JP5780496B2 - Plating method and plating apparatus - Google Patents

Plating method and plating apparatus Download PDF

Info

Publication number
JP5780496B2
JP5780496B2 JP2011015222A JP2011015222A JP5780496B2 JP 5780496 B2 JP5780496 B2 JP 5780496B2 JP 2011015222 A JP2011015222 A JP 2011015222A JP 2011015222 A JP2011015222 A JP 2011015222A JP 5780496 B2 JP5780496 B2 JP 5780496B2
Authority
JP
Japan
Prior art keywords
plating
pretreatment
substrate
accelerator
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011015222A
Other languages
Japanese (ja)
Other versions
JP2011174177A (en
Inventor
下山 正
正 下山
文夫 栗山
文夫 栗山
仁則 早瀬
仁則 早瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Tokyo University of Science
Original Assignee
Ebara Corp
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Tokyo University of Science filed Critical Ebara Corp
Priority to JP2011015222A priority Critical patent/JP5780496B2/en
Publication of JP2011174177A publication Critical patent/JP2011174177A/en
Application granted granted Critical
Publication of JP5780496B2 publication Critical patent/JP5780496B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/022Electroplating of selected surface areas using masking means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper

Description

本発明は、半導体デバイスの配線形成技術に関し、特に半導体ウェーハ等の基板の表面に形成されたトレンチやビアホール等の配線用凹部の内部に、配線用の銅等のめっき金属を高速で充填できるめっき方法及びめっき装置に関する。   The present invention relates to a wiring formation technique for semiconductor devices, and more particularly, plating capable of filling a plating metal such as copper for wiring at high speed inside a recess for wiring such as a trench or a via hole formed on the surface of a substrate such as a semiconductor wafer. The present invention relates to a method and a plating apparatus.

半導体デバイスの配線形成技術において、半導体ウェーハ等の基板の表面に形成されたトレンチやビアホール等の配線用凹部の内部に、配線用のめっき金属を高速で埋込むための重要なポイントとして、基板のフィールド部表面におけるめっき金属の析出速度を如何に抑制するか、配線用凹部の底部におけるめっき金属の析出速度を如何に促進させるかが挙げられる。このような考えから、埋込みめっきに使用されるめっき液には、めっき金属の析出を促進する促進剤、めっき金属の析出を抑制する抑制剤、及びレベラ(平滑化剤)の3種類の添加剤が一般に添加されている。   In the semiconductor device wiring formation technology, as an important point for embedding the plating metal for wiring at high speed inside the recess for wiring such as trench and via hole formed on the surface of the substrate such as semiconductor wafer, Examples of how to suppress the deposition rate of the plating metal on the surface of the field part and how to accelerate the deposition rate of the plating metal at the bottom of the wiring recess. In view of this, the plating solution used for embedded plating has three types of additives: an accelerator that promotes the precipitation of the plating metal, an inhibitor that suppresses the precipitation of the plating metal, and a leveler (smoothing agent). Is generally added.

ここで、消費されながらめっき金属の析出を抑制するレベラが含まれるめっき液を使用してめっきを行う場合は、基板の表面付近に形成される拡散層の厚さに依存して、めっき金属の析出抑制効果が異なる。この場合、めっき液を攪拌しながらめっきを行うと、めっき液の流れの速い基板のフィールド部表面でめっき金属の析出が大きく抑制され、めっき液の流れの遅い配線用凹部の底部では、レベラの供給が少ないことにより、めっき金属の析出は抑制されない。このため、めっき液を攪拌しながらめっきを行うことにより、配線用凹部の内部における促進剤によるめっき金属の析出促進作用を大きく保った状態で、配線用凹部の入口付近表面でのめっき金属の析出による該入口の閉塞を防止しつつ、配線用凹部の底部からのめっき金属高速の埋込みが可能となる。   Here, when plating is performed using a plating solution containing a leveler that suppresses the deposition of plating metal while being consumed, the plating metal depends on the thickness of the diffusion layer formed near the surface of the substrate. Deposition suppression effect is different. In this case, if plating is performed while stirring the plating solution, deposition of the plating metal is greatly suppressed on the surface of the field portion of the substrate where the flow of the plating solution is fast, and at the bottom of the concave portion for wiring where the flow of the plating solution is slow, Due to the small supply, the deposition of the plated metal is not suppressed. For this reason, by performing plating while stirring the plating solution, the plating metal is deposited on the surface near the entrance of the recess for wiring while maintaining the effect of promoting the precipitation of the plating metal by the accelerator inside the recess for wiring. It is possible to embed the plated metal at a high speed from the bottom of the wiring recess while preventing the entrance from being blocked.

前述のように、めっき液中に存在する複数の添加剤の相乗効果で配線用凹部の内部へのめっき金属の埋込みを行う場合、めっき処理の回数が増えて添加剤が変質すると、プロセスが不安定となる。特に、シリコン貫通ビアホールの埋込みのように、1枚のウェーハに対するめっきに要する時間が長時間に及ぶ場合、その分、ウェーハ1枚あたりのめっきで消費される添加剤の消耗が大きくなり、その結果、数枚のウェーハ処理で、めっき液の状態が変化して、めっき金属の埋込み不良が発生してしまう。   As described above, when the plating metal is embedded in the recess of the wiring due to the synergistic effect of the plurality of additives present in the plating solution, the process becomes inefficient if the number of plating treatments increases and the additive changes in quality. It becomes stable. In particular, when the time required for plating a single wafer takes a long time, such as embedding a through-silicon via hole, the consumption of the additive consumed by the plating per wafer increases accordingly. In the processing of several wafers, the state of the plating solution changes and a plating metal embedding defect occurs.

このため、添加剤の一つである促進剤を配線用凹部の表面のみに予め吸着させた後、抑制剤のみを加えた、硫酸銅めっき液等のめっき液を使用してめっきを行うことで、配線用凹部の底部からのめっき金属の析出を促進剤で促進しつつ、基板のフィールド部表面でのめっき金属の析出を抑制剤で抑制することが考えられる。このように、配線用凹部の表面だけに促進剤を吸着させることは、1度の処理では一般に不可能である。そこで、出願人は、めっき促進剤を添加しためっき液中で基板表面に第1めっき処理を行った後、前記促進剤を除去または低減させる除去剤を基板表面に接触させるめっき促進剤除去処理を行い、更に基板表面に第2めっき処理(埋込みめっき処理)を行うようにしたものを提案している(特許文献1,2参照)。   For this reason, after adsorbing an accelerator, which is one of the additives, only on the surface of the recess for wiring, plating is performed using a plating solution such as a copper sulfate plating solution to which only an inhibitor is added. It is conceivable to suppress the deposition of the plating metal on the surface of the field portion of the substrate with the inhibitor while promoting the precipitation of the plating metal from the bottom of the wiring recess with the promoter. As described above, it is generally impossible to adsorb the accelerator only on the surface of the wiring recess by a single treatment. Therefore, the applicant performs a plating accelerator removal treatment in which a removal agent for removing or reducing the accelerator is brought into contact with the substrate surface after the first plating treatment is performed on the substrate surface in a plating solution to which a plating accelerator is added. In addition, there is proposed a method in which a second plating process (embedded plating process) is further performed on the substrate surface (see Patent Documents 1 and 2).

なお、出願人は、めっきに先立って、配線用凹部の表面を除く基板のフィールド部表面にめっきを抑制するめっき抑制物質(めっき抑制剤)を付着させるようにしたものを提案している(特許文献3〜5参照)。また、基板表面に形成した配線用凹部内にめっき金属を埋込んだ後、該配線用凹部の入口付近表面の促進剤を除去し、しかる後、基板のフィールド部表面にめっき金属を成膜するようにしたものが提案されている(特許文献6参照)。   Prior to plating, the applicant has proposed a method in which a plating inhibitor (plating inhibitor) that suppresses plating is attached to the surface of the field portion of the substrate excluding the surface of the wiring recess (patent) Reference 3-5). Further, after burying the plating metal in the wiring recess formed on the substrate surface, the promoter near the entrance surface of the wiring recess is removed, and then the plating metal is formed on the surface of the field portion of the substrate. What has been proposed has been proposed (see Patent Document 6).

特開2007−262486号公報JP 2007-262486 A 特開2006−131961号公報JP 2006-131961 A 特開2006−274369号公報JP 2006-274369 A 特開2006−307279号公報JP 2006-307279 A 特開2007−9247号公報JP 2007-9247 A 特開2003−268590号公報JP 2003-268590 A

促進剤は、配線用凹部の底部からめっき金属を析出させる、いわゆるボトムアップには欠かせない添加剤であるが、配線用凹部のアスペクト比が大きい場合、配線用凹部の表面を含む基板の全表面に促進剤が吸着して作用すると、ボトムアップにより配線用凹部の埋込みが完了する前に、配線用凹部の入口付近表面においてもめっき金属の析出が促進されて該入口がめっき金属で閉塞されてしまう。そこで、特許文献1,2に記載の発明にあっては、例えば塩化物イオンを含む除去剤を使用し、促進剤に対する塩化物イオンの競争吸着を利用して、更に好ましくは逆電解をかけながら、基板表面から促進剤を低減または除去し、しかる後、埋込みめっきを行うようにしている。しかしながら、このように基板表面から促進剤を除去剤で低減または除去しても、配線用凹部の内部に埋込まれためっき金属内部にボイドが発生する場合があり、促進剤の脱離効果が不十分であることが分かった。このボイドの発生を防止するようにすると、めっき時間がより長時間に亘ってしまう。しかも、逆電解を使用すると、めっき装置の給電系統が複雑となる。   The accelerator is an additive that is essential for so-called bottom-up, in which the plating metal is deposited from the bottom of the wiring recess, but when the aspect ratio of the wiring recess is large, the entire substrate including the surface of the wiring recess is included. When the promoter acts by adsorbing on the surface, deposition of the plating metal is promoted on the surface near the entrance of the wiring recess before the wiring recess is completely buried by bottom-up, and the entrance is closed with the plating metal. End up. Therefore, in the inventions described in Patent Documents 1 and 2, for example, a removing agent containing chloride ions is used, and competitive adsorption of chloride ions to the accelerator is used, and more preferably, reverse electrolysis is applied. The accelerator is reduced or removed from the surface of the substrate, and then embedded plating is performed. However, even if the accelerator is reduced or removed from the surface of the substrate in this way, voids may be generated inside the plated metal embedded in the recesses for wiring, and the accelerator desorption effect is reduced. It turned out to be insufficient. If the generation of voids is prevented, the plating time will be longer. In addition, when reverse electrolysis is used, the power supply system of the plating apparatus becomes complicated.

