JP4168776B2 - LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME - Google Patents

LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME Download PDF

Info

Publication number
JP4168776B2
JP4168776B2 JP2003036722A JP2003036722A JP4168776B2 JP 4168776 B2 JP4168776 B2 JP 4168776B2 JP 2003036722 A JP2003036722 A JP 2003036722A JP 2003036722 A JP2003036722 A JP 2003036722A JP 4168776 B2 JP4168776 B2 JP 4168776B2
Authority
JP
Japan
Prior art keywords
light
phosphor
emitting device
light emitting
light emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003036722A
Other languages
Japanese (ja)
Other versions
JP2003306675A5 (en
JP2003306675A (en
Inventor
孝俊 瀬戸
直人 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003036722A priority Critical patent/JP4168776B2/en
Publication of JP2003306675A publication Critical patent/JP2003306675A/en
Publication of JP2003306675A5 publication Critical patent/JP2003306675A5/ja
Application granted granted Critical
Publication of JP4168776B2 publication Critical patent/JP4168776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

【0001】
【発明の属する技術分野】
本発明は発光装置に関し、詳しくは、電力源により紫外光から可視光領域の光を発光する第1の発光体と、その紫外光から可視光領域にある光を吸収し長波長の可視光を発する母体化合物が発光中心イオンを含有する蛍光体を有する波長変換材料しての第2の発光体とを組み合わせることにより、使用環境によらず演色性が良く、かつ、高強度の発光を発生させることのできる発光装置に関する。
【0002】
【従来の技術】
青、赤、緑の混色により、白色その他の様々な色を、むらなくかつ演色性良く発生させるために、LEDやLDの発光色を蛍光体で色変換させた発光装置が提案されている。例えば、特公昭49−1221号公報では、300−530nmの波長の放射ビームを発するレーザーのビームを燐光体(Y3-x-yCexGdy5- zGaz12(YはY、Lu,またはLa、MはAl、Al-In、またはAl-Scを表す。))に照射させ、これを発光させてディスプレーを形成する方法が示されている。また、近年では、青色発光の半導体発光素子として注目されている発光効率の高い窒化ガリウム(GaN)系LEDやLDと、波長変換材料としての蛍光体とを組み合わせて構成される白色発光の発光装置が、消費電力が小さく長寿命であるという特徴を活かして画像表示装置や照明装置の発光源として提案されている。実際に、特開平10−242513号公報において、この窒化物系半導体のLED又はLDチップを使用し、蛍光体としてイットリウム・アルミニウム・ガーネット系を使用することを特徴とする発光装置が示されている。
【0003】
しかしながら、今までのところ、LED等の第1の発光体に対し、特開平10−242513号公報に示されるようなイットリウム・アルミニウム・ガーネット系蛍光体を第2の発光体として組み合わせた既知の発光装置では発光強度が充分とは言えず、ディスプレイやバックライト光源、信号機などの発光源としてさらなる改良が求められていた。
【0004】
【発明が解決しようとする課題】
本発明は、前述の従来技術に鑑み、発光強度の極めて高い発光装置を開発すべくなされたものであって、従って、本発明は、製造が容易であると共に、発光強度が極めて高いダブル発光体型発光装置を得ることを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者は、前記課題を解決すべく鋭意検討した結果、350−415nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、上記第2の発光体として下記特定の化学組成を有する結晶相を含有する蛍光体を用いると、前記蛍光体が350−415nm付近の光の照射を受け、高い強度で可視光の発光を起こす結果前記目的を達成できることを見い出し本発明に到達した。即ち、本発明は、350−415nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、前記第2の発光体が、一般式[1]の化学組成を有する結晶相を有する蛍光体を含有してなることを特徴とする発光装置をその要旨とする。
【0006】
【化2】
1 aEub2 c3 de・・・・・・[1]
(但し、M1は、Ba、Sr、およびCaからなる群から選ばれる少なくとも一種の元素を合計で90mol%以上含む金属元素を表し、M2は、MgおよびZnからなる群から選ばれる少なくとも一種の元素を合計で90mol%以上含む金属元素を表し、M3は、SiおよびGeからなる群から選ばれる少なくとも一種の元素を合計で90mol%以上含む金属元素を表し、aは2.5≦a≦3.3を満足する数、bは0.0001≦b≦1.0を満足する数、cは0.9≦c≦1.1を満足する数、dは1.8≦d≦2.2を満足する数、eは7.2≦e≦8.8を満足する数である。)
なお、Ba3MgSi28、Sr3MgSi28等の結晶相そのものは既知であり、これらの内のBa、SrがEu2+等の他の2価金属元素で置換されうることも知られている。本発明は、これらのうちのBa3-xEuXMgSi2O8やSr3-XEuXMgSi2O8等の化学組成を含む前記一般式[1]の化学組成を有する結晶相を有する蛍光体が、第1の発光体からの350−415nmの光の照射を受けると、他の蛍光体よりも顕著に強度の高い光を発生することを見出したことに依拠するものである。上記蛍光体は、一般的な青色発光のBaMgAl1017:Euや黄色発光のY3Al512:Ceよりも圧倒的に高い強度の光を発生したのである。
【0007】
【発明の実施の形態】
本発明は、350−415nmの光を発生する第1の発光体と蛍光体である第2の発光体を組み合わせた発光装置であり、その第2の発光体が、下記一般式[1]の化学組成を有する結晶相を有する蛍光体を含有してなることを特徴とする。
【0008】
【化3】
1 aEub2 c3 de・・・・・・[1]
ここで、M1は、Ba、Sr、およびCaからなる群から選ばれる少なくとも一種の元素を合計で90mol%以上、好ましくは95mol%以上含む金属元素を表す。中でも、M1に該当する全ての元素が、Ba、Sr及びCaからなる群から選ばれた少なくとも一種であることが好ましい。その結果、より大きな発光強度を得ることができる。M1として、Ba及び/又はSrを含有するのが好ましく、Baを含有するのが特に好ましい。また、Baを含有する場合、発光波長調節のし易さや発光強度等の点から、Srに対するBaのモル比は好ましくは0.05以上とするのが好ましい。この場合、Sr量は0であってもよい(この場合は上記モル比は無限大となる)が、好ましくはSrも含有させ、通常上記モル比を100以下とする。
【0009】
前記一般式[1]において、M2は、MgおよびZnからなる群から選ばれる少なくとも一種の元素を合計で90mol%以上、好ましくは95mol%以上含む金属元素を表す。中でも、M2に該当する全ての元素が、MgおよびZnからなる群から選ばれた少なくとも一種であることが好ましい。その結果、より大きな発光強度を得ることができる。M2として、Mgを含有するのが特に好ましい。
【0010】
前記一般式[1]において、M3は、SiおよびGeからなる群から選ばれる少なくとも一種の元素を合計で90mol%以上、好ましくは95mol%以上含む金属元素を表す。中でも、M3に該当する全ての元素が、SiおよびGeからなる群から選ばれた少なくとも一種であることが好ましい。その結果、より大きな発光強度を得ることができる。M3として、Siを含有するのが特に好ましい。
【0011】
1、M2、M3中の金属元素として10mol%を上限、好ましくは5mol%を上限、さらに好ましくは3mol%を上限として上記以外の金属元素を結晶中に含有させることができる。この場合、その金属元素に特に制約はないが、それぞれ順にBa、Mg、Siと同じ価数、即ち2価、2価、4価の金属元素を含有させると、結晶構造を保持しやすいので好ましい。2価と4価の金属元素及び発光中心であるEu2+の焼成時の固体内拡散による複合酸化物の結晶化を助ける意味で、1価、3価、5価、又は6価等の金属元素を少量導入しても良い。例を挙げると、Ba3MgSi2O8:Eu蛍光体中のBa2+又はMg2+の一部を等モルのLi+とGa2+で電荷補償効果を保持しながら置換することができる。
【0012】
前記一般式[1]において、a、b、c、d、及びeは、それぞれ順にM1に該当する金属元素のモル比、ユーロピウム原子のモル比、M2に該当する金属元素のモル比、M3に該当する金属元素のモル比、及び酸素原子のモル比を表す。a+b、c、d、及びeの値は、通常、概ね順に3、1、2、及び8となるが、多少のカチオン欠損や酸素欠損が多少生じていても蛍光性能に大きな影響がない等の理由により、上記の値を包含する許容範囲を有する。
【0013】
