JP5811041B2 - Far red light emitting phosphor and light emitting device using the same - Google Patents

Far red light emitting phosphor and light emitting device using the same Download PDF

Info

Publication number
JP5811041B2
JP5811041B2 JP2012128505A JP2012128505A JP5811041B2 JP 5811041 B2 JP5811041 B2 JP 5811041B2 JP 2012128505 A JP2012128505 A JP 2012128505A JP 2012128505 A JP2012128505 A JP 2012128505A JP 5811041 B2 JP5811041 B2 JP 5811041B2
Authority
JP
Japan
Prior art keywords
light
phosphor
light emitting
phosphor according
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012128505A
Other languages
Japanese (ja)
Other versions
JP2013253144A (en
Inventor
吉田 智一
智一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2012128505A priority Critical patent/JP5811041B2/en
Publication of JP2013253144A publication Critical patent/JP2013253144A/en
Application granted granted Critical
Publication of JP5811041B2 publication Critical patent/JP5811041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、発光ダイオード等に使用される蛍光体に関し、特に可視光の短波長側の光によって励起され、遠赤色域に発光スペクトルを有するMn付活の酸化物蛍光体およびそれを用いた発光装置に関する。   The present invention relates to a phosphor used for a light-emitting diode and the like, and in particular, an Mn-activated oxide phosphor having an emission spectrum in a far red region excited by light on the short wavelength side of visible light and light emission using the same Relates to the device.

発光ダイオード(Light emitting diode:LED)は、白熱灯のような光源の代用品として使用される発光装置である。発光ダイオードはバックライト、ディスプレイ灯、警告灯、表示用灯具、照明用灯具として有用である。またレーザーダイオード(Laser diode:LD)も発光ダイオードと同様に蛍光体と組み合わせた発光装置が種々提案されている。   A light emitting diode (LED) is a light emitting device used as a substitute for a light source such as an incandescent lamp. The light-emitting diode is useful as a backlight, a display lamp, a warning lamp, a display lamp, and an illumination lamp. In addition, various laser diodes (LDs) that combine phosphors with phosphors have been proposed in the same way as light emitting diodes.

一般に、植物の栽培用光源として、赤色発光蛍光体と青色発光蛍光体とを配合してなる蛍光体層を具備した蛍光ランプが普及している。   In general, fluorescent lamps having a phosphor layer formed by blending a red light-emitting phosphor and a blue light-emitting phosphor are widely used as plant cultivation light sources.

また三波長系蛍光体に遠赤色発光蛍光体を混合した蛍光体層を具備した植物栽培用の蛍光ランプも提案されている。遠赤色光が所定の品種の植物に照射されると、植物のフィトクロム反応によって植物の成長を制御することが可能になることが知られている(例えば、特許文献1参照)。   A fluorescent lamp for plant cultivation having a phosphor layer in which a far-red phosphor is mixed with a three-wavelength phosphor has also been proposed. It is known that when a plant of a predetermined variety is irradiated with far-red light, the growth of the plant can be controlled by the phytochrome reaction of the plant (see, for example, Patent Document 1).

さらに、この遠赤色光を放射する蛍光体として、鉄付活アルミン酸リチウム(LiAlO2:Fe)などが知られており、紫外線を励起源とする植物育成用ランプに使用されている(例えば、特許文献2参照)。   Further, as phosphors emitting far-red light, iron-activated lithium aluminate (LiAlO2: Fe) and the like are known, and are used in plant growth lamps using ultraviolet light as an excitation source (for example, patents). Reference 2).

特開2000−41506JP2000-41506A 特開平11−263971JP-A-11-263971

しかしながら、従来においては、可視光の短波長側の光に励起されて、発光強度の高い遠赤色発光蛍光体が知られていない。特に植物育成用途に好適とされる、遠赤色発光の蛍光体およびそれを用いた発光装置の実用化が望まれているが、従来品では充分な発光特性が得られていない。   However, conventionally, far-red light emitting phosphors that are excited by light on the short wavelength side of visible light and have high emission intensity have not been known. In particular, there is a demand for practical use of a far-red light-emitting phosphor and a light-emitting device using the phosphor, which are suitable for plant growing applications, but sufficient light-emitting characteristics are not obtained with conventional products.

