JP5794009B2 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
JP5794009B2
JP5794009B2 JP2011157235A JP2011157235A JP5794009B2 JP 5794009 B2 JP5794009 B2 JP 5794009B2 JP 2011157235 A JP2011157235 A JP 2011157235A JP 2011157235 A JP2011157235 A JP 2011157235A JP 5794009 B2 JP5794009 B2 JP 5794009B2
Authority
JP
Japan
Prior art keywords
refrigerant
compression mechanism
flow rate
economizer
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011157235A
Other languages
English (en)
Other versions
JP2013024436A (ja
Inventor
東 洋文
洋文 東
賢二 天野
賢二 天野
孝一 田中
孝一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2011157235A priority Critical patent/JP5794009B2/ja
Publication of JP2013024436A publication Critical patent/JP2013024436A/ja
Application granted granted Critical
Publication of JP5794009B2 publication Critical patent/JP5794009B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、冷凍装置に関する。
従来より、放熱器を通過した冷媒を、蒸発器側に向かう冷媒と、再び圧縮機構の吸入側にインジェクションさせる冷媒と、に分ける冷媒回路が採用された冷凍装置が知られている。
例えば、特許文献1(特開2007−263440号公報)に記載の冷凍装置では、インジェクションさせる冷媒の量(インジェクション量)を調節することにより、能力および運転効率を向上させた技術が記載されている。
冷凍装置においては、圧縮機構として、インペラを備えた遠心圧縮機が採用されるものがあり、インペラとしては、羽根が放射状に広がりながら傾斜して設けられているものがある。このような形状のインペラが採用された遠心圧縮機が用いられている場合には、インペラの吸入側の冷媒流れとしては、損失を少なく抑える観点から、羽根の傾斜角度や回転数に応じた程度の旋回流を与えることが望まれる。
このような旋回流は、例えば、冷媒流れが合流する配管接続部分において、一方の配管の軸方向に対して、他方の配管の軸方向が異なる角度で合流させる形態を採用すること等によって生じさせることが考えられる。
しかし、上記の特許文献1(特開2007−263440号公報)に記載された冷凍装置では、インジェクション量が所望の流量となるように調節することのみが考察されており、吸入冷媒に旋回流を生じさせることは考察されておらず、そのため、旋回流の程度についても検討されていない。
このため、従来の冷凍装置において、遠心圧縮機の吸入冷媒に旋回流を生じさせようとしても、調節された所望のインジェクション量の流量から定まる流速と、合流対象の冷媒流れの流速と、によって定まる旋回流のみが生じるにすぎない。この調節される所望のインジェクション量は、冷凍装置の運転条件等に応じて変化するため、運転条件等が変われば生じる旋回流も変わってしまう。したがって、従来の冷凍装置では、所望のインジェクション量に調節された状態において、目的とする旋回流を形成することはできていなかった。
本発明は、上述した点に鑑みてなされたものであり、本発明の課題は、所望の流量のインジェクション量を確保しつつ目的とする旋回流を形成させることが可能な冷凍装置を提供することにある。
本発明の第1観点に係る冷凍装置は、多段圧縮冷凍サイクルを行う冷凍装置であって、n個の圧縮機構(nは2以上の自然数)と、冷媒の熱を放熱する放熱器と、膨張機構と、冷媒を加熱するための蒸発器と、m段中間連結管と、インジェクション回路と、エコノマイザ熱交換器と、エコノマイザ膨張弁と、制御部と、を備えている。n個の圧縮機構(nは2以上の自然数)は、それぞれが羽根が傾斜して設けられたインペラをそれぞれ有している。そして、これらのn個の圧縮機構(nは2以上の自然数)は、互いに直列に接続されている。放熱器は、冷媒の熱を放熱する。m段中間連結管は、m段目の圧縮機構(mはn未満の自然数)の吐出側とm+1段目の圧縮機構の吸入側とを接続する。このm段中間連結管は、合計でn−1個設けられている。インジェクション回路は、放熱器から膨張機構に向かう冷媒流れの一部を分岐させてm段中間連絡管に合流させる。エコノマイザ熱交換器は、放熱器から膨張機構に向かう冷媒と、インジェクション回路を流れる冷媒との間で熱交換を行わせる。エコノマイザ膨張弁は、インジェクション回路の途中であってエコノマイザ熱交換器において熱交換が行われる部分よりも上流側に設けられている。インジェクション回路は、上流側流路と、下流側流路と、調節機構と、を有している。上流側流路は、エコノマイザ膨張弁を通過した冷媒の一部を、m段中間連絡管の上流側合流点まで導く。下流側流路は、エコノマイザ膨張弁を通過した冷媒の他の一部を、m+1段目の圧縮機構の吸入冷媒に旋回流を与えるようにm段中間連絡管の上流側合流点より下流側の下流側合流点まで導く。調節機構は、上流側流路と下流側流路の冷媒流量比を調節する。制御部は、m+1段目の圧縮機構の吐出冷媒の過熱度が目標とする過熱度となるようにエコノマイザ膨張弁の弁開度を制御しつつ、調節機構を制御して冷媒流量比を調節することにより、m+1段目の圧縮機構の吸入冷媒に生じさせる旋回流を調節する。
なお、インジェクション回路は、n−1個のm段中間連結管の全てに対応するようにn−1個設けられている必要はなく、例えば、全てのm段中間連結管のうちのn−1個よりも少ない数の特定の中間連結管にのみ設けられていてもよい。
この冷凍装置では、インジェクション回路を流れる冷媒は、上流側流路を流れる冷媒と、下流側流路を流れる冷媒と、に分けられている。しかも、これらの上流側流路と下流側流路を流れる冷媒流量の比率は、制御部が調節機構を操作することで調節される。これにより、下流側流路においては目的とする旋回流を形成させるために必要な流速が確保される流量を流すように調節機構によって調節し、上流側流路においては能力や運転効率から定められたインジェクション量のなかから下流側流路に流す分を差し引いた残りの流量を流すことができる。
