 대정밸브 Micro control valve and a method of manufacturing the same
EP3642520B1 (en) 2017-06-23 2023-11-22 Graco Minnesota Inc. Variable flow poppet valve
CN109425150B (en) * 2017-08-30 2020-05-15 浙江三花智能控制股份有限公司 Electronic expansion valve and refrigeration system with same
CN109425151B (en) * 2017-08-30 2020-08-28 浙江三花智能控制股份有限公司 Electronic expansion valve and refrigeration system with same
JP6515164B2 (en) * 2017-09-29 2019-05-15 株式会社不二工機 Flow control valve
JP6909740B2 (en) * 2018-01-31 2021-07-28 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP7150344B2 (en) * 2020-01-10 2022-10-11 株式会社不二工機 electric valve
JP7150345B2 (en) * 2020-01-10 2022-10-11 株式会社不二工機 electric valve

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091859U (en) * 1983-11-29 1985-06-22 エスエムシ−株式会社 flow control valve
JPS6138371A (en) * 1984-07-31 1986-02-24 株式会社 鷺宮製作所 Electric type expansion valve and refrigeration system utilizing said valve
JPH02116076U (en) * 1989-03-06 1990-09-17
JP2005003190A (en) * 2003-05-20 2005-01-06 Ckd Corp Flow dividing valve and mixing valve
JP5022120B2 (en) * 2007-07-03 2012-09-12 株式会社不二工機 Motorized valves for air conditioning systems
JP5572330B2 (en) * 2009-04-16 2014-08-13 株式会社不二工機 Motorized valve

Also Published As

Publication number Publication date
JP2012172836A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP5657424B2 (en) Motorized valve
JP5738029B2 (en) Compound valve
JP5802539B2 (en) Compound valve
JP6194157B2 (en) Motorized valve
JP5572330B2 (en) Motorized valve
US8763419B2 (en) Motor-operated valve and refrigeration cycle using the same
JP5802540B2 (en) Compound valve
KR101303536B1 (en) Electric valve
JP5726426B2 (en) Three-way electric valve and heat pump device equipped with the valve
JP5572516B2 (en) Motorized valve
CN109578660B (en) Electric valve
JP5019862B2 (en) Pilot type control valve
JP4570484B2 (en) Composite valve, heat pump type air conditioner and control method thereof
US8720486B2 (en) Valve apparatus
JP5818509B2 (en) Valve device
JP2008128449A (en) Flow control valve and refrigeration cycle
JP5699266B2 (en) Control valve
JP4653518B2 (en) Three-way valve
JP5881452B2 (en) Compound valve
JP5921821B2 (en) Motorized valve
JP5881451B2 (en) Compound valve
JP2010249247A (en) Motor-operated valve and refrigeration cycle using the same
JP6194403B2 (en) Motorized valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141126

R150 Certificate of patent or registration of utility model

Ref document number: 5657424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250