以上のことから、本発明は従来の問題を解決すべく、可視光の短波長側の光に励起されて、発光強度の高い遠赤色発光の蛍光体及びそれを用いた発光装置を提供することを目的とする。   In view of the above, the present invention provides a far-red phosphor that emits light with high emission intensity and is excited by light on the short wavelength side of visible light, and a light-emitting device using the same, in order to solve the conventional problems. With the goal.

上記の問題点を解決すべく、本発明者は鋭意検討を重ねた結果、本発明を完成するに到った。本明細書において、可視光の短波長側の光は、特に限定されないが400nm〜500nmの領域をいう。   In order to solve the above-mentioned problems, the present inventor has intensively studied, and as a result, the present invention has been completed. In this specification, the light on the short wavelength side of visible light is not particularly limited, but refers to a region of 400 nm to 500 nm.

本発明は、以下の一般式で示される蛍光体に関する。   The present invention relates to a phosphor represented by the following general formula.

(M 1−x−yMnMg)O4+x/2−y/2
(ただし、MはCa、Sr、Baの第2族元素から選ばれる少なくとも1種以上であり、MはSc、Y、Ln(ランタノイド)の第3族元素から選ばれる少なくとも1種以上であり、MはAl、Ga、Inの第13族元素から選ばれる少なくとも1種以上である。x、yは、0.001≦x≦0.2、0≦y≦0.2である。)これにより、可視光の短波長側の光に励起されて遠赤色域に発光する、発光強度の高い酸化物蛍光体を提供することができる。
M 1 M 2 (M 3 1-xy Mn x Mg y ) O 4 + x / 2−y / 2
(However, M 1 is at least one selected from the group 2 elements of Ca, Sr, and Ba, and M 2 is at least one selected from the group 3 elements of Sc, Y, Ln (lanthanoid)) And M 3 is at least one selected from the group 13 elements of Al, Ga and In. X and y are 0.001 ≦ x ≦ 0.2 and 0 ≦ y ≦ 0.2. Thus, it is possible to provide an oxide phosphor having high emission intensity that is excited by light on the short wavelength side of visible light and emits light in the far red region.

前記蛍光体は、4価Mnで付活されており、MはCa、Srの第2族元素から選ばれる少なくとも1種以上であり、MはY、Gd、Laの第3族元素から選ばれる少なくとも1種以上であり、MはAl、Gaの第13族元素から選ばれる少なくとも1種以上であり、x、yは、0.005≦x≦0.015、0≦y≦0.03であることが好ましい。これにより、発光強度の高い蛍光体を提供することができる。 The phosphor is activated by tetravalent Mn, M 1 is at least one selected from the group 2 elements of Ca and Sr, and M 2 is from the group 3 elements of Y, Gd, and La. At least one selected, M 3 is at least one selected from group elements of Al and Ga, and x and y are 0.005 ≦ x ≦ 0.015, 0 ≦ y ≦ 0. 0.03 is preferred. Thereby, a phosphor with high emission intensity can be provided.

前記蛍光体は、可視光の短波長側の光に励起されて遠赤色に発光する。   The phosphor is excited by light on the short wavelength side of visible light and emits far red light.

前記蛍光体は、700nmから740nmの遠赤色域に発光ピークを有する。   The phosphor has an emission peak in a far red region from 700 nm to 740 nm.

本発明は、可視光の短波長側の光を発する光源と、該光源からの光を吸収して遠赤色に発光する前記蛍光体と、を有する発光装置に関する。   The present invention relates to a light emitting device having a light source that emits light on a short wavelength side of visible light and the phosphor that absorbs light from the light source and emits light in a far red color.

本発明は、以上説明したように構成されているので、可視光の短波長側の光に励起されて遠赤色域に発光する、発光強度に優れた遠赤色発光蛍光体を得ることができる。さらに、本発明の酸化物蛍光体を用いることで、従来よりも発光特性に優れた発光装置を得ることができる。   Since the present invention is configured as described above, it is possible to obtain a far red light emitting phosphor excellent in emission intensity that is excited by light on the short wavelength side of visible light and emits light in the far red region. Furthermore, by using the oxide phosphor of the present invention, a light-emitting device having better light emission characteristics than before can be obtained.