本発明は上記事情に鑑みて為されたもので、配線用凹部の内部に、内部にボイドを生じさせることなく、めっき金属をより高速で埋込むことができるようにしためっき方法及びめっき装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a plating method and a plating apparatus capable of embedding a plating metal at a higher speed without causing voids inside the recess for wiring. The purpose is to provide.

請求項1に記載の発明は、表面に配線用凹部を有する基板を用意し、促進剤、金属イオン及び酸を含む第1前処理液に基板を浸漬させて第1前処理を行い、前記第1前処理液に含まれる促進剤の効果を阻害するレベラを含み且つ促進剤を含まない第2前処理液に基板を浸漬させながら前記第2前処理液を攪拌し、前記基板の浸漬時間と前記第2前処理液の攪拌強度を制御することによって、前記基板のフィールド部表面から前記配線用凹部の底部までの深さの1/2から1/3の促進剤の効果を抑制する第2前処理を行い、しかる後、基板の表面に、少なくとも金属イオン、酸及び抑制剤を含み、促進剤を含まないめっき液を使用した電解めっきを行って、前記配線用凹部内にめっき金属を埋込むことを特徴とするめっき方法である。 The first aspect of the present invention provides a substrate having a recess for wiring on the surface, performs a first pretreatment by immersing the substrate in a first pretreatment liquid containing an accelerator, metal ions, and an acid, The second pretreatment liquid is stirred while the substrate is immersed in a second pretreatment liquid that contains a leveler that inhibits the effect of the accelerator contained in the pretreatment liquid and does not contain an accelerator, and the immersion time of the substrate By controlling the agitation strength of the second pretreatment liquid, the second effect of suppressing the effect of the accelerator that is 1/2 to 1/3 of the depth from the surface of the field portion of the substrate to the bottom of the concave portion for wiring . Pre-treatment is performed, and then the surface of the substrate is subjected to electrolytic plating using a plating solution containing at least metal ions, an acid and an inhibitor and not an accelerator, so that the plating metal is embedded in the recess for wiring. It is the plating method characterized by including.

このように、第1前処理液に含まれる促進剤の効果を阻害するレベラを含み且つ促進剤を含まない第2前処理液に基板を浸漬させて第2前処理を行うことで、基板のフィールド部表面及び配線用凹部の入口付近表面に存在する促進剤の効果をより確実に失効させて、配線用凹部の内部に、内部にボイドを生じさせることなく、めっき金属をより高速で埋込むことができる。 In this way, by performing the second pretreatment by immersing the substrate in the second pretreatment liquid containing the leveler that inhibits the effect of the accelerator contained in the first pretreatment liquid and not containing the accelerator, The effect of the accelerator present on the surface of the field portion and the entrance of the recess for the wiring is more reliably expired, and the plated metal is embedded at a higher speed without generating voids inside the recess for the wiring. be able to.

請求項2に記載の発明は、前記レベラは、エチレンイミン重合体またはその誘導体、例えばPEI(ポリエチレンイミン)であることを特徴とする請求項1記載のめっき方法である。
PEIは、レベラとして高い促進剤不活性化作用を持つ。このため、PEIを表面に吸着させた基板を、例えばPEIを含む硫酸水溶液中に浸漬させることで、基板のフィールド部表面及び配線用凹部の入口付近表面に吸着した促進剤を選択的に不活性化させることができる。
請求項に記載の発明は、前記第1前処理は、基板を前記第1前処理液に浸漬させつつ、基板の表面に電解処理を行う予備的電解処理であることを特徴とする請求項1記載のめっき方法である。
第1前処理では、促進剤、金属イオン及び酸を含む第1前処理液に基板を浸漬させことで、配線用凹部の表面を含む基板の全表面に促進剤を吸着させることができるが、基板の表面に電解をかけることで、この促進剤吸着プロセスを安定させることができる。
The invention according to claim 2 is the plating method according to claim 1, wherein the leveler is an ethyleneimine polymer or a derivative thereof, for example, PEI (polyethyleneimine).
PEI has a high accelerator inactivating effect as a leveler. For this reason, a substrate having PEI adsorbed on its surface is immersed in a sulfuric acid aqueous solution containing PEI, for example, so that the accelerator adsorbed on the surface of the substrate field portion and the surface near the entrance of the recess for wiring is selectively inactivated. It can be made.
The invention according to claim 3 is characterized in that the first pretreatment is a preliminary electrolytic treatment in which the surface of the substrate is subjected to electrolytic treatment while the substrate is immersed in the first pretreatment liquid. 1. The plating method according to 1.
In the first pretreatment, the accelerator can be adsorbed on the entire surface of the substrate including the surface of the concave portion for wiring by immersing the substrate in the first pretreatment liquid containing the accelerator, metal ions and acid. By applying electrolysis to the surface of the substrate, this accelerator adsorption process can be stabilized.

請求項に記載の発明は、前記予備的電解処理における電流密度は、50A/m〜250A/mであることを特徴とする請求項記載のめっき方法である。 The invention according to claim 4 is the plating method according to claim 3 , wherein a current density in the preliminary electrolytic treatment is 50 A / m 2 to 250 A / m 2 .

請求項に記載の発明は、前記第1前処理液に含まれる促進剤として、硫黄系化合物、例えばSPS(ビス(3−スルホプロピル)ジスルファイド)を用いることを特徴とする請求項1乃至のいずれか一項に記載のめっき方法である。 The invention according to claim 5, as a promoter contained in said first treatment solution, according to claim 1, wherein the use of sulfur-based compounds, for example, SPS (bis (3-sulfopropyl) disulfide) It is a plating method as described in any one of these.

請求項に記載の発明は、前記第1前処理液に含まれる促進剤の濃度は、5μM/L〜500μM/Lであることを特徴とする請求項記載のめっき方法である。
第1前処理液に含まれる促進剤の濃度は、一般的には5μM/L〜500μM/Lであり、50M/L〜500μM/Lであることが好ましい。
The invention according to claim 6 is the plating method according to claim 5 , wherein the concentration of the accelerator contained in the first pretreatment liquid is 5 μM / L to 500 μM / L.
The concentration of the accelerator contained in the first pretreatment liquid is generally 5 μM / L to 500 μM / L, and preferably 50 M / L to 500 μM / L.

請求項に記載の発明は、前記第1前処理及び前記電解めっきの少なくとも一つの処理を、処理液を攪拌しつつ行うことを特徴とする請求項1乃至のいずれか一項に記載のめっき方法である。 The invention according to claim 7, the at least one processing of the first pretreatment Ri及 beauty the electrolytic plating, to any one of claims 1 to 6, characterized in that while stirring the treatment liquid The plating method described.

請求項に記載の発明は、前記第2前処理の攪拌と同等か、或いは前記第2前処理液の攪拌より強い攪拌強度でめっき液を攪拌しつつ前記電解めっきを行うことを特徴とする請求項1乃至のいずれか一項に記載のめっき方法である。 Invention of claim 8, before Symbol 拌and equal to or of the second pre-processing, or characterized by performing the electrolytic plating while stirring the plating solution with strong stirring strength than stirring the second pre-treatment liquid The plating method according to any one of claims 1 to 6 .

請求項に記載の発明は、前記第1前処理後に基板表面を希硫酸で洗浄し、前記第2前処理後に基板表面を希硫酸で洗浄することを特徴とする請求項1乃至のいずれかに記載のめっき方法である。
第1前処理後に基板表面を希硫酸で洗浄し、第2前処理後に基板表面を希硫酸で洗浄することにより、基板表面を純水で洗浄するようにした場合と比較して、プロセスの安定性や均一性を向上させることができる。
The invention according to claim 9, both the after first pre-processing the surface of the substrate was washed with dilute sulfuric acid, according to claim 1 to 8, characterized in that to clean the substrate surface with a dilute sulfuric acid after the second pre-processing It is the plating method of crab.
The substrate surface is washed with dilute sulfuric acid after the first pretreatment, and the substrate surface is washed with dilute sulfuric acid after the second pretreatment, so that the process is more stable than the case where the substrate surface is washed with pure water. And uniformity can be improved.