aは2.5≦a≦3.3を満足する数であるが、好ましくは2.7以上、より好ましくは2.8以上、さらに好ましくは2.9以上の数であり、また好ましくは3.2以下、さらに好ましくは3.1以下の数である。bは0.0001≦b≦1.0を満足する数であるが、好ましくは0.001以上、より好ましくは0.003以上の数であり、また好ましくは0.5以下、より好ましくは0.3以下、さらに好ましくは0.15以下、特に好ましくは0.1以下の数である。発光中心イオンの含有量が、前記範囲未満では、発光強度が小さくなる傾向があり、一方、前記範囲超過でも、濃度消光と呼ばれる現象により、やはり発光強度が減少する傾向がある。また、結晶欠陥の少ない結晶相が得られ、発光強度が高くなる点で、2.7≦a+b≦3.3を満たすことが好ましい。cは0.9≦c≦1.1を満足する数であるが、好ましくは0.93以上、さらに好ましくは0.95以上の数であり、また好ましくは1.07以下、さらに好ましくは1.05以下の数である。dは1.8≦d≦2.2を満足する数であるが、好ましくは1.85以上、さらに好ましくは1.9以上の数であり、また好ましくは2.15以下、さらに好ましくは2.1以下の数である。eは7.2≦e≦8.8を満足する数であるが、好ましくは7.4以上、さらに好ましくは7.6以上、最も好ましくは7.8以上の数であり、また好ましくは8.6以下、さらに好ましくは8.4以下、最も好ましくは8.2以下の数である。
【0014】
本発明で使用する蛍光体の典型的な結晶構造は、Ba3MgSi2O8構造、Sr3MgSi2O8構造、又はCa3MgSi2O8構造である。Ca3MgSi2O8構造は通常merwinite構造と呼ばれている。Ba3MgSi2O8構造及びSr3MgSi2O8構造は、厳密にはmerwinite構造でなく、その類似構造と考えられる。Ba3MgSi2O8構造とSr3MgSi2O8構造とは斜方晶系であり、それらの格子定数は、通常ぞれぞれa=5.5Å、b=9.8Å、c=7.6Å、及びa=5.4Å、b=9.6Å、c=7.2Å程度である。Ca3MgSi2O8構造は、単斜晶系、空間群P21/aであり、格子定数は通常、a=13.254Å、b=5.293Å、c=9.328Å程度である。図1、2、及び3に、それぞれBa3MgSi2O8、Sr3MgSi2O8、及びCa3MgSi2O8のX線回折パターンを示す(粉末X線回折データベースより)。これらの結晶構造においては、Ba、Sr、Ca、その他の2価金属はお互いが固溶し合う組成範囲が広いので、構造が近いと考えられる。本発明で使用する蛍光体の結晶相は、通常Ba3MgSi2O8構造、Sr3MgSi2O8構造、又はCa3MgSi2O8構造を持つ物質に対し付活剤としてEu2+を置換させたものに該当する。
【0015】
本発明で使用する蛍光体は、第1の発光体からの350−415nmの光によって励起され、可視光を発生する。上記蛍光体は、350−415nmの光の励起によって非常に強い発光強度の可視光を発生する。
本発明で使用する蛍光体は、前記一般式[1]に示されるようなM1 源、M2 源、M3 源の化合物、並びに、発光中心イオンの元素(Eu)源化合物を、ハンマーミル、ロールミル、ボールミル、ジェットミル等の乾式粉砕機を用いて粉砕した後、リボンブレンダー、V型ブレンダー、ヘンシェルミキサー等の混合機により混合するか、或いは、混合した後、乾式粉砕機を用いて粉砕する乾式法、又は、水等の媒体中にこれらの化合物を加え、媒体攪拌式粉砕機等の湿式粉砕機を用いて粉砕及び混合するか、或いは、これらの化合物を乾式粉砕機により粉砕した後、水等の媒体中に加え混合することにより調製されたスラリーを、噴霧乾燥等により乾燥させる湿式法により、調製した粉砕混合物を、加熱処理して焼成することにより製造することができる。
【0016】
これらの粉砕混合法の中で、特に、発光中心イオンの元素源化合物においては、少量の化合物を全体に均一に混合、分散させる必要があることから液体媒体を用いるのが好ましく、又、他の元素源化合物において全体に均一な混合が得られる面からも、後者湿式法が好ましく、又、加熱処理法としては、アルミナや石英製の坩堝やトレイ等の耐熱容器中で、通常800〜1600℃、好ましくは1000〜1400℃の温度で、大気、酸素、一酸化炭素、二酸化炭素、窒素、水素、アルゴン等の気体の単独或いは混合雰囲気下、10分〜24時間、加熱することによりなされる。尚、加熱処理後、必要に応じて、洗浄、乾燥、分級処理等がなされる。
【0017】
尚、前記加熱雰囲気としては、発光中心イオンの元素が発光に寄与するイオン状態(価数)を得るために必要な雰囲気が選択される。本発明における2価のEu等の場合には、一酸化炭素、窒素、水素、アルゴン等の中性若しくは還元雰囲気下が好ましいが、大気、酸素等の酸化雰囲気下も条件さえ選べば可能である。又、ここで、M1源、M2源、及びM3源の化合物、並びに、発光中心イオンの元素源化合物としては、M1、M2、及びM3、並びに発光中心イオンの元素の各酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、蓚酸塩、カルボン酸塩、ハロゲン化物等が挙げられ、これらの中から、複合酸化物への反応性、及び、焼成時におけるNOx、SOx等の非発生性等を考慮して選択される。
【0018】
金属元素M1に対して好ましいとする前記Ba、Sr、及びCaについて、それらのM1源化合物を具体的に例示すれば、Ba源化合物としては、BaO、Ba(OH)2・8H2O、BaCO3、Ba(NO32、BaSO4、Ba(OCO)2・2H2O、Ba(OCOCH32、BaCl2等が、又、Sr源化合物としては、SrO、Sr(OH)2・8H2O、SrCO3、Sr(NO32、SrSO4、Sr(OCO)2・H2O、Sr(OCOCH32・0.5H2O、SrCl2等が、又、Ca源化合物としては、CaO、Ca(OH)2、CaCO3、Ca(NO32・4H2O、CaSO4・2H2O、Ca(OCO)2・H2O、Ca(OCOCH3)2・H2O、CaCl2等がそれぞれ挙げられる。
【0019】
又、金属元素M2に対して好ましいとする前記Mg及びZnについて、それらのM2源化合物を具体的に例示すれば、Mg源化合物としては、MgO、Mg(OH)2、MgCO3、Mg(OH)2・3MgCO3・3H2O、Mg(NO32・6H2O、MgSO4、Mg(OCO)2・2H2O、Mg(OCOCH3)2・4H2O、MgCl2等が、又、Zn源化合物としては、ZnO、Zn(OH)2、ZnCO3、Zn(NO32、Zn(OCO)2、Zn(OCOCH3)2、ZnCl2等がそれぞれ挙げられる。
【0020】
又、金属元素M3に対して好ましいとする前記Si及びGeについて、それらのM3源化合物を具体的に例示すれば、Si源化合物としは、SiO2、H4SiO4、Si(OCOCH34等が、又、Ge源化合物としは、GeO2、Ge(OH)4、Ge(OCOCH34、GeCl4等がそれぞれ挙げられる。
更に、発光中心イオンの元素として好ましいとする前記Euについて、その元素源化合物を具体的に例示すれば、Eu23、Eu2(SO43、Eu2(OCO)6、EuCl2、EuCl3等が挙げられる。
【0021】
本発明において、前記蛍光体に光を照射する第1の発光体は、波長350−415nmの光を発生する。好ましくは波長350−415nmの範囲にピーク波長を有する光を発生する発光体を使用する。第1の発光体の具体例としては、発光ダイオード(LED)またはレーザーダイオード(LD)等を挙げることができる。特に消費電力を抑制できる点でレーザーダイオードが好ましい。また、GaN系化合物半導体を使用した、GaN系LEDやLDが好ましい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、前記蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例えば、20mAの電流負荷に対し、通常GaN系はSiC系の100倍以上の発光強度を有する。GaN系LEDやLDにおいては、AlXGaYN発光層、GaN発光層、またはInXGaYN発光層を有しているものが好ましい。GaN系LEDにおいては、それらの中でInXGaYN発光層を有するものが発光強度が非常に強いので、特に好ましく、GaN系LDにおいては、InXGaYN層とGaN層の多重量子井戸構造のものが発光強度が非常に強いので、特に好ましい。なお、上記においてX+Yの値は通常0.8〜1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいものである。GaN系LEDはこれら発光層、p層、n層、電極、および基板を基本構成要素としたものであり、発光層をn型とp型のAlXGaYN層、GaN層、またはInXGaYN層などでサンドイッチにしたヘテロ構造を有しているものが発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが発光効率がさらに高く、より好ましい。
【0022】
本発明においては、面発光型の発光体、特に面発光型GaN系レーザーダイオードを第1の発光体として使用することは、発光装置全体の発光効率を高めることになるので、特に好ましい。面発光型の発光体とは、膜の面方向に強い発光を有する発光体であり、面発光型GaN系レーザーダイオードにおいては、発光層等の結晶成長を制御し、かつ、反射層等をうまく工夫することにより、発光層の縁方向よりも面方向の発光を強くすることができる。面発光型のものを使用することによって、発光層の縁から発光するタイプに比べ、単位発光量あたりの発光断面積が大きくとれる結果、第2の発光体の蛍光体にその光を照射する場合、同じ光量で照射面積を非常に大きくすることができ、照射効率を良くすることができるので、第2の発光体である蛍光体からより強い発光を得ることができる。
【0023】
第1の発光体として面発光型のものを使用する場合、第2の発光体を膜状とするのが好ましい。その結果、面発光型の発光体からの光は断面積が十分大きいので、第2の発光体をその断面の方向に膜状とすると、第1の発光体からの蛍光体への照射断面積が蛍光体単位量あたり大きくなるので、蛍光体からの発光の強度をより大きくすることができる。
【0024】
また、第1の発光体として面発光型のものを使用し、第2の発光体として膜状のものを用いる場合、第1の発光体の発光面に、直接膜状の第2の発光体を接触させるた形状とするのが好ましい。ここでいう接触とは、第1の発光体とと第2の発光体とが空気や気体を介さないでぴたりと接している状態をつくることを言う。その結果、第1の発光体からの光が第2の発光体の膜面で反射されて外にしみ出るという光量損失を避けることができるので、装置全体の発光効率を良くすることができる。
【0025】
本発明の発光装置の一例における第1の発光体と第2の発光体との位置関係を示す模式的斜視図を図4に示す。図4中の1は、前記蛍光体を有する膜状の第2の発光体、2は第1の発光体としての面発光型GaN系LD、3は基板を表す。相互に接触した状態をつくるために、LD2と第2の発光体1とそれぞれ別個にをつくっておいてそれらの面同士を接着剤やその他の手段によって接触させても良いし、LD2の発光面上に第2の発光体をを製膜(成型)させても良い。これらの結果、LD2と第2の発光体1とを接触した状態とすることができる。