実施例1に係る蛍光体の励起スペクトルである。2 is an excitation spectrum of the phosphor according to Example 1. 実施例1に係る蛍光体の発光スペクトルである。2 is an emission spectrum of the phosphor according to Example 1. 実施例4に係る蛍光体の励起スペクトルである。It is an excitation spectrum of the phosphor according to Example 4. 実施例4に係る蛍光体の発光スペクトルである。It is an emission spectrum of the phosphor according to Example 4.

以下、本発明に係る蛍光体及びそれを用いた発光装置、並びに、それらの製造方法について、実施の形態及び実施例を用いて説明する。だたし、本発明は、この実施の形態及び実施例に限定されない。
<蛍光体>
実施の形態に係る酸化物の蛍光体は、4価Mnで付活され、可視光の短波長側の光に励起されて遠赤色域に発光する。該蛍光体は、一般式がM(M 1−x−yMnMg)O4+x/2−y/2で示され、式中のMはCa、Sr、Baの第2族元素から選ばれる少なくとも1種以上であり、MはSc、Y、Ln(ランタノイド)の第3族元素から選ばれる少なくとも1種以上であり、MはAl、Ga、Inの第13族元素から選ばれる少なくとも1種以上である。x、yは、0.001≦x≦0.2、0≦y≦0.2である。ここでLn(ランタノイド)とは、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luを意味する。
Hereinafter, a phosphor according to the present invention, a light emitting device using the phosphor, and a method for manufacturing the same will be described with reference to embodiments and examples. However, the present invention is not limited to this embodiment and example.
<Phosphor>
The oxide phosphor according to the embodiment is activated by tetravalent Mn, and is excited by light on the short wavelength side of visible light to emit light in a far red region. The phosphor is represented by the general formula M 1 M 2 (M 3 1-xy Mn x Mg y ) O 4 + x / 2−y / 2 , where M 1 is the number of Ca, Sr, or Ba. At least one selected from Group 2 elements, M 2 is at least one selected from Group 3 elements of Sc, Y, and Ln (lanthanoid), and M 3 is a thirteenth selected from Al, Ga, and In. At least one selected from group elements. x and y are 0.001 ≦ x ≦ 0.2 and 0 ≦ y ≦ 0.2. Here, Ln (lanthanoid) means La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.

特に、MはCa、Srであり、MはY、Gd、Laであり、MはAl、Gaであり、x、yは、0.001≦x≦0.03、0≦y≦0.03であることが好ましい。さらに、MはCaであり、MはYであり、MはAlであり、x、yは、0.005≦x≦0.015、0≦y≦0.03であることが好ましい。Mnは付活剤として働くため、0.001mol以上有していればよく、0.2mol以下であれば効率よく作用する。
<発光スペクトル>
酸化物の蛍光体は、可視光の短波長側の光を吸収して、励起光の発光ピーク波長よりも長波長側に蛍光体の発光ピーク波長を有する。可視光の短波長側の光は、主に青色光領域となる。具体的には400nm〜500nmに発光ピーク波長を有する励起光源からの光により励起され、700から740nmの波長の範囲に発光ピーク波長を有する。励起光源には420nm〜500nmに主発光ピーク波長を有する光源を用いることが好ましく、更に440〜480nmに発光ピーク波長を有する光源を用いることが好ましい。
<製造方法>
原料となるCaCO、Y、Al、MnCOを所定の組成となるように秤量する。また、AlFのようなフラックスを用いることもできる。フラックスも含むこれらの原料混合物を坩堝に充填し、蓋をして、大気中1000℃〜1800℃で数時間焼成を行う。これにより、所定の酸化物蛍光体を生成することができる。
In particular, M 1 is Ca and Sr, M 2 is Y, Gd, and La, M 3 is Al and Ga, and x and y are 0.001 ≦ x ≦ 0.03 and 0 ≦ y ≦. It is preferable that it is 0.03. Further, M 1 is Ca, M 2 is Y, M 3 is Al, and x and y are preferably 0.005 ≦ x ≦ 0.015 and 0 ≦ y ≦ 0.03. . Since Mn works as an activator, it is sufficient to have 0.001 mol or more, and if it is 0.2 mol or less, it works efficiently.
<Emission spectrum>
The oxide phosphor absorbs light on the short wavelength side of visible light and has the emission peak wavelength of the phosphor on the longer wavelength side than the emission peak wavelength of excitation light. The light on the short wavelength side of visible light is mainly in the blue light region. Specifically, it is excited by light from an excitation light source having an emission peak wavelength at 400 nm to 500 nm and has an emission peak wavelength in a wavelength range of 700 to 740 nm. As the excitation light source, a light source having a main emission peak wavelength at 420 nm to 500 nm is preferably used, and a light source having an emission peak wavelength at 440 to 480 nm is further preferably used.
<Manufacturing method>
The raw materials CaCO 3 , Y 2 O 3 , Al 2 O 3 , and MnCO 3 are weighed so as to have a predetermined composition. A flux such as AlF 3 can also be used. The raw material mixture including the flux is filled in a crucible, covered, and fired at 1000 ° C. to 1800 ° C. for several hours in the atmosphere. Thereby, a predetermined oxide phosphor can be generated.

