JP5784822B2 - Method for producing carbon matrix nanopores - Google Patents

Method for producing carbon matrix nanopores Download PDF

Info

Publication number
JP5784822B2
JP5784822B2 JP2014508268A JP2014508268A JP5784822B2 JP 5784822 B2 JP5784822 B2 JP 5784822B2 JP 2014508268 A JP2014508268 A JP 2014508268A JP 2014508268 A JP2014508268 A JP 2014508268A JP 5784822 B2 JP5784822 B2 JP 5784822B2
Authority
JP
Japan
Prior art keywords
carbon
carbon matrix
nanopores
precursor
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014508268A
Other languages
Japanese (ja)
Other versions
JP2014516904A (en
Inventor
キム、ホ
チョイ、チャン—シク
チョイ、チャン―シク
ハン、ギ—ボ
ハン、ギ―ボ
ジャン、ジュン—ヘ
ジャン、ジュン―ヘ
Original Assignee
インスティテュート・フォー・アドバンスト・エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インスティテュート・フォー・アドバンスト・エンジニアリング filed Critical インスティテュート・フォー・アドバンスト・エンジニアリング
Publication of JP2014516904A publication Critical patent/JP2014516904A/en
Application granted granted Critical
Publication of JP5784822B2 publication Critical patent/JP5784822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/382Making shaped products, e.g. fibres, spheres, membranes or foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Description

本発明は、気孔(pore)を有するカーボンマトリックス(carbon matrix)物質に3nm以下の微細気孔を発達させ、2,500m2/g以上の表面積を有するカーボンマトリックスナノ気孔の製造方法に関する。 The present invention relates to a method for producing a carbon matrix nanopore having a surface area of 2500 m 2 / g or more by developing fine pores of 3 nm or less in a carbon matrix material having pores.

一般に、頻繁に常用される気孔を有するカーボンマトリックス物質としては、活性炭(Activated Carbon、AC)、活性炭素繊維(ACF、Activated Carbon Fiber)などが挙げられ、従来技術ではカーボンマトリックス物質の表面積が1,000〜1,500m2/gの水準である。 Generally, carbon matrix materials having pores that are frequently used include activated carbon (Activated Carbon, AC), activated carbon fibers (ACF, Activated Carbon Fiber), and the like. In the prior art, the surface area of the carbon matrix material is 1, It is a level of 000 to 1,500 m 2 / g.

また、活性炭の場合、気孔の大きさが1〜105nmの範囲で広く分布しており、気孔の構造が複雑に形成されているため、気孔の大きさが3nm以下のみ90%以上存在する活性炭素繊維よりも吸着及び脱着速度が遅いという短所がある。 In the case of activated carbon, the pore size is widely distributed in the range of 1 to 10 5 nm, and the pore structure is complicatedly formed. Therefore, the pore size is 3% or less, and 90% or more exists. There is a disadvantage that the adsorption and desorption rates are slower than the activated carbon fiber.

カーボンマトリックス物質により揮発性有機化合物(VOCs、Volatile Organic Carbons)のような炭化水素類(Hydrocarbons)を吸着及び脱着するとき、カーボンマトリックス物質の気孔の構造と大きさ及び大きさ分布は吸着量と吸/脱着速度に大きく影響を及ぼす。   When the hydrocarbons such as volatile organic compounds (VOCs, Volatile Organic Carbons) are adsorbed and desorbed by the carbon matrix material, the structure, size and size distribution of the pores of the carbon matrix material are determined by the amount of adsorption and absorption. / Significantly affects desorption speed.

通常、カーボンマトリックス物質は微細気孔が多いほど表面積が増加するため、吸着量が多くなり、気孔の構造が単純であり、気孔の大きさ分布が狭いほど吸/脱着速度が速い。   In general, since the surface area of a carbon matrix material increases as the number of fine pores increases, the amount of adsorption increases and the pore structure is simple. The narrower the pore size distribution, the faster the adsorption / desorption rate.

従って、均一なサイズの微細気孔が発達するほど吸着能力が高くなると同時に、吸/脱着の繰り返し再生が容易な寿命の長い吸着剤の確保が可能であり、付加的に低いエネルギー費用で吸/脱着の繰り返しによる吸着対象物質の回収が容易になるという効果がある。   Therefore, as the fine pores of uniform size develop, the adsorption capacity increases, and at the same time, it is possible to secure a long-life adsorbent that can be easily regenerated by repeated adsorption / desorption. This has the effect of facilitating the recovery of the adsorption target substance by repeating the above.

図1には、活性炭、活性炭素繊維などの気孔を有するカーボンマトリックス表面にナノサイズの微細気孔を発達させる従来の方法を示している。   FIG. 1 shows a conventional method for developing nano-sized fine pores on the surface of a carbon matrix having pores such as activated carbon and activated carbon fibers.

図1に示すように、従来の微細気孔の製造方法は、出発物質として活性炭は木質系素材、活性炭素繊維は繊維系素材を用いる前駆体を準備する過程(S10)と、前記前駆体を200〜300℃の温度範囲で空気と接触させて酸化させる安定化過程(Stabilization)(S20)と、前記安定化過程を経た前駆体を無酸素条件で1,000〜1,500℃の温度範囲で炭化させて一次的な気孔を形成させる炭化過程(S30)と、無酸素条件で800〜1,200℃の温度範囲でCO2又はスチームを注入して前記一次形成された気孔を更に発達させる活性化過程(Activation)(S40)を含み、最終過程(S50)で、表面積が1,500m2/g水準の活性炭又は活性炭素繊維が製造される。 As shown in FIG. 1, a conventional method for producing fine pores includes a step of preparing a precursor using activated carbon as a starting material and a activated carbon fiber as a starting material (S10). Stabilization (S20) in which oxidation is performed by contact with air in a temperature range of ˜300 ° C., and the precursor that has undergone the stabilization process is in a temperature range of 1,000 to 1,500 ° C. under oxygen-free conditions. Carbonization process (S30) in which primary pores are formed by carbonization, and activity to further develop the primary pores by injecting CO 2 or steam in the temperature range of 800 to 1,200 ° C. under oxygen-free conditions. In the final process (S50), including activated (S40), activated carbon or activated carbon fiber having a surface area of 1,500 m 2 / g level is produced.