【0026】
第1の発光体からの光や第2の発光体からの光は通常四方八方に向いているが、第2の発光体の蛍光体の粉を樹脂中に分散させると、光が樹脂の外に出る時にその一部が反射されるので、ある程度光の向きを揃えられる。従って、効率の良い向きに光をある程度誘導できるので、第2の発光体として、前記蛍光体の粉を樹脂中へ分散したものを使用するのが好ましい。また、蛍光体を樹脂中に分散させると、第1の発光体からの光の第2の発光体への全照射面積が大きくなるので、第2の発光体からの発光強度を大きくすることができるという利点も有する。この場合に使用できる樹脂としては、エポキシ樹脂、ポリビニル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂等各種のものが挙げられるが、蛍光体粉の分散性が良い点で好ましくはエポキシ樹脂である。第2の発光体の粉を樹脂中に分散させる場合、当該第2の発光体の粉と樹脂の全体に対するその粉の重量比は、通常10〜95%、好ましくは20〜90%、さらに好ましくは30〜80%である。蛍光体が多すぎると粉の凝集により発光効率が低下することがあり、少なすぎると今度は樹脂による光の吸収や散乱のため発光効率が低下することがある。
【0027】
本発明の発光装置は、波長変換材料としての前記蛍光体と、350−415nmの光を発生する発光素子とから構成されてなり、前蛍光体が発光素子の発する350−415nmの光を吸収して、使用環境によらず演色性が良く、かつ、高強度の可視光を発生させることのできる発光装置であり、バックライト光源、信号機などの発光源、又、カラー液晶ディスプレイ等の画像表示装置や面発光等の照明装置等の光源に適している。
【0028】
本発明の発光装置を図面に基づいて説明すると、図5は、第1の発光体(350−415nm発光体)と第2の発光体とを有する発光装置の一実施例を示す模式的断面図であり、4は発光装置、5はマウントリード、6はインナーリード、7は第1の発光体(350−415nmの発光体)、8は第2の発光体としての蛍光体含有樹脂部、9は導電性ワイヤー、10はモールド部材である。
【0029】
本発明の一例である発光装置は、図5に示されるように、一般的な砲弾型の形態をなし、マウントリード5の上部カップ内には、GaN系発光ダイオード等からなる第1の発光体(350−415nm発光体)7が、その上に、蛍光体をエポキシ樹脂やアクリル樹脂等のバインダーに混合、分散させ、カップ内に流し込むことにより第2の発光体として形成された蛍光体含有樹脂部8で被覆されることにより固定されている。一方、第1の発光体7とマウントリード5、及び第1の発光体7とインナーリード6は、それぞれ導電性ワイヤー9で導通されており、これら全体がエポキシ樹脂等によるモールド部材10で被覆、保護されてなる。
【0030】
又、この発光素子1を組み込んだ面発光照明装置98は、図9に示されるように、内面を白色の平滑面等の光不透過性とした方形の保持ケース910の底面に、多数の発光装置91を、その外側に発光素子91の駆動のための電源及び回路等(図示せず。)を設けて配置し、保持ケース910の蓋部に相当する箇所に、乳白色としたアクリル板等の拡散板99を発光の均一化のために固定してなる。
【0031】
そして、面発光照明装置98を駆動して、発光素子91の第1の発光体に電圧を印加することにより350−415nmの光を発光させ、その発光の一部を、第2の発光体としての蛍光体含有樹脂部における前記蛍光体が吸収し、可視光を発光し、一方、蛍光体に吸収されなかった青色光等との混色により演色性の高い発光が得られ、この光が拡散板99を透過して、図面上方に出射され、保持ケース910の拡散板99面内において均一な明るさの照明光が得られることとなる。
【0032】
【実施例】
以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。なお、相対強度は、比較例1の蛍光体の発光強度を100としたときの発光強度の大きさを示す。
実施例1
1源化合物としてBaCO3;0.0553モル、M2源化合物として塩基性炭酸マグネシウム(Mgのモル数0.0186モル)、及びM3源化合物としてSiO2;0.0372モル、並びに発光中心イオンの元素源化合物としてEu23;0.00018モルを純水と共に、アルミナ製容器及びビーズの湿式ボールミル中で粉砕、混合し、乾燥後、ナイロンメッシュを通過させた後、得られた粉砕混合物をアルミナ製坩堝中で、4%の水素を含む窒素ガス流下、1200℃で2時間、加熱することにより焼成し、引き続いて、水洗浄、乾燥、及び分級処理を行うことにより蛍光体を製造した。
【0033】
図6に、得られた蛍光体Ba2.98Eu0.02MgSi28のX線回折パターンを示す。図6のピークパターンは図1のBa3MgSi28のそれと結晶構造的に一致していることがわかる。図7に、GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光スペクトルを示す。表−1にその発光ピークの波長と相対強度を示す。
【0034】
実施例2
1源化合物としてSrCO3;0.0553モルを用いた外は、実施例1と同様にして蛍光体を製造した。図8に、この蛍光体Sr2.98Eu0.02MgSi28のX線回折パターンを示す。図8のピークパターンは図2のSr3MgSi28のそれと結晶構造的に一致していることがわかる。表−1に、GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光ピークの波長と相対強度を示す。
【0035】
実施例3
1源化合物としてBaCO3;0.0442モル、CaCO3;0.0084モル、及びMnCO3;0.0028モルを用いた外は、実施例1と同様にして蛍光体を製造した。表−1に、GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光ピークの波長と相対強度を示す。
【0036】
実施例4
2源化合物として塩基性炭酸亜鉛(Znのモル数0.0186モル)を用いた外は、実施例1と同様にして蛍光体を製造した。表−1に、GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光ピークの波長と相対強度を示す。
【0037】
実施例5
発光中心イオンの元素源化合物であるEu23のモル数を0.000074モルと変え、M1源化合物としてBaCO3のモル数を0.0556モルと変えた以外は、実施例1と同様にして蛍光体を製造した。表−1に、GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光ピークの波長と相対強度を示す。
【0038】
実施例6
焼成温度を1300℃と変えた以外は、実施例1と同様にして蛍光体を製造した。表−1に、GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光ピークの波長と相対強度を示した。
【0039】
実施例7
BaCOの配合量を0.0549モルに、Euの配合量を0.00047モルに変えた以外は、実施例1と同様にして蛍光体Ba2.95Eu0.05MgSiを製造した。
GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光ピークの波長は438nm、相対強度は299であった。
【0040】
実施例8
BaCOの配合量を0.0539モルに、Euの配合量を0.00093モルに変えた以外は、実施例1と同様にして蛍光体Ba2.9Eu0.1MgSiを製造した。
GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光ピークの波長は440nm、相対強度は320であった。
【0041】
実施例9
BaCOの配合量を0.0530モルに、Euの配合量を0.00140モルに変えた以外は、実施例1と同様にして蛍光体Ba2.85Eu0.15MgSiを製造した。
GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光ピークの波長は440、相対強度は261であった。
【0042】
実施例10
BaCOの配合量を0.0521モルに、Euの配合量を0.00186モルに変えた以外は、実施例1と同様にして蛍光体Ba2.8Eu0.2MgSiを製造した。
GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光ピークの波長は440、相対強度は199であった。
【0043】
実施例11
BaCOの配合量を0.0502モルに、Euの配合量を0.00279モルに変えた以外は、実施例1と同様にして蛍光体Ba2.7Eu0.3MgSiを製造した。
GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光ピークの波長は441、相対強度は113であった。
【0044】
比較例1
BaCO3;0.0103モル、塩基性炭酸マグネシウム(Mgのモル数0.0103モル)、及びγ-Al23;0.0570モル、並びに発光中心イオンの元素源化合物としてEu23;0.00057モルを純水と共に、アルミナ製容器及びビーズの湿式ボールミル中で粉砕、混合し、乾燥後、ナイロンメッシュを通過させた後、得られた粉砕混合物をアルミナ製坩堝中で、4%の水素を含む窒素ガス流下、1500℃で2時間、加熱することにより焼成し、引き続いて、水洗浄、乾燥、及び分級処理を行うことにより青色発光の蛍光体(Ba0. Eu0.1MgAl1017)を製造した。図7に、GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光スペクトルを示し、実施例1と比較例1の青色発光蛍光体の性能を比較した。表−1にその発光ピークの波長と相対強度を示した。400nm励起による実施例1の蛍光体の発光強度が比較例1の蛍光体のそれの2.8倍もあることがわかる。
【0045】
比較例2
23;0.0238モル、γ-Al23;0.0400モル、並びに発光中心イオンの元素源化合物としてCeO2;0.00048モルを純水と共に、アルミナ製容器及びビーズの湿式ボールミル中で粉砕、混合し、乾燥後、ナイロンメッシュを通過させた後、得られた粉砕混合物をアルミナ製坩堝中で、4%の水素を含む窒素ガス流下、1500℃で2時間、加熱することにより焼成し、引き続いて、水洗浄、乾燥、及び分級処理を行うことにより黄色発光の蛍光体(Y2.98Ce0.03Al512)を製造した。表−1にその発光ピークの波長と相対強度を示した。400nm励起による実施例1の蛍光体の発光強度が比較例2の蛍光体のそれの250倍もあることがわかる。
【0046】
【表1】