CaCOの全部若しくは一部をSrCO、BaCOに代えることもできる。また、Yの全部若しくは一部をSc、Lnに代えることもできる。また、Alの全部若しくは一部をGa、Inに代えることもできる。さらに、MnCOの全部若しくは一部をMnOに代えることもできる。 All or part of CaCO 3 may be replaced with SrCO 3 or BaCO 3 . Further, all or part of Y 2 O 3 can be replaced with Sc 2 O 3 or Ln 2 O 3 . Further, all or part of Al 2 O 3 can be replaced with Ga 2 O 3 or In 2 O 3 . Furthermore, all or part of MnCO 3 can be replaced with MnO 2 .

以下、実施例1〜10に係る4価Mn付活酸化物蛍光体について説明する。   Hereinafter, the tetravalent Mn activated oxide phosphor according to Examples 1 to 10 will be described.

表1は、実施例1〜10に係る酸化物蛍光体の仕込み組成、励起ピーク波長()、発光ピーク波長(E→)、相対発光ピーク強度(%)を示す。図1は、実施例1に係る酸化物蛍光体の励起スペクトルを示す。図2は、実施例1に係る酸化物蛍光体の発光スペクトルを示す。図3は、実施例4に係る酸化物蛍光体の励起スペクトルを示す。図4は、実施例4に係る酸化物蛍光体の発光スペクトルを示す。
Table 1 shows preparation compositions, excitation peak wavelengths ( 4 A 24 T 2 ), emission peak wavelengths ( 2 E → 4 A 2 ), and relative emission peak intensities (%) of the oxide phosphors according to Examples 1 to 10. ). FIG. 1 shows an excitation spectrum of the oxide phosphor according to Example 1. FIG. 2 shows an emission spectrum of the oxide phosphor according to Example 1. FIG. 3 shows an excitation spectrum of the oxide phosphor according to Example 4. FIG. 4 shows an emission spectrum of the oxide phosphor according to Example 4.

Figure 0005811041
Figure 0005811041

実施例1に係る、一般式がCa1.001.00Al0.990Mn0.0104.005で表わされる4価Mn付活酸化物蛍光体は、以下の方法により作製した。 The tetravalent Mn-activated oxide phosphor represented by the general formula Ca 1.00 Y 1.00 Al 0.990 Mn 0.010 O 4.005 according to Example 1 was produced by the following method.