気孔が形成される原理は、空気と接触させる酸化過程(以下、「安定化過程」と称す)を経た前駆体表面の酸素官能基(carbonyl group、carboxyl groupなど)が高温の炭化過程で熱分解されながら、部分的にCO2でガス化されて空いている部分で気孔が形成され、活性化過程でCO2又はスチームによって部分酸化を追加で進行させて気孔を更に発達させる。 The principle of the formation of pores is that oxygen functional groups (such as carbonyl group and carboxylic group ) on the precursor surface that have undergone an oxidation process (hereinafter referred to as “stabilization process”) in contact with air are thermally decomposed during a high-temperature carbonization process. However, pores are formed in the vacant portions that are partially gasified with CO 2 , and partial oxidation is further advanced by CO 2 or steam during the activation process to further develop the pores.

このような従来の方法で微細気孔を均一、且つ高密度で発達させるにおいて2つの大きな難点がある。   There are two major difficulties in developing fine pores uniformly and with high density by such a conventional method.

第一に、安定化過程で酸素官能基の密度を高めるのに限界があり、第二に、炭化及び活性化過程で部分酸化に対する速度の調節が難しいという点が挙げられる。   First, there is a limit in increasing the density of oxygen functional groups during the stabilization process, and secondly, it is difficult to adjust the rate of partial oxidation during the carbonization and activation processes.

第一の難点において、カーボンマトリックス表面で酸素官能基の密度が低ければ、気孔として発達する部分(即ち、欠陥部分)が足りなくなり、気孔の数が小さくなるため、表面積が増大する可能性が低くなる。   The first difficulty is that if the density of oxygen functional groups on the surface of the carbon matrix is low, the portion that develops as pores (that is, defective portions) is insufficient, and the number of pores decreases, so the possibility that the surface area increases is low. Become.

従来の方法では、酸素官能基を形成させ、密度を調節する方法として温度を上昇させる手段を活用している。しかし、温度が高いほど炭素体が酸化される損失が多く発生し、カーボンマトリックス表面での温度が均一に分布できないため、形成される酸素官能基もカーボンマトリックス表面で均一に形成され難いという短所がある。   In the conventional method, a means for increasing the temperature is used as a method of adjusting the density by forming an oxygen functional group. However, the higher the temperature, the more the loss of oxidation of the carbon body occurs, and the temperature on the surface of the carbon matrix cannot be uniformly distributed, so the oxygen functional groups that are formed are also difficult to form uniformly on the surface of the carbon matrix. is there.

酸素官能基の分布がカーボンマトリックス表面で均一にならず、どちらか一方に偏るようになれば、次の段階である炭化及び活性化過程で過密度で形成された酸素官能基の部分はナノ気孔として発達できず、大きな気孔が形成され、全体的に気孔の構造が複雑になり、広い表面積を生産できなくなる。   If the distribution of oxygen functional groups does not become uniform on the surface of the carbon matrix, but is biased toward either one, the oxygen functional group portion formed in the next stage of carbonization and activation process in an excessive density will be nanoporous. As a result, large pores are formed, the pore structure is complicated overall, and a large surface area cannot be produced.

第二に、無酸素条件で800〜1,200℃の温度範囲でCO2又はスチームを注入する活性化過程では部分酸化の速度を精巧に調節し難いという点である。 Secondly, in the activation process in which CO 2 or steam is injected in the temperature range of 800 to 1,200 ° C. under anoxic conditions, it is difficult to finely adjust the rate of partial oxidation.

活性化過程の重要事項は、酸素官能基の部分でのみ部分的に酸化されて気孔が発達しなければならないという点である。酸素官能基の部分で過酸化が進行したり、それ以外の部分で酸化が進行すれば、気孔として発達できず、単純に熱分解されて炭素体の重量の減少のみ発生するようになる。   The key to the activation process is that the pores must develop by partial oxidation only at the oxygen functional group. If peroxidation proceeds at the oxygen functional group portion or oxidation proceeds at other portions, it cannot be developed as pores, and is simply pyrolyzed to generate only a decrease in the weight of the carbon body.

また、従来の方法において、CO2又はスチームを注入する方法は、部分酸化の速度を調整するのに適切な長所があるが、酸化力が低いため、800℃以上の高温でのみ実行が可能であり、速度が遅いため、製造時間が長くなることにより、経済性が低くなるという短所がある。 In addition, in the conventional method, the method of injecting CO 2 or steam has an advantage that is suitable for adjusting the rate of partial oxidation. However, since the oxidizing power is low, it can be executed only at a high temperature of 800 ° C. or higher. In addition, since the speed is slow, there is a disadvantage that the manufacturing time becomes long and the economy becomes low.

そこで、本発明は上記事情に鑑みてなされたものであって、その目的は、従来の2つの問題、即ち、(1)安定化過程で酸素官能基の低い濃度と不均一性、そして(2)炭化及び活性化過程で要求される高い温度および長い工程時間の問題を解決するために、表面処理と表面改質を連係して行い、気孔(pore)を有するカーボンマトリックス(carbon matrix)物質に3nm以下の微細気孔を発達させ、表面積を2,500m2/g以上示すカーボンマトリックスナノ気孔の製造方法を提供することにある。 Therefore, the present invention has been made in view of the above circumstances, and its object is to solve two conventional problems: (1) low concentration and heterogeneity of oxygen functional groups in the stabilization process, and (2 ) In order to solve the problem of high temperature and long process time required for carbonization and activation process, surface treatment and surface modification are performed in combination to form a carbon matrix material having pores. It is an object of the present invention to provide a method for producing carbon matrix nanopores by developing fine pores of 3 nm or less and having a surface area of 2500 m 2 / g or more.

前述した目的を達成するために、本発明のカーボンマトリックスナノ気孔の製造方法は、カーボンマトリックスナノ気孔の製造方法であって、カーボンマトリックス物質の出発物質として前駆体を準備する過程と、前記前駆体を空気と接触させて酸化させる安定化過程と、前記安定化過程を経た前駆体を無酸素条件で炭化させて、一次的な気孔を形成させる炭化過程と、前記一次気孔が形成された炭素体にカーボンマトリックス表面の酸素官能基を高濃度で均質に形成させるために、オゾンを接触させて表面処理を行う表面処理過程と、前記表面処理過程のオゾン接触によって形成された酸素官能基にアルカリ金属を接触させるために、前記表面処理が行われた炭素体をアルカリ金属の水溶液に浸漬する浸漬過程と、無酸素雰囲気で前記表面処理が行われた炭素体を800℃以下に昇温させながら、前記アルカリ金属の酸化と還元を誘導して微細気孔を発達させるために、表面改質を行う表面改質過程とを含む。 In order to achieve the above-described object, a method for producing a carbon matrix nanopore according to the present invention is a method for producing a carbon matrix nanopore, comprising a step of preparing a precursor as a starting material of a carbon matrix material, and the precursor A stabilization process in which air is brought into contact with air, a precursor that has undergone the stabilization process is carbonized under oxygen-free conditions to form primary pores, and a carbon body in which the primary pores are formed In order to uniformly form oxygen functional groups on the surface of the carbon matrix at a high concentration, a surface treatment process in which ozone is brought into contact with the surface treatment process, and the oxygen functional groups formed by the ozone contact in the surface treatment process with an alkali metal In order to contact the surface, the carbon body subjected to the surface treatment is immersed in an alkali metal aqueous solution, and the surface in an oxygen-free atmosphere. While carbon body management is performed warmed to 800 ° C. or less, in order to develop fine pores by inducing oxidation and reduction of the alkali metal, and a surface modification process for modifying the surface.

前記表面処理過程は、常温で前記炭素体1gの重さに0.2〜0.7g以下の重量比でオゾンを接触させることができる。   In the surface treatment process, ozone can be brought into contact with the weight of 1 g of the carbon body at a normal temperature at a weight ratio of 0.2 to 0.7 g or less.

また、前記表面改質過程は、前記表面処理された炭素体を1〜5M濃度のアルカリ金属の水溶液に1時間以上浸漬させることができる。このとき、アルカリ金属は、Na又はKが用いられることが好ましい。   In the surface modification process, the surface-treated carbon body can be immersed in an alkali metal aqueous solution having a concentration of 1 to 5 M for 1 hour or more. At this time, Na or K is preferably used as the alkali metal.

また、本発明のカーボンマトリックスナノ気孔の製造方法は、前記表面改質過程の完了後、前記表面改質処理された炭素体を無酸素条件で常温に冷却させた後、5M濃度以下の硫酸溶液に1時間以上浸漬し、蒸留水でpHが5〜7の条件まで中和させる目的で洗浄した後、空気雰囲気で150℃程度で乾燥させる過程を更に含み、活性炭又は活性炭素繊維が製造され得る。   Also, the method for producing carbon matrix nanopores of the present invention comprises: after completion of the surface modification process, cooling the surface-modified carbon body to room temperature under oxygen-free conditions; In addition, the method may further include a step of immersing in water for at least 1 hour, neutralizing with distilled water to a pH of 5 to 7 and then drying at about 150 ° C. in an air atmosphere to produce activated carbon or activated carbon fiber. .

また、前記安定化過程で前記前駆体は、200〜300℃の温度範囲で酸化されることが好ましい。   In addition, it is preferable that the precursor is oxidized in a temperature range of 200 to 300 ° C. during the stabilization process.

前記炭化過程で前記前駆体は、900〜1000℃の温度範囲で炭化されることが好ましい。 In the carbonization process, the precursor is preferably carbonized in a temperature range of 900 to 1000 ° C.

また、前記カーボンマトリックス物質は活性炭を含み、前記活性炭の前駆体は木質系素材を含むことが好ましい。   The carbon matrix material preferably includes activated carbon, and the activated carbon precursor preferably includes a wood-based material.

更に、前記カーボンマトリックス物質は活性炭素繊維を含み、前記活性炭素繊維の前駆体は繊維系素材を含むことが好ましい。   Furthermore, it is preferable that the carbon matrix material includes activated carbon fibers, and the precursor of the activated carbon fibers includes a fiber-based material.

本発明によれば、従来の方法で製造されるカーボンマトリックス物質は、表面積が1,000〜1,500m2/gの水準であるが、本発明による表面処理と表面改質を連係して行った場合、カーボンマトリックス物質の表面積が2,500m2/g以上に増加した。 According to the present invention, the carbon matrix material produced by the conventional method has a surface area of 1,000 to 1,500 m 2 / g, and the surface treatment and surface modification according to the present invention are performed in coordination. The surface area of the carbon matrix material increased to over 2500 m 2 / g.

特に、従来の炭化温度を1,000〜1,500℃から900〜1,000℃に下げ、従来の活性化温度を800〜1,200℃から700〜800℃に下げるにも拘らず、従来の表面積1,000〜1,500m2/gから2,500m2/g以上に向上させる成果が得られた。 In particular, the conventional carbonization temperature is lowered from 1,000 to 1,500 ° C. to 900 to 1,000 ° C., and the conventional activation temperature is lowered from 800 to 1,200 ° C. to 700 to 800 ° C. results for improving the surface area 1,000~1,500m 2 / g to 2,500 m 2 / g or more was obtained.