Figure 0004168776
【0047】
【発明の効果】
本発明によれば、発光強度の高い発光装置を提供することができる。
【図面の簡単な説明】
【図1】Ba3MgSi2O8のX線回折パターン(X線源Cu Kαに換算したもの)
【図2】Sr3MgSi2O8のX線回折パターン(X線源Cu Kαに換算したもの)
【図3】Ca3MgSi2O8のX線回折パターン(X線源Cu Kαに換算したもの)
【図4】本発明の発光装置の一例における第1の発光体と第2の発光体との位置関係を示す模式的斜視図。
【図5】、第1の発光体(350−415nm発光体)と第2の発光体とを有する発光装置の一実施例を示す模式的断面図。
【図6】実施例1の蛍光体のX線回折パターン(X線源:Cu Kα)
【図7】発光波長400nmのGaN系発光ダイオードに本発明の実施例1と比較例1の蛍光体をそれぞれ組み合わせたときの発光スペクトル。
【図8】実施例2の蛍光体のX線回折パターン(X線源:Cu Kα)
【図9】本発明の面発光照明装置の一例を示す模式的断面図。
【符号の説明】
1;第2の発光体
2;面発光型GaN系LED
3;基板
4;発光装置
5;マウントリード
6;インナーリード
7;第1の発光体(350〜415nmの発光体)
8;本発明中の蛍光体を含有させた樹脂部
9;導電性ワイヤー
10;モールド部材[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a light-emitting device, and more specifically, a first light emitter that emits light from ultraviolet light to visible light region by a power source, and absorbs light in the visible light region from the ultraviolet light to generate long-wavelength visible light. Wavelength conversion material having a phosphor in which the base compound that emits contains a luminescent center ionWhenThe present invention relates to a light-emitting device that can generate high-intensity light emission with good color rendering regardless of the use environment by combining with the second light-emitting body.
[0002]
[Prior art]
In order to generate white and other various colors uniformly and with good color rendering by mixing blue, red, and green, a light emitting device in which the light emission color of an LED or LD is converted with a phosphor has been proposed. For example, in Japanese Patent Publication No. 49-1221, a laser beam that emits a radiation beam having a wavelength of 300 to 530 nm is used as a phosphor (Y3-xyCexGdyMFive- zGazO12(Y represents Y, Lu, or La, M represents Al, Al—In, or Al—Sc)), and this is emitted to form a display. Further, in recent years, a white light emitting device configured by combining a gallium nitride (GaN) LED or LD with high luminous efficiency, which has been attracting attention as a blue light emitting semiconductor light emitting element, and a phosphor as a wavelength conversion material. However, it has been proposed as a light-emitting source for an image display device and a lighting device, taking advantage of the feature of low power consumption and long life. Actually, Japanese Patent Application Laid-Open No. 10-242513 discloses a light emitting device using this nitride semiconductor LED or LD chip and using yttrium, aluminum, garnet as a phosphor. .
[0003]
However, so far, a known light emission in which an yttrium-aluminum-garnet phosphor as disclosed in Japanese Patent Laid-Open No. 10-242513 is combined as a second light emitter with respect to a first light emitter such as an LED. The apparatus cannot be said to have sufficient light emission intensity, and further improvements have been demanded as light sources such as displays, backlight light sources, and traffic lights.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described prior art to develop a light emitting device with extremely high light emission intensity. Accordingly, the present invention is a double light emitter type that is easy to manufacture and has extremely high light emission intensity. An object is to provide a light emitting device.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the inventor of the present invention has a first light emitter that emits light of 350 to 415 nm and a second light that generates visible light by irradiation of light from the first light emitter. When using a phosphor containing a crystal phase having the following specific chemical composition as the second phosphor, the phosphor is irradiated with light in the vicinity of 350-415 nm, The inventors have found that the object can be achieved as a result of causing visible light emission with high intensity, and have reached the present invention. That is, the present invention relates to a light emitting device having a first light emitter that generates light of 350 to 415 nm and a second light emitter that generates visible light by irradiation of light from the first light emitter. The gist of the light emitting device is characterized in that the second light emitter contains a phosphor having a crystal phase having a chemical composition represented by the general formula [1].
[0006]
[Chemical 2]
M1 aEubM2 cMThree dOe・ ・ ・ ・ ・ ・ [1]
(However, M1Represents a metal element containing a total of 90 mol% or more of at least one element selected from the group consisting of Ba, Sr, and Ca;2Represents a metal element containing at least 90 mol% in total of at least one element selected from the group consisting of Mg and Zn,ThreeRepresents a metal element containing 90 mol% or more in total of at least one element selected from the group consisting of Si and Ge, a is a number satisfying 2.5 ≦ a ≦ 3.3, and b is 0.0001 ≦ b ≦ 1.0, c is 0.9 ≦ c ≦ 1.1, d is 1.8 ≦ d ≦ 2.2, e is 7.2 ≦ e ≦ 8 Is a number satisfying .8. )
BaThreeMgSi2O8, SrThreeMgSi2O8The crystal phases themselves are known, and Ba and Sr of these are Eu.2+It is also known that other divalent metal elements can be substituted. The present invention is based on Ba3-xEUXMgSi2O8And Sr3-XEUXMgSi2O8When the phosphor having a crystal phase having the chemical composition of the general formula [1] including the chemical composition of the above is irradiated with 350 to 415 nm light from the first light emitter, it is more remarkable than the other phosphors. It is based on the fact that it generates high intensity light. The phosphor is a general blue light emitting BaMgAl.TenO17: Eu or yellow light emitting YThreeAlFiveO12: Light with an intensity much higher than Ce was generated.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a light-emitting device in which a first light-emitting body that emits light of 350 to 415 nm and a second light-emitting body that is a phosphor are combined, and the second light-emitting body is represented by the following general formula [1]. It contains a phosphor having a crystal phase having a chemical composition.
[0008]
[Chemical 3]
M1 aEubM2 cMThree dOe・ ・ ・ ・ ・ ・ [1]
Where M1Represents a metal element containing at least 90 mol% or more, preferably 95 mol% or more in total of at least one element selected from the group consisting of Ba, Sr and Ca. Above all, M1It is preferable that all the elements corresponding to are at least one selected from the group consisting of Ba, Sr and Ca. As a result, a larger emission intensity can be obtained. M1As for it, it is preferable to contain Ba and / or Sr, and it is especially preferable to contain Ba. When Ba is contained, the molar ratio of Ba to Sr is preferably 0.05 or more from the viewpoint of easy adjustment of emission wavelength, emission intensity, and the like. In this case, the amount of Sr may be 0 (in this case, the molar ratio is infinite), but preferably also contains Sr, and the molar ratio is usually 100 or less.
[0009]
In the general formula [1], M2Represents a metal element containing at least 90 mol% or more, preferably 95 mol% or more in total of at least one element selected from the group consisting of Mg and Zn. Above all, M2It is preferable that all the elements corresponding to are at least one selected from the group consisting of Mg and Zn. As a result, a larger emission intensity can be obtained. M2It is particularly preferable to contain Mg.
[0010]
In the general formula [1], MThreeRepresents a metal element containing at least 90 mol% or more, preferably 95 mol% or more in total of at least one element selected from the group consisting of Si and Ge. Above all, MThreeIt is preferable that all the elements corresponding to are at least one selected from the group consisting of Si and Ge. As a result, a larger emission intensity can be obtained. MThreeIt is particularly preferable to contain Si.
[0011]
M1, M2, MThreeA metal element other than the above can be contained in the crystal with the upper limit of 10 mol%, preferably 5 mol% as the upper limit, more preferably 3 mol% as the upper limit. In this case, there is no particular limitation on the metal element, but it is preferable that the same valence as that of Ba, Mg, and Si, that is, a bivalent, divalent, and tetravalent metal element is contained in order because the crystal structure is easily retained. . Divalent and tetravalent metallic elements and Eu as the emission center2+A small amount of a metal element such as monovalent, trivalent, pentavalent, or hexavalent may be introduced in the meaning of assisting crystallization of the composite oxide by diffusion in the solid during firing. For example, BaThreeMgSi2O8: Ba in Eu phosphor2+Or Mg2+A part of equimolar Li+And Ga2+Thus, the replacement can be performed while maintaining the charge compensation effect.
[0012]
In the general formula [1], a, b, c, d, and e are M in order.1Molar ratio of metal elements corresponding to the above, the molar ratio of europium atoms, M2Molar ratio of metal elements corresponding toThreeRepresents the molar ratio of the metal element corresponding to the above and the molar ratio of the oxygen atom. The values of a + b, c, d, and e are generally 3, 1, 2, and 8 in order, but even if some cation deficiency or some oxygen deficiency occurs, the fluorescence performance is not greatly affected. For reasons, it has a tolerance that encompasses the above values.
[0013]
a is a number satisfying 2.5 ≦ a ≦ 3.3, preferably 2.7 or more, more preferably 2.8 or more, further preferably 2.9 or more, and preferably 3 .2 or less, more preferably 3.1 or less. b is a number satisfying 0.0001 ≦ b ≦ 1.0, preferably 0.001 or more, more preferably 0.003 or more, and preferably 0.5 or less, more preferably 0. .3 or less, more preferably 0.15 or less, and particularly preferably 0.1 or less. When the content of the luminescent center ion is less than the above range, the luminescence intensity tends to decrease. On the other hand, when the content exceeds the above range, the luminescence intensity also tends to decrease due to a phenomenon called concentration quenching. Moreover, it is preferable that 2.7 ≦ a + b ≦ 3.3 is satisfied in that a crystal phase with few crystal defects is obtained and emission intensity is increased. c is a number satisfying 0.9 ≦ c ≦ 1.1, preferably 0.93 or more, more preferably 0.95 or more, and preferably 1.07 or less, more preferably 1 .05 or less. d is a number satisfying 1.8 ≦ d ≦ 2.2, preferably 1.85 or more, more preferably 1.9 or more, preferably 2.15 or less, more preferably 2 .1 or less. e is a number satisfying 7.2 ≦ e ≦ 8.8, preferably 7.4 or more, more preferably 7.6 or more, most preferably 7.8 or more, and preferably 8 .6 or less, more preferably 8.4 or less, and most preferably 8.2 or less.
[0014]
The typical crystal structure of the phosphor used in the present invention is Ba.ThreeMgSi2O8Structure, SrThreeMgSi2O8Structure or CaThreeMgSi2O8It is a structure. CaThreeMgSi2O8The structure is usually called merwinite structure. BaThreeMgSi2O8Structure and SrThreeMgSi2O8Strictly speaking, the structure is not a merwinite structure, but a similar structure. BaThreeMgSi2O8Structure and SrThreeMgSi2O8The structure is orthorhombic, and their lattice constants are usually a = 5.5Å, b = 9.8Å, c = 7.6 及 び, and a = 5.4Å, b = 9.6Å, c = 7.2, respectively. It is about cocoon. CaThreeMgSi2O8The structure is monoclinic, space group P21 / a, and the lattice constants are usually about a = 13.254Å, b = 5.293Å, and c = 9.328Å. 1, 2 and 3, respectively, BaThreeMgSi2O8, SrThreeMgSi2O8, And CaThreeMgSi2O8X-ray diffraction pattern is shown (from powder X-ray diffraction database). In these crystal structures, Ba, Sr, Ca, and other divalent metals have a wide composition range in which they are in solid solution with each other, and thus are considered to be close in structure. The crystal phase of the phosphor used in the present invention is usually Ba.ThreeMgSi2O8Structure, SrThreeMgSi2O8Structure or CaThreeMgSi2O8Eu as an activator for structural materials2+Corresponds to the replacement.