請求項10に記載の発明は、表面に配線用凹部を有する基板の該表面にめっきを行うめっき装置であって、促進剤、金属イオン及び酸を含む第1前処理液中に基板を浸漬させて第1前処理を行う第1前処理ユニットと、前記第1前処理液に含まれる促進剤の効果を阻害するレベラを含み且つ促進剤を含まない第2前処理液に基板を浸漬させながら前記第2前処理液を攪拌し、前記基板の浸漬時間と前記第2前処理液の攪拌強度を制御することによって、前記基板のフィールド部表面から前記配線用凹部の底部までの深さの1/2から1/3の促進剤の効果を抑制する第2前処理を行う第2前処理ユニットと、前記第2前処理後の基板の表面に、少なくとも金属イオン、酸及び抑制剤を含み、促進剤を含まないめっき液を使用した電解めっきを行って、前記配線用凹部内にめっき金属を埋込むめっきユニットを有することを特徴とするめっき装置である。 The invention according to claim 10 is a plating apparatus for performing plating on the surface of a substrate having a wiring recess on the surface, wherein the substrate is immersed in a first pretreatment liquid containing an accelerator, metal ions, and an acid. a first pre-processing unit for performing a first pre-processing Te, while immersing the substrate in the second pretreatment solution containing no and accelerators include leveler to inhibit the effect of a promoter contained in said first treatment solution By stirring the second pretreatment liquid and controlling the immersion time of the substrate and the stirring strength of the second pretreatment liquid, the depth from the surface of the field portion of the substrate to the bottom of the wiring recess is reduced to 1 A second pretreatment unit for performing a second pretreatment to suppress the effect of the accelerator of / 2 to 1/3, and the surface of the substrate after the second pretreatment contains at least a metal ion, an acid, and an inhibitor, Electroplating using a plating solution that does not contain an accelerator What is a plating apparatus characterized by having a plating unit for embedding plating metal into the interconnect recesses.

請求項11に記載の発明は、前記第1前処理ユニットは、前記第1前処理液中に基板を浸漬させつつ、該基板の表面に電解処理を行うように構成されていることを特徴とする請求項10記載のめっき装置である。 The invention according to claim 11 is characterized in that the first pretreatment unit is configured to perform electrolytic treatment on the surface of the substrate while the substrate is immersed in the first pretreatment liquid. The plating apparatus according to claim 10 .

請求項12に記載の発明は、前記第1前処理ユニットで第1前処理を行った基板表面を希硫酸で洗浄する第1洗浄ユニットと、前記第2前処理ユニットで第2前処理を行った基板表面を希硫酸で洗浄する第2洗浄ユニットとを更に有することを特徴とする請求項10または11記載のめっき装置である。 According to a twelfth aspect of the present invention, a first cleaning unit that cleans the substrate surface that has been subjected to the first pretreatment by the first pretreatment unit with dilute sulfuric acid, and a second pretreatment that is performed by the second pretreatment unit. and a plating apparatus according to claim 10 or 11, wherein further comprising a second cleaning unit for cleaning the substrate surface with dilute sulfuric acid.

請求項13に記載の発明は、前記第2前処理ユニットには、内部の第2前処理液を攪拌する攪拌装置が備えられ、前記第1前処理ユニット及び前記めっきユニットの少なくとも一つの処理ユニットには、内部の処理液を攪拌する攪拌装置が備えられ、前記攪拌装置の攪拌速度、前記第1前処理ユニットでの第1前処理時間、前記第2前処理ユニットでの第2前処理時間及び前記めっきユニットでのめっき時間を制御する制御部を有することを特徴とする請求項10乃至12のいずれか一項に記載のめっき装置である。 The invention according to claim 13, wherein the second pre-processing unit, provided with a stirring device for stirring the second pre-treatment liquid inside, at least one of the first pre-processing unit及 beauty the plating unit The processing unit includes a stirrer that stirs the internal processing liquid, the stirring speed of the stirrer, the first pretreatment time in the first pretreatment unit, and the second pretreatment time in the second pretreatment unit. It has a control part which controls processing time and the plating time in the said plating unit, It is a plating apparatus as described in any one of Claims 10 thru | or 12 characterized by the above-mentioned.

請求項14に記載の発明は、前記制御部は、前記配線用凹部の幅または直径、及び深さに基づき、前記第2前処理における基板の浸漬時間及び第2前処理液の攪拌強度を決定することを特徴とする請求項13記載のめっき装置である。 Invention of claim 14, before Symbol controller, the width or diameter of the interconnect recesses, and based on the depth, the stirring intensity of immersion time and the second pretreatment solution of the substrate in the second pre-processing 14. The plating apparatus according to claim 13 , wherein the plating apparatus is determined.

本発明によれば、配線用凹部の表面に促進剤を吸着させ、基板のフィールド部表面及び配線用凹部の入口付近表面に存在する促進剤の効果をより確実に失効させた状態でめっきを行うことにより、配線用凹部の内部に、内部にボイドを生じさせることなく、めっき金属をより高速で埋込むことができる。   According to the present invention, an accelerator is adsorbed on the surface of the wiring recess, and plating is performed in a state where the effect of the accelerator existing on the surface of the field portion of the substrate and the surface near the entrance of the wiring recess is more reliably expired. Thus, the plated metal can be embedded at a higher speed without causing voids in the wiring recess.

本発明の実施形態のめっき装置を示す全体平面図である。1 is an overall plan view showing a plating apparatus according to an embodiment of the present invention. 図1に示すめっき装置に備えられている第1前処理ユニットの概要図である。It is a schematic diagram of the 1st pre-processing unit with which the plating apparatus shown in FIG. 1 is equipped. 図1に示すめっき装置に備えられている第2前処理ユニットの概要図である。It is a schematic diagram of the 2nd pre-processing unit with which the plating apparatus shown in FIG. 1 is equipped. 図1に示すめっき装置に備えられているめっきユニットの概要図である。It is a schematic diagram of the plating unit with which the plating apparatus shown in FIG. 1 is equipped. 図1に示すめっき装置で配線用凹部内にめっき金属を埋込む時の概要を工程順に示す図である。It is a figure which shows the outline | summary at the time of process of embedding a plating metal in the recessed part for wiring with the plating apparatus shown in FIG. 第1前処理における基板浸漬時の予備電解条件の検証結果を示す顕微鏡写真である。It is a microscope picture which shows the verification result of the preliminary electrolysis conditions at the time of the board | substrate immersion in 1st pretreatment. 第1前処理における促進剤の第1前処理液中濃度の検証結果を示す顕微鏡写真である。It is a microscope picture which shows the verification result of the density | concentration in the 1st pre-processing liquid of the promoter in 1st pre-processing. 第2前処理における添加剤(レベラ)の第2前処理液中濃度の検証結果を示す顕微鏡写真である。It is a microscope picture which shows the verification result of the density | concentration in the 2nd pre-processing liquid of the additive (leveler) in 2nd pre-processing. 第2前処理における浸漬時間の検証結果を示す顕微鏡写真である。It is a microscope picture which shows the verification result of the immersion time in a 2nd pretreatment. 電解めっきにおけるめっき過電圧の検証結果を示す顕微鏡写真である。It is a microscope picture which shows the verification result of the plating overvoltage in electrolytic plating. 高濃度塩素イオン処理液中での逆電解による促進剤脱離の検証結果を参考例として示す顕微鏡写真である。It is a microscope picture which shows the verification result of accelerator desorption by reverse electrolysis in a high concentration chlorine ion processing liquid as a reference example. 硫酸銅めっき液における回転円板の回転速度と基板表面に形成される拡散層厚さの関係を示すグラフである。It is a graph which shows the relationship between the rotational speed of the rotation disc in a copper sulfate plating solution, and the diffusion layer thickness formed in the substrate surface. 拡散層上面からの深さと規格化した濃度との関係を示すグラフである。It is a graph which shows the relationship between the depth from the upper surface of a diffusion layer, and the normalized density | concentration. ビアホール径と処理液の流れのビアホール内への浸入深さの関係を示すグラフである。It is a graph which shows the relationship between the diameter of a via hole, and the penetration depth in the via hole of the flow of a process liquid.

以下、本発明の実施形態を図面を参照して説明する。なお、以下の例では、図5(a)に示すように、シード層10で覆われたトレンチやビアホール等の配線用凹部12を表面に形成した基板Wを用意し、配線用凹部12の内部に、図5(c)に示すように、銅からなる金属めっき膜14を埋込んで銅からなる配線を形成するようにした例を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following example, as shown in FIG. 5A, a substrate W having a wiring recess 12 such as a trench or a via hole covered with a seed layer 10 on the surface is prepared, and the inside of the wiring recess 12 is provided. FIG. 5C shows an example in which a wiring made of copper is formed by embedding a metal plating film 14 made of copper.

図1は、本発明の実施形態のめっき装置の全体平面図を示す。図1に示すように、めっき装置20は、内部に複数の基板Wを収容した基板カセットを装着する3基のロード・アンロード部22と、促進剤、金属イオン及び酸を含む第1前処理液に基板Wを浸漬させて第1前処理を行う第1前処理ユニット24と、第1前処理液に含まれる促進剤の効果を阻害する添加剤を含み且つ促進剤を含まない第2前処理液に基板Wを浸漬させて第2前処理を行う第2前処理ユニット26と、基板Wの表面に、少なくとも金属イオン、酸及び抑制剤を含み、促進剤を含まないめっき液を使用した電解めっきを行う2基のめっきユニット28を有している。   FIG. 1 is an overall plan view of a plating apparatus according to an embodiment of the present invention. As shown in FIG. 1, the plating apparatus 20 includes three load / unload units 22 for mounting a substrate cassette containing a plurality of substrates W therein, and a first pretreatment including an accelerator, metal ions, and an acid. A first pretreatment unit 24 that performs the first pretreatment by immersing the substrate W in the liquid, and a second pretreatment that includes an additive that inhibits the effect of the accelerator contained in the first pretreatment liquid and does not contain the accelerator. A second pretreatment unit 26 that performs the second pretreatment by immersing the substrate W in the treatment liquid, and a plating solution that contains at least metal ions, an acid, and an inhibitor and does not contain an accelerator are used on the surface of the substrate W. Two plating units 28 for performing electrolytic plating are provided.