所定の仕込み組成比となるように、原料となるCaCOを7.53g、Yを8.50g、Alを3.75g、MnCOを0.09g秤量し、フラックスとしてAlFを0.13g添加して混合した原料混合物をアルミナ坩堝に充填し、蓋をして、大気中1400℃で6時間焼成を行った。これにより4価Mn付活酸化物蛍光体を得た。この蛍光体は、460nm付近の青色光で励起することにより、主発光ピークが712nmの遠赤色発光を示した。 As a predetermined charging composition ratio, AlF the CaCO 3 as a raw material 7.53 g, 8.50 g of Y 2 O 3, 3.75 g of Al 2 O 3, and MnCO 3 was 0.09g weighed, as flux The raw material mixture obtained by adding 0.13 g of 3 and mixing was filled in an alumina crucible, covered, and baked at 1400 ° C. in the atmosphere for 6 hours. As a result, a tetravalent Mn activated oxide phosphor was obtained. This phosphor exhibited far-red emission with a main emission peak of 712 nm when excited with blue light near 460 nm.

原料としてCaCOを7.54g、Yを8.51g、Alを3.78g、MnCOを0.05g、AlFを0.13g使用する以外は実施例1と同様に行い、一般式がCa1.001.00Al0.995Mn0.0054.0025で表わされる実施例2に係る酸化物蛍光体を得た。実施例2に係る蛍光体の460nm励起での相対発光ピーク強度は実施例1の97%であった。 The CaCO 3 as a raw material 7.54g, Y 2 O 3 to 8.51 g, the Al 2 O 3 3.78g, the MnCO 3 0.05 g, the AlF 3 in the same manner as in Example 1 except that 0.13g use Then , an oxide phosphor according to Example 2 having a general formula represented by Ca 1.00 Y 1.00 Al 0.995 Mn 0.005 O 4.0025 was obtained. The relative emission peak intensity of the phosphor according to Example 2 at 460 nm excitation was 97% of Example 1.

原料としてCaCOを7.52g、Yを8.48g、Alを3.73g、MnCOを0.14g、AlFを0.13g使用する以外は実施例1と同様に行い、一般式がCa1.001.00Al0.985Mn0.0154.0075で表わされる実施例3に係る酸化物蛍光体を得た。実施例3に係る蛍光体の460nm励起での相対発光ピーク強度は実施例1の85%であった。 A CaCO 3 as a starting material 7.52 g, Y a 2 O 3 8.48 g, the Al 2 O 3 3.73g, the MnCO 3 0.14 g, the AlF 3 in the same manner as in Example 1 except that 0.13g use The oxide phosphor according to Example 3 having the general formula represented by Ca 1.00 Y 1.00 Al 0.985 Mn 0.015 O 4.0075 was obtained. The relative emission peak intensity of the phosphor according to Example 3 at 460 nm excitation was 85% of Example 1.

原料としてCaCOを7.55g、Yを8.51g、Alを3.72g、MnCOを0.09g、MgOを0.03g、AlFを0.13g使用する以外は実施例1と同様に行い、一般式がCa1.001.00Al0.98Mg0.01Mn0.014.000で表わされる実施例4に係る酸化物蛍光体を得た。実施例4に係る蛍光体の460nm励起での相対発光ピーク強度は実施例1の144%であり、Mg2+による電荷保障の効果が確認された。 The CaCO 3 as a raw material 7.55g, Y 2 O 3 and 8.51g, Al 2 O 3 and 3.72 g, 0.09 g of MnCO 3, MgO and 0.03 g, except for the AlF 3 0.13 g using The same procedure as in Example 1 was performed to obtain an oxide phosphor according to Example 4 represented by the general formula Ca 1.00 Y 1.00 Al 0.98 Mg 0.01 Mn 0.01 O 4.0000 . . The relative emission peak intensity at 460 nm excitation of the phosphor according to Example 4 was 144% of Example 1, and the effect of charge assurance by Mg 2+ was confirmed.

原料としてCaCOを7.56g、Yを8.53g、Alを3.69g、MnCOを0.09g、MgOを0.06g、AlFを0.13g使用する以外は実施例1と同様に行い、一般式がCa1.001.00Al0.97Mg0.02Mn0.013.995で表わされる実施例5に係る酸化物蛍光体を得た。実施例5に係る蛍光体の460nm励起での相対発光ピーク強度は実施例1の135%であった。 The CaCO 3 as a raw material 7.56g, Y 2 O 3 and 8.53g, Al 2 O 3 and 3.69 g, 0.09 g of MnCO 3, MgO and 0.06 g, except for the AlF 3 0.13 g using The oxide phosphor according to Example 5 having the general formula Ca 1.00 Y 1.00 Al 0.97 Mg 0.02 Mn 0.01 O 3.995 was obtained in the same manner as in Example 1. . The relative emission peak intensity of the phosphor according to Example 5 at 460 nm excitation was 135% of Example 1.