[0015]
The phosphor used in the present invention is excited by light of 350 to 415 nm from the first light emitter, and generates visible light. The phosphor generates visible light having a very strong emission intensity by excitation of light of 350 to 415 nm.
The phosphor used in the present invention is an M represented by the general formula [1].1Source, M2 Source, MThreeAfter pulverizing the source compound and the element compound (Eu) source compound of the luminescent center ion using a dry pulverizer such as a hammer mill, roll mill, ball mill, jet mill, etc., ribbon blender, V-type blender, Henschel mixer, etc. Mix by a mixer, or mix and then pulverize using a dry pulverizer, or add these compounds to a medium such as water, and use a wet pulverizer such as a medium agitating pulverizer. The slurry prepared by pulverizing and mixing, or by pulverizing these compounds with a dry pulverizer and adding to a medium such as water and mixing, was prepared by a wet method of drying by spray drying or the like. The pulverized mixture can be produced by heat treatment and baking.
[0016]
Among these pulverization and mixing methods, in particular, in the element source compound of the luminescent center ion, it is preferable to use a liquid medium because it is necessary to uniformly mix and disperse a small amount of the compound over the whole. The latter wet method is preferable from the viewpoint of obtaining uniform mixing in the element source compound as a whole, and the heat treatment method is usually 800 to 1600 ° C. in a heat-resistant container such as an alumina or quartz crucible or tray. The heating is preferably performed at a temperature of 1000 to 1400 ° C. for 10 minutes to 24 hours in a single or mixed atmosphere of a gas such as air, oxygen, carbon monoxide, carbon dioxide, nitrogen, hydrogen, and argon. In addition, after heat processing, washing | cleaning, drying, a classification process, etc. are made | formed as needed.
[0017]
As the heating atmosphere, an atmosphere necessary for obtaining an ion state (valence) in which the element of the emission center ion contributes to light emission is selected. In the case of divalent Eu or the like in the present invention, a neutral or reducing atmosphere such as carbon monoxide, nitrogen, hydrogen, and argon is preferable, but it can be selected even under an oxidizing atmosphere such as air and oxygen. . Where M1Source, M2Source and MThreeAs the source compound and the element source compound of the luminescent center ion, M1, M2And MThreeAnd oxides, hydroxides, carbonates, nitrates, sulfates, oxalates, carboxylates, halides, etc. of the elements of the luminescent center ion. And non-generation of NOx, SOx, etc. during firing is selected.
[0018]
Metal element M1With respect to Ba, Sr, and Ca, which are preferable with respect to M, their M1Specific examples of source compounds include BaO and Ba (OH) as Ba source compounds.2・ 8H2O, BaCOThree, Ba (NOThree)2, BaSOFour, Ba (OCO)2・ 2H2O, Ba (OCOCHThree)2, BaCl2As Sr source compounds, SrO, Sr (OH)2・ 8H2O, SrCOThree, Sr (NOThree)2, SrSOFour, Sr (OCO)2・ H2O, Sr (OCOCHThree)2・ 0.5H2O, SrCl2In addition, as Ca source compounds, CaO, Ca (OH)2, CaCOThree, Ca (NOThree)2・ 4H2O, CaSOFour・ 2H2O, Ca (OCO)2・ H2O, Ca (OCOCHThree)2・ H2O, CaCl2Etc., respectively.
[0019]
Metal element M2With respect to the Mg and Zn, which are preferable to the above, their M2Specific examples of source compounds include MgO and Mg (OH) as Mg source compounds.2, MgCOThree, Mg (OH)2・ 3MgCOThree・ 3H2O, Mg (NOThree)2・ 6H2O, MgSOFour, Mg (OCO)2・ 2H2O, Mg (OCOCHThree)2・ 4H2O, MgCl2In addition, Zn source compounds include ZnO and Zn (OH)2ZnCOThree, Zn (NOThree)2Zn (OCO)2, Zn (OCOCHThree)2ZnCl2Etc., respectively.
[0020]
Metal element MThreeFor the Si and Ge that are preferred for theThreeAs a specific example of the source compound, the Si source compound is SiO.2, HFourSiOFour, Si (OCOCHThree)FourAs a Ge source compound, GeO2, Ge (OH)Four, Ge (OCOCHThree)Four, GeClFourEtc., respectively.
Further, with respect to Eu, which is preferable as the element of the luminescent center ion, if the element source compound is specifically illustrated, Eu2OThree, Eu2(SOFour)Three, Eu2(OCO)6, EuCl2, EuClThreeEtc.
[0021]
In the present invention, the first light emitter that irradiates the phosphor with light generates light having a wavelength of 350 to 415 nm. Preferably, a light emitter that generates light having a peak wavelength in the wavelength range of 350 to 415 nm is used. Specific examples of the first light emitter include a light emitting diode (LED) or a laser diode (LD). In particular, a laser diode is preferable in that power consumption can be suppressed. Further, a GaN-based LED or LD using a GaN-based compound semiconductor is preferable. This is because GaN-based LEDs and LDs have significantly higher light emission output and external quantum efficiency than SiC-based LEDs that emit light in this region, and are extremely bright with very low power when combined with the phosphor. This is because light emission can be obtained. For example, for a current load of 20 mA, the GaN system usually has a light emission intensity 100 times or more that of the SiC system. In GaN LED and LD, AlXGaYN light emitting layer, GaN light emitting layer, or InXGaYThose having an N light emitting layer are preferred. Among GaN-based LEDs, InXGaYThose having an N light emitting layer are particularly preferred because the light emission intensity is very strong.XGaYA multi-quantum well structure of an N layer and a GaN layer is particularly preferable because the emission intensity is very strong. In the above, the value of X + Y is usually in the range of 0.8 to 1.2. In the GaN-based LED, those in which the light emitting layer is doped with Zn or Si or those without a dopant are preferable for adjusting the light emission characteristics. GaN-based LEDs have these light-emitting layers, p-layers, n-layers, electrodes, and substrates as basic components, and the light-emitting layers are made of n-type and p-type Al.XGaYN layer, GaN layer, or InXGaYThose having a heterostructure sandwiched between N layers and the like have high luminous efficiency, and those having a heterostructure having a quantum well structure further have high luminous efficiency, and are more preferable.
[0022]
In the present invention, it is particularly preferable to use a surface-emitting type illuminant, particularly a surface-emitting GaN-based laser diode, as the first illuminant because the luminous efficiency of the entire light-emitting device is increased. A surface-emitting type illuminant is an illuminant that emits strong light in the surface direction of a film. In a surface-emitting GaN-based laser diode, the crystal growth of a light-emitting layer or the like is controlled, and a reflective layer or the like is successfully performed. By devising, the light emission in the surface direction can be made stronger than the edge direction of the light emitting layer. When the surface emitting type is used, the light emission cross-sectional area per unit light emission amount can be increased compared to the type that emits light from the edge of the light emitting layer. As a result, the phosphor of the second light emitter is irradiated with the light. Since the irradiation area can be made very large with the same amount of light and the irradiation efficiency can be improved, stronger light emission can be obtained from the phosphor that is the second light emitter.
[0023]
When a surface-emitting type is used as the first light emitter, the second light emitter is preferably a film. As a result, the cross-sectional area of the light from the surface-emitting type light emitter is sufficiently large. Therefore, when the second light emitter is formed into a film in the direction of the cross section, the irradiation cross-section area of the phosphor from the first light emitter is irradiated. Becomes larger per unit amount of phosphor, so that the intensity of light emitted from the phosphor can be further increased.
[0024]
Further, when a surface-emitting type is used as the first light emitter and a film-like one is used as the second light emitter, the second light emitter directly in the form of a film on the light-emitting surface of the first light emitter. It is preferable that the shape is made to contact. Contact here means to create a state in which the first light emitter and the second light emitter are in perfect contact with each other without air or gas. As a result, it is possible to avoid a light amount loss in which light from the first light emitter is reflected by the film surface of the second light emitter and oozes out, so that the light emission efficiency of the entire apparatus can be improved.
[0025]
FIG. 4 is a schematic perspective view showing the positional relationship between the first light emitter and the second light emitter in an example of the light emitting device of the present invention. In FIG. 4, reference numeral 1 denotes a film-like second light emitter having the phosphor, 2 denotes a surface-emitting GaN-based LD as the first light emitter, and 3 denotes a substrate. In order to create a state in which they are in contact with each other, the LD 2 and the second light emitter 1 may be formed separately and the surfaces may be brought into contact with each other by an adhesive or other means. A second light-emitting body may be formed (molded) on the top. As a result, the LD 2 and the second light emitter 1 can be brought into contact with each other.
[0026]
The light from the first illuminant and the light from the second illuminant are usually directed in all directions. However, when the phosphor powder of the second illuminant is dispersed in the resin, the light is out of the resin. A part of the light is reflected when exiting, so the direction of the light can be adjusted to some extent. Accordingly, since light can be guided to a certain degree in an efficient direction, it is preferable to use a phosphor in which the phosphor powder is dispersed in a resin as the second luminous body. Further, when the phosphor is dispersed in the resin, the total irradiation area of the light from the first light emitter to the second light emitter is increased, so that the light emission intensity from the second light emitter can be increased. It also has the advantage of being able to. Examples of resins that can be used in this case include epoxy resins, polyvinyl resins, polyethylene resins, polypropylene resins, polyester resins, and the like. From the viewpoint of good dispersibility of the phosphor powder, epoxy resins are preferable. It is. When the powder of the second luminous body is dispersed in the resin, the weight ratio of the powder of the second luminous body to the whole resin is usually 10 to 95%, preferably 20 to 90%, more preferably Is 30-80%. If the phosphor is too much, the luminous efficiency may be reduced due to aggregation of the powder, and if it is too little, the luminous efficiency may be lowered due to light absorption or scattering by the resin.
[0027]
