KR101082590B1 - Preparing method of Carbon nanotube for hydrogen storage - Google Patents

Preparing method of Carbon nanotube for hydrogen storage Download PDF

Info

Publication number
KR101082590B1
KR101082590B1 KR1020090100994A KR20090100994A KR101082590B1 KR 101082590 B1 KR101082590 B1 KR 101082590B1 KR 1020090100994 A KR1020090100994 A KR 1020090100994A KR 20090100994 A KR20090100994 A KR 20090100994A KR 101082590 B1 KR101082590 B1 KR 101082590B1
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
hydrogen storage
acid
carbon
producing
Prior art date
Application number
KR1020090100994A
Other languages
Korean (ko)
Other versions
KR20110044367A (en
Inventor
박수진
이슬이
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020090100994A priority Critical patent/KR101082590B1/en
Publication of KR20110044367A publication Critical patent/KR20110044367A/en
Application granted granted Critical
Publication of KR101082590B1 publication Critical patent/KR101082590B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0021Carbon, e.g. active carbon, carbon nanotubes, fullerenes; Treatment thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

본 발명은 수소저장용 탄소나노튜브의 제조방법에 관한 것으로, 더욱 상세하게는 이산화탄소 기체를 이용한 기상활성화를 통해 탄소나노튜브 표면에 나노 미세 기공을 형성하여 비표면적을 증가시킨 수소저장용 탄소나노튜브를 제조하는 방법 및 상기 방법에 따라 제조된 수소저장용 탄소나노튜브에 관한 것이다.The present invention relates to a method for producing carbon nanotubes for hydrogen storage, and more particularly, to form carbon nanotubes on the surface of carbon nanotubes through gas phase activation using carbon dioxide gas to increase specific surface area. It relates to a method for producing and to a carbon nanotube for hydrogen storage prepared according to the above method.

본 발명은 종래 상용화된 탄소나노튜브와 비교해 높은 비표면적, 전체 기공 부피, 및 미세 기공 부피를 가지는 고기능성 수소저장용 탄소나노튜브를 제공하는 효과가 있다.The present invention has the effect of providing a high functional hydrogen storage carbon nanotubes having a high specific surface area, total pore volume, and fine pore volume compared to conventional commercially available carbon nanotubes.

탄소나노튜브, 기상활성화, 수소저장, 수소저장매체 Carbon nanotubes, gas phase activation, hydrogen storage, hydrogen storage media

Description

수소저장용 탄소나노튜브의 제조방법{Preparing method of Carbon nanotube for hydrogen storage}Manufacturing method of carbon nanotube for hydrogen storage {Preparing method of Carbon nanotube for hydrogen storage}

본 발명은 수소저장용 탄소나노튜브의 제조방법에 관한 것으로, 더욱 상세하게는 이산화탄소 기체를 이용한 기상활성화를 통해 탄소나노튜브 표면에 나노 미세 기공을 형성하여 비표면적을 증가시킨 수소저장용 탄소나노튜브를 제조하는 방법 및 상기 방법에 따라 제조된 수소저장용 탄소나노튜브에 관한 것이다.The present invention relates to a method for producing carbon nanotubes for hydrogen storage, and more particularly, to form carbon nanotubes on the surface of carbon nanotubes through gas phase activation using carbon dioxide gas to increase specific surface area. It relates to a method for producing and to a carbon nanotube for hydrogen storage prepared according to the above method.

최근 선진국의 고도의 경제활동에 따라 화석연료의 사용량이 현저하게 증가하고, 이산화탄소가스의 배출로 인한 오존층파괴, 지구온난화, 산성비 등의 지구환경문제가 대두되면서 청정의 재생에너지원 개발이 시급한 실정이다.With the recent economic activity of advanced countries, the consumption of fossil fuels has increased significantly, and the development of clean renewable energy sources is urgent as the global environmental problems such as ozone layer destruction, global warming, and acid rain caused by the emission of carbon dioxide are emerging. .

이러한 문제에 대처할 수 있는 에너지로는 태양, 지열, 풍력, 해양에너지 등의 자연에너지와 물을 원료로 하는 수소에너지가 있다. 그 중에서도 궁극의 에너지원으로 불리는 수소는 무한히 존재하는 풍부한 물이 원료이고, 이를 전기분해 시켜 많은 양의 수소를 제조할 수 있다. The energy that can cope with these problems is natural energy such as solar, geothermal, wind, and marine energy and hydrogen energy based on water. Among them, hydrogen, which is called the ultimate energy source, is an infinitely rich source of water, and a large amount of hydrogen can be produced by electrolyzing it.

수소의 장점은 연소 시 극소량의 질소산화물만을 발생할 뿐 다른 공해물질이 생기지 않는 청정에너지라는데 있다. 수소를 직접 연소시켜 에너지를 얻을 수도 있 고, 연료전지 등의 연료로서도 사용이 간편하다. 수소는 산업용의 기초 소재로부터 일반 연료, 수소자동차, 수소비행기, 연료전지 등 현재의 에너지 시스템에서 사용되는 거의 모든 분야에서 이용될 수 있는 가능성을 지니고 있다고 해도 과언이 아니다.The advantage of hydrogen is its clean energy, which generates only a small amount of nitrogen oxides during combustion and does not produce other pollutants. Energy can be obtained by directly burning hydrogen, and it is also easy to use as a fuel such as a fuel cell. It is no exaggeration to say that hydrogen has the potential to be used in almost all fields used in today's energy systems, from industrial base materials to general fuels, hydrogen vehicles, hydrogen airplanes, and fuel cells.

수소에너지는 수소의 제조, 저장, 이용으로 나누어지는데, 현재까지 수소의 제조와 이용은 어느 정도 기술이 개발되어 안정화 단계에 접어들고 있지만, 수소 저장에 관해서는 아직까지도 뚜렷한 후보 기술의 선정이 어려운 상태이다. Hydrogen energy is divided into hydrogen production, storage, and use. To date, hydrogen production and use have been developed to some extent, and stabilization has been made. However, when it comes to hydrogen storage, it is still difficult to select clear candidate technologies. to be.

수소 저장 매체의 종류에는 다공성 탄소물질인 활성탄ㄴ과 활성탄소 섬유 및 최근 큰 관심을 끄는 탄소나노튜브 및 그라파이트 나노 섬유, 다공성 금속-유기 구조체, 금속수소화물, 금속착수소화물 등이 있다. 특히, 나노탄소튜브는 고강도, 고탄성율, 화학적 안정성 및 결합과 형태에 따른 다양성을 지니며, 수소저장매체로서의 나노튜브는 수소 분자를 저장할 수 있는 긴 나노 채널과 높은 비표면적으로 인해 좋은 수소 저장체로 기대되고 있다. 이런 성질을 이용하여 적절한 처리기법을 이용할 경우 높은 용량의 수소저장 기술에 접근할 수 있다.Examples of hydrogen storage media include activated carbon and activated carbon fibers, carbon nanotubes and graphite nanofibers, porous metal-organic structures, metal hydrides, and metal hydrides. In particular, nanocarbon tubes have high strength, high elastic modulus, chemical stability, and a variety of bonds and morphologies, and nanotubes as hydrogen storage media are good hydrogen storage materials because of their long nanochannel and high specific surface area for storing hydrogen molecules. It is expected. By using these properties, proper treatment techniques can be used to access high capacity hydrogen storage technologies.

탄소나노튜브는 완벽한 물성과 구조를 갖고 있기 때문에 전자정보통신, 환경, 에너지 및 의약 분야에서 응용이 기대되는 소재로서, 수소저장매체로서 나노튜브는 고압수소 및 액화수소저장에 비해서 안정할뿐더러 반응이 가역적이기 때문에 반영구적으로 사용할 수 있다는 장점을 가진다. 하지만, 기존의 상용화된 탄소나노튜브는 그 자체로는 수소 분자와의 친화력이 부족하고, 수소 분자에 대한 탄소의 낮은 흡착 에너지로, 상온에서 수소저장이 어렵다는 견해가 강하며, 수소저장에 최 적인 구조 개발이나 불순물을 포함한 상태에서의 수소저장 가능성을 찾는 움직임이 있다.As carbon nanotubes have perfect physical properties and structure, they are expected to be applied in electronic information communication, environment, energy, and medicine. As a hydrogen storage medium, nanotubes are more stable than high-pressure hydrogen and liquefied hydrogen storage, Since it is reversible, it can be used semi-permanently. However, existing commercially available carbon nanotubes have a lack of affinity with hydrogen molecules on their own, low adsorption energy of carbon to hydrogen molecules, and it is difficult to store hydrogen at room temperature. There is a movement to explore the potential for hydrogen storage in the development of structures and in the presence of impurities.

이에 본 발명자들은 종래 방식보다 비교적 간단하게 탄소나노튜브에 표면 관능기를 도입하거나 비표면적을 증가시키고자 예의 노력한 결과, 이산화탄소 기체를 이용한 기상활성화를 실시하여 탄소나노튜브 표면에 수 내지 수십 ㎚ 크기의 미세 기공을 형성시킴으로써 수소저장능력이 향상된 것을 확인하고, 본 발명을 완성하였다.Accordingly, the present inventors have made efforts to introduce surface functional groups to carbon nanotubes or to increase specific surface areas relatively simply, compared to the conventional methods, and thus, by performing gas phase activation using carbon dioxide gas, fine particles having a size of several to several tens of nanometers on the surface of carbon nanotubes are used. Forming pores confirmed that the hydrogen storage capacity was improved, and completed the present invention.

결국, 본 발명의 주된 목적은 이산화탄소 기체를 이용한 기상활성화를 통해 수소저장용 탄소나노튜브를 제조하는 방법 및 상기 방법으로 제조된 탄소나노튜브를 제공하는데 있다. After all, the main object of the present invention is to provide a method for producing carbon nanotubes for hydrogen storage through gas phase activation using carbon dioxide gas and the carbon nanotubes prepared by the above method.

상기 목적을 달성하기 위하여, 본 발명은 이산화탄소 기체를 이용한 기상활성화를 통해 탄소나노튜브 표면에 나노 미세 기공을 형성하여 비표면적을 증가시킨 수소저장용 탄소나노튜브의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a method for producing carbon nanotubes for hydrogen storage by increasing the specific surface area by forming nano-pores on the surface of carbon nanotubes through gas phase activation using carbon dioxide gas.

본 발명은 또한 상기 방법에 따라 제조되고, 탄소나노튜브 표면에 나노 미세 기공을 포함하여 수소저장능력이 향상된 수소저장용 탄소나노튜브를 제공한다.The present invention also provides carbon nanotubes for hydrogen storage, which are manufactured according to the above method and include hydrogen micro pores on the surface of carbon nanotubes, thereby improving hydrogen storage capability.

본 발명은 종래 상용화된 탄소나노튜브와 비교해 높은 비표면적, 전체 기공 부피, 및 미세 기공 부피를 가지는 고기능성 수소저장용 탄소나노튜브의 제조방법 및 상기 방법으로 제조된 탄소나노튜브를 제공하는 효과가 있다.The present invention has a high specific surface area, a total pore volume, and a fine pore volume compared to conventional commercially available carbon nanotubes, and a method for producing a carbon nanotube for high performance hydrogen storage and the effect of providing the carbon nanotubes prepared by the above method have.