原料としてCaCOを7.57g、Yを8.54g、Alを3.66g、MnCOを0.09g、MgOを0.09g、AlFを0.13g使用する以外は実施例1と同様に行い、一般式がCa1.001.00Al0.96Mg0.03Mn0.013.990で表わされる実施例6に係る酸化物蛍光体を得た。実施例6に係る蛍光体の460nm励起での相対発光ピーク強度は実施例1の128%であった。 The CaCO 3 as a raw material 7.57g, Y 2 O 3 and 8.54g, Al 2 O 3 and 3.66 g, 0.09 g of MnCO 3, MgO and 0.09 g, except for the AlF 3 0.13 g using The oxide phosphor according to Example 6 having the general formula Ca 1.00 Y 1.00 Al 0.96 Mg 0.03 Mn 0.01 O 3.990 was obtained in the same manner as in Example 1. . The relative emission peak intensity of the phosphor according to Example 6 at 460 nm excitation was 128% of Example 1.

原料としてCaCOを5.99g、Gdを10.85g、Alを2.96g、MnCOを0.07g、MgOを0.02g、AlFを0.10g使用する以外は実施例1と同様に行い、一般式がCa1.00Gd1.00Al0.98Mg0.01Mn0.014.00で表わされる実施例7に係る酸化物蛍光体を得た。実施例7に係る蛍光体の460nm励起での相対発光ピーク強度は実施例1の52%であった。 The CaCO 3 as a raw material 5.99g, Gd 2 O 3 and 10.85g, Al 2 O 3 to 2.96 g, the MnCO 3 0.07 g, MgO and 0.02 g, except that 0.10g use AlF 3 The oxide phosphor according to Example 7 having the general formula Ca 1.00 Gd 1.00 Al 0.98 Mg 0.01 Mn 0.01 O 4.00 was obtained in the same manner as in Example 1. . The relative emission peak intensity of the phosphor according to Example 7 at 460 nm excitation was 52% of Example 1.

原料としてSrCOを8.17g、Laを8.94g、Alを2.71g、MnCOを0.07g、MgOを0.02g、AlFを0.09g使用する以外は実施例1と同様に行い、一般式がSr1.00La1.00Al0.98Mg0.01Mn0.014.00で表わされる実施例8に係る酸化物蛍光体を得た。実施例8に係る蛍光体の460nm励起での相対発光ピーク強度は実施例1の4%であった。 Raw material as a SrCO 3 8.17g, La 2 O 3 and 8.94g, Al 2 O 3 to 2.71 g, the MnCO 3 0.07 g, MgO and 0.02 g, except that the AlF 3 using 0.09g The oxide phosphor according to Example 8 having the general formula Sr 1.00 La 1.00 Al 0.98 Mg 0.01 Mn 0.01 O 4.00 was obtained in the same manner as in Example 1. . The relative emission peak intensity of the phosphor according to Example 8 at 460 nm excitation was 4% of Example 1.

原料としてSrCOを7.78g、Gdを9.47g、Alを2.58g、MnCOを0.06g、MgOを0.02g、AlFを0.09g使用する以外は実施例1と同様に行い、一般式がSr1.00Gd1.00Al0.98Mg0.01Mn0.014.00で表わされる実施例9に係る酸化物蛍光体を得た。実施例9に係る蛍光体の460nm励起での相対発光ピーク強度は実施例1の27%であった。 Raw material as a SrCO 3 7.78g, Gd 2 O 3 and 9.47g, Al 2 O 3 to 2.58 g, the MnCO 3 0.06 g, MgO and 0.02 g, except that the AlF 3 using 0.09g The oxide phosphor according to Example 9 having the general formula represented by Sr 1.00 Gd 1.00 Al 0.98 Mg 0.01 Mn 0.01 O 4.00 was obtained in the same manner as in Example 1. . The relative emission peak intensity of the phosphor according to Example 9 at 460 nm excitation was 27% of Example 1.