また、従来の活性炭又は低品質の活性炭素繊維にトルエンなどの炭化水素類を破壊点まで吸着した後、120℃で脱着を行う再生条件でこれを繰り返す再生回数が従来の4回の水準で初期吸着量の70%以下に減少するのに対し、本発明により製造された活性及び活性炭素繊維は、再生回数を50回以上繰り返しても初期吸着量の90%以上維持した。   In addition, after the adsorption of hydrocarbons such as toluene to conventional activated carbon or low-quality activated carbon fibers up to the breaking point, the number of regenerations that repeat this under the regeneration condition of desorption at 120 ° C. is the initial level of 4 times. While the amount decreased to 70% or less of the adsorption amount, the activated and activated carbon fibers produced according to the present invention maintained 90% or more of the initial adsorption amount even when the number of regenerations was repeated 50 times or more.

従って、本発明により製造されたナノ気孔が発達した炭素系吸着剤は、従来の方法よりも低い温度条件で製造が可能であり、従来の製品よりも高効率及び長寿名の特徴を有する炭化水素類の処理及び回収用フィルタとしての活用度が高いという効果を奏する。   Therefore, the carbon-based adsorbent with nanopores produced according to the present invention can be produced under a temperature condition lower than that of the conventional method, and is a hydrocarbon having characteristics of higher efficiency and longer life than conventional products. There is an effect that the degree of utilization as a filter for processing and recovery of a kind is high.

従来のカーボンマトリックスナノ気孔の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the conventional carbon matrix nanopore. 本発明の好適な一実施形態によるカーボンマトリックスナノ気孔の製造方法の工程図である。1 is a process diagram of a method for producing carbon matrix nanopores according to a preferred embodiment of the present invention.

図2は、本発明の好適な一実施形態によるカーボンマトリックスナノ気孔の製造方法を製造する工程を示している。   FIG. 2 illustrates a process of manufacturing a method for manufacturing carbon matrix nanopores according to a preferred embodiment of the present invention.

本発明のカーボンマトリックスナノ気孔の製造方法は、気孔(pore)を有するカーボンマトリックス(carbon matrix)物質にナノサイズの微細気孔を発達させる製造方法である。   The method for producing carbon matrix nanopores of the present invention is a method for developing nano-sized fine pores in a carbon matrix material having pores.

一般に、気孔を有するカーボンマトリックス物質は、活性炭(Activated Carbon、AC)、活性炭素繊維(Activated Carbon Fiber、ACF)などがあり、このようなカーボンマトリックス物質の表面に表面処理(Surface Treatment、ST)と表面改質(Surface Activation、SA)を連係処理してナノサイズの細孔を発達させることで、表面積を増大させ、吸着及び脱着速度を速くすることができる。このように表面積を増大させることで、大気中又は水中の炭化水素類に対する吸着量を増大させ、速い吸/脱着速度を示すことによって、再生及び回収効率を改善できる。   In general, the carbon matrix material having pores includes activated carbon (Activated Carbon, AC), activated carbon fiber (Activated Carbon Fiber, ACF), and the like. Surface treatment (Surface Activation, SA) can be coordinated to develop nano-sized pores, thereby increasing the surface area and increasing the adsorption and desorption rates. By increasing the surface area in this way, the amount of adsorption of hydrocarbons in the air or water can be increased, and by showing a fast adsorption / desorption rate, regeneration and recovery efficiency can be improved.