본 발명에 따라 제조된 탄소나노튜브는 고용량의 수소저장이 가능하므로 수소저장매체로서 유용하게 사용될 수 있다. Carbon nanotubes prepared according to the present invention can be usefully used as a hydrogen storage medium because high capacity hydrogen storage is possible.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 이산화탄소 기체를 이용한 기상활성화를 통해 탄소나노튜브 표면에 나노 미세 기공을 형성하여 비표면적을 증가시킨 수소저장용 탄소나노튜브의 제조방법을 제공한다.The present invention provides a method for producing carbon nanotubes for hydrogen storage by increasing the specific surface area by forming nano-pores on the surface of carbon nanotubes through gas phase activation using carbon dioxide gas.

구체적으로, 본 발명은 (1) 탄소나노튜브를 머플 퍼니스에 넣고 공기 분위기 하에서 열처리하고; (2) 상기 열처리된 탄소나노튜브를 상온에서 산 용액에 첨착하여 산처리 하고; 및 (3) 산처리된 탄소나노튜브를 튜브형 퍼니스에서 질소(N2) 분위기 하에서 이산화탄소(CO2) 기체를 유입하여 기상활성화 하는; 과정을 포함하는 것을 특징으로 한다.Specifically, the present invention (1) by placing the carbon nanotubes in the muffle furnace and heat-treated under an air atmosphere; (2) attaching the heat-treated carbon nanotubes to an acid solution at room temperature for acid treatment; And (3) gas-activated acid-treated carbon nanotubes by introducing carbon dioxide (CO 2 ) gas under a nitrogen (N 2 ) atmosphere in a tubular furnace; It characterized in that it comprises a process.

본 발명에 있어서, 탄소나노튜브는 활성탄, 활성탄소섬유, 피치(pitch)계 나노섬유, 흑연, 단일벽 탄소나노튜브(Single-walled carbon nanotube) 및 다중벽 탄소나노튜브(multiple-walled carbon nanotube)에서 선택되는 1종 이상을 사용하는 것이 바람직하며, 기상활성화 과정 전 열처리 및 산처리 등의 정제과정을 거치는 것이 좋다. 또한, 상기 열처리는 승온 속도 5℃/분으로 350 내지 400℃에 도달한 후 10 내지 60분간 열처리하는 것이 바람직하고, 상기 산처리는 황산(H2SO4), 질산(HNO3), 인산(H3PO4), 염산(HCl), 과산화수소(H2O2) 및 이들의 혼합용액 중에서 선택되는 산 용액에서 12 내지 24시간 첨착하는 것이 바람직하고, 산 처리된 탄소나노튜브는 증류수로 수차례 중성이 될 때까지 세척하여 120℃ 이상에서 6 내지 24시간, 바람직하게는 12시간 동안 완전히 건조시키는 것이 바람직하다. In the present invention, the carbon nanotubes are activated carbon, activated carbon fibers, pitch-based nanofibers, graphite, single-walled carbon nanotubes and multiple-walled carbon nanotubes. It is preferable to use one or more selected from, it is preferable to go through the purification process such as heat treatment and acid treatment before the gas phase activation process. In addition, the heat treatment is preferably heat treatment for 10 to 60 minutes after reaching 350 to 400 ℃ at a heating rate of 5 ℃ / min, the acid treatment is sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ), phosphoric acid ( H 3 PO 4 ), hydrochloric acid (HCl), hydrogen peroxide (H 2 O 2 ) and an acid solution selected from a mixed solution thereof is preferably added for 12 to 24 hours, acid treated carbon nanotubes are distilled water It is preferred to wash until in turn neutral and completely dry at 120 ° C. or higher for 6 to 24 hours, preferably 12 hours.

상기 열처리는 탄소나노튜브에 존재하는 유기휘발성 물질 및 비정질 탄소 등을 완전히 제거하기 위한 것이며, 상기 산처리는 탄소나노튜브의 초기 합성시 사용된 금속 촉매들을 제거하는데 유용하다. 그러나, 오랜 시간의 열처리와 과다한 산처리는 탄소나노튜브의 구조를 붕괴시키므로 바람직하지 않다.The heat treatment is to completely remove the organic volatiles and amorphous carbon and the like present in the carbon nanotubes, the acid treatment is useful for removing the metal catalysts used in the initial synthesis of the carbon nanotubes. However, long time heat treatment and excessive acid treatment are undesirable because they degrade the structure of the carbon nanotubes.

또한, 기상활성화 온도는 500 내지 1,100℃가 바람직한데, 이는 온도가 500℃보다 낮을 경우 탄소나노튜브 표면에 나노 기공이 형성되지 않거나 그 수가 적고, 1,100℃보다 높을 경우에는 나노 기공의 붕괴가 나타나면서 기공의 크기가 거대화되기 때문이다.In addition, the gas phase activation temperature is preferably 500 to 1,100 ° C. When the temperature is lower than 500 ° C, nanopores are not formed on the surface of the carbon nanotubes or the number thereof is small, and when the temperature is higher than 1,100 ° C, the collapse of the nanopores appears. This is because the size of the pores is huge.

또한, 기상활성화 시간은 5분 내지 2시간인 것이 바람직하고, 더욱 바람직하게는 10 내지 60분인 것이 좋으며, 이산화탄소 기체의 유입량 속도는 10 내지 100 ㏄/분이 바람직하다. 과도한 처리 시간과 기체 유입량은 탄소나노튜브의 구조를 붕괴시키므로 바람직하지 않으며, 기상활성화가 이루어지는 튜브 퍼니스 반응기 안의 분위기는 N2, He, Ar 등의 비활성가스부터 O2, COx, SOx, NOx 등의 활성가스 등 모두 사용이 가능하다.The gas phase activation time is preferably 5 minutes to 2 hours, more preferably 10 to 60 minutes, and the inflow rate of carbon dioxide gas is preferably 10 to 100 dl / min. Excessive processing time and gas flow rate is undesirable because collapse of the structure of carbon nanotubes, a vapor-phase activation is made of tubes atmosphere in the furnace reactor of N 2, He, such as O 2, COx, SOx, NOx from an inert gas such as Ar Both active gases can be used.

본 발명은 또한 상기 방법에 따라 제조되고, 탄소나노튜브 표면에 나노 미세 기공을 형성하여 수소저장능력이 향상된 수소저장용 탄소나노튜브를 제공한다. The present invention also provides carbon nanotubes for hydrogen storage, which are manufactured according to the above method and form nano fine pores on the surface of carbon nanotubes, thereby improving hydrogen storage capability.

본 발명에 있어서, 수소저장능력이 향상된 수소저장용 탄소나노튜브는 200 내지 500 ㎡/g의 비표면적을 가지며, 0.5 내지 1.5 ㎤/g의 전체 기공 부피 및 0.1 내지 0.5 ㎤/g의 미세 기공 부피를 갖는 것이 특징이다. 또한, 본 발명에 따라 제조된 수소저장능력이 향상된 수소저장용 탄소나노튜브는 20 내지 100 ㎤/g의 수소저장값을 갖는 것을 특징으로 한다.In the present invention, the hydrogen storage carbon nanotubes having improved hydrogen storage capacity have a specific surface area of 200 to 500 m 2 / g, total pore volume of 0.5 to 1.5 cm 3 / g and micro pore volume of 0.1 to 0.5 cm 3 / g. It is characterized by having. In addition, the hydrogen storage carbon nanotubes having improved hydrogen storage capability according to the present invention are characterized in that they have a hydrogen storage value of 20 to 100 cm 3 / g.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

측정예 1. 탄소나노튜브의 기공 구조 변화 Measurement Example 1. Change in pore structure of carbon nanotubes

표면개질된 탄소나노튜브의 기공 구조는 77K 액체 질소 분위기 하에서 시료 약 0.2g을 채취하여 질소 기체를 흡착질로 하여 흡착량을 측정하였다. 시료의 전처리는 573K에서 시료 내 잔류 압력이 10-3 torr 이하로 될 때까지 약 12시간 동안 탈기시키고, 질소 등온흡착시험 후에는 P/P0(P: 부분압력; P0: 포화 증기압)이 약 0.1에서 0.3 까지의 범위의 흡착량에 대해서 Brunauer-Emmett-Teller(BET) 파라미터 변환 후, 직선의 기울기를 이용하여 BET 비표면적을 구하였다. The pore structure of the surface-modified carbon nanotubes was taken from a sample of about 0.2 g in a 77 K liquid nitrogen atmosphere, and the adsorption amount was measured using nitrogen gas as the adsorbate. Pretreatment of the sample was degassed for about 12 hours at 573K until the residual pressure in the sample was below 10 -3 torr. After nitrogen isothermal adsorption test, P / P 0 (P: partial pressure; P 0 : saturated vapor pressure) After the Brunauer-Emmett-Teller (BET) parameter conversion for the adsorption amount in the range of about 0.1 to 0.3, the BET specific surface area was determined using the slope of the straight line.

또한 전체 기공부피는 P/P0 가 0.98인 점에서 흡착된 양을 기초로 하여 구하였으며, 미세 기공부피는 Dubinin-Radushkevitch 식을 이용하여 구하였다. In addition, the total pore volume was obtained based on the amount adsorbed at P / P 0 of 0.98, and the fine pore volume was calculated using the Dubinin-Radushkevitch equation.

측정예 2. 탄소나노튜브의 표면 관찰Measurement Example 2 Surface Observation of Carbon Nanotubes

투과전자현미경(JEM2100F, JEOL, Japan)을 통해 표면개질 전, 후의 탄소나노튜브의 표면을 관찰하였다.Through the transmission electron microscope (JEM2100F, JEOL, Japan), the surface of the carbon nanotubes before and after the surface modification was observed.

측정예 3. 탄소나노튜브의 수소저장양 측정Measurement Example 3 Measurement of Hydrogen Storage of Carbon Nanotubes

표면개질된 탄소나노튜브의 수소저장양 측정을 위해, 각 시료를 573K에서 잔류 압력을 10-3 torr 이하로 유지하면서 6시간 동안 탈기시킨 후, BEL-HP(BEL Japan)을 이용하여 298K, 100 기압 조건에서 수소저장량을 측정하였다. 수소저장측정방식은 step-by-step 방식을 사용하였으며, 1회 평균 시료량은 0.5 g 으로 하였다. In order to measure the hydrogen storage amount of the surface-modified carbon nanotubes, each sample was degassed for 6 hours while maintaining a residual pressure of 10 -3 torr or less at 573K, followed by 298K, 100 using BEL-HP (BEL Japan). Hydrogen storage was measured under atmospheric pressure. The hydrogen storage measurement method was a step-by-step method, and the average sample volume was 0.5 g.

실시예 1. Example 1.

탄소나노튜브 1g을 상온에서 5 M 질산(HNO3) 용액에 12시간 산처리 한 후, 증류수로 pH가 중성이 될 때까지 충분히 세척하고, 120℃ 이상에서 12시간 완전 건조하였다. 전처리된 탄소나노튜브를 튜브형 퍼니스에 넣고 질소(N2) 분위기 하에서 2℃/분의 승온 속도로 500℃까지 승온시킨 다음, 500℃에서 이산화탄소(CO2) 기체를 50 ㏄/분의 유량 속도로 유입해 30분간 기상활성화 시키고, 실온까지 냉각하였다.1 g of carbon nanotubes were acid-treated in 5 M nitric acid (HNO 3 ) solution at room temperature for 12 hours, and then washed sufficiently with distilled water until the pH was neutral, and completely dried at 120 ° C. for 12 hours. The pretreated carbon nanotubes were placed in a tubular furnace and heated up to 500 ° C. at a temperature increase rate of 2 ° C./min under a nitrogen (N 2 ) atmosphere, and then, at 500 ° C., the carbon dioxide (CO 2 ) gas was flowed at a flow rate of 50 mA / min. It was introduced and activated for 30 minutes by gas phase, and cooled to room temperature.

상기와 같이 표면이 개질된 탄소나노튜브는 증류수에서 1~2회 세척하여 120℃에서 12시간 이상 완전 건조시켰다.As described above, the surface-modified carbon nanotubes were washed 1-2 times in distilled water and completely dried at 120 ° C. for 12 hours or more.

실시예 2.Example 2.

탄소나노튜브 1g을 상온에서 5 M 질산(HNO3) 용액에 12시간 산처리 한 후, 증류수로 pH가 중성이 될 때까지 충분히 세척하고, 120℃ 이상에서 12시간 완전 건조하였다. 전처리된 탄소나노튜브를 튜브형 퍼니스에 넣고 질소(N2) 분위기 하에서 2℃/분의 승온 속도로 700℃까지 승온시킨 다음, 700℃에서 이산화탄소(CO2) 기체를 50 ㏄/분의 유량 속도로 유입해 30분간 기상활성화 시키고, 실온까지 냉각하였다.1 g of carbon nanotubes were acid-treated in 5 M nitric acid (HNO 3 ) solution at room temperature for 12 hours, and then washed sufficiently with distilled water until the pH was neutral, and completely dried at 120 ° C. for 12 hours. A was introduced into the pretreated carbon nanotubes in a tubular furnace heated to 700 ℃ at a heating rate of 2 ℃ / min in a nitrogen (N 2) atmosphere, and then, carbon dioxide at 700 ℃ (CO 2) gas to 50 ㏄ / min flow rate of The mixture was introduced and vapor-activated for 30 minutes, and cooled to room temperature.

상기와 같이 표면이 개질된 탄소나노튜브는 증류수에서 1~2회 세척하여 120℃에서 12시간 이상 완전 건조시켰다.As described above, the surface-modified carbon nanotubes were washed 1-2 times in distilled water and completely dried at 120 ° C. for 12 hours or more.

실시예 3.Example 3.

탄소나노튜브 1g을 상온에서 5 M 질산(HNO3) 용액에 12시간 산처리 한 후, 증류수로 pH가 중성이 될 때까지 충분히 세척하고, 120℃ 이상에서 12시간 완전 건조하였다. 전처리된 탄소나노튜브를 튜브형 퍼니스에 넣고 질소(N2) 분위기 하에서 2℃/분의 승온 속도로 900℃까지 승온시킨 다음, 900℃에서 이산화탄소(CO2) 기체를 50 ㏄/분의 유량 속도로 유입해 30분간 기상활성화 시키고, 실온까지 냉각하였다.1 g of carbon nanotubes were acid-treated in 5 M nitric acid (HNO 3 ) solution at room temperature for 12 hours, and then washed sufficiently with distilled water until the pH was neutral, and completely dried at 120 ° C. for 12 hours. The pre-treated carbon nanotubes were placed in a tubular furnace and heated up to 900 ° C. at a temperature increase rate of 2 ° C./min under a nitrogen (N 2 ) atmosphere, and then the carbon dioxide (CO 2 ) gas was flowed at 900 ° C. at a flow rate of 50 μg / min. It was introduced and activated for 30 minutes by gas phase, and cooled to room temperature.

상기와 같이 표면이 개질된 탄소나노튜브는 증류수에서 1~2회 세척하여 120℃에서 12시간 이상 완전 건조시켰다.As described above, the surface-modified carbon nanotubes were washed 1-2 times in distilled water and completely dried at 120 ° C. for 12 hours or more.

실시예 4.Example 4.

탄소나노튜브 1g을 상온에서 5 M 질산(HNO3) 용액에 12시간 산처리 한 후, 증류수로 pH가 중성이 될 때까지 충분히 세척하고, 120℃ 이상에서 12시간 완전 건조하였다. 전처리된 탄소나노튜브를 튜브형 퍼니스에 넣고 질소(N2) 분위기 하에서 2℃/분의 승온 속도로 1,100℃까지 승온시킨 다음, 1,100℃에서 이산화탄소(CO2) 기체를 50 ㏄/분의 유량 속도로 유입해 30분간 기상활성화 시키고, 실온까지 냉각하였다.1 g of carbon nanotubes were acid-treated in 5 M nitric acid (HNO 3 ) solution at room temperature for 12 hours, and then washed sufficiently with distilled water until the pH was neutral, and completely dried at 120 ° C. for 12 hours. A was introduced into the pretreated carbon nanotubes in a tubular furnace heated to 1,100 ℃ at a heating rate of 2 ℃ / min in a nitrogen (N 2) atmosphere, and then, carbon dioxide at 1,100 ℃ (CO 2) gas to 50 ㏄ / min flow rate of The mixture was introduced and vapor-activated for 30 minutes, and cooled to room temperature.

상기와 같이 표면이 개질된 탄소나노튜브는 증류수에서 1~2회 세척하여 120℃에서 12시간 이상 완전 건조시켰다.As described above, the surface-modified carbon nanotubes were washed 1-2 times in distilled water and completely dried at 120 ° C. for 12 hours or more.

실시예 5.Example 5.

상기 실시예 3과 동일하게 과정을 실시하되, 이산화탄소 기체를 50 ㏄/분의 유량 속도로 유입해 5분간 기상활성화 시켰다.The process was carried out in the same manner as in Example 3, but the carbon dioxide gas was introduced at a flow rate of 50 ㏄ / min to activate the gas phase for 5 minutes.

실시예 6.Example 6.

상기 실시예 3과 동일하게 과정을 실시하되, 이산화탄소 기체를 50 ㏄/분의 유량 속도로 유입해 20분간 기상활성화 시켰다.The process was performed in the same manner as in Example 3, but the carbon dioxide gas was introduced at a flow rate of 50 kW / min to activate the gas phase for 20 minutes.

실시예 7. Example 7.

상기 실시예 3과 동일하게 과정을 실시하되, 이산화탄소 기체를 50 ㏄/분의 유량 속도로 유입해 60분간 기상활성화 시켰다.The process was carried out in the same manner as in Example 3, but the carbon dioxide gas was introduced at a flow rate of 50 kW / min to activate the gas phase for 60 minutes.

실시예 8.Example 8.

상기 실시예 3과 동일하게 과정을 실시하되, 이산화탄소 기체를 50 ㏄/분의 유량 속도로 유입해 120분간 기상활성화 시켰다.The process was performed in the same manner as in Example 3, but the carbon dioxide gas was introduced at a flow rate of 50 kW / min to activate the gas phase for 120 minutes.

비교예 1.Comparative Example 1.

탄소나노튜브 1g을 상온에서 5 M 질산(HNO3) 용액에 12시간 산처리 한 후, 증류수로 pH가 중성이 될 때까지 충분히 세척하고, 120℃ 이상에서 12시간 완전 건조하였다. 전처리된 탄소나노튜브를 튜브형 퍼니스에 넣고 질소(N2) 분위기 하에서 2℃/분의 승온 속도로 300℃까지 승온시킨 다음, 300℃에서 이산화탄소(CO2) 기체를 50 ㏄/분의 유량 속도로 유입해 30분간 기상활성화 시키고, 실온까지 냉각하였다.1 g of carbon nanotubes were acid-treated in 5 M nitric acid (HNO 3 ) solution at room temperature for 12 hours, and then washed sufficiently with distilled water until the pH was neutral, and completely dried at 120 ° C. for 12 hours. The pre-treated carbon nanotubes were placed in a tubular furnace and heated up to 300 ° C. at a temperature increase rate of 2 ° C./min under a nitrogen (N 2 ) atmosphere, and then the carbon dioxide (CO 2 ) gas was flowed at 300 ° C. at a flow rate of 50 μg / min. The mixture was introduced and vapor-activated for 30 minutes, and cooled to room temperature.

상기와 같이 표면이 개질된 탄소나노튜브는 증류수에서 1~2회 세척하여 120 ℃에서 12시간 이상 완전 건조시켰다. The surface-modified carbon nanotubes were washed 1-2 times in distilled water and completely dried at 120 ° C. for at least 12 hours.

비교예 2.Comparative Example 2

상기 비교예 1과 동일한 과정으로 실시하되, 전처리된 탄소나노튜브를 튜브형 퍼니스에 넣고 질소(N2) 분위기 하에서 2℃/분의 승온 속도로 1,400℃까지 승온시킨 다음, 1,400℃에서 이산화탄소(CO2) 기체를 50 ㏄/분의 유량 속도로 유입해 30분간 기상활성화 시켰다.The same process as in Comparative Example 1, but the pre-treated carbon nanotubes in a tubular furnace heated to 1,400 ℃ at a temperature increase rate of 2 ℃ / min in a nitrogen (N 2 ) atmosphere, and then carbon dioxide (CO 2 at 1,400 ℃) ) The gas was introduced at a flow rate of 50 mW / min and activated for 30 minutes.

하기의 표 1 및 표 2는 상기와 같이 표면 개질된 탄소나노튜브의 기공구조 변화와 수소저장값을 나타낸 결과이다.Table 1 and Table 2 below are the results showing the pore structure change and hydrogen storage value of the surface-modified carbon nanotubes as described above.

본 발명에 따른 탄소나노튜브의 기공구조 변화Change in pore structure of carbon nanotubes according to the present invention BET 비표면적(㎡/g)BET specific surface area (㎡ / g) 전체 기공부피(㎤/g)Total pore volume (cm 3 / g) 미세 기공부피(㎤/g)Fine pore volume (cm 3 / g) 실시예 1Example 1 250250 0.6380.638 0.1180.118 실시예 2Example 2 255255 0.6070.607 0.1260.126 실시예 3Example 3 302302 0.7980.798 0.1340.134 실시예 4Example 4 299299 0.6730.673 0.1290.129 실시예 5Example 5 232232 0.6950.695 0.1220.122 실시예 6Example 6 310310 0.8010.801 0.1390.139 실시예 7Example 7 342342 0.8150.815 0.1510.151 실시예 8Example 8 320320 0.7860.786 0.1160.116 비교예 1Comparative Example 1 157157 0.4870.487 0.0920.092 비교예 2Comparative Example 2 100100 0.2500.250 0.0090.009

본 발명에 따른 탄소나노튜브의 수소저장값Hydrogen storage value of carbon nanotubes according to the present invention 수소저장값(㎤/g)Hydrogen storage value (cm 3 / g) 실시예 1Example 1 2727 실시예 2Example 2 3838 실시예 3Example 3 6060 실시예 4Example 4 5555 실시예 5Example 5 3030 실시예 6Example 6 6565 실시예 7Example 7 7575 실시예 8Example 8 6262 비교예 1Comparative Example 1 1717 비교예 2Comparative Example 2 1010

이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. As described above, specific portions of the contents of the present invention have been described in detail, and for those skilled in the art, these specific techniques are merely preferred embodiments, and the scope of the present invention is not limited thereto. Will be obvious. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

도 1은 본 발명에 따라 제조된 수소저장용 탄소나노튜브의 표면을 투과전자현미경으로 관찰한 사진이다. 1 is a photograph of the surface of the carbon nanotubes for hydrogen storage prepared according to the present invention observed with a transmission electron microscope.

Claims (9)

(1) 탄소나노튜브를 머플 퍼니스에 넣고 공기 분위기 하에서 열처리하고;(1) placing the carbon nanotubes in a muffle furnace and heat-treating them in an air atmosphere; (2) 상기 열처리된 탄소나노튜브를 상온에서 산 용액에 첨착하여 산처리 하고; 및(2) attaching the heat-treated carbon nanotubes to an acid solution at room temperature for acid treatment; And (3) 산처리된 탄소나노튜브를 튜브형 퍼니스에서 질소(N2) 분위기 하에서 이산화탄소(CO2) 기체를 유입하여 기상활성화 하는; 과정을 포함하는 것을 특징으로 하는 이산화탄소 기체를 이용한 기상활성화를 통해 탄소나노튜브 표면에 나노 미세 기공을 형성하여 비표면적을 증가시킨 수소저장용 탄소나노튜브의 제조방법.(3) gas-activated acid-treated carbon nanotubes by introducing carbon dioxide (CO 2 ) gas under a nitrogen (N 2 ) atmosphere in a tubular furnace; Method of producing carbon nanotubes for hydrogen storage by increasing the specific surface area by forming nano-pores on the surface of the carbon nanotubes through gas phase activation using carbon dioxide gas, characterized in that it comprises a process. 제 1항에 있어서,The method of claim 1, 상기 탄소나노튜브는 활성탄, 활성탄소섬유, 피치(pitch)계 나노섬유, 흑연, 단일벽 탄소나노튜브(Single-walled carbon nanotube) 및 다중벽 탄소나노튜브(multiple-walled carbon nanotube)에서 선택되는 1종 이상을 사용하는 것을 특징으로 하는 수소저장용 탄소나노튜브의 제조방법.The carbon nanotubes are selected from activated carbon, activated carbon fibers, pitch-based nanofibers, graphite, single-walled carbon nanotubes, and multiple-walled carbon nanotubes. A method for producing carbon nanotubes for hydrogen storage, characterized in that more than one species are used. 제 1항에 있어서,The method of claim 1, 상기 열처리는 승온 속도 5℃/분으로 350 내지 400℃에 도달한 후 10 내지 60분간 열처리하는 것을 특징으로 하는 수소저장용 탄소나노튜브의 제조방법.The heat treatment is a method of producing carbon nanotubes for hydrogen storage, characterized in that heat treatment for 10 to 60 minutes after reaching 350 to 400 ℃ at a temperature increase rate 5 ℃ / min. 제 1항에 있어서,The method of claim 1, 상기 산처리는 황산(H2SO4), 질산(HNO3), 인산(H3PO4), 염산(HCl), 과산화수소(H2O2) 및 이들의 혼합용액 중에서 선택되는 산 용액에서 12 내지 24시간 첨착하여 산 처리하는 것을 특징으로 하는 수소저장용 탄소나노튜브의 제조방법.The acid treatment is performed in an acid solution selected from sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ), phosphoric acid (H 3 PO 4 ), hydrochloric acid (HCl), hydrogen peroxide (H 2 O 2 ), and a mixed solution thereof. Method of producing a carbon nanotube for hydrogen storage, characterized in that the acid treatment by impregnation for 24 hours. 제 1항에 있어서, The method of claim 1, 상기 기상활성화 온도는 2℃/분의 승온 속도로 500 내지 1,100℃까지 승온시키는 것을 특징으로 하는 수소저장용 탄소나노튜브의 제조방법.The gas phase activation temperature is a method of producing a carbon nanotube for hydrogen storage, characterized in that to increase the temperature to 500 to 1,100 ℃ at a temperature increase rate of 2 ℃ / min. 제 1항에 있어서,The method of claim 1, 상기 기상활성화 시간은 5분 내지 2시간인 것을 특징으로 하는 수소저장용 탄소나노튜브의 제조방법.The gas phase activation time is 5 minutes to 2 hours of producing carbon nanotubes for hydrogen storage, characterized in that. 제 1항에 있어서,The method of claim 1, 상기 기상활성화는 10 내지 100 ㏄/분의 유량 속도로 이산화탄소(CO2) 기체를 유입하는 것을 특징으로 하는 수소저장용 탄소나노튜브의 제조방법. The gas phase activation is a method of producing carbon nanotubes for hydrogen storage, characterized in that the inflow of carbon dioxide (CO 2 ) gas at a flow rate of 10 to 100 ㏄ / min. 제 1항 내지 제7항 중에서 선택되는 어느 하나의 제조방법으로 제조되고, 200 내지 500 ㎡/g의 비표면적을 가지며, 0.5 내지 1.5 ㎤/g의 전체 기공 부피 및 0.1 내지 0.5 ㎤/g의 미세 기공 부피를 갖는 것이 특징으로 하는 수소저장용 탄소나노튜브.A method according to any one of claims 1 to 7, prepared by any one of the manufacturing method, has a specific surface area of 200 to 500 m 2 / g, the total pore volume of 0.5 to 1.5 cm 3 / g and fine of 0.1 to 0.5 cm 3 / g Carbon nanotubes for hydrogen storage, characterized in that having a pore volume. 제 8항에 있어서, The method of claim 8, 상기 탄소나노튜브는 20 내지 100 ㎤/g의 수소저장값을 갖는 것을 특징으로 하는 수소저장용 탄소나노튜브.The carbon nanotubes hydrogen storage carbon nanotubes, characterized in that having a hydrogen storage value of 20 to 100 cm 3 / g.
KR1020090100994A 2009-10-23 2009-10-23 Preparing method of Carbon nanotube for hydrogen storage KR101082590B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090100994A KR101082590B1 (en) 2009-10-23 2009-10-23 Preparing method of Carbon nanotube for hydrogen storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090100994A KR101082590B1 (en) 2009-10-23 2009-10-23 Preparing method of Carbon nanotube for hydrogen storage

Publications (2)

Publication Number Publication Date
KR20110044367A KR20110044367A (en) 2011-04-29
KR101082590B1 true KR101082590B1 (en) 2011-11-10

Family

ID=44049105

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090100994A KR101082590B1 (en) 2009-10-23 2009-10-23 Preparing method of Carbon nanotube for hydrogen storage

Country Status (1)

Country Link
KR (1) KR101082590B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101284064B1 (en) * 2011-01-31 2013-07-10 인하대학교 산학협력단 Preparing method of activated graphite for high efficient hydrogen storage
WO2020022822A1 (en) 2018-07-27 2020-01-30 주식회사 엘지화학 Carbon nanotube, method for preparing same, and cathode for primary battery comprising same
KR20220072145A (en) 2020-11-25 2022-06-02 주식회사 엘지에너지솔루션 Activated carbon and method for preparing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083556A2 (en) 2001-04-12 2002-10-24 The Penn State Research Foundation Purification of carbon filaments and their use in storing hydrogen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083556A2 (en) 2001-04-12 2002-10-24 The Penn State Research Foundation Purification of carbon filaments and their use in storing hydrogen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.M. Blackman et al. "Activation of carbon nanofibres for hydrogen storage", Carbon, Vol. 44, pages 1376-1385 (2006)

Also Published As

Publication number Publication date
KR20110044367A (en) 2011-04-29

Similar Documents

Publication Publication Date Title
Rao et al. N-doped porous carbons from low-temperature and single-step sodium amide activation of carbonized water chestnut shell with excellent CO2 capture performance
Park et al. Straightforward and controllable synthesis of heteroatom-doped carbon dots and nanoporous carbons for surface-confined energy and chemical storage
Lee et al. Effect of temperature on activated carbon nanotubes for hydrogen storage behaviors
CN106744803B (en) A kind of method preparing porous carbon and porous carbon
Kutorglo et al. Nitrogen-rich hierarchically porous polyaniline-based adsorbents for carbon dioxide (CO2) capture
Su et al. Adsorption effect of nitrogen, sulfur or phosphorus surface functional group on formaldehyde at ambient temperature: Experiments associated with calculations
CN110015662B (en) Adsorb CO2Preparation method of nitrogen-doped porous carbon material
Chiang et al. Effects of activation on the properties of electrospun carbon nanofibers and their adsorption performance for carbon dioxide
CN109761216A (en) A kind of general, method that porous carbon materials are prepared based on organic zinc salt
KR101082590B1 (en) Preparing method of Carbon nanotube for hydrogen storage
KR20200039326A (en) Porous carbon made from plastics and a method for producing the same
Yang et al. One‐pot synthesis of high N‐doped porous carbons derived from a N‐rich oil palm biomass residue in low temperature for CO2 capture
Xu et al. Exploitation of pomelo peel developing porous biochar by N, P co-doping and KOH activation for efficient CO2 adsorption
KR20120131361A (en) Surface modification method of graphite-powder treated with phosphoric acid impregnation and manufacturing method of high efficient adsorbents for hydrogen storage
KR100937517B1 (en) Porous carbon material, method for preparing the same and use of the same for hydrogen storage
Jeon et al. Preparation and characterization of chemically activated carbon materials for CO 2 capture
KR102544657B1 (en) The Method of Producing Active Carbon by Using Physical Activation and the Active Carbon Produced by the Same
KR101284064B1 (en) Preparing method of activated graphite for high efficient hydrogen storage
CN114956040B (en) Nitrogen-oxygen doped hierarchical porous carbon material, preparation method and application
US20160122186A1 (en) Mesoporous carbon material and related methods
KR20150117341A (en) Activated carbon fibers for hydrogen storage
CN108786733B (en) Nano-pore carbon sphere CO with micron scale2Method for preparing adsorbent
KR102424905B1 (en) Manufacturing method of activated carbon derived from coconut shells by chemical activation and silica elimination for hydrogen storage
KR102554306B1 (en) Manufacturing method of activated carbon for carbon dioxide adsorption based on pine cones by chemical activation and silica removal
KR100936488B1 (en) Carbon Nanofiber Comprising Vanadium Catalyst Treated Fluorine as a Hydrogen Storage Medium and Manufacturing Method Thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140818

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151001

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160912

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170829

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180823

Year of fee payment: 8