原料としてSrCOを7.35g、Laを8.04g、Gaを4.44g、MnCOを0.06g、MgOを0.02g、AlFを0.08g使用する以外は実施例1と同様に行い、一般式がSr1.00La1.00Ga0.98Mg0.01Mn0.014.00で表わされる実施例10に係る酸化物蛍光体を得た。実施例10に係る蛍光体の460nm励起での相対発光ピーク強度は実施例1の11%であった。 Raw material as a SrCO 3 7.35g, La 2 O 3 and 8.04g, Ga 2 O 3 to 4.44 g, the MnCO 3 0.06 g, MgO and 0.02 g, except that the AlF 3 using 0.08g The oxide phosphor according to Example 10 having the general formula Sr 1.00 La 1.00 Ga 0.98 Mg 0.01 Mn 0.01 O 4.00 was obtained in the same manner as in Example 1. . The relative emission peak intensity of the phosphor according to Example 10 at 460 nm excitation was 11% of Example 1.

本発明の4価Mn付活酸化物蛍光体及びこれらを用いた発光装置は、特に青色発光ダイオードを光源とする植物育成用照明に好適に利用できる。   The tetravalent Mn-activated oxide phosphor of the present invention and the light-emitting device using these can be suitably used particularly for plant growth illumination using a blue light-emitting diode as a light source.

Claims (5)

以下の一般式で示される蛍光体。
(M 1−x−yMnMg)O4+x/2−y/2
(ただし、MはCa、Sr、Baの第2族元素から選ばれる少なくとも1種以上であり、MはSc、Y、Ln(ランタノイド)の第3族元素から選ばれる少なくとも1種以上であり、MはAl、Ga、Inの第13族元素から選ばれる少なくとも1種以上である。x、yは、0.001≦x≦0.2、0≦y≦0.2である。)
A phosphor represented by the following general formula.
M 1 M 2 (M 3 1-xy Mn x Mg y ) O 4 + x / 2−y / 2
(However, M 1 is at least one selected from the group 2 elements of Ca, Sr, and Ba, and M 2 is at least one selected from the group 3 elements of Sc, Y, Ln (lanthanoid)) And M 3 is at least one selected from the group 13 elements of Al, Ga and In. X and y are 0.001 ≦ x ≦ 0.2 and 0 ≦ y ≦ 0.2. )
前記蛍光体は、4価Mnで付活されており、MはCa、Srの第2族元素から選ばれる少なくとも1種以上であり、MはY、Gd、Laの第3族元素から選ばれる少なくとも1種以上であり、MはAl、Gaの第13族元素から選ばれる少なくとも1種以上であり、x、yは、0.001≦x≦0.03、0≦y≦0.03である、請求項1に記載の蛍光体。 The phosphor is activated by tetravalent Mn, M 1 is at least one selected from the group 2 elements of Ca and Sr, and M 2 is from the group 3 elements of Y, Gd, and La. At least one selected, M 3 is at least one selected from Group 13 elements of Al and Ga, and x and y are 0.001 ≦ x ≦ 0.03, 0 ≦ y ≦ 0. The phosphor according to claim 1, which is 0.03. 前記蛍光体は、可視光の短波長側の光に励起されて遠赤色に発光することを特徴とする請求項1または2に記載の蛍光体。   3. The phosphor according to claim 1, wherein the phosphor emits far red light when excited by light on a short wavelength side of visible light. 4. 前記蛍光体は、700nmから740nmの遠赤色域に発光ピークを有することを特徴とする請求項1乃至3のいずれか一項に記載の蛍光体。   The phosphor according to any one of claims 1 to 3, wherein the phosphor has an emission peak in a far red region of 700 nm to 740 nm. 可視光の短波長側の光を発する光源と、該光源からの光を吸収して遠赤色に発光する請求項1乃至4のいずれか一項に記載の蛍光体と、を有する発光装置。   A light emitting device comprising: a light source that emits light having a short wavelength side of visible light; and the phosphor according to any one of claims 1 to 4 that absorbs light from the light source and emits light in a far red color.
JP2012128505A 2012-06-06 2012-06-06 Far red light emitting phosphor and light emitting device using the same Active JP5811041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012128505A JP5811041B2 (en) 2012-06-06 2012-06-06 Far red light emitting phosphor and light emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012128505A JP5811041B2 (en) 2012-06-06 2012-06-06 Far red light emitting phosphor and light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2013253144A JP2013253144A (en) 2013-12-19
JP5811041B2 true JP5811041B2 (en) 2015-11-11