図2に示すように、本発明のカーボンマトリックスナノ気孔の製造方法は、出発物質として前駆体を準備する過程(S100)を含む。本発明のカーボンマトリックス物質が活性炭である場合、前記前駆体として木質系素材が用いられ、カーボンマトリックス物質が活性炭素繊維である場合、前記前駆体は繊維系素材が用いられる。本発明のカーボンマトリックスナノ気孔の製造方法は更に、前記前駆体を200〜300℃の温度範囲で空気と接触させて酸化させる安定化過程(Stabilization)(S200)と、前記安定化過程を経た前駆体を無酸素条件で900℃〜1,000℃の温度範囲で炭化させて一次的な気孔を形成させる炭化過程(S300)と、前記一次気孔が形成された炭素体にカーボンマトリックス表面の酸素官能基を高濃度で均質に形成させるために、オゾンを接触させて表面処理(Surface treatment)を行う表面処理過程(S400)と、前記表面処理過程のオゾン接触によって形成された酸素官能基にアルカリ金属を接触させるために、前記表面処理が行われた炭素体をアルカリ金属の水溶液に浸漬する浸漬過程(Dipping in alkali metal solution)(S500)と、前記表面処理された炭素体を無酸素雰囲気で800℃以下に昇温させながら、前記アルカリ金属の酸化と還元を誘導して3nm以下の微細気孔を発達させるために、表面改質(Surface activation)を行う表面改質過程(S600)と前記表面改質処理された炭素体を無酸素条件で常温に冷却させた後、硫酸溶液に浸漬させ、蒸留水で中和して洗浄し、空気雰囲気で150℃程度で乾燥させる過程(S700)を更に含み、カーボンマトリックス表面に3nmサイズ以下の微細気孔を均一に発達させて表面積2,500m2/g以上を有する活性炭又は活性炭素繊維を製造する。(S800)
表面処理過程でオゾンを接触させる理由は、炭素体を製造するために気孔が発達されていない炭素体にカーボンマトリックス表面の酸素官能基を高濃度で均質に形成させるための目的で行われるものであって、このようなオゾンの接触により一種の前処理概念で表面処理が行われる。このとき、オゾンは常温で炭素体1gの重さに0.2〜0.7g以下の重量比でオゾンを接触させることができる。
As shown in FIG. 2, the carbon matrix nanopore manufacturing method of the present invention includes a step of preparing a precursor as a starting material (S100). When the carbon matrix material of the present invention is activated carbon, a wood-based material is used as the precursor, and when the carbon matrix material is activated carbon fiber, a fiber-based material is used as the precursor. The method for producing carbon matrix nanopores of the present invention further includes a stabilization process (S200) in which the precursor is oxidized by contacting with air in a temperature range of 200 to 300 ° C., and the precursor that has undergone the stabilization process. and the body was carbonized at a temperature range of 900 ° C. ~ 1000 ° C. in an oxygen-free conditions carbonization to form a primary pore (S300), oxygen function of the carbon matrix surface carbon bodies the primary pores are formed In order to form a uniform group at a high concentration, surface treatment process (S400) in which ozone is brought into contact with the surface treatment (S400), and oxygen functional groups formed by the ozone contact in the surface treatment process to an alkali metal In order to contact the carbon body, the carbon body subjected to the surface treatment is immersed in an aqueous alkali metal solution ( (iping in alkali metal solution) (S500), and the surface-treated carbon body is heated to 800 ° C. or less in an oxygen-free atmosphere to induce oxidation and reduction of the alkali metal to develop fine pores of 3 nm or less. In order to achieve this, a surface modification process (S600) in which surface modification is performed, and the surface-modified carbon body is cooled to room temperature in an oxygen-free condition, and then immersed in a sulfuric acid solution to obtain distilled water. The process further includes a step of neutralizing and washing with air and drying at about 150 ° C. in an air atmosphere (S700), and uniformly developing fine pores having a size of 3 nm or less on the surface of the carbon matrix so as to obtain a surface area of 2500 m 2 / g or more. The activated carbon or activated carbon fiber having is produced. (S800)
The reason for contacting ozone in the surface treatment process is that the oxygen functional groups on the surface of the carbon matrix are uniformly formed at a high concentration in the carbon body in which pores are not developed in order to produce the carbon body. Thus, the surface treatment is performed by a kind of pretreatment concept by the contact of ozone. At this time, ozone can be contacted with ozone at a weight ratio of 0.2 to 0.7 g or less at a normal temperature to 1 g of carbon body.

このような表面処理過程と連係して、表面処理によって形成された酸素官能基にアルカリ金属を接触させ、無酸素雰囲気で800℃以下に昇温させながら、アルカリ金属の酸化と還元を誘導して3nm以下の微細気孔を発達させるための目的で表面改質を行う。   In cooperation with such a surface treatment process, an alkali metal is brought into contact with the oxygen functional group formed by the surface treatment, and the oxidation and reduction of the alkali metal are induced while the temperature is raised to 800 ° C. or less in an oxygen-free atmosphere. Surface modification is performed for the purpose of developing fine pores of 3 nm or less.

アルカリ金属を接触させる方法は、表面処理された炭素体を1〜5M濃度のアルカリ金属の水溶液に1時間以上室温で浸漬(at room temperature in 1-5M solution)させ、このとき、アルカリ金属はNa又はKを用いることが好ましい。   In the method of contacting an alkali metal, the surface-treated carbon body is immersed in an aqueous solution of an alkali metal having a concentration of 1 to 5M at room temperature for 1 hour or more (at room temperature in 1-5M solution). Or it is preferable to use K.

次に、アルカリ金属の水溶液に浸漬した後、炭素体を空気雰囲気で100〜200℃の温度条件で乾燥させ、無酸素条件で600〜800℃の温度条件で1時間以上維持させて表面改質を行う。   Next, after soaking in an aqueous solution of an alkali metal, the carbon body is dried in an air atmosphere at a temperature of 100 to 200 ° C., and maintained in an oxygen-free condition at a temperature of 600 to 800 ° C. for 1 hour or more to modify the surface. I do.

表面改質過程(S600)の完了後、無酸素条件で常温に冷却させた後、5M濃度以下の硫酸溶液に1時間以上浸漬させ、蒸留水でpHが5〜7条件まで中和させる目的で洗浄後、空気雰囲気で150℃程度で乾燥させる過程(S700)を行う。   After completion of the surface modification process (S600), after cooling to room temperature under oxygen-free conditions, the sample is immersed in a sulfuric acid solution having a concentration of 5M or less for 1 hour or more and neutralized with distilled water to a pH of 5 to 7 for the purpose. After cleaning, a process of drying at about 150 ° C. in an air atmosphere (S700) is performed.

これにより、最終過程(S800)で、表面積2,500m2/g水準の広い表面積を有する活性炭又は活性炭素繊維を製造できる。 Thereby, activated carbon or activated carbon fiber having a large surface area of a surface area of 2500 m 2 / g can be produced in the final step (S800).

以上のように、表面処理と表面改質を連係して行う本発明の製造方法により製造された活性炭素繊維と従来の気孔が発達されていない活性炭素繊維に対する細部的な特徴を比較して表1に示した。

Figure 0005784822
As described above, the detailed characteristics of the activated carbon fiber produced by the production method of the present invention in which surface treatment and surface modification are coordinated with those of conventional activated carbon fibers having no developed pores are compared. It was shown in 1.
Figure 0005784822

表1で、本発明により製造された活性炭素繊維と従来の方法により製造された活性炭素繊維に対して常温でトルエンを吸着させて吸着量を比較した結果、表面積の増大と比例して吸着量が増加することが確認できる。   In Table 1, as a result of comparing the adsorption amount by adsorbing toluene at normal temperature to the activated carbon fiber produced by the present invention and the activated carbon fiber produced by the conventional method, the adsorption amount was proportional to the increase in surface area. Can be confirmed to increase.

また、破壊点まで吸着した後、120℃で脱着を行う再生条件でこれを繰り返して再生回数が従来の4回の水準で初期吸着量の70%以下に減少するのに対し、本発明により製造された活性炭及び活性炭素繊維は、再生回数を50回以上繰り返しても初期吸着量の90%以上維持することが確認できる。   In addition, this is repeated under the regeneration conditions in which desorption is performed at 120 ° C. after adsorption to the breaking point, and the number of regenerations is reduced to 70% or less of the initial adsorption amount at the conventional four times level. It can be confirmed that the activated carbon and activated carbon fiber maintained 90% or more of the initial adsorption amount even when the number of regenerations is repeated 50 times or more.

以上で説明したのは、本発明によるカーボンマトリックスナノ気孔の製造方法の1つの好適な実施形態に過ぎないものであって、本発明は、前記実施形態に限定されないものであるので、以下の特許請求の範囲で請求するように、本発明の要旨から逸脱することなく、当該発明の属する分野における通常の知識を有する者であれば、誰でも多様な変更実施が可能な範囲まで本発明の技術的精神があると言える。
以下に、本願の発明の実施態様を付記する。
[1]カーボンマトリックスナノ気孔の製造方法であって、カーボンマトリックス物質の出発物質として前駆体を準備する過程と、前記前駆体を空気と接触させて酸化させる安定化過程と、前記安定化過程で形成された炭素体を無酸素条件で炭化させて、一次的な気孔を形成させる炭化過程と、前記一次気孔が形成された炭素体にカーボンマトリックス表面の酸素官能基を高濃度で均質に形成させるために、オゾンを接触させて表面処理を行う表面処理過程と、前記表面処理過程のオゾン接触によって形成された酸素官能基にアルカリ金属を接触させるために、前記表面処理が行われた炭素体をアルカリ金属の水溶液に浸漬する浸漬過程と、無酸素雰囲気で前記表面処理が行われた炭素体を800℃以下に昇温させながら、前記アルカリ金属の酸化と還元を誘導して微細気孔を発達させるために、表面改質を行う表面改質過程とを含むカーボンマトリックスナノ気孔の製造方法。
[2]前記表面処理過程は、常温で前記炭素体1gの重さに0.2g以上0.7g以下の重量比でオゾンを接触させることを特徴とする[1]に記載のカーボンマトリックスナノ気孔の製造方法。
[3]前記表面改質過程は、前記表面処理された炭素体を1〜5M濃度のアルカリ金属の水溶液に1時間以上浸漬させることを特徴とする[1]に記載のカーボンマトリックスナノ気孔の製造方法。
[4]前記アルカリ金属は、Na又はKが用いられることを特徴とする[3]に記載のカーボンマトリックスナノ気孔の製造方法。
[5]前記表面改質過程の完了後に、前記表面改質処理された炭素体を無酸素条件で常温に冷却させた後、5M濃度以下の硫酸溶液に1時間以上浸漬し、蒸留水でpHが5〜7の条件まで中和させる目的で洗浄した後、空気雰囲気で150℃程度で乾燥させる過程を更に含む[1]に記載のカーボンマトリックスナノ気孔の製造方法。
[6]前記安定化過程で前記前駆体は、200℃〜300℃の温度範囲で酸化されることを特徴とする[1]に記載のカーボンマトリックスナノ気孔の製造方法。
[7]前記炭化過程で前記炭素体は、900℃〜1000℃の温度範囲で炭化されることを特徴とする[1]に記載のカーボンマトリックスナノ気孔の製造方法。
[8]前記カーボンマトリックス物質は活性炭を含み、前記活性炭の前駆体は木質系素材を含むことを特徴とする[1]に記載のカーボンマトリックスナノ気孔の製造方法。
[9]前記カーボンマトリックス物質は活性炭素繊維を含み、前記活性炭素繊維の前駆体は繊維系素材を含むことを特徴とする[1]に記載のカーボンマトリックスナド気孔の製造方法。
What has been described above is only one preferred embodiment of the method for producing carbon matrix nanopores according to the present invention, and the present invention is not limited to the above-described embodiment. As claimed in the claims, the technology of the present invention can be implemented to the extent that any person having ordinary knowledge in the field to which the present invention belongs can perform various modifications without departing from the gist of the present invention. It can be said that there is a spirit.
Hereinafter, embodiments of the invention of the present application will be additionally described.
[1] A method for producing carbon matrix nanopores, comprising a step of preparing a precursor as a starting material of a carbon matrix material, a stabilization step in which the precursor is brought into contact with air to oxidize, and the stabilization step. The carbon body formed is carbonized under oxygen-free conditions to form primary pores, and oxygen functional groups on the surface of the carbon matrix are uniformly formed at a high concentration in the carbon body in which the primary pores are formed. For this purpose, a surface treatment process in which ozone is brought into contact with the surface treatment process, and the carbon body subjected to the surface treatment in order to bring an alkali metal into contact with an oxygen functional group formed by the ozone contact in the surface treatment process. While immersing in an aqueous solution of an alkali metal and raising the temperature of the carbon body subjected to the surface treatment in an oxygen-free atmosphere to 800 ° C. or lower, the alkali metal To develop the fine pores by inducing oxidation and reduction, carbon matrix nanopores manufacturing method comprising a surface modification process for modifying the surface.
[2] The carbon matrix nanopore according to [1], wherein in the surface treatment process, ozone is brought into contact with a weight of 1 g of the carbon body at a normal temperature at a weight ratio of 0.2 g to 0.7 g. Manufacturing method.
[3] The carbon matrix nanopore production according to [1], wherein in the surface modification process, the surface-treated carbon body is immersed in an aqueous solution of alkali metal having a concentration of 1 to 5M for 1 hour or more. Method.
[4] The method for producing carbon matrix nanopores according to [3], wherein Na or K is used as the alkali metal.
[5] After the surface modification process is completed, the surface-modified carbon body is cooled to room temperature under anoxic conditions, then immersed in a sulfuric acid solution having a concentration of 5M or less for 1 hour or more, and pH is adjusted with distilled water. The method for producing carbon matrix nanopores according to [1], further comprising a step of washing for the purpose of neutralizing to a condition of 5 to 7 and then drying at about 150 ° C. in an air atmosphere.
[6] The method for producing carbon matrix nanopores according to [1], wherein the precursor is oxidized in a temperature range of 200 ° C. to 300 ° C. in the stabilization process.
[7] The method for producing carbon matrix nanopores according to [1], wherein the carbon body is carbonized in a temperature range of 900 ° C. to 1000 ° C. in the carbonization process.
[8] The method for producing carbon matrix nanopores according to [1], wherein the carbon matrix material includes activated carbon, and the precursor of the activated carbon includes a wood-based material.
[9] The method for producing carbon matrix nad pores according to [1], wherein the carbon matrix material includes activated carbon fibers, and the precursor of the activated carbon fibers includes a fiber material.

Claims (9)

カーボンマトリックスナノ気孔の製造方法であって、
カーボンマトリックス物質の出発物質として前駆体を準備する過程と、
前記前駆体を空気と接触させて酸化させる安定化過程と、
前記安定化過程を経た前駆体を無酸素条件で炭化させて、一次的な気孔を形成させる炭化過程と、
前記一次的な気孔が形成された炭素体にカーボンマトリックス表面の酸素官能基を高濃度で均質に形成させるために、オゾンを接触させて表面処理を行う表面処理過程と、
前記表面処理過程のオゾン接触によって形成された酸素官能基にアルカリ金属を接触させるために、前記表面処理が行われた炭素体をアルカリ金属の水溶液に浸漬し、無酸素雰囲気で前記表面処理が行われた炭素体を600℃以上800℃以下に昇温させながら、前記アルカリ金属の酸化と還元を誘導して3nm以下の微細気孔を発達させるために、表面改質を行う表面改質過程と
を含むカーボンマトリックスナノ気孔の製造方法。
A method for producing carbon matrix nanopores, comprising:
Preparing a precursor as a starting material for the carbon matrix material;
A stabilization process in which the precursor is contacted with air and oxidized;
Carbonizing the precursor that has undergone the stabilization process under oxygen-free conditions to form primary pores; and
A surface treatment process in which surface treatment is performed by contacting ozone in order to uniformly form oxygen functional groups on the carbon matrix surface at a high concentration in the carbon body in which the primary pores are formed;
In order to bring the alkali metal into contact with the oxygen functional group formed by the ozone contact in the surface treatment process, the surface-treated carbon body is immersed in an alkali metal aqueous solution and the surface treatment is performed in an oxygen-free atmosphere. In order to develop the fine pores of 3 nm or less by inducing oxidation and reduction of the alkali metal while raising the temperature of the broken carbon body to 600 ° C. or more and 800 ° C. or less, a surface modification process for performing surface modification is performed. A method for producing carbon matrix nanopores.
前記表面処理過程は、常温で前記炭素体1gに0.2g以上0.7g以下のオゾンを接触させることを特徴とする請求項1に記載のカーボンマトリックスナノ気孔の製造方法。 The surface treatment process, the carbon matrix nanopores method of claim 1, wherein letting come in contact with 0.2g more 0.7g less ozone to the carbon body 1 g at room temperature. 前記表面改質過程は、前記表面処理された炭素体を1〜5M濃度のアルカリ金属の水溶液に1時間以上浸漬させることを特徴とする請求項1に記載のカーボンマトリックスナノ気孔の製造方法。   2. The method for producing carbon matrix nanopores according to claim 1, wherein in the surface modification process, the surface-treated carbon body is immersed in an aqueous solution of an alkali metal having a concentration of 1 to 5 M for 1 hour or more. 前記アルカリ金属は、Na又はKが用いられることを特徴とする請求項3に記載のカーボンマトリックスナノ気孔の製造方法。   The method for producing carbon matrix nanopores according to claim 3, wherein Na or K is used as the alkali metal. 前記表面改質過程の完了後に、前記表面改質処理された炭素体を無酸素条件で常温に冷却させた後、5M濃度以下の硫酸溶液に1時間以上浸漬し、蒸留水でpHが5〜7の条件まで中和させる目的で洗浄した後、空気雰囲気乾燥させる過程を更に含む請求項1に記載のカーボンマトリックスナノ気孔の製造方法。 After completion of the surface modification process, the surface-modified carbon body is cooled to room temperature under oxygen-free conditions, and then immersed in a sulfuric acid solution having a concentration of 5M or less for 1 hour or more, and the pH is adjusted to 5 to 5 with distilled water. after washing with the purpose of neutralizing up to 7 conditions, carbon manufacturing method of the matrix nanopores according to claim 1 the process further comprising a drying air atmosphere. 前記安定化過程で前記前駆体は、200℃〜300℃の温度範囲で酸化されることを特徴とする請求項1に記載のカーボンマトリックスナノ気孔の製造方法。   The method of claim 1, wherein the precursor is oxidized in a temperature range of 200 ° C. to 300 ° C. during the stabilization process. 前記炭化過程で前記前駆体は、900℃〜1000℃の温度範囲で炭化されることを特徴とする請求項1に記載のカーボンマトリックスナノ気孔の製造方法。 The method of claim 1, wherein the precursor is carbonized in a temperature range of 900 ° C. to 1000 ° C. during the carbonization process. 前記カーボンマトリックス物質は活性炭を含み、前記活性炭の前駆体は木質系素材を含むことを特徴とする請求項1に記載のカーボンマトリックスナノ気孔の製造方法。 The carbon matrix material comprises activated carbon, precursor of the active carbon is carbon matrix nanopores method according to claim 1, characterized in that it comprises a wooden material. 前記カーボンマトリックス物質は活性炭素繊維を含み、前記活性炭素繊維の前駆体は繊維系素材を含むことを特徴とする請求項1に記載のカーボンマトリックスナノ気孔の製造方法。 The method for producing carbon matrix nanopores according to claim 1, wherein the carbon matrix material includes activated carbon fibers, and the precursor of the activated carbon fibers includes a fiber-based material.
JP2014508268A 2011-04-28 2011-05-31 Method for producing carbon matrix nanopores Active JP5784822B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020110039867A KR101315112B1 (en) 2011-04-28 2011-04-28 Methode for preparing nano pore on carbon matrix
KR10-2011-0039867 2011-04-28
PCT/KR2011/003985 WO2012148037A1 (en) 2011-04-28 2011-05-31 Carbon grid shaped nanopore production method

Publications (2)

Publication Number Publication Date
JP2014516904A JP2014516904A (en) 2014-07-17
JP5784822B2 true JP5784822B2 (en) 2015-09-24

Family

ID=47072536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014508268A Active JP5784822B2 (en) 2011-04-28 2011-05-31 Method for producing carbon matrix nanopores

Country Status (3)

Country Link
JP (1) JP5784822B2 (en)
KR (1) KR101315112B1 (en)
WO (1) WO2012148037A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101383127B1 (en) * 2012-03-29 2014-04-09 고등기술연구원연구조합 Methode for preparing nano pore on carbon matrix using surface treatment and surface activation
KR101419868B1 (en) * 2013-04-22 2014-07-16 고등기술연구원연구조합 Methode for preparing nano pore on carbon materials
KR102599131B1 (en) 2023-02-23 2023-11-07 고등기술연구원연구조합 Method for producing high specific surface area activated carbon using lignocellulosic biomass using resource recycling type advanced activation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100635B2 (en) * 1987-03-30 1995-11-01 ぺんてる株式会社 Method for manufacturing activated carbon molded product
JPH02118121A (en) * 1988-10-25 1990-05-02 Osaka Gas Co Ltd Pitch-based active carbon fiber and production thereof
JP3446339B2 (en) * 1994-10-18 2003-09-16 三菱化学株式会社 Activated carbon production method
JP3930131B2 (en) * 1997-12-26 2007-06-13 松下エコシステムズ株式会社 Aldehydes removal agent
US20040009726A1 (en) * 2002-02-25 2004-01-15 Axtell Holly C. Multi-functional protective textiles and methods for decontamination
KR100485603B1 (en) * 2002-06-14 2005-04-27 한국화학연구원 Preparation of activated carbon fibers using nano fibers
JP2004099742A (en) 2002-09-10 2004-04-02 At Kk Carbonizing apparatus
JP4844942B2 (en) * 2005-11-29 2011-12-28 東海カーボン株式会社 Hydrophilic porous carbon material and method for producing the same
US20070155847A1 (en) * 2005-12-29 2007-07-05 Miller Douglas J High surface area activated carbon foam
JP5599186B2 (en) * 2009-12-28 2014-10-01 Jx日鉱日石エネルギー株式会社 Activated carbon for electric double layer capacitor electrode and manufacturing method thereof

Also Published As

Publication number Publication date
JP2014516904A (en) 2014-07-17
KR101315112B1 (en) 2013-10-08
KR20120121952A (en) 2012-11-07
WO2012148037A1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
Mahajan et al. Surface-treated activated carbon for removal of phenol from water
CN113318770A (en) Preparation method of cobalt-nitrogen-doped carbonized wood sponge catalyst for activating persulfate
JP5784822B2 (en) Method for producing carbon matrix nanopores
KR102062258B1 (en) Activated carbon with excellent adsorption performance
CN105921139B (en) A kind of mercury absorbent and its preparation method and application
CN111359582A (en) Graphene composite aerogel formaldehyde-removing material and preparation method thereof
CN113003568B (en) Defect-state monolayer graphene film and preparation method and application thereof
CN106567158A (en) Preparation method of bioactive carbon fiber
CN110541210A (en) Nitrogen-rich porous polyacrylonitrile-based carbon fiber and preparation method and application thereof
KR102056435B1 (en) Activated carbon with improved butane adsorption capacity and method of producing the same
KR101419868B1 (en) Methode for preparing nano pore on carbon materials
CN117225369B (en) Preparation method of modified desulfurization activated carbon fiber and modified desulfurization activated carbon fiber
KR101383127B1 (en) Methode for preparing nano pore on carbon matrix using surface treatment and surface activation
CN110180510A (en) One kind slowing down the nano thin-film and device of reservoir " turning over library " phenomenon
CN107777687A (en) It is a kind of except the preparation method of ammonia activated carbon
JP3930131B2 (en) Aldehydes removal agent
KR101082590B1 (en) Preparing method of Carbon nanotube for hydrogen storage
CN114775113A (en) Self-activated polyacrylonitrile-based nitrogen-containing porous carbon fiber, and preparation method and application thereof
CN104445355A (en) Method for preparing transition metal oxide nanotube networks from bacterial cellulose
KR101441329B1 (en) Method for manufacturing mesoporous active carbon fiber for super capacitor
CN113101925A (en) Preparation method and application of lignin-based adsorption-catalysis material
CN112758912A (en) Method for preparing porous carbon material by non-noble metal auxiliary chemical etching
JP2008038301A (en) Carbon fiber composite material having excellent desulfurization property and method for producing the same
KR102614590B1 (en) High specific surface area activated carbon based on chemically-stabilized biomass and its manufacturing method
CN112058230B (en) Microporous activated carbon fiber and preparation method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150722

R150 Certificate of patent or registration of utility model

Ref document number: 5784822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250