めっき装置20は、更に、基板Wの表面を希硫酸で洗浄(リンス)する3基の洗浄ユニット30a,30b,30cと、電解めっき後の基板Wを洗浄し乾燥させる洗浄乾燥ユニット32と、処理前または処理後の基板Wの仮置きを行う基板仮置台34とを有しており、ロード・アンロード部22と基板仮置台34との間に第1基板搬送装置36が、基板仮置台34と各ユニットとの間に第2基板搬送装置38がそれぞれ走行自在に配置されている。第1前処理ユニット24、第2前処理ユニット26及びめっきユニット28等の各ユニットは、めっき装置20の外装パネルに備えられた制御部40によって制御される。   The plating apparatus 20 further includes three cleaning units 30a, 30b, 30c for cleaning (rinsing) the surface of the substrate W with dilute sulfuric acid, a cleaning / drying unit 32 for cleaning and drying the substrate W after electrolytic plating, The first substrate transport device 36 is provided between the loading / unloading unit 22 and the substrate temporary placement table 34, and the substrate temporary placement table 34. The second substrate transfer device 38 is movably disposed between each unit and each unit. Each unit such as the first pretreatment unit 24, the second pretreatment unit 26, and the plating unit 28 is controlled by a control unit 40 provided in the exterior panel of the plating apparatus 20.

第1前処理ユニット24として、この例では、基板Wの表面に電解処理(めっき処理)を行う電解処理ユニットを使用している。つまり、第1前処理ユニット24は、図2に示すように、例えばSPS(ビス(3−スルホプロピル)ジスルファイド)等の硫黄系化合物からなる促進剤、金属イオン(銅イオン)及び酸を含む第1前処理液42を内部に収容する処理槽44を有している。第1前処理液42中の促進剤(SPS)の濃度は、例えば5μM/L(マイクロモル/リットル)〜500μM/Lであり、50M/L〜500μM/Lであることが好ましい。   In this example, an electrolytic treatment unit that performs electrolytic treatment (plating treatment) on the surface of the substrate W is used as the first pretreatment unit 24. That is, as shown in FIG. 2, the first pretreatment unit 24 includes a promoter made of a sulfur compound such as SPS (bis (3-sulfopropyl) disulfide), a metal ion (copper ion), and an acid. 1 It has the processing tank 44 which accommodates the pre-processing liquid 42 in an inside. The concentration of the accelerator (SPS) in the first pretreatment liquid 42 is, for example, 5 μM / L (micromol / liter) to 500 μM / L, and preferably 50 M / L to 500 μM / L.

第1前処理ユニット24は、上下動自在で、基板Wを着脱自在に保持し該基板Wを処理槽44内の第1前処理液42に浸漬させて所定の位置に配置する基板ホルダ46と、アノードホルダ48で保持され処理槽44内の第1前処理液42に浸漬させて所定の位置に配置される、例えば含隣銅からなるアノード50と、攪拌機構52の駆動に伴って往復動してアノード50と基板Wとの間の第1前処理液42を攪拌する、攪拌装置としての攪拌翼54とを更に有している。   The first pretreatment unit 24 is movable up and down, holds the substrate W in a detachable manner, and immerses the substrate W in the first pretreatment liquid 42 in the treatment tank 44 and arranges it at a predetermined position. The anode 50 made of, for example, adjacent copper, which is held by the anode holder 48 and immersed in the first pretreatment liquid 42 in the treatment tank 44 and disposed at a predetermined position, and reciprocating as the stirring mechanism 52 is driven. And a stirring blade 54 as a stirring device for stirring the first pretreatment liquid 42 between the anode 50 and the substrate W.

これによって、基板ホルダ46で保持した基板Wを処理槽44の第1前処理液42中に浸漬させてアノード50と対向する所定の位置に配置し、導線56aを介して電源58の陰極を基板Wに、導線56bを介して電源58の陽極をアノード50にそれぞれ接続し、必要に応じて、攪拌機構52の攪拌翼54を往復運動させて第1前処理液42を攪拌することで、基板Wの表面に、第1前処理としての予備的電解処理(めっき処理)が行われる。この予備的電解処理における電流密度は、例えば50A/m〜250A/mである。この時の基板Wの第1前処理液42中への浸漬時間、攪拌翼54の攪拌速度及び電流密度等は、制御部40によって制御される。 As a result, the substrate W held by the substrate holder 46 is immersed in the first pretreatment liquid 42 of the processing tank 44 and disposed at a predetermined position facing the anode 50, and the cathode of the power source 58 is connected to the substrate via the conductor 56 a. By connecting the anode of the power source 58 to the anode 50 via the lead wire 56b to W and reciprocating the stirring blade 54 of the stirring mechanism 52 as necessary, the first pretreatment liquid 42 is stirred. Preliminary electrolytic treatment (plating treatment) as the first pretreatment is performed on the surface of W. The current density in this preliminary electrolytic treatment is, for example, 50 A / m 2 to 250 A / m 2 . At this time, the immersion time of the substrate W in the first pretreatment liquid 42, the stirring speed of the stirring blade 54, the current density, and the like are controlled by the control unit 40.

第2前処理ユニット26は、図3に示すように、例えばSPS(ビス(3−スルホプロピル)ジスルファイド)等の硫黄系化合物からなる促進剤の効果を阻害する添加剤、例えばレベラとしてのPEI(ポリエチレンイミン)を含み、促進剤を含まない第2前処理液60を内部に収容する処理槽62を有している。第2前処理ユニット26は、上下動自在で、基板Wを着脱自在に保持し該基板Wを処理槽62内の第2前処理液60に浸漬させて所定の位置に配置する基板ホルダ64と、攪拌機構66の駆動に伴って往復動して基板Wの前面に位置する第2前処理液60を攪拌する、攪拌装置としての攪拌翼68とを更に有している。   As shown in FIG. 3, the second pretreatment unit 26 is an additive that inhibits the effect of an accelerator composed of a sulfur compound such as SPS (bis (3-sulfopropyl) disulfide), for example, PEI as a leveler ( And a treatment tank 62 for containing therein a second pretreatment liquid 60 that does not contain an accelerator. The second pretreatment unit 26 is movable up and down, holds the substrate W in a detachable manner, and immerses the substrate W in the second pretreatment liquid 60 in the treatment tank 62 and arranges it at a predetermined position. Further, it further includes a stirring blade 68 as a stirring device that reciprocates as the stirring mechanism 66 is driven to stir the second pretreatment liquid 60 positioned in front of the substrate W.

これによって、基板ホルダ64で保持した基板Wを処理槽62の第2前処理液60中に浸漬させて所定の位置に配置し、必要に応じて、攪拌機構66の攪拌翼68を往復運動させて、第2前処理液60を攪拌することで、基板Wの表面に第2前処理が行われる。この時の基板Wの第2前処理液60中への浸漬時間、攪拌翼68の攪拌速度は、制御部40によって制御される。   Thus, the substrate W held by the substrate holder 64 is immersed in the second pretreatment liquid 60 of the processing tank 62 and disposed at a predetermined position, and the stirring blade 68 of the stirring mechanism 66 is reciprocated as necessary. The second pretreatment is performed on the surface of the substrate W by stirring the second pretreatment liquid 60. At this time, the controller 40 controls the dipping time of the substrate W in the second pretreatment liquid 60 and the stirring speed of the stirring blade 68.

めっきユニット28は、図4に示すように、例えばPEG(ポリエチレングリコール)からなる抑制剤、金属イオン(銅イオン)及び酸を有するめっき液70を内部に収容するめっき槽72を有している。めっき液70中の抑制剤(PEG)の濃度は、例えば1mM/Lである。   As shown in FIG. 4, the plating unit 28 includes a plating tank 72 that stores therein a plating solution 70 having an inhibitor made of, for example, PEG (polyethylene glycol), metal ions (copper ions), and an acid. The concentration of the inhibitor (PEG) in the plating solution 70 is, for example, 1 mM / L.

めっきユニット28は、上下動自在で、基板Wを着脱自在に保持し該基板Wをめっき槽72内のめっき液70に浸漬させて所定の位置に配置する基板ホルダ74と、アノードホルダ76で保持されめっき槽72内のめっき液70に浸漬させて所定の位置に配置される、例えば含隣銅からなるアノード78と、攪拌機構80の駆動に伴って往復動してアノード78と基板Wとの間のめっき液70を攪拌する、攪拌装置としての攪拌翼82とを更に有している。   The plating unit 28 is movable up and down, and is held by a substrate holder 74 and an anode holder 76 that hold the substrate W in a detachable manner and immerse the substrate W in the plating solution 70 in the plating tank 72 and place it at a predetermined position. Then, the anode 78 made of, for example, adjacent copper, which is immersed in the plating solution 70 in the plating tank 72 and arranged at a predetermined position, reciprocates as the stirring mechanism 80 is driven, and the anode 78 and the substrate W are moved. It further has a stirring blade 82 as a stirring device for stirring the plating solution 70 between them.