Family

ID=49950952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012128505A Active JP5811041B2 (en) 2012-06-06 2012-06-06 Far red light emitting phosphor and light emitting device using the same

Country Status (1)

Country Link
JP (1) JP5811041B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2020107288A (en) * 2017-07-26 2021-08-26 Мерк Патент Гмбх LUMINOPHOR AND COMPOSITION
CN110944512A (en) * 2017-07-26 2020-03-31 默克专利股份有限公司 Composition comprising a metal oxide and a metal oxide
CN107779195A (en) * 2017-12-08 2018-03-09 吉林大学 A kind of Mn4+Aluminic acid lanthanum-strontium red fluorescence powder of ion doping and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL177757C (en) * 1975-04-16 1985-11-18 Philips Nv LUMINESCENT SCREEN, LOW-PRESSURE MERCURY DISCHARGE LAMP, AND METHOD FOR PREPARING A LUMINESCENT, CERIUM AND MANGANE ACTIVATED ALUMINATE.
JPS56147885A (en) * 1980-04-21 1981-11-17 Hitachi Ltd Fluorescent substance
JPH04239588A (en) * 1991-01-22 1992-08-27 Matsushita Electron Corp Aluminate fluorescent material and fluorescent lamp produced by using the same
JP2008195807A (en) * 2007-02-13 2008-08-28 Nichia Chem Ind Ltd Vacuum ultraviolet light-excited aluminate phosphor and device for emitting vacuum ultraviolet light-excited light by using the same
JP4862098B1 (en) * 2010-06-28 2012-01-25 株式会社東芝 LED bulb

Also Published As

Publication number Publication date
JP2013253144A (en) 2013-12-19

Similar Documents

Publication Publication Date Title
JP6027190B2 (en) Borophosphate phosphor and light source
TWI374178B (en) Novel aluminate-based green phosphors
JP4799549B2 (en) White light emitting diode
JP5092667B2 (en) Light emitting device
US20070278930A1 (en) Oxynitride phosphor and light emitting device
JP2005239985A (en) Phosphor, light source and led
JP2005325273A (en) Phosphor, its production method and light source and led using the phosphor
KR101072576B1 (en) Red phosphor and its forming method for use in solid state lighting
US20140376205A1 (en) Phosphor and light-emitting device using the same
JP2010270196A (en) Phosphor, method for manufacturing phosphor, phosphor-containing composition, light-emitting device, lighting apparatus, image display, and fluorescent paint
JP5811041B2 (en) Far red light emitting phosphor and light emitting device using the same
JP4168776B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
CN104087300B (en) A kind of thiophosphate fluorophor and its application
JP4752067B2 (en) Phosphor for light emitting diode
JP2009167382A (en) Fluorescent material and luminescent device
JP4927907B2 (en) White light emitting phosphor and light emitting device thereof
KR101072572B1 (en) Red phosphor and its forming method for use in solid state lighting
JP5471021B2 (en) Phosphor and phosphor manufacturing method, phosphor-containing composition, light emitting device, illumination device, and image display device
JP2008024852A (en) Method for producing phosphor
TWI355412B (en) Phosphors and lighting apparatus
JP2013144794A (en) Oxynitride-based phosphor and light-emitting device using the same
TW201005074A (en) Phosphor and method for producing the same
JP2010021578A (en) Phosphor for use in light emitting device
JP2015183084A (en) Fluorescent material for violet ray excitation, composition containing fluorescent material and light-emitting device using the fluorescent material and lightening apparatus and picture display unit using the light-emitting device
JP2005264062A (en) Phosphor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150831

R150 Certificate of patent or registration of utility model

Ref document number: 5811041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250