  The light-emitting device of the present invention comprises the phosphor as a wavelength conversion material and a light-emitting element that generates light of 350 to 415 nm.RecordA phosphor is a light-emitting device that absorbs 350-415 nm light emitted from a light-emitting element, has good color rendering regardless of the use environment, and can generate high-intensity visible light. And a light source such as an image display device such as a color liquid crystal display or a lighting device such as a surface light emission.
[0028]
The light emitting device of the present invention will be described with reference to the drawings. FIG. 5 is a schematic cross-sectional view showing an embodiment of a light emitting device having a first light emitter (350-415 nm light emitter) and a second light emitter. 4 is a light emitting device, 5 is a mount lead, 6 is an inner lead, 7 is a first light emitter (350-415 nm light emitter), 8 is a phosphor-containing resin portion as a second light emitter, 9 Is a conductive wire, and 10 is a mold member.
[0029]
As shown in FIG. 5, the light emitting device as an example of the present invention has a general bullet shape, and a first light emitter made of a GaN-based light emitting diode or the like is disposed in the upper cup of the mount lead 5. (350-415 nm phosphor) 7 is a phosphor-containing resin formed as a second phosphor by mixing and dispersing a phosphor in a binder such as an epoxy resin or an acrylic resin and pouring the mixture into a cup. It is fixed by being covered with the part 8. On the other hand, the first light emitter 7 and the mount lead 5, and the first light emitter 7 and the inner lead 6 are each electrically connected by a conductive wire 9, and these are entirely covered with a mold member 10 made of epoxy resin or the like, Protected.
[0030]
In addition, as shown in FIG. 9, the surface emitting illumination device 98 incorporating the light emitting element 1 has a large number of light emission on the bottom surface of a rectangular holding case 910 whose inner surface is light-opaque such as a white smooth surface. The device 91 is arranged with a power supply and a circuit (not shown) for driving the light emitting element 91 provided outside thereof, and a milky white acrylic plate or the like is provided at a position corresponding to the lid portion of the holding case 910. The diffusion plate 99 is fixed for uniform light emission.
[0031]
Then, the surface emitting illumination device 98 is driven to apply light to the first light emitter of the light emitting element 91 to emit light of 350 to 415 nm, and a part of the light emission is used as the second light emitter. The phosphor in the phosphor-containing resin part absorbs and emits visible light, while light emission with high color rendering properties is obtained by mixing with blue light or the like that is not absorbed by the phosphor. 99 is emitted upward in the drawing, and illumination light with uniform brightness is obtained within the surface of the diffusion plate 99 of the holding case 910.
[0032]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist. In addition, relative intensity shows the magnitude | size of emitted light intensity when the emitted light intensity of the fluorescent substance of the comparative example 1 is set to 100.
Example 1
M1BaCO as source compoundThree0.0553 mol, M2Basic magnesium carbonate (Mole number of 0.0186 mol) as source compound, and MThreeSiO as source compound20.0372 mol, and Eu as the element source compound of the luminescent center ion2OThree; 0.00018 mol together with pure water was pulverized and mixed in an alumina container and bead wet ball mill, dried, passed through a nylon mesh, and the resulting pulverized mixture was 4% in an alumina crucible. The phosphor was produced by heating at 1200 ° C. for 2 hours under a nitrogen gas stream containing hydrogen, followed by washing with water, drying, and classification.
[0033]
FIG. 6 shows the obtained phosphor Ba.2.98Eu0.02MgSi2O8The X-ray diffraction pattern of is shown. The peak pattern in FIG. 6 is represented by Ba in FIG.ThreeMgSi2O8It can be seen that the crystal structure is consistent with that of. FIG. 7 shows an emission spectrum when this phosphor is excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. Table 1 shows the wavelength and relative intensity of the emission peak.
[0034]
Example 2
M1SrCO as source compoundThreeA phosphor was produced in the same manner as in Example 1 except that 0.0553 mol was used. FIG. 8 shows the phosphor Sr.2.98Eu0.02MgSi2O8The X-ray diffraction pattern of is shown. The peak pattern of FIG. 8 is the Sr of FIG.ThreeMgSi2O8It can be seen that the crystal structure is consistent with that of. Table 1 shows the wavelength and relative intensity of the emission peak when the phosphor is excited at 400 nm, which is the dominant wavelength in the ultraviolet region of the GaN-based light emitting diode.
[0035]
Example 3
M1BaCO as source compoundThree0.0442 mol, CaCOThree0.0084 mol, and MnCOThreeA phosphor was produced in the same manner as in Example 1 except that 0.0028 mol was used. Table 1 shows the wavelength and relative intensity of the emission peak when the phosphor is excited at 400 nm, which is the dominant wavelength in the ultraviolet region of the GaN-based light emitting diode.
[0036]
Example 4
M2A phosphor was produced in the same manner as in Example 1 except that basic zinc carbonate (0.0186 mol of Zn) was used as the source compound. Table 1 shows the wavelength and relative intensity of the emission peak when the phosphor is excited at 400 nm, which is the dominant wavelength in the ultraviolet region of the GaN-based light emitting diode.
[0037]
Example 5
Eu, an element source compound of luminescent center ions2OThreeThe number of moles is changed to 0.000074 moles, and M1BaCO as source compoundThreeA phosphor was produced in the same manner as in Example 1 except that the number of moles of was changed to 0.0556 mole. Table 1 shows the wavelength and relative intensity of the emission peak when the phosphor is excited at 400 nm, which is the dominant wavelength in the ultraviolet region of the GaN-based light emitting diode.
[0038]
Example 6
A phosphor was manufactured in the same manner as in Example 1 except that the firing temperature was changed to 1300 ° C. Table 1 shows the wavelength and relative intensity of the emission peak when the phosphor is excited at 400 nm, which is the dominant wavelength in the ultraviolet region of the GaN-based light emitting diode.
[0039]
Example 7
BaCO3The blending amount of 0.0549 mol, Eu2O3The phosphor Ba was the same as in Example 1 except that the compounding amount of was changed to 0.00047 mol.2.95Eu0.05MgSi2O8Manufactured.
When this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of the GaN-based light emitting diode, the wavelength of the emission peak was 438 nm and the relative intensity was 299.
[0040]
Example 8
BaCO3The compounding amount of2O3Except that the blending amount of was changed to 0.00093 mol, the phosphor Ba was the same as in Example 1.2.9Eu0.1MgSi2O8Manufactured.
When this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, the wavelength of the emission peak was 440 nm and the relative intensity was 320.
[0041]
Example 9
BaCO3The blending amount of Eu to 0.0530 mol, Eu2O3The phosphor Ba was the same as in Example 1 except that the blending amount of was changed to 0.00140 mol.2.85Eu0.15MgSi2O8Manufactured.
When this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, the wavelength of the emission peak was 440 and the relative intensity was 261.
[0042]
Example 10
BaCO3The compounding amount of2O3Except for changing the compounding amount of the phosphor to 0.00186 mol, the phosphor Ba is the same as in Example 1.2.8Eu0.2MgSi2O8Manufactured.
When this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, the wavelength of the emission peak was 440 and the relative intensity was 199.
[0043]
Example 11
BaCO3The blending amount is 0.0502 mol, Eu2O3The phosphor Ba was the same as in Example 1 except that the blending amount of was changed to 0.00279 mol.2.7Eu0.3MgSi2O8Manufactured.
When this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, the wavelength of the emission peak was 441 and the relative intensity was 113.
[0044]
Comparative Example 1
BaCOThree0.0103 mol, basic magnesium carbonate (0.0103 mol of Mg), and γ-Al2OThree0.0570 mol, and Eu as the element source compound of the luminescent center ion2OThree; 0.00057 mol was mixed with pure water in an alumina container and a wet ball mill of beads, dried, allowed to pass through a nylon mesh, and the resulting pulverized mixture was 4% in an alumina crucible. The phosphor is baked by heating at 1500 ° C. for 2 hours under a nitrogen gas stream containing hydrogen, followed by washing with water, drying, and classification to obtain a blue-emitting phosphor (Ba0. 9Eu0.1MgAlTenO17) Was manufactured. FIG. 7 shows an emission spectrum when the phosphor is excited at 400 nm, which is the dominant wavelength in the ultraviolet region of the GaN-based light emitting diode, and the performances of the blue light-emitting phosphors of Example 1 and Comparative Example 1 are compared. Table 1 shows the wavelength and relative intensity of the emission peak. It can be seen that the emission intensity of the phosphor of Example 1 excited by 400 nm is 2.8 times that of the phosphor of Comparative Example 1.
[0045]
Comparative Example 2
Y2OThree0.0238 mol, γ-Al2OThree0.0400 mol, and CeO as the element source compound of the luminescent center ion2; 0.00048 mol together with pure water was pulverized and mixed in an alumina container and bead wet ball mill, dried, passed through a nylon mesh, and the resulting pulverized mixture was 4% in an alumina crucible. The phosphor was baked by heating at 1500 ° C. for 2 hours under a nitrogen gas stream containing hydrogen, followed by washing with water, drying, and classification treatment to produce a yellow-emitting phosphor (Y2.98Ce0.03AlFiveO12) Was manufactured. Table 1 shows the wavelength and relative intensity of the emission peak. It can be seen that the emission intensity of the phosphor of Example 1 excited by 400 nm is 250 times that of the phosphor of Comparative Example 2.
[0046]
[Table 1]
Figure 0004168776
[0047]
【The invention's effect】
According to the present invention, a light emitting device having high emission intensity can be provided.
[Brief description of the drawings]
[Figure 1] BaThreeMgSi2O8X-ray diffraction pattern (converted to X-ray source Cu Kα)
[Figure 2] SrThreeMgSi2O8X-ray diffraction pattern (converted to X-ray source Cu Kα)
[Fig. 3] CaThreeMgSi2O8X-ray diffraction pattern (converted to X-ray source Cu Kα)
4 is a schematic perspective view showing a positional relationship between a first light emitter and a second light emitter in an example of the light emitting device of the present invention. FIG.
FIG. 5 is a schematic cross-sectional view showing an embodiment of a light emitting device having a first light emitter (350-415 nm light emitter) and a second light emitter.
6 is an X-ray diffraction pattern (X-ray source: Cu Kα) of the phosphor of Example 1. FIG.
FIG. 7 shows an emission spectrum when the phosphors of Example 1 and Comparative Example 1 of the present invention are combined with a GaN-based light emitting diode having an emission wavelength of 400 nm.
8 is an X-ray diffraction pattern (X-ray source: Cu Kα) of the phosphor of Example 2. FIG.
FIG. 9 is a schematic cross-sectional view showing an example of a surface-emitting illumination device of the present invention.
[Explanation of symbols]
1: Second light emitter
2: Surface-emitting GaN LED
3; Substrate
4: Light emitting device
5: Mount lead
6; Inner lead
7; 1st light-emitting body (350-415 nm light-emitting body)
8: Resin part containing the phosphor of the present invention
9; Conductive wire
10: Mold member