これによって、基板ホルダ74で保持した基板Wをめっき槽72のめっき液70中に浸漬させてアノード78と対向する所定の位置に配置し、導線84aを介してめっき電源86の陰極を基板Wに、導線84bを介してめっき電源86の陽極をアノード78にそれぞれ接続し、必要に応じて、攪拌機構80の攪拌翼82を往復運動させて、アノード78と基板Wとの間のめっき液70を攪拌することで、基板Wの表面に電解めっきが行われる。この時のめっき条件及び攪拌翼82の攪拌速度等は、制御部40によって制御される。   As a result, the substrate W held by the substrate holder 74 is immersed in the plating solution 70 of the plating tank 72 and placed at a predetermined position facing the anode 78, and the cathode of the plating power source 86 is placed on the substrate W via the conductor 84a. Then, the anode of the plating power source 86 is connected to the anode 78 via the conductive wire 84b, and the stirring blade 82 of the stirring mechanism 80 is reciprocated as necessary to cause the plating solution 70 between the anode 78 and the substrate W to flow. By stirring, electrolytic plating is performed on the surface of the substrate W. The plating conditions and the stirring speed of the stirring blade 82 at this time are controlled by the control unit 40.

次に、図1に示すめっき装置の動作を、図5を更に参照して説明する。
先ず、いずれかのロード・アンロード部22に装着した基板カセットから、めっき処理前の基板Wを第1基板搬送装置36で取出して基板仮置台34に搬送する。次に、基板仮置台34上の基板Wを第2基板搬送装置38で取出して洗浄ユニット30aに搬送し、ここで基板Wの表面を希硫酸で洗浄(リンス)した後、洗浄後の基板Wを第1前処理ユニット24の基板ホルダ46に受け渡す。
Next, the operation of the plating apparatus shown in FIG. 1 will be described with further reference to FIG.
First, the substrate W before the plating process is taken out from the substrate cassette mounted on any of the load / unload units 22 by the first substrate transfer device 36 and transferred to the temporary substrate placement table 34. Next, the substrate W on the temporary substrate table 34 is taken out by the second substrate transfer device 38 and transferred to the cleaning unit 30a, where the surface of the substrate W is cleaned (rinsed) with dilute sulfuric acid, and then the cleaned substrate W is cleaned. Is transferred to the substrate holder 46 of the first pretreatment unit 24.

第1前処理ユニット24では、図2に示すように、基板Wを処理槽44内の第1前処理液42中に浸漬させて所定の位置に配置し、更に互いに対向する位置に配置された基板Wとアノード50との間に電圧を印加して、基板Wの表面に、第1前処理としての予備的電解処理(めっき処理)を行う。この第1前処理によって、図5(a)に示すように、配線用凹部12の表面を含む基板Wの全表面にSPS等の促進剤90を吸着させる。この時、必要に応じて、処理槽44内の第1前処理液42を攪拌翼54で攪拌させる。第1前処理条件及び攪拌翼54の攪拌速度等は、制御部40によって制御される。   In the first pretreatment unit 24, as shown in FIG. 2, the substrate W is immersed in the first pretreatment liquid 42 in the treatment tank 44, arranged at a predetermined position, and further arranged at positions facing each other. A voltage is applied between the substrate W and the anode 50 to perform a preliminary electrolytic treatment (plating treatment) as a first pretreatment on the surface of the substrate W. By this first pretreatment, as shown in FIG. 5A, an accelerator 90 such as SPS is adsorbed on the entire surface of the substrate W including the surface of the wiring recess 12. At this time, the first pretreatment liquid 42 in the treatment tank 44 is stirred by the stirring blade 54 as necessary. The first pretreatment condition, the stirring speed of the stirring blade 54, and the like are controlled by the control unit 40.

次に、第1前処理後の基板Wを、第2基板搬送装置38で洗浄ユニット30bに搬送し、ここで基板Wの表面を希硫酸で洗浄(リンス)し、洗浄後の基板Wを第2前処理ユニット26の基板ホルダ46に受け渡す。   Next, the substrate W after the first pretreatment is transported to the cleaning unit 30b by the second substrate transport device 38, where the surface of the substrate W is cleaned (rinsed) with dilute sulfuric acid, and the substrate W after cleaning is cleaned. 2 Delivered to the substrate holder 46 of the pretreatment unit 26.

第2前処理ユニット26では、図3に示すように、基板Wを処理槽62内の第2前処理液60中に浸漬させることで、基板Wの表面に第2前処理を行う。この第2前処理によって、図5(b)に示すように、配線用凹部12の入口付近表面及び基板Wのフィールド部表面に、PEI等の添加剤(レベラ)92を吸着させる。この時、必要に応じて、処理槽62内の第2前処理液60を攪拌翼68で攪拌させる。第2前処理条件及び攪拌翼68の攪拌速度等は、制御部40によって制御される。   As shown in FIG. 3, the second pretreatment unit 26 performs the second pretreatment on the surface of the substrate W by immersing the substrate W in the second pretreatment liquid 60 in the treatment tank 62. By this second pretreatment, an additive (leveler) 92 such as PEI is adsorbed to the surface near the entrance of the wiring recess 12 and the field portion surface of the substrate W as shown in FIG. At this time, the second pretreatment liquid 60 in the treatment tank 62 is stirred by the stirring blade 68 as necessary. The second pretreatment condition, the stirring speed of the stirring blade 68, and the like are controlled by the control unit 40.

このように、配線用凹部12の入口付近表面及び基板Wのフィールド部表面にPEI等の添加剤(レベラ)92を吸着させることで、配線用凹部12の内部に位置するSPS等の促進剤90の効果を維持したまま、配線用凹部12の入口付近表面及び基板Wのフィールド部表面に吸着された促進剤90を、PEI等の添加剤(レベラ)92によって不活性化させる。特に、PEIは、レベラとして高いSPS不活性化作用を持ち、SPSを全表面に吸着させた基板を、例えばPEIを含む硫酸水溶液中に浸漬させることで、基板のフィールド部表面に吸着したSPSを選択的に不活性化できることが確かめられている。   In this way, by adsorbing an additive (leveler) 92 such as PEI to the surface near the entrance of the wiring recess 12 and the field portion surface of the substrate W, an accelerator 90 such as SPS located inside the wiring recess 12 is adsorbed. The accelerator 90 adsorbed on the surface near the entrance of the wiring recess 12 and the field portion surface of the substrate W is inactivated by an additive (leveler) 92 such as PEI. In particular, PEI has a high SPS deactivating effect as a leveler, and by immersing a substrate on which SPS is adsorbed on the entire surface, for example, in a sulfuric acid aqueous solution containing PEI, the SPS adsorbed on the field portion surface of the substrate is It has been confirmed that it can be selectively inactivated.

次に、第2前処理後の基板Wを、第2基板搬送装置38で洗浄ユニット30cに搬送し、ここで基板Wの表面を希硫酸で洗浄(リンス)し、洗浄後の基板をめっきユニット28の基板ホルダ74に受け渡す。   Next, the substrate W after the second pretreatment is transported to the cleaning unit 30c by the second substrate transport device 38, where the surface of the substrate W is cleaned (rinsed) with dilute sulfuric acid, and the substrate after cleaning is plated unit 28 to the 28 substrate holders 74.

めっきユニット28では、図4に示すように、基板Wをめっき槽72内のめっき液70中に浸漬させて所定の位置に配置し、更に互いに対向する位置に配置された基板Wとアノード78との間に電圧を印加して、基板Wの表面に電解めっきを行う。この時、必要に応じて、めっき槽72内の攪拌翼82を回転させてめっき液70を攪拌する。めっき条件及び攪拌翼82の攪拌速度は、制御部40によって制御される。   In the plating unit 28, as shown in FIG. 4, the substrate W is immersed in the plating solution 70 in the plating tank 72 and disposed at a predetermined position, and further, the substrate W and the anode 78 disposed at positions facing each other. A voltage is applied between the two to perform electrolytic plating on the surface of the substrate W. At this time, if necessary, the stirring blade 82 in the plating tank 72 is rotated to stir the plating solution 70. The plating conditions and the stirring speed of the stirring blade 82 are controlled by the control unit 40.

このように、配線用凹部12の内部に位置するSPS等の促進剤90の効果を維持したまま、配線用凹部12の入口付近表面及び基板Wのフィールド部表面に吸着された促進剤90を添加剤(レベラ)92によって不活性化させた状態で電解めっきを行うことで、図5(c)に示すように、配線用凹部12の底部からのめっき金属(銅)14の析出(ボトムアップ)を促進剤90で促進しつつ、基板Wのフィールド部表面及び配線用凹部12の入口付近表面でのめっき金属14の析出を、めっき液に含まれる抑制剤で抑制する。   In this way, the accelerator 90 adsorbed on the surface near the entrance of the wiring recess 12 and the field portion surface of the substrate W is added while maintaining the effect of the accelerator 90 such as SPS located inside the wiring recess 12. By performing electroplating in a state inactivated by the agent (leveler) 92, the plating metal (copper) 14 is deposited (bottom-up) from the bottom of the wiring recess 12 as shown in FIG. The deposition of the plating metal 14 on the surface of the field portion of the substrate W and the surface near the entrance of the wiring recess 12 is suppressed by the inhibitor contained in the plating solution.

次に、めっき後の基板Wを、第2基板搬送装置38で洗浄乾燥ユニット32に搬送し、ここで基板Wの表面を純水等で洗浄(リンス)し、基板Wを乾燥させた後、乾燥後の基板Wを第2基板搬送装置38で基板仮置台34に搬送する。第1基板搬送装置36は、基板仮置台34上の基板を受取り、ロード・アンロード部22の基板カセットに戻す。   Next, the substrate W after plating is transported to the cleaning / drying unit 32 by the second substrate transport device 38, where the surface of the substrate W is cleaned (rinsed) with pure water or the like, and the substrate W is dried. The dried substrate W is transferred to the temporary substrate table 34 by the second substrate transfer device 38. The first substrate transfer device 36 receives the substrate on the temporary substrate mounting table 34 and returns it to the substrate cassette of the load / unload unit 22.

例えばSPS等の促進剤は、トレンチやビアホール等の配線用凹部の底部からめっき金属を析出させる、いわゆるボトムアップには欠かせない添加剤であるが、配線用凹部のアスペクト比が大きい場合、配線用凹部の表面を含む基板の全表面に促進剤が吸着して作用すると、配線用凹部の入口付近表面においてもめっき金属の析出が促進され、ボトムアップにより配線用凹部の埋込みが完了する前に配線用凹部の入口がめっき金属で閉塞されてしまう。   For example, an accelerator such as SPS is an additive indispensable for so-called bottom-up, in which a plating metal is deposited from the bottom of a recess for wiring such as a trench or a via hole, but when the aspect ratio of the recess for wiring is large, When the promoter acts on the entire surface of the substrate including the surface of the recess for plating, precipitation of the plating metal is promoted on the surface near the entrance of the recess for wiring, and before the embedding of the recess for wiring is completed by bottom-up The entrance of the wiring recess is blocked by the plated metal.

そこで、本発明では、第1前処理で、促進剤、金属イオン及び酸を含む第1前処理液、例えばSPS等の促進剤と塩素イオンを含む硫酸銅水溶液に基板を浸漬させ、必要に応じて、基板の表面の電解処理を行い、これによって、配線用凹部の表面を含む基板の全表面に促進剤を吸着させる。次に、第2前処理で、促進剤の効果を阻害する、例えばPEI等の添加剤(レベラ)を含む第2前処理液に基板を浸漬させて、基板のフィールド部表面及び配線用凹部の入口付近表面に吸着された促進剤の効果を添加剤(レベラ)で失わせる。配線用凹部の内部においては、拡散で到達できる添加剤(レベラ)が少なく、促進剤の効果は失われない状態に保たれる。この状態で、電解めっきを行うのであり、これにより、配線用凹部の底部だけは促進剤の効果が維持されているため、配線用凹部の底部からめっき金属が析出するボトムアップが起こり、促進剤が不活した基板のフィールド部表面及び配線用凹部の入口付近表面は、抑制剤の効果でめっき金属の析出が進まず、めっき速度を早くするためにめっき電流を大きくしても配線用凹部の入口がめっき金属で先に閉塞されることがなくなる。このため、めっき金属をより高速で配線用凹部内に埋込むことが可能となる。   Therefore, in the present invention, in the first pretreatment, the substrate is immersed in a first pretreatment liquid containing an accelerator, metal ions and an acid, for example, an accelerator such as SPS and a copper sulfate aqueous solution containing chloride ions, and if necessary Then, the surface of the substrate is subjected to electrolytic treatment, whereby the promoter is adsorbed on the entire surface of the substrate including the surface of the wiring recess. Next, in the second pretreatment, the substrate is immersed in a second pretreatment liquid containing an additive (leveler) such as PEI that inhibits the effect of the accelerator, and the field portion surface of the substrate and the wiring recess The effect of the accelerator adsorbed on the surface near the entrance is lost by the additive (leveler). In the interior of the recess for wiring, there are few additives (levelers) that can be reached by diffusion, and the effect of the accelerator is maintained in a state where it is not lost. In this state, the electrolytic plating is performed. As a result, the effect of the accelerator is maintained only at the bottom of the wiring recess, so that a bottom-up in which the plating metal is deposited from the bottom of the wiring recess occurs. The field surface of the inactivated substrate and the surface near the entrance of the wiring recess do not cause plating metal deposition due to the effect of the inhibitor, and even if the plating current is increased to increase the plating speed, the wiring recess The entrance is not blocked by the plated metal first. For this reason, it becomes possible to bury a plating metal in the recessed part for wiring at higher speed.

次に、第1前処理、第2前処理及び電解めっきにおける最適処理条件を探索するために、めっき金属の埋込み性に及ぼす影響をチップ試験により検証した。その結果を以下に示す。テストパターンチップとして、直径が20,30,40及び50μmで、深さが60μmのビアホール(配線用凹部)が形成されたものを用いた。電解めっきは、マスキングテープによりパターンを中心としたφ6mmの領域に限定した。第1前処理を行う処理槽、及びめっき槽として200mLのビーカーを用い、テストチップ、参照電極(水銀/硫酸水銀電極)と白金アノードの3電極式でセルを構成し、ポテンシオスタットによる電位制御により、第1前処理及び電解めっきを行った。   Next, in order to search for the optimum processing conditions in the first pretreatment, the second pretreatment and the electrolytic plating, the influence on the embeddability of the plated metal was verified by a chip test. The results are shown below. A test pattern chip having a via hole (recess for wiring) having a diameter of 20, 30, 40 and 50 μm and a depth of 60 μm was used. Electrolytic plating was limited to a region of φ6 mm centered on the pattern by masking tape. Using a 200 mL beaker as the treatment tank for the first pretreatment and a plating tank, the cell is composed of a three-electrode system consisting of a test chip, a reference electrode (mercury / mercury sulfate electrode) and a platinum anode, and potential control by a potentiostat Thus, the first pretreatment and the electrolytic plating were performed.

めっき液の基本浴として、硫酸−硫酸銅水溶液(CuSO・5HO;0.9M,HSO;0.56M)を用い、各処理(ステップ)間の洗浄(リンス)に1MのHSO水溶液を用いた。各処理間の洗浄(リンス)においては、純水よりも希硫酸を用いた方が、プロセスの安定性や均一性を確保する上で望ましい。 A sulfuric acid-copper sulfate aqueous solution (CuSO 4 .5H 2 O; 0.9 M, H 2 SO 4 ; 0.56 M) was used as a basic bath for the plating solution, and 1 M was used for cleaning (rinsing) between each treatment (step). An aqueous solution of H 2 SO 4 was used. In washing (rinsing) between the treatments, it is preferable to use dilute sulfuric acid rather than pure water in order to ensure process stability and uniformity.

第1前処理では、基本浴に抑制剤であるPEG(ポリエチレングリコール)を濃度0.1mMで、塩素イオンを濃度1mMで加えた液に、促進剤であるSPS(ビス(3−スルホプロピル)ジスルファイド)を所定濃度で加えた液を第1前処理液として使用し、この第1前処理液にチップを浸漬させた。そして、電流を与えて、ビアホール表面を含むチップの全表面に促進剤(SPS)を吸着させた。第2前処理では、硫酸水溶液に予め定めた濃度のPEI(ポリエチレンイミン)を添加した第2前処理液にチップを浸漬させた。電解めっきでは、基本浴に、濃度0.1mMの抑制剤であるPEG(ポリエチレングリコール)と濃度1mMの塩素イオンをのみを加えためっき液を使用し、予め定めた電位でチップの表面にめっき金属(銅)を析出させ、これによって、ビアホール内にめっき金属(銅)を埋込んだ。   In the first pretreatment, SPS (bis (3-sulfopropyl) disulfide as an accelerator is added to a solution obtained by adding PEG (polyethylene glycol) as an inhibitor to a basic bath at a concentration of 0.1 mM and chloride ions at a concentration of 1 mM. ) At a predetermined concentration was used as the first pretreatment liquid, and the chip was immersed in the first pretreatment liquid. An electric current was applied to adsorb the accelerator (SPS) on the entire surface of the chip including the via hole surface. In the second pretreatment, the chip was immersed in a second pretreatment liquid in which PEI (polyethyleneimine) having a predetermined concentration was added to the sulfuric acid aqueous solution. In electrolytic plating, a plating solution containing only PEG (polyethylene glycol), which is a 0.1 mM concentration inhibitor, and 1 mM chloride ion, is used in a basic bath, and a plated metal is applied to the surface of the chip at a predetermined potential. (Copper) was deposited, thereby burying a plated metal (copper) in the via hole.

各処理とも、全てスターラーチップにより200rpmの回転速度で処理液の攪拌を行った。第1前処理前に30秒の、各処理間では20秒の硫酸水溶液を使用した洗浄(リンス)を行い、そのときセルは開回路状態とした。めっき後は、断面を研磨してビアホール内への銅の埋込み状態を観察した。   In each treatment, the treatment liquid was stirred at a rotation speed of 200 rpm using a stirrer chip. Washing (rinsing) using a sulfuric acid aqueous solution for 30 seconds before the first pretreatment and 20 seconds between each treatment was performed, and the cell was then in an open circuit state. After plating, the cross section was polished to observe the state of copper embedded in the via hole.

各処理における検討項目として、第1前処理では、基板浸漬時の予備電解電流値及び促進剤の第1前処理液中濃度、第2前処理では、添加剤(レベラ)の第2処理液中濃度及び基板浸漬時間、電解めっきでは、めっき時の過電圧とした。詳細は以下に述べる。   As examination items in each treatment, in the first pretreatment, the pre-electrolysis current value and the concentration of the accelerator in the first pretreatment liquid during substrate immersion, and in the second treatment liquid of the additive (leveler) in the second pretreatment. Concentration, substrate immersion time, and electrolytic plating were overvoltage during plating. Details are described below.

A.第1前処理における基板浸漬時の予備電解条件
第1前処理における基板浸漬時の予備電解条件として、電流密度50,100及び250A/mを選択した。この時、各電流条件においても、促進剤を吸着させるために印加するトータル電荷を一定(3000Q/m)にするために、予備電解時間をそれぞれ600,300及び120秒とした。促進剤の第1前処理液中濃度を50μMとし、その他の条件は、表1のように統一した。結果を図6に示す。図6から、300sec−100A/mの場合が最もめっき進展速度が高くなっていることが判る。電流を大きくしてもめっき進展速度が大きくならない理由として、予備吸着には促進剤の拡散も影響を及ぼしているものと思われる。
A. Preliminary electrolysis conditions during substrate immersion in the first pretreatment Current densities of 50, 100 and 250 A / m 2 were selected as preelectrolysis conditions during substrate immersion in the first pretreatment. At this time, the pre-electrolysis time was set to 600, 300, and 120 seconds, respectively, in order to make the total charge applied to adsorb the accelerator constant (3000 Q / m 2 ) even under each current condition. The concentration of the accelerator in the first pretreatment solution was 50 μM, and other conditions were unified as shown in Table 1. The results are shown in FIG. From FIG. 6, it can be seen that the plating progress rate is highest in the case of 300 sec-100 A / m 2 . The reason why the plating progress rate does not increase even when the current is increased is considered that the diffusion of the accelerator also affects the pre-adsorption.

Figure 0005780496
Figure 0005780496

なお、第1前処理では、促進剤、金属イオン及び酸を含む第1前処理液へ基板を浸漬させるだけで促進剤を基板表面に吸着させることも考えられるが、電解処理を使用した方が、プロセスが安定するために望ましい。   In the first pretreatment, it is conceivable that the accelerator is adsorbed on the surface of the substrate only by immersing the substrate in the first pretreatment liquid containing the accelerator, metal ions, and acid. However, it is preferable to use electrolytic treatment. Desirable for the process to be stable.

B.第1前処理における促進剤の第1前処理液中濃度
第1前処理における促進剤の第1前処理液中濃度の影響についても検討した。促進剤の第1前処理液中濃度として、5,50及び500μMを選択した。この時、予備電解条件は、300sec−100A/mとした。その他の条件は、表2のように統一した。結果を図7に示す。図7から、20μmのビアホールに関しては、促進剤の第1前処理液中濃度が50μMの時にめっき進展速度が最も高くなっていることが判る。30〜40μmのビアホールにおいては、促進剤の第1前処理液中濃度が増加する程、めっき進展速度が上昇する傾向がみられる。これにより、促進剤の第1前処理液中濃度の最適条件は、50〜500μMの間に存在すると思われる。
B. The effect of the concentration of the accelerator in the first pretreatment liquid in the first pretreatment was also examined on the effect of the concentration of the accelerator in the first pretreatment liquid in the first pretreatment. As the concentration of the accelerator in the first pretreatment solution, 5, 50 and 500 μM were selected. At this time, the preliminary electrolysis conditions were 300 sec-100 A / m 2 . Other conditions were unified as shown in Table 2. The results are shown in FIG. From FIG. 7, it can be seen that for the 20 μm via hole, the plating progress rate is the highest when the concentration of the accelerator in the first pretreatment liquid is 50 μM. In the 30-40 μm via hole, the plating progress rate tends to increase as the concentration of the accelerator in the first pretreatment liquid increases. Thereby, it seems that the optimal conditions of the density | concentration in the 1st pretreatment liquid of a promoter exist between 50-500 micromol.

Figure 0005780496
Figure 0005780496

C.第2前処理における添加剤(レベラ)の第2前処理液中濃度
第2前処理における添加剤(レベラ)の第2前処理液中濃度の影響についても検討した。添加剤の第2前処理液中濃度として、0.1,1及び10μMを選択した。チップの第2前処理液中への浸漬時間は30秒である。その他の条件は、表3のように統一した。結果を図8に示す。図8から、添加剤の液中濃度0.1μMの第2前処理液中にチップを30秒浸漬させただけでは、チップのフィールド部表面及びビアホールの入口付近表面の促進剤の不活性化は不十分で、ビアホールの入口が閉塞して銅の内部にボイドが形成されてしまうことが判る。ビアホール内のめっき進展結果から、添加剤の第2前処理液中濃度は1μMが適していると思われる。添加剤の液中濃度10μMの第2前処理液中にチップを30秒浸漬させると、促進剤の効果が全くなくなり、均一のめっき進展となる。
C. The concentration of the additive (leveler) in the second pretreatment liquid in the second pretreatment The influence of the concentration of the additive (leveler) in the second pretreatment liquid in the second pretreatment was also examined. As the concentration of the additive in the second pretreatment liquid, 0.1, 1, and 10 μM were selected. The immersion time of the chip in the second pretreatment liquid is 30 seconds. Other conditions were unified as shown in Table 3. The results are shown in FIG. From FIG. 8, the inactivation of the accelerator on the surface of the field part of the chip and the surface near the entrance of the via hole is only caused by immersing the chip for 30 seconds in the second pretreatment liquid having a concentration of 0.1 μM in the additive liquid. It can be seen that it is insufficient and the entrance of the via hole is closed and voids are formed inside the copper. From the result of plating progress in the via hole, it is considered that 1 μM is suitable as the concentration of the additive in the second pretreatment liquid. When the chip is immersed in the second pretreatment liquid having a concentration of 10 μM in the additive solution for 30 seconds, the effect of the accelerator is completely eliminated and uniform plating progresses.

Figure 0005780496
Figure 0005780496

D.第2前処理における浸漬時間
第2前処理における第2処理液中へのチップ浸漬時間の影響についても検討した。添加剤の第2前処理液中濃度条件として、1μMを選択した。チップの浸漬時間を5,30及び60秒とした。その他の条件は、表4のように統一した。結果を図9に示す。図9から、第2処理液中へチップを5秒間浸漬させた時が最も高い埋込み性が得られることが判る。これは、ビアホールの側壁部において、第2処理液中にチップを30秒間浸漬させた時よりも、促進剤の不活性化がビアホール上部に限定されたためであると考えられる。
添加剤の液中濃度及びチップの浸漬時間の検討から、第2前処理では、添加剤(レベラ)の消費及び拡散が重要な要素であることが判る。
D. The immersion time in the second pretreatment The influence of the chip immersion time in the second treatment liquid in the second pretreatment was also examined. 1 μM was selected as the concentration condition of the additive in the second pretreatment solution. The chip immersion time was 5, 30 and 60 seconds. Other conditions were unified as shown in Table 4. The results are shown in FIG. FIG. 9 shows that the highest embeddability can be obtained when the chip is immersed in the second treatment solution for 5 seconds. This is considered to be because the inactivation of the accelerator is limited to the upper part of the via hole, compared with the case where the chip is immersed in the second processing solution for 30 seconds at the side wall of the via hole.
From the examination of the concentration of the additive in the liquid and the immersion time of the chip, it is understood that the consumption and diffusion of the additive (leveler) are important factors in the second pretreatment.

Figure 0005780496
Figure 0005780496

E.電解めっきにおけるめっき過電圧
電解めっきにおいては、めっき時における電位の影響について検討した。第1及び第2前処理で、チップのフィールド部表面及びビアホールの入口付近表面に吸着した促進剤が不活性化されていることから、めっき電流を更に上げることも可能と考えられる。そのために、電位を−550,−575及び−600mVの3条件で電解めっきを行った。その他の条件は、表5のように統一した。結果を図10に示す。−600mVと電位を大きく負側にふって電解めっきを行っても、めっき金属(銅)の内部にボイドが発生せず、20μmのビアホールは、めっき時間30分で埋込みが完了した。電位を変更することで懸念されたチップのフィールド部表面におけるめっき金属の析出による埋込みへの影響は観察されなかった。
E. In plating overvoltage electrolytic plating in electroplating, the influence of potential during plating was examined. In the first and second pretreatments, the promoter adsorbed on the surface of the field portion of the chip and the surface near the entrance of the via hole is inactivated, so it is considered possible to further increase the plating current. Therefore, electrolytic plating was performed under three conditions of potentials of −550, −575, and −600 mV. Other conditions were unified as shown in Table 5. The results are shown in FIG. Even when electroplating was performed with a negative potential of −600 mV, no void was generated in the plated metal (copper), and the 20 μm via hole was completely filled in 30 minutes of plating time. The influence on the embedding due to the deposition of the plated metal on the surface of the field portion of the chip, which was concerned by changing the potential, was not observed.

Figure 0005780496
Figure 0005780496

なお、参考例として、高濃度塩素イオン液中での逆電解による促進剤脱離について検証した。   As a reference example, the promoter desorption by reverse electrolysis in a high concentration chlorine ion solution was verified.

F.高濃度塩素イオン処理液中での逆電解による促進剤脱離(参考例)
この参考例において、前述と同様な基本浴を使用した。先ず、促進剤の濃度が100μMの処理液中に前述の同様なチップを浸漬させ、100A/mの電流密度で前述と同様な予備電解処理(第1前処理)を300秒行った。次に、チップの表面に吸着した促進剤を該表面から脱離させるために、高濃度に塩素イオンを含有する処理液中にチップを浸漬させて逆電解をかけ、しかる後、チップの表面に電解銅めっきを行った。この時の詳細な条件を表6に示し、埋込み結果を図11に示す。
F. Accelerator desorption by reverse electrolysis in high concentration chlorine ion treatment solution (reference example)
In this reference example, the same basic bath as described above was used. First, the same chip as described above was immersed in a processing solution having a promoter concentration of 100 μM, and a pre-electrolytic treatment (first pretreatment) similar to the above was performed for 300 seconds at a current density of 100 A / m 2 . Next, in order to desorb the accelerator adsorbed on the surface of the chip, the chip is immersed in a treatment solution containing chlorine ions at a high concentration and subjected to reverse electrolysis. Electrolytic copper plating was performed. The detailed conditions at this time are shown in Table 6, and the embedding results are shown in FIG.

Figure 0005780496
Figure 0005780496

図11から、3000秒間の電解めっきを行ってビアホールの内部に金属めっき(銅)を埋込むと、20μm径のビアホール内に埋込まれためっき金属(銅)の中央付近にボイドが発生し、このことから、高濃度に塩素イオンを含有する処理液にチップを浸漬させながら逆電解をかけチップの表面の促進剤を脱離させる方法では、少なくとも主たる銅めっきにおけるめっき時間は3000秒よりも短縮することはできないことが判る。また、逆電解をかけることなく、高濃度に塩素イオンを含有する処理液中にチップを浸漬させる方法では、逆電解をかける方法に比べて促進剤の脱離特性が劣ることから、これ以上の向上が見込めないと予測できる。これは、高濃度に塩素イオンを含有する処理液にチップを浸漬させて促進剤を脱離させる方法では、促進剤の脱離効果が不十分となって、チップのフィールド部表面やビアホールの入口付近表面における十分なめっき金属の析出抑制を達成できないためと考えられる。   From FIG. 11, when electrolytic plating is performed for 3000 seconds and metal plating (copper) is embedded in the via hole, a void is generated near the center of the plating metal (copper) embedded in the via hole having a diameter of 20 μm. For this reason, at least the plating time in the main copper plating is shorter than 3000 seconds in the method of detaching the promoter on the surface of the chip by reverse electrolysis while immersing the chip in a treatment solution containing chlorine ions at a high concentration. You can't do that. In addition, the method of immersing the chip in a treatment solution containing chlorine ions at a high concentration without applying reverse electrolysis is inferior to the method of applying reverse electrolysis, because the desorption characteristics of the accelerator are inferior. It can be predicted that there will be no improvement. This is because in the method of detaching the accelerator by immersing the chip in a treatment solution containing chlorine ions at a high concentration, the detachment effect of the accelerator becomes insufficient, and the surface of the field portion of the chip or the entrance of the via hole It is considered that sufficient suppression of plating metal deposition on the nearby surface cannot be achieved.

以上の検証から、SPS等の促進剤、金属イオン及び酸を含む第1前処理液に基板を浸漬させて第1前処理を行い、第1前処理液に含まれる促進剤の効果を阻害する、PEI等の添加剤(レベラ)を含む第2前処理液に基板を浸漬させて第2前処理を行い、しかる後、基板の表面に、少なくとも金属イオン、酸及び抑制剤を含み、促進剤を含まないめっき液を使用した電解めっきを行うことで、配線用凹部内にめっき金属を高速で埋込むことができることが判る。すなわち、PEIは、添加剤(レベラ)として高いSPS不活性化作用を持ち、PEIを含む硫酸水溶液中へ基板を浸漬させることにより、基板の表面に吸着させたSPSを不活性化させることができる。   From the above verification, the substrate is immersed in the first pretreatment liquid containing an accelerator such as SPS, metal ions, and acid to perform the first pretreatment, and the effect of the accelerator contained in the first pretreatment liquid is inhibited. Then, the substrate is immersed in a second pretreatment liquid containing an additive (leveler) such as PEI to perform the second pretreatment, and then the surface of the substrate contains at least a metal ion, an acid and an inhibitor, and an accelerator. It can be seen that by performing electrolytic plating using a plating solution that does not contain copper, the plating metal can be embedded in the wiring recess at a high speed. That is, PEI has a high SPS inactivating action as an additive (leveler), and the SPS adsorbed on the surface of the substrate can be inactivated by immersing the substrate in a sulfuric acid aqueous solution containing PEI. .

本発明によれば、PEI等の添加剤(レベラ)を含む第2前処理液に基板を浸漬させて第2前処理を行うことで、ビアホール等の配線用凹部の表面を除く基板のフィールド部表面に吸着されたSPS等の促進剤を選択的に不活性化させて、配線用凹部の底部からの選択的なめっき進展が実現でき、これによって、例えば径20μm、深さ60μmのビアホールに対しては、めっき時間30分、前工程の時間を入れてもトータル40分弱の時間でボイドフリーの埋込みが実現できる。   According to the present invention, the field portion of the substrate excluding the surface of the concave portion for wiring such as a via hole is obtained by immersing the substrate in a second pretreatment liquid containing an additive (leveler) such as PEI and performing the second pretreatment. By selectively deactivating accelerators such as SPS adsorbed on the surface, it is possible to realize selective plating progress from the bottom of the recess for wiring, thereby enabling, for example, a via hole having a diameter of 20 μm and a depth of 60 μm. As a result, void-free embedding can be realized in a total time of less than 40 minutes even if the plating time is 30 minutes and the time of the previous process is included.

前述の検証によって、第1前処理におけるSPS等の促進剤の吸着量と、第2前処理における促進剤の不活性化効果の制御により、促進剤の不活性化効果を効果的に発揮しうる深度を制御できる可能性が示されている。これは、埋込み対象のトレンチやビアホール等の配線用凹部の深さが変わっても、めっき前処理の条件により、ボイドフリーの高速埋込みめっきの可能性を示している。すなわち、配線用凹部のアスペクト比に応じて、第2前処理で使用する第2前処理液中の添加剤(レベラ)濃度及び基板の浸漬時間を変化させることで対応可能である。また、この時の液攪拌の条件は、配線用凹部の促進剤を不活化させる深さに影響を与える。   By the above verification, the inactivation effect of the accelerator can be effectively exhibited by controlling the adsorption amount of the accelerator such as SPS in the first pretreatment and the inactivation effect of the accelerator in the second pretreatment. The possibility of controlling the depth is shown. This indicates the possibility of void-free high-speed embedding plating depending on the conditions of the pretreatment for plating even if the depth of the recesses for wiring such as trenches and via holes to be embedded is changed. That is, this can be dealt with by changing the concentration of the additive (leveler) in the second pretreatment liquid used in the second pretreatment and the immersion time of the substrate in accordance with the aspect ratio of the wiring recess. In addition, the liquid stirring condition at this time affects the depth at which the accelerator for the wiring recess is inactivated.

一般に、攪拌などにより基板表面の処理液に流れが生じる場合、基板の表面近傍に形成される拡散層の厚さは処理液の流速に反比例するといわれている。基板表面に形成される処理液の流速を制御する方法の一つとして、回転円板を用いる方法がある。この場合、回転円板の回転速度の大きさは、回転円板表面に形成される処理液の流速に比例する。この回転円板の表面に生じる拡散層厚さについては、V.G.Levichにより円板の回転数ωと拡散層厚さδとの関係が解析的に求められている(”Physicochemical Hydrodynamics”, Prentice-Hall, Englewood Cliffs, N.J.(1962))。そこから両者の関係は下記の式となる。   Generally, when a flow occurs in the processing liquid on the substrate surface by stirring or the like, it is said that the thickness of the diffusion layer formed near the surface of the substrate is inversely proportional to the flow rate of the processing liquid. One method for controlling the flow rate of the processing liquid formed on the substrate surface is to use a rotating disk. In this case, the rotation speed of the rotating disk is proportional to the flow rate of the processing liquid formed on the surface of the rotating disk. As for the diffusion layer thickness generated on the surface of this rotating disk, the relationship between the disk rotation speed ω and the diffusion layer thickness δ is analytically determined by VGLevich (“Physicochemical Hydrodynamics”, Prentice-Hall , Englewood Cliffs, NJ (1962)). From there, the relationship between the two is as follows.

Figure 0005780496
ここで、Dは拡散係数、νは動粘度である。
Figure 0005780496
Here, D is a diffusion coefficient, and ν is a kinematic viscosity.

図12は、この式を用いて、銅めっき液である硫酸銅−硫酸水溶液(硫酸銅めっき液)における回転円板の回転速度と基板表面に形成される拡散層厚さの関係を導出してグラフ化したものである。   FIG. 12 uses this equation to derive the relationship between the rotational speed of the rotating disk in the copper sulfate-sulfuric acid aqueous solution (copper sulfate plating solution) that is the copper plating solution and the thickness of the diffusion layer formed on the substrate surface. It is a graph.

例えば、トレンチやビアホール等の配線用凹部の幅または径が小さく、配線用凹部の内部に処理液の流れが生じない場合には、処理液の流速に依存して基板表面に形成される拡散層の厚さが、液沖合から基板表面へ物質が到達するまでの到達時間を決めることとなる。この拡散層内では、拡散が物質移動の主となる。拡散については、簡単には、一次元モデルを例として考えると、拡散層上面から拡散する化学種の時間による濃度変化は、拡散方程式を解くと、図13に示すように求められる。ここでの拡散係数は、硫酸銅めっき液中の銅イオンの拡散係数を用いている。   For example, when the width or diameter of a wiring recess such as a trench or via hole is small and no flow of processing liquid occurs inside the wiring recess, a diffusion layer formed on the substrate surface depending on the flow rate of the processing liquid The thickness of the film determines the time required for the substance to reach the substrate surface from offshore. In this diffusion layer, diffusion is the main mass transfer. Concerning diffusion, simply taking a one-dimensional model as an example, the concentration variation with time of chemical species diffusing from the upper surface of the diffusion layer can be obtained as shown in FIG. 13 by solving the diffusion equation. The diffusion coefficient here uses the diffusion coefficient of copper ions in the copper sulfate plating solution.

図13から、拡散層の上面からの距離が大きくなるほど、化学種が到達するまでの時間が遅くなることが判る。また、図12から、拡散層の厚さは処理液の流速に依存することが明らかである。これらのことから、第1前処理では、ビアホールやトレンチ等の配線用凹部の底部に多くの促進剤を吸着させるため、多くの化学種(ここでは促進剤)が配線用凹部の底部へ供給されるように、第1前処理液の攪拌強度を強くする。それに対