これにより、所望の流量のインジェクション量を確保しつつ目的とする旋回流を形成させることが可能になる。
本発明の第2観点に係る冷凍装置は、第1観点に係る冷凍装置において制御部は、インジェクション回路のエコノマイザ熱交換器の出口を流れる冷媒の圧力とm+1段目の圧縮機構の吸入冷媒の圧力の差圧に応じて予め定められている流量比となるように、調節機構を制御する。
この冷凍装置では、エコノマイザ熱交換器の出口を流れる冷媒の圧力と、m+1段目の圧縮機構の吸入冷媒の圧力と、を把握することにより、簡単な操作で目的とする旋回流を形成させることが可能になる。
本発明の第3観点に係る冷凍装置は、第1観点または第2観点に係る冷凍装置において、下流側流路は、スロート形状を有している。
この冷凍装置では、下流側流路がスロート形状を有していることにより、スロート形状部分を通過した冷媒の流速を上げることができる。このため、インジェクション回路を流れる冷媒流量が少ない場合であっても、目的とする旋回流を形成させやすくなる。
本発明の第1観点に係る冷凍装置では、所望の流量のインジェクション量を確保しつつ目的とする旋回流を形成させることが可能になる。
本発明の第2観点に係る冷凍装置では、簡単な操作で目的とする旋回流を形成させることが可能になる。
本発明の第3観点に係る冷凍装置では、インジェクション回路を流れる冷媒流量が少ない場合であっても、目的とする旋回流を形成させやすくなる。
冷凍装置の概略冷媒回路図である。 冷凍装置に対応するモリエル線図である。 制御構成を示すブロック図である。 圧縮機構の概略断面図である。 インペラの外観を示す概略斜視図である。 合流部分近傍の概略斜視図である。 ヒートポンプ装置の運転制御フローチャートである。 他の実施形態(6−1)に係る複数箇所合流の構造例のインペラの前面視における概略図である。
以下、本発明に係る遠心圧縮機が採用されたヒートポンプ装置の一実施形態について、図面に基づいて説明する。
(1)ヒートポンプ装置1の全体構成
図1は、本発明に係る遠心圧縮機の一例である多段遠心圧縮機2が採用されたヒートポンプ装置1の概略構成図である。なお、図1では、第1四路切換弁4aおよび第2四路切換弁4bのいずれについても実線の接続状態を冷房運転状態として、点線の接続状態を暖房運転状態として、記載している。なお、冷媒回路中の矢印は、冷房運転状態での冷媒の流れる方向を示している。図2は、冷房回路で冷凍サイクルが行われている場合のモリエル線図を示す。
なお、以下の冷媒流れは、冷房運転時の流れ方向として説明する。
ヒートポンプ装置1は、蒸気圧縮式の冷凍サイクルによって、空調や冷温水の生成を行う装置である。ヒートポンプ装置1は、主として、多段遠心圧縮機2、第1四路切換弁4aおよび第2四路切換弁4b、熱源側熱交換器3、第1エコノマイザ回路60、第2エコノマイザ回路70、第3エコノマイザ回路80、膨張機構8、および、利用側熱交換器5を有しており、これらの機器が接続されることによって冷媒回路を構成している。ここでは、冷媒として二酸化炭素が使用されている。なお、冷媒回路は、主冷媒回路と、第1エコノマイザ回路60、第2エコノマイザ回路70および第3エコノマイザ回路80と、によって構成されている。
多段遠心圧縮機2は、本実施形態では、第1圧縮機構10、第2圧縮機構20、第3圧縮機構30、第4圧縮機構40が互いに直列に接続されて冷媒を段階的に圧縮するように構成されている。第1圧縮機構10の吸入側(図1の点A)は、利用側熱交換器5から流れ出た冷媒を吸入できるように吸入管6が接続されている。第1圧縮機構10の吐出側(図1の点B)と第2圧縮機構20の吸入側(図1の点C)とは、第1中間連結管18によって接続されている。第2圧縮機構20の吐出側(図1の点D)と第3圧縮機構30の吸入側(図1の点E)とは、第2中間連結管28によって接続されている。第3圧縮機構30の吐出側(図1の点F)と第4圧縮機構40の吸入側(図1の点G)とは、第3中間連結管38によって接続されている。第4圧縮機構40の吐出側(図1の点H)は、第1四路切換弁4aと接続された吐出管7が接続されている。
第1四路切換弁4aは、多段遠心圧縮機2の第4圧縮機構40の吐出側から伸びる吐出管7と熱源側熱交換器3との間に接続されている。第2四路切換弁4bは、熱源側熱交換器3に対して、第1四路切換弁4a側とは反対側に接続されており、膨張機構8と接続されるポートや利用側熱交換器5と接続されるポートを有している。これらの第1四路切換弁4aおよび第2四路切換弁4bは、冷媒回路における冷媒流れを切り換えることで冷房運転状態と暖房運転状態との切り換えを行う。冷房運転時には、熱源側熱交換器3を冷媒の放熱器として機能させつつ、利用側熱交換器5を冷媒の蒸発器として機能させる。暖房運転時には、利用側熱交換器5を冷媒の放熱器として機能させつつ、熱源側熱交換器3を冷媒の蒸発器として機能させる。なお、熱源側熱交換器3および利用側熱交換器5は、冷媒の放熱器として機能する場合には、空調対象空間の空気を加熱する、および/または、水等の流体を加熱する。なお、熱源側熱交換器3および利用側熱交換器5は、冷媒の蒸発器として機能する場合には、空調対象空間の空気を冷却する、および/または、水等の流体を冷却する。
膨張機構8は、それぞれ通過する冷媒の圧力を下げる機構である。
第3エコノマイザ回路80、第2エコノマイザ回路70、第1エコノマイザ回路60は、第2四路切換弁4bと膨張機構8との間の主冷媒回路から、この順で分岐するように設けられている。
第3エコノマイザ回路80は、第3インジェクション管83、第3膨張弁82、第3エコノマイザ熱交換器81、第3流量調節弁86、第3上流側流路84、および、第3下流側流路85を有している。第3エコノマイザ熱交換器81は、第2四路切換弁4bの下流側に位置する分岐点Iよりも膨張機構8側に設けられており、第3インジェクション管83を流れる第3膨張弁82で減圧された冷媒と、主冷媒回路を流れる冷媒と、の間で熱交換を行わせる。第3インジェクション管83は、分岐点Iから分岐し、第3膨張弁82を通過し、さらに第3エコノマイザ熱交換器81を通過した後、第3流量調節弁86まで伸びている。第3流量調節弁86では、第3インジェクション管83を第3上流側流路84と第3下流側流路85とに分岐させており、第3上流側流路84側に流す冷媒量と第3下流側流路85側に流す冷媒量とを調節することができる。第3上流側流路84および第3下流側流路85は、いずれも第3流量調節弁86側とは反対側の端部が第3中間連結管38に接続されている。第3上流側流路84と第3中間連結管38との接続点38aは、第3下流側流路85と第3中間連結管38との合流点38bよりも、第3中間連結管38における上流側に設けられている。第3下流側流路85は、第3中間連結管38における第4圧縮機構40の吸入口の直前部分に接続されている。第3下流側流路85は、第3上流側流路84を流れる冷媒と第3中間連結管38を流れる冷媒とが合流した冷媒流れに対して旋回流を与えることができるように、流れ方向中心から外れた位置に向けて第3中間連結管38に略垂直に接続されている。これにより、第4圧縮機構40の吸入冷媒に旋回流を生じさせることができる。
第2エコノマイザ回路70は、第3エコノマイザ回路80と同様であり、第2インジェクション管73、第2膨張弁72、第2エコノマイザ熱交換器71、第2流量調節弁76、第2上流側流路74、および、第2下流側流路75を有している。第2エコノマイザ熱交換器71は、主冷媒回路における第3エコノマイザ回路80から流れ出た冷媒を分岐する分岐点Jよりも膨張機構8側に設けられており、第2インジェクション管73を流れる第2膨張弁72で減圧された冷媒と、主冷媒回路を流れる冷媒と、の間で熱交換を行わせる。第2インジェクション管73は、分岐点Jから分岐し、第2膨張弁72を通過し、さらに第2エコノマイザ熱交換器71を通過した後、第2流量調節弁76まで伸びている。第2流量調節弁76では、第2インジェクション管73を第2上流側流路74と第2下流側流路75とに分岐させており、第2上流側流路74側に流す冷媒量と第2下流側流路75側に流す冷媒量とを調節することができる。第2上流側流路74および第2下流側流路75は、いずれも第2流量調節弁76側とは反対側の端部が第2中間連結管28に接続されている。第2上流側流路74と第2中間連結管28との接続点28aは、第2下流側流路75と第2中間連結管28との合流点28bよりも、第2中間連結管28における上流側に設けられている。第2下流側流路75は、第2中間連結管28における第3圧縮機構30の吸入口の直前部分に接続されている。第2下流側流路75は、第2上流側流路74を流れる冷媒と第2中間連結管28を流れる冷媒とが合流した冷媒流れに対して旋回流を与えることができるように、流れ方向中心から外れた位置に向けて第2中間連結管28に略垂直に接続されている。これにより、第3圧縮機構30の吸入冷媒に旋回流を生じさせることができる。
第1エコノマイザ回路60は、第3エコノマイザ回路80、第2エコノマイザ回路70と同様であり、第1インジェクション管63、第1膨張弁62、第1エコノマイザ熱交換器61、第1流量調節弁66、第1上流側流路64、および、第1下流側流路65を有している。第1エコノマイザ熱交換器61は、主冷媒回路における第2エコノマイザ回路70から流れ出た冷媒を分岐する分岐点Kよりも膨張機構8側に設けられており、第1インジェクション管63を流れる第1膨張弁62で減圧された冷媒と、主冷媒回路を流れる冷媒と、の間で熱交換を行わせる。第1インジェクション管63は、分岐点Kから分岐し、第1膨張弁62を通過し、さらに第1エコノマイザ熱交換器61を通過した後、第1流量調節弁66まで伸びている。第1流量調節弁66では、第1インジェクション管63を第1上流側流路64と第1下流側流路65とに分岐させており、第1上流側流路64側に流す冷媒量と第1下流側流路65側に流す冷媒量とを調節することができる。第1上流側流路64および第1下流側流路65は、いずれも第1流量調節弁66側とは反対側の端部が第1中間連結管18に接続されている。第1上流側流路64と第1中間連結管18との合流点18aは、第1下流側流路65と第1中間連結管18との合流点18bよりも、第1中間連結管18における上流側に設けられている。第1下流側流路65は、第1中間連結管18における第2圧縮機構20の吸入口の直前部分に接続されている。第1下流側流路65は、第1上流側流路64を流れる冷媒と第1中間連結管18を流れる冷媒とが合流した冷媒流れに対して旋回流を与えることができるように、流れ方向中心から外れた位置に向けて第1中間連結管18に略垂直に接続されている。これにより、第2圧縮機構20の吸入冷媒に旋回流を生じさせることができる。
冷却管9aは、膨張機構8によって減圧された後の低圧の冷媒を、冷媒回路から分岐させ、後述するモータケーシング51の内部空間まで導く配管である(図2参照)。また、冷却管9bは、このモータケーシング51の内部空間を通過した低圧の冷媒を吸入管6に導く配管である。これにより、モータケーシング51の内部空間の圧力は、冷凍サイクルにおける低圧になっており、この低圧の冷媒によって、ロータ53及びステータ54が冷却されるようになっている。
このように、ヒートポンプ装置1は、冷媒として二酸化炭素を使用する蒸気圧縮式の冷凍サイクルによって、空調や冷温水の生成を行う装置であり、圧縮機として多段遠心圧縮機2を使用している。このため、冷媒としてフロン等を使用する場合に比べて、冷媒の動作圧力が高くなっている。例えば、冷媒としてフロンの一種であるR134aを使用する場合には、冷凍サイクルの低圧が約0.29MPa(蒸発温度0℃)であり、冷凍サイクルの高圧が約0.77MPa(凝縮温度30℃)である。これに対して、冷媒として二酸化炭素を使用する場合には、冷凍サイクルの低圧が約3.5MPa(蒸発温度0℃)となり、冷凍サイクルの高圧が約7.2MPa(凝縮温度30℃)等となる。
ヒートポンプ装置1において、第1四路切換弁4aおよび第2四路切換弁4bの接続状態が冷房運転状態で冷凍サイクルが行われた場合には、上記図1において点A〜点Lで示した部分を流れる冷媒の状態は、図2のモリエル線図上において対応する点A〜点Lで示された状態となっている。
このヒートポンプ装置1は、図3の制御ブロック図に示すように、制御装置90によって制御されている。制御装置90は、入力装置95と接続されており、入力装置95がユーザから受け付けた設定に従うようにヒートポンプ装置1を運転制御する。制御装置90には、各種演算処理を行う制御CPU91と、制御を行うための各種データを格納している制御用メモリ92等が設けられている。この制御用メモリ92には、後述する第2圧縮機構20の吸入冷媒に所望の旋回流を生じさせるために運転状況に応じて予め定められた第1流量調節弁66の制御情報、第3圧縮機構30の吸入冷媒に所望の旋回流を生じさせるために運転状況に応じて予め定められた第2流量調節弁76の制御情報、第4圧縮機構40の吸入冷媒に所望の旋回流を生じさせるために運転状況に応じて予め定められた第3流量調節弁86の制御情報が格納されている。具体的には、第1エコノマイザ熱交換器61を通過した冷媒の圧力と第2圧縮機構20の吸入圧力の差圧に対して第1下流側流路65において必要となる流量の関係、第2エコノマイザ熱交換器71を通過した冷媒の圧力と第3圧縮機構30の吸入圧力の差圧に対して第1下流側流路65において必要となる流量の関係、および、第4エコノマイザ熱交換器81を通過した冷媒の圧力と第4圧縮機構40の吸入圧力の差圧に対して第1下流側流路65において必要となる流量の関係が流量比率関係データとして予め運転条件毎に格納されている。
入力装置95には、ユーザからの入力を受け付けたり、受け付けた入力データを制御装置90に送信したりするための各種演算処理を行う入力CPU96と、入力を受け付けた各種設定データ等を格納する入力用メモリ97と、が設けられている。なお、この設定データは、制御用メモリ92においても格納される。
なお、ヒートポンプ装置1には、吸入管6を流れる冷媒の圧力および温度、第1中間連結管18の第2圧縮機構20直前を流れる冷媒の圧力および温度、第2中間連結管28の第3圧縮機構30の直前を流れる冷媒の圧力および温度、第3中間連結管38の第4圧縮機構40の直前を流れる冷媒の圧力および温度、第4圧縮機構40から吐出されて第1四路切換弁4aに向かう冷媒の圧力および温度、をそれぞれ把握するためのセンサが設けられている。さらに、各エコノマイザ熱交換器61、71、81を通過したインジェクション管63、73、83を流れる冷媒について圧力および温度を把握するためのセンサも設けられている。これらのセンサから把握されるデータは、図3の制御ブロック図に示すように、制御装置90による、第1圧縮機構10、第2圧縮機構20、第3圧縮機構30、第4圧縮機構40、第1四路切換弁4a、第2四路切換弁4b、膨張機構8、第1膨張弁62、第2膨張弁72、第3膨張弁82、第1流量調節弁66、第2流量調節弁76、第3流量調節弁86等の制御に利用される。
(2)多段遠心圧縮機の構成
図4は、多段遠心圧縮機2の概略断面図である。図5は、第2圧縮機構20のインペラを示す概略外観斜視図である。図6は、旋回流を生じさせる合流形状を示す概略図である。
ここで、各圧縮機構に設けられたインペラの回転中心をO、回転軸線をO−Oとし、回転軸線O−Oに沿う方向を軸方向又は前後方向とする。なお、軸に近づく方向を径方向内側(回転半径方向の内側)とし、軸から遠ざかる方向を径方向外側(回転半径方向の外側)とする。
多段遠心圧縮機2は、主として、モータ50と、第1圧縮機構10、第2圧縮機構20、第3圧縮機構30、および、第4圧縮機構40を有している。
(2−1)モータ50
モータ50は、第1圧縮機構10〜第4圧縮機構40を駆動するモータであり、主として、モータケーシング51と、回転軸52と、ロータ53と、ステータ54とを有している。
モータケーシング51の内部には、回転軸52、ロータ53及びステータ54を収容する空間が形成されている。
回転軸52は、モータケーシング51に固定された第1ラジアル軸受55及び第2ラジアル軸受56によって回転自在に支持されている。回転軸52の軸方向一端(図4における左端)は、第1圧縮機構10側に突出している。回転軸52の軸方向他端(図4における右端)は、第3圧縮機構30側に突出している。回転軸52の軸方向の中央近傍は、モータケーシング51に固定されるスラスト軸受57によって摺動可能に支持されている。
ロータ53は、軸方向における第1ラジアル軸受55と第2ラジアル軸受56との間において、回転軸52と一体回転するように回転軸52に軸支されている。
ステータ54は、ロータ53の外周を囲むように設けられており、モータケーシング51に回転不能に支持されている。
(2−2)第1圧縮機構10〜第4圧縮機構40
第1圧縮機構10、第2圧縮機構20、第3圧縮機構30および第4圧縮機構40は、上述のように、互いに直列に接続され、段階的に冷媒を圧縮する遠心式の圧縮機構である。
第1圧縮機構10は、主として、圧縮機構ケーシング12およびインペラ11を有している。第2圧縮機構20、第3圧縮機構30、第4圧縮機構40は、それぞれ同様に、主として、圧縮機構ケーシング22およびインペラ21、圧縮機構ケーシング32およびインペラ31、圧縮機構ケーシング42およびインペラ41を有している。
圧縮機構ケーシング22とインペラ21との配置構造関係は、他の圧縮機構ケーシング12とインペラ11との配置構造関係、圧縮機構ケーシング32とインペラ31との配置構造関係、圧縮機構ケーシング42とインペラ41との配置構造関係と概ね同様であるため、以下、第2圧縮機構20について中心に説明する。
(圧縮機構ケーシング22)
圧縮機構ケーシング22には、主として、吸込口22aと、シュラウドハウジング22cとが形成されている。
吸込口22aは、圧縮機構ケーシング22の軸方向一端(図4における左端)に向かって開口しており、第1圧縮機構10の吐出側から伸びた第1中間連結管18に接続されている。ここで、第1圧縮機構10から第1中間連結管18に向けて吐出された冷媒の速度エネルギ分は、デフューザにおいて圧力のエネルギに変換されて、高圧冷媒になった状態で第2圧縮機構20に吸入される。なお、第2圧縮機構20の吐出側には、第2中間連結管28が接続されており、同様にデフューザが設けられている。
シュラウドハウジング22cは、図4に示すように、吸込口22aの背面側においてインペラ21を回転自在に収容しており、インペラ21の羽根の径方向外側でかつ前方を周りから覆う羽根対向壁22bが形成されている。この羽根対向壁22bは、背面側でかつ径方向内側に向かって膨出しており、吸込口22aと第2中間連結管28の下流側端部をなだらかに繋いでいる、回転軸を中心とする環状の膨出面である。
(インペラ21)
インペラ21は、図5に示すように、主として、ハブ211と、ハブ211の前面側でかつ径方向外側に配置された複数の羽根212、213を有しており、ハブ211の前後方向に延びる回転軸52を軸心として回転する。
ハブ211は、その前方から後方に向けて拡径する略円錐形状を有しており、回転軸52と一体回転するように回転軸52に軸支されている。なお、このハブ211は、軽量化の観点から、軸周辺部分や外縁部分を除く内側が中空となっていることが好ましい。
ハブ211の後方は、径方向に広がった円形状平面であるハブ背面211dが形成されており、シュラウドハウジング22cの後方側の壁面と対向している。ハブ211の前方は、径方向に広がっており、ハブ背面211dよりも半径が小さい円形状平面であるハブ前面211aが形成されており、吸入側を向いている。ハブ211の径方向外側端部は、軸方向と中心軸が共通となっており、半径がハブ背面211dと同等であるハブ円筒形状面211cが形成されており、シュラウドハウジング22cの外周壁と対向している。ハブ211の前方でかつ径方向外側には、後方でかつ径方向内側に向けてなだらかに窪んでおり、ハブ前面211aの径方向外周縁からハブ円筒形状面211cの前縁までをなだらかに繋ぐ拡径湾曲面211bが形成されている。なお、インペラ21の拡径湾曲面211bと、シュラウドハウジング22cの羽根対向壁22bと、の最短距離は、前方(吸入側)において最も長く、冷媒流れ方向に進むにつれて短くなり、径方向外側端部(吐出側)において最も短くなるように形成されている。
インペラ21の拡径湾曲面211bには、大羽根212と小羽根213とが、周方向に交互に並んで、面同士が概ね等間隔になるように設けられている。これらの大羽根212および小羽根213は、いずれも、インペラ21の拡径湾曲面211bからシュラウドハウジング22cの羽根対向壁22bの近傍まで伸びている。大羽根212は、羽根対向壁22bと対面する対向面212bを有している。小羽根213も同様に、羽根対向壁22bと対面する対向面213bを有している。また、大羽根212は、径方向外側端部において、法線が第2中間連結管28の伸びる方向を向いている吐出側側面212cを有している。小羽根213も同様に、径方向外側端部において、法線が第2中間連結管28の伸びる方向を向いている吐出側側面213cを有している。また、大羽根212および小羽根213は、いずれも、前面視において左巻となるように螺旋状に伸びている。すなわち、大羽根212および小羽根213は、ハブ前面211a側から背面側に向かうにつれて、径方向に拡大しながら、左に旋回するように伸びている。
さらに、大羽根212および小羽根213の前面側端部の長手方向と、径方向外側端部の長手方向とは、互いにねじれの関係にある。このねじれの形状は、大羽根212および小羽根213の根元とは反対側(シュラウドハウジング22cの羽根対向壁22b側)が、ハブ前面211a側から背面側に向かうにつれて、左巻きに旋回するようにして形成されている。
なお、各大羽根212は、それぞれ、インペラ21の拡径湾曲面211bの前方端部から、径方向外側端部が背面の径方向外側端部と共通する位置まで伸びている。
これに対して、各小羽根213は、各大羽根212の間に配置されており、軸方向においてハブ前面211aと背面との中間程度の位置から後方に向けて、径方向外側端部が背面の径方向外側端部と共通する位置まで伸びている。
このインペラ21は、モータ50が駆動することで、前面視において右回転(図5において矢印で示す回転進行方向R)することにより、二酸化炭素冷媒を第1中間連結管18から吸入し、圧縮して高圧とした後、第2中間連結管28に向けて吐出する。
この際、各大羽根212および小羽根213の前方でかつ径方向外側の部分は、インペラ21が回転することにより、シュラウドハウジング22cの羽根対向壁22bの内側近傍を沿うように移動する。これにより、二酸化炭素冷媒の流速が増した状態で吐出され、デフューザにおいて速度エネルギが圧力のエネルギに変換されることにより高圧冷媒となる。
なお、上記インペラ21の羽根が傾斜しつつ旋回している形状は、圧力損失の少ない効率のよい旋回流を吸入冷媒に生じさせるために、制御用メモリ92において、運転状況に応じた制御データが予め格納されている。
以上、第2圧縮機構20の第2圧縮機構ケーシング22およびインペラ21の配置構造関係等を説明したが、これらの関係は、第1圧縮機構10のインペラ11と吸込口12aと羽根対向壁12bとシュラウドハウジング12cの関係や、第3圧縮機構30のインペラ31と吸込口32aと羽根対向壁32bとシュラウドハウジング32cの関係や、第4圧縮機構40のインペラ41と吸込口42aと羽根対向壁42bとシュラウドハウジング42cの関係と同様であるため、説明を省略する。
(3)第1流量調節弁66、第2流量調節弁76、第3流量調節弁86による旋回流の調整動作
制御装置90は、各種センサから把握されるデータと、制御用メモリ92に予め格納されているデータに基づいて、第1流量調節弁66、第2流量調節弁76、第3流量調節弁86における、各流量比を調節することにより、第2圧縮機構20、第3圧縮機構30、第4圧縮機構40の各吸入側において所望の旋回量を生じさせる。
以下、図7に示す、流量比の調節制御を含むヒートポンプ装置1の制御フローチャートに沿って説明する。
まず、ステップS10では、制御装置90は、制御用メモリ92に格納されている設定データを参照して、目標設定温度を読み出し、加熱もしくは冷却する媒体の温度との差が小さくなるように、冷房能力(Qc0)、もしくは、暖房能力(Qh0)を設定する。
次に、ステップS20では、制御装置90は、吸入冷媒の温度と圧力および吐出冷媒の温度と圧力を、第1圧縮機構10、第2圧縮機構20、第3圧縮機構30、第4圧縮機構40のそれぞれについて把握する。さらに、制御装置90は、熱源側熱交換器3または利用側熱交換器5の出口を流れる冷媒の温度と圧力を把握する。このようにして把握した情報と、制御用メモリ92に予め格納されている、モリエル線図に関するデータもしくは各センサで得られる値からエンタルピーを算出するための近似式のデータを参照して、図1の冷媒回路における点A〜点Lの各部分を通過する冷媒についてエンタルピー(hA〜hL)を算出する。
そして、ステップS30では、制御装置90は、上記ステップS20で求めた各エンタルピーの値を参照して、ステップS10で設定した冷房能力(Qc0)、もしくは、暖房能力(Qh0)が達成されるように、質量流量(冷房運転時には蒸発器の出口を流れる冷媒の質量流量(Ge)、暖房運転時には放熱器の出口を流れる冷媒の質量流量(Ggc))を定める。本実施形態では、冷房運転時については、以下の関係式から質量流量(Ge)を求める。
質量流量(Ge)=冷房能力(Qc0)/(第1圧縮機構10の吸入冷媒のエンタルピー(hA)−膨張機構8を通過した後の利用側熱交換器5入口を通過する冷媒のエンタルピー(hL))
また、本実施形態では、暖房運転時には、以下の関係式から質量流量(Ggc)を求める。
質量流量(Ggc)=暖房能力(Qc0)/(第4圧縮機構40の吐出冷媒のエンタルピー(hH)−分岐点Iを通過する冷媒のエンタルピー(hI))
ステップS40では、制御装置90は、ステップS30において求めた質量流量に基づいて、第1圧縮機構10のインペラ11、第2圧縮機構20のインペラ21、第3圧縮機構30のインペラ31、第4圧縮機構40のインペラ41の回転数(rpm)を特定し、特定された回転数が実行されるように制御を行う。
なお、制御装置90は、各圧縮機構10、20、30、40を上記各回転数で運転させた状態で、第2圧縮機構20の吐出冷媒の過熱度が目標とする過熱度となるように第1エコノマイザ回路60の第1膨張弁62の弁開度を制御し、第3圧縮機構30の吐出冷媒の過熱度が目標とする過熱度となるように第2エコノマイザ回路70の第2膨張弁72の弁開度を制御し、第4圧縮機構40の吐出冷媒の過熱度が目標とする過熱度となるように、第3エコノマイザ回路80の第3膨張弁82の弁開度を制御する。これにより、制御装置90は、第2圧縮機構20の吐出冷媒の過熱度が目標とする過熱度となるように第1インジェクション管63を流れる冷媒の質量流量を制御することになり、第3圧縮機構30の吐出冷媒の過熱度が目標とする過熱度となるように第2インジェクション管73を流れる冷媒の質量流量を制御することになり、第4圧縮機構40の吐出冷媒の過熱度が目標とする過熱度となるように第3インジェクション管83を流れる冷媒の質量流量を制御することになる。なお、これらの第2圧縮機構20の目標過熱度、第3圧縮機構30の目標過熱度、第4圧縮機構40の目標過熱度は、冷凍サイクルの運転効率を良好な状態にできる値として、それぞれ質量流量に応じた値として制御用メモリ92に予め格納されている。
ステップS50では、制御装置90は、以上のようにして必要となる能力を達成させる運転制御が行われている際に、第1エコノマイザ熱交換器61を通過した冷媒の圧力と第2圧縮機構20の吸入圧力、第2エコノマイザ熱交換器71を通過した冷媒の圧力と第3圧縮機構30の吸入圧力、第4エコノマイザ熱交換器81を通過した冷媒の圧力と第4圧縮機構40の吸入圧力を、それぞれセンサから把握する。その後、制御装置90は、制御用メモリ92に格納されている流量比率関係データに基づいて、各差圧に対応して第1下流側流路65、第2下流側流路75、第3下流側流路85において必要とされる各質量流量を特定する。制御装置90は、第1下流側流路65において特定された必要な質量流量が実現されるように第1流量調節弁66を制御し、第2下流側流路75において特定された必要な質量流量が実現されるように第2流量調節弁76を制御し、第3下流側流路85において特定された必要な質量流量が実現されるように第3流量調節弁86を制御する。
なお、第1上流側流路64には、ステップS40における第1エコノマイザ回路60の第1膨張弁62の弁開度制御によって定まっている第1インジェクション管63を流れる冷媒の質量流量から、ステップS50で定めた第1下流側流路65において必要とされる質量流量を差し引いた残りの質量流量の冷媒が流れることになる。同様に、第2上流側流路74には、ステップS40における第2エコノマイザ回路70の第2膨張弁72の弁開度制御によって定まっている第2インジェクション管73を流れる冷媒の質量流量から、ステップS50で定めた第2下流側流路75において必要とされる質量流量を差し引いた残りの質量流量の冷媒が流れることになり、第3上流側流路84には、ステップS40における第3エコノマイザ回路80の第3膨張弁82の弁開度制御によって定まっている第3インジェクション管83を流れる冷媒の質量流量から、ステップS50で定めた第3下流側流路85において必要とされる質量流量を差し引いた残りの質量流量の冷媒が流れることになる。
(4)旋回流の形成
図6の概略図に示すように、第2圧縮機構20の吸入冷媒には、第1中間連結管18を流れる冷媒流れF1と、第1下流側流路65を流れる冷媒流れF2と、が合流することで旋回流F3(F1+F2)が生じている。
具体的には、第1中間連結管18の第2圧縮機構20の吸入側は、第2圧縮機構20のインペラ21の回転軸方向と同じ方向に伸びた形状を有しており、インペラ21の回転軸方向に沿った冷媒流れF1が生じている。第1下流側流路65は、第1中間連結管18の第2圧縮機構20の吸入口22aの直前の部分であって第1中間連結管18の中心軸方向からはずれた位置に、第1中間連結管18の中心軸方向に対して自身の中心軸が略垂直となるように接続されている。この第1下流側流路65には、インペラ21の回転軸方向に対してねじれの関係にある方向に対して流れる冷媒流れF2が生じている。以上の冷媒流れF1と冷媒流れF2とが合流することにより、旋回流F3が形成される。
この旋回流F3は、圧縮機構20、30、40毎に格納されている制御情報に基づいて制御装置90が第1流量調節弁66、第2流量調節弁76および第3流量調節弁86の流量比を調節することで、目的とする旋回流を形成することができる。
なお、第1下流側流路65には、合流点18bの直線部分において、スロート形状65aが設けられている。これにより、スロート形状65aの上流側を流れる冷媒よりも、スロート形状65aの下流側を流れる冷媒の方が流速が早くなるようにすることができている。
以上、第2圧縮機構20の吸入側について説明したが、第3圧縮機構30の吸入側および第4圧縮機構40の吸入側も同様である。
なお、上述した制御用メモリ92に予め格納されている第1下流側流路65に必要とされる冷媒の質量流量、第2下流側流路75に必要とされる冷媒の質量流量、および、第3下流側流路85において必要とされる冷媒の質量流量には、それぞれ、各スロート形状による流速増大効果分が予め考慮された値となっている。
(5)特徴
上記実施形態のヒートポンプ装置1では、目標設定温度に近づける運転を行う場合に、第1エコノマイザ回路60の第1インジェクション管63を流れる冷媒の質量流量、第2エコノマイザ回路70の第2インジェクション管73を流れる冷媒の質量流量、第3エコノマイザ回路80の第3インジェクション管83を流れる冷媒の質量流量がそれぞれ制御装置90によって制御されることにより、冷凍サイクルの運転効率を良好にすることが可能になっている。
そして、このヒートポンプ装置1では、第2圧縮機構20の吸入冷媒、第3圧縮機構30の吸入冷媒、第4圧縮機構40の吸入冷媒に対してそれぞれ所望の旋回流を生じさせることができるため、第2圧縮機構20、第3圧縮機構30、第4圧縮機構40に冷媒が流入する際の、羽根の傾斜角度や回転数(rpm)に応じて生じる圧力損失をできるだけ低い値に抑えることが可能になっている。
しかも、制御装置90が、第2圧縮機構20、第3圧縮機構30、第4圧縮機構40の吸入冷媒の旋回流を調整する制御を行った場合であっても、第1インジェクション管63を流れる冷媒の質量流量(第1下流側流路65と第1上流側流路64を流れる冷媒の質量流量の合計値)や第2インジェクション管73を流れる冷媒の質量流量(第2下流側流路75と第2上流側流路74を流れる冷媒の質量流量の合計値)や第3インジェクション管83を流れる冷媒の質量流量(第3下流側流路85と第3上流側流路84を流れる冷媒の質量流量の合計値)に変わりが無いため、冷凍サイクルの運転効率を良好な状態のままで維持することが可能になっている。
なお、例えば、冷凍サイクルの運転効率を良好にするための制御によって、第1インジェクション管63、第2インジェクション管73、第3インジェクション管83を流れる冷媒量が少なく調節されている場合には、第1下流側流路65、第2下流側流路75、第3下流側流路85を流れる冷媒量も減少気味になり、旋回流を生じさせるための冷媒の流速が遅くなりがちになる。これに対して、上記実施形態のヒートポンプ装置1では、旋回流を生じさせる冷媒の流速を向上させるためにスロート形状65aを採用している。このため、目的とする旋回流を生じさせることと、冷凍サイクルの運転効率を良好にすることと、の両方を同時に達成しやすくなっている。また、第1インジェクション管63、第2インジェクション管73、第3インジェクション回路83のいずれかもしくは全てにおいて流れる冷媒量が少ない場合や、第1インジェクション管63の第1エコノマイザ熱交換器61の出口を流れる冷媒の圧力と吸入先の吸入冷媒圧力の差圧、第2インジェクション管73の第2エコノマイザ熱交換器71の出口を流れる冷媒の圧力と吸入先の吸入冷媒圧力の差圧、第3インジェクション回路83の第3エコノマイザ熱交換器81の出口を流れる冷媒の圧力と吸入先の吸入冷媒圧力の差圧のいずれかもしくは全てが小さい場合、および、上述のように冷媒量が少なく且つ上述のように差圧が小さい場合、のいずれにおいても、目的とする旋回流を容易に形成させることが可能になっている。
(6)他の実施形態
(6−1)
上記実施形態では、インジェクション管を流れる冷媒を分岐させた1つの冷媒流れによって旋回流を生じさせる場合を例に挙げて説明した。
しかし、本発明はこれに限られず、例えば、図8に示すように、第1下流側流路65の途中からさらに分岐し、第1下流側流路65が生じさせる旋回流をさらに強めるように第1中間連結管18に合流する対向下流側流路265を有する構成としてもよい。
この対向下流側流路265においても、第1下流側流路65におけるスロート形状65aと同様に、冷媒流れF202を生じさせるスロート形状265aが形成されていてもよい。
(6−2)
上記実施形態では、旋回流を生じさせるためにスロート形状を用いた場合を例に挙げて説明した。
しかし、本発明はこれに限られない。
例えば、第1エコノマイザ回路60、第2エコノマイザ回路70、第3エコノマイザ回路80において、冷凍サイクルの運転効率を良好にするためにインジェクションさせる冷媒量として適当な流量が確保される使用環境で用いられるのであれば、スロート形状を採用しなくても、第1流量調節弁66、第2流量調節弁76、第3流量調節弁86を制御するだけで上記実施形態と同様の効果を得ることも可能である。
(6−3)
上記実施形態のインペラ11、21、31、41は、インジェクションによって生じる旋回流との関係で上述のように圧力損失を低減できるのであれば、大羽根および小羽根が、いずれも、前面視において左巻となるように螺旋状に伸びることにより、いわゆる「後ろ向き羽根」を構成していてもよい。また、同様に、インジェクションによって生じる旋回流との関係で上述のように圧力損失を低減できるのであれば、いわゆる「前向き羽根」や「径向き羽根」を構成していてもよい。インペラ11、21、31、41の回転方向と、圧力損失との関係についても同様である。
また、上記実施形態のインペラ11、21、31、41は、大羽根および小羽根が、拡径湾曲面に対して略垂直に設けられていてもよいし、回転進行方向Rもしくは回転進行方向Rとは反対側に傾斜して設けられていてもよい。この場合についても、インジェクションによって生じる旋回流との関係で圧力損失が生じにくい形態であることが好ましい。
なお、上記実施形態のインペラ11、21、31、41は、例えば、小羽根が設けられておらず、大羽根のみが設けられて構成されていてもよい。
(6−4)
上記実施形態では、多段圧縮冷凍サイクルの例を挙げて説明したが、第1インジェクション回路63、第2インジェクション回路73、第3インジェクション回路83の合流先(出口近傍)にそれぞれ吸入ガイドベーンを設置することにより、簡単な構造で予旋回流を生じさせることも可能になる。
(6−5)
上記実施形態では、多段圧縮機構として4段の圧縮機構を例に挙げて説明した。
しかし、本発明はこれに限られるものではなく、例えば、2段以上の複数段の圧縮機構であってもよい。
本発明の冷凍装置は、吸入冷媒に生じさせる旋回流を、インジェクション回路を流れる冷媒流れを用いて調節することができるため、インペラを有する圧縮機構とインジェクション回路を有する冷凍装置において特に有用である。
1 ヒートポンプ装置(冷凍装置)
2 多段遠心圧縮機(遠心圧縮機)
3 熱源側熱交換器(放熱器)
5 利用側熱交換器(蒸発器)
8 膨張機構
18、28、38 第1〜第3中間連結管(m段中間連結管)
18b、28b、38b 合流点(下流側合流点)
22c シュラウドハウジング
22b 前面壁
10、20、30、40 第1〜第4圧縮機構(圧縮機構)
11、21、31、41 インペラ
60、70、80 第1〜第3エコノマイザ回路(インジェクション回路)
61、71、81 第1〜第3エコノマイザ熱交換器(エコノマイザ熱交換器)
64、74、84 第1〜第3上流側流路(上流側流路)
65、75、85 第1〜第3下流側流路(下流側流路)
65a スロート形状
66、76、86 第1〜第3流量調節弁(調節機構)
212 大羽根(羽根)
213 小羽根(羽根)
特開2007−263440号公報

Claims (3)

  1. 多段圧縮冷凍サイクルを行う冷凍装置(1)であって、
    複数の羽根が傾斜して設けられたインペラ(11、21、31、41)をそれぞれ有しており、直列に接続されるn個の圧縮機構(nは2以上の自然数)(2、10、20、30、40)と、
    冷媒の熱を放熱するための放熱器(3)と、
    膨張機構(8)と、
    冷媒を加熱するための蒸発器(5)と、
    m段目の圧縮機構(mはn未満の自然数)の吐出側とm+1段目の圧縮機構の吸入側とを接続するm段中間連絡管(18、28、38)と、
    前記放熱器から前記膨張機構に向かう冷媒流れの一部を分岐させて前記m段中間連絡管(18、28、38)に合流させるインジェクション回路(60、70、80)と、
    前記放熱器から前記膨張機構に向かう冷媒と、前記インジェクション回路を流れる冷媒との間で熱交換を行わせるエコノマイザ熱交換器(61、71、81)と、
    前記インジェクション回路(60、70、80)の途中であって前記エコノマイザ熱交換器において熱交換が行われる部分よりも上流側に設けられたエコノマイザ膨張弁(62、72、82)と、
    制御部(90)と、
    を備え、
    前記インジェクション回路は、
    前記エコノマイザ膨張弁を通過した冷媒の一部を、前記m段中間連絡管の上流側合流点(18a、28a、38a)まで導く上流側流路(64、74、84)と、
    前記エコノマイザ膨張弁を通過した冷媒の他の一部を、前記m+1段目の圧縮機構の吸入冷媒に旋回流を与えるように前記m段中間連絡管の前記上流側合流点より下流側の下流側合流点(18b、28b、38b)まで導く下流側流路(65、75、85)と、
    前記上流側流路と前記下流側流路の冷媒流量比を調節する調節機構(66、76、86)と、
    を有しており、
    前記制御部は、前記m+1段目の圧縮機構の吐出冷媒の過熱度が目標とする過熱度となるように前記エコノマイザ膨張弁の弁開度を制御しつつ、前記調節機構を制御して前記冷媒流量比を調節することにより、前記m+1段目の圧縮機構の吸入冷媒に生じさせる旋回流を調節する、
    冷凍装置(1)。
  2. 前記制御部は、前記インジェクション回路の前記エコノマイザ熱交換器の出口を流れる冷媒の圧力と前記m+1段目の圧縮機構の吸入冷媒の圧力の差圧に応じて予め定められている流量比となるように、前記調節機構を制御する、
    請求項1に記載の冷凍装置。
  3. 前記下流側流路は、スロート形状(65a)を有している、
    請求項1または2に記載の冷凍装置。
JP2011157235A 2011-07-15 2011-07-15 冷凍装置 Active JP5794009B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011157235A JP5794009B2 (ja) 2011-07-15 2011-07-15 冷凍装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011157235A JP5794009B2 (ja) 2011-07-15 2011-07-15 冷凍装置

Publications (2)

Publication Number Publication Date
JP2013024436A JP2013024436A (ja) 2013-02-04
JP5794009B2 true JP5794009B2 (ja) 2015-10-14

Family

ID=47783007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011157235A Active JP5794009B2 (ja) 2011-07-15 2011-07-15 冷凍装置

Country Status (1)

Country Link
JP (1) JP5794009B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104421188A (zh) * 2013-08-26 2015-03-18 珠海格力电器股份有限公司 多级离心压缩机及空调机组
JP2022181836A (ja) * 2021-05-27 2022-12-08 三菱重工サーマルシステムズ株式会社 多段圧縮冷凍装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188865A (ja) * 2000-10-13 2002-07-05 Mitsubishi Heavy Ind Ltd 多段圧縮式冷凍機
JP4940755B2 (ja) * 2006-05-17 2012-05-30 株式会社日立プラントテクノロジー 一軸多段形遠心圧縮機
JP2008045763A (ja) * 2006-08-10 2008-02-28 Denso Corp オイルセパレータ
JP5244470B2 (ja) * 2008-06-13 2013-07-24 三菱重工業株式会社 冷凍機

Also Published As

Publication number Publication date
JP2013024436A (ja) 2013-02-04

Similar Documents

Publication Publication Date Title
JP4951583B2 (ja) ターボ冷凍機
JP2021183843A (ja) 送風装置
JP5984665B2 (ja) 圧縮機及びターボ冷凍機
US20180224135A1 (en) Outdoor unit of air conditioner and refrigeration cycle device
JP2011043130A (ja) 遠心圧縮機及び冷凍装置
JP2019143522A (ja) 遠心圧縮機
CN108700345A (zh) 用于冷却器***的节热器
JP6653157B2 (ja) 遠心圧縮機械の戻り流路形成部、遠心圧縮機械
JP2024023518A (ja) 最適化された段間流入口を有する圧縮機
JP5794009B2 (ja) 冷凍装置
CN110986403A (zh) 制冷压缩机和制冷***
US11248613B2 (en) Centrifugal compressor
JP5109695B2 (ja) ターボ圧縮機及び冷凍機
WO2018092262A1 (ja) プロペラファン及び冷凍サイクル装置
US20130136626A1 (en) Screw compressor with muffle structure and rotor seat thereof
JP6152061B2 (ja) 遠心圧縮機、ターボ冷凍機、過給機、及び遠心圧縮機の制御方法
WO2020090005A1 (ja) ターボファン、送風装置、空気調和装置及び冷凍サイクル装置
US20220196254A1 (en) Centrifugal fan, air conditioning apparatus, and refrigeration cycle apparatus
JP6856165B2 (ja) 送風機、及び送風機を有する冷凍装置
JP2013144951A (ja) 送風機、室外機及び冷凍サイクル装置
JP6152062B2 (ja) 遠心圧縮機、ターボ冷凍機、過給機、及び遠心圧縮機の制御方法
JP5825022B2 (ja) 遠心圧縮機、及び冷凍装置
TW202212694A (zh) 用於引導壓縮機中的流體流之系統及方法
KR20120057687A (ko) 터보 압축기
KR20220092986A (ko) 혼합 흐름 압축기용 능동 언로딩 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150727

R151 Written notification of patent or utility model registration

Ref document number: 5794009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151