Claims (13)

350−415nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、前記第2の発光体が、一般式[1]の化学組成を有する結晶相を有する蛍光体を含有してなることを特徴とする発光装置。
Figure 0004168776
(但し、M1は、BaおよびSrからなる群から選ばれる少なくとも一種の元素を合計で90mol%以上含む金属元素を表し、M2は、Mgを90mol%以上含む金属元素を表し、M3は、Siを90mol%以上含む金属元素を表し、aは2.5≦a≦3.3を満足する数、bは0.02≦b<0.15を満足する数、cは0.9≦c≦1.1を満足する数、dは1.8≦d≦2.2を満足する数、eは7.2≦e≦8.8を満足する数である。)
In the light emitting device having a first light emitter that generates light of 350 to 415 nm and a second light emitter that generates visible light by irradiation of light from the first light emitter, the second light emitter Comprising a phosphor having a crystal phase having a chemical composition represented by the general formula [1].
Figure 0004168776
(However, M 1 represents a metal element containing 90 mol% or more in total of at least one element selected from the group consisting of Ba and Sr, M 2 represents a metal element containing 90 mol% or more of Mg , and M 3 represents Represents a metal element containing 90 mol% or more of Si , a is a number satisfying 2.5 ≦ a ≦ 3.3, b is a number satisfying 0.02 ≦ b <0.15 , and c is 0.9 ≦ (a number that satisfies c ≦ 1.1, d is a number that satisfies 1.8 ≦ d ≦ 2.2, and e is a number that satisfies 7.2 ≦ e ≦ 8.8.)
BaおよびSrの合計のM1中に占める割合、MgのM2中に占める割合、及びSiのM3中に占める割合が、それぞれ95mol%以上であることを特徴とする請求項1に記載の発光装置。The ratio of the total of Ba and Sr in M 1 , the ratio of Mg in M 2 , and the ratio of Si in M 3 are 95 mol% or more, respectively. Light emitting device. bが0.05≦b≦0.1であることを特徴とする請求項1または2に記載の発光装置。b is the light-emitting device according to claim 1 or 2, characterized in that it is 0.05 ≦ b ≦ 0.1. 1の中のSrに対するBaのモル比が0.05以上であることを特徴とする請求項1ないしのいずれか1項に記載の発光装置。The light emitting device according to any one of claims 1 to 3 , wherein a molar ratio of Ba to Sr in M 1 is 0.05 or more. 蛍光体が、メルウィナイト類似の結晶構造を持つものであることを特徴とする請求項1ないし4のいずれか1項に記載の発光装置。The light-emitting device according to claim 1, wherein the phosphor has a crystal structure similar to merwinite. 蛍光体が、GaN系発光ダイオードの紫外光領域の主波長である400nmで該蛍光体を励起したときに、発光ピーク波長が438〜440nmの発光スペクトルを示すものであることを特徴とする請求項1ないし5のいずれか1項に記載の発光装置。The phosphor exhibits an emission spectrum having an emission peak wavelength of 438 to 440 nm when the phosphor is excited at 400 nm, which is a main wavelength in an ultraviolet region of a GaN-based light emitting diode. The light emitting device according to any one of 1 to 5. 第1の発光体がレーザーダイオード又は発光ダイオードであることを特徴とする請求項1乃至6のいずれか1項に記載の発光装置。  The light emitting device according to claim 1, wherein the first light emitter is a laser diode or a light emitting diode. 第1の発光体がGaN系化合物半導体を用いたレーザーダイオード又は発光ダイオードであることを特徴とする請求項7に記載の発光装置。  The light emitting device according to claim 7, wherein the first light emitter is a laser diode or a light emitting diode using a GaN-based compound semiconductor. 第1の発光体が面発光型GaN系レーザーダイオードであることを特徴とする請求項8に記載の発光装置。  9. The light emitting device according to claim 8, wherein the first light emitter is a surface emitting GaN-based laser diode. 第2の発光体が膜状であることを特徴とする請求項9に記載の発光装置。  The light emitting device according to claim 9, wherein the second light emitter is in the form of a film. 第1の発光体の発光面に、直接第2の発光体の膜面を接触させてなることを特徴とする請求項1ないし10のいずれか1項に記載の高効率な発光装置。  The high-efficiency light-emitting device according to claim 1, wherein the light-emitting surface of the first light-emitting body is in direct contact with the film surface of the second light-emitting body. 第2の発光体が、蛍光体の粉を樹脂に分散させてなることを特徴とする請求項1ないし11のいずれか1項に記載の発光装置。  The light emitting device according to any one of claims 1 to 11, wherein the second light emitter is obtained by dispersing phosphor powder in a resin. 請求項1ないし12のいずれか1項に記載の発光装置を有する照明装置。  An illumination device comprising the light-emitting device according to claim 1.
JP2003036722A 2002-02-15 2003-02-14 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME Expired - Fee Related JP4168776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003036722A JP4168776B2 (en) 2002-02-15 2003-02-14 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-38705 2002-02-15
JP2002038705 2002-02-15
JP2003036722A JP4168776B2 (en) 2002-02-15 2003-02-14 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME

Publications (3)

Publication Number Publication Date
JP2003306675A JP2003306675A (en) 2003-10-31
JP2003306675A5 JP2003306675A5 (en) 2006-02-02
JP4168776B2 true JP4168776B2 (en) 2008-10-22

Family

ID=29405216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003036722A Expired - Fee Related JP4168776B2 (en) 2002-02-15 2003-02-14 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME

Country Status (1)

Country Link
JP (1) JP4168776B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617889B2 (en) * 2004-01-16 2011-01-26 三菱化学株式会社 Phosphor, and light emitting device, lighting device, and image display device using the same
JP4617890B2 (en) * 2004-01-16 2011-01-26 三菱化学株式会社 Phosphor, and light emitting device, lighting device, and image display device using the same
EP1715023B1 (en) 2004-01-16 2012-10-24 Mitsubishi Chemical Corporation Phosphor and including the same, light emitting apparatus, illuminating apparatus and image display
US20070247051A1 (en) * 2004-09-07 2007-10-25 Sumitomo Chemical Company, Limited Phosphor, Phosphor Paste and Light-Emitting Device
KR100666265B1 (en) * 2004-10-18 2007-01-09 엘지이노텍 주식회사 Phosphor and LED using the same
KR20060034055A (en) * 2004-10-18 2006-04-21 엘지이노텍 주식회사 Phosphor and led using the same
JP2006137851A (en) * 2004-11-12 2006-06-01 Sumitomo Chemical Co Ltd Silicate fluorescent substance powder and method for producing the same
DE102007060198A1 (en) * 2007-12-14 2009-06-18 Osram Gesellschaft mit beschränkter Haftung Conversion LED
JP5770192B2 (en) * 2010-09-07 2015-08-26 宇部マテリアルズ株式会社 Blue light emitting phosphor and light emitting device using the blue light emitting phosphor
JP5736272B2 (en) * 2011-08-09 2015-06-17 宇部マテリアルズ株式会社 Blue light emitting phosphor and light emitting device using the blue light emitting phosphor
JP6187342B2 (en) * 2014-03-20 2017-08-30 宇部興産株式会社 Oxynitride phosphor powder and method for producing the same
KR102001718B1 (en) * 2016-11-30 2019-07-18 세종대학교산학협력단 Oxyide phosphor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646087A (en) * 1987-06-30 1989-01-10 Hitachi Ltd Synthesis of fluophor
JP2002042525A (en) * 2000-07-26 2002-02-08 Toyoda Gosei Co Ltd Planar light source
DE10036940A1 (en) * 2000-07-28 2002-02-07 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Luminescence conversion LED
JP4077170B2 (en) * 2000-09-21 2008-04-16 シャープ株式会社 Semiconductor light emitting device

Also Published As

Publication number Publication date
JP2003306675A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
JP4032682B2 (en) Phosphor
JP2005298805A (en) Light emitting device and illumination device
JP4168776B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4617890B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP4706358B2 (en) Blue light emitting phosphor and method for manufacturing the same, light emitting device, illumination device, backlight for display and display
JP4165255B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4411841B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP4972904B2 (en) Phosphor, method for manufacturing the phosphor, light-emitting device using the phosphor, image display device, and illumination device
JP4389513B2 (en) Light emitting device, lighting device, and image display device
JP2007009141A (en) Blue light-emitting phosphor and its manufacturing method, light-emitting apparatus, illumination apparatus, back light for display, and display
JP5326986B2 (en) Phosphor used in light emitting device
JP2004235546A (en) Light emitting device and lighting device and display using it
JP4561064B2 (en) Light emitting device, lighting device, and image display device
JP4656109B2 (en) Phosphor
JP4617889B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP2004253747A (en) Light emitting device and lighting device using same
JP4617888B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP2010059429A (en) Phosphor, luminescent device using the same, image display and illuminating device
JP4246502B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP4337468B2 (en) Light emitting device, lighting device, and image display device
JP4363194B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP4604516B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP4337465B2 (en) Light emitting device, lighting device, and image display device
JP4433847B2 (en) Phosphor, light emitting device using the same, image display device, and illumination device
JP2005064189A (en) Light emitting device, lighting device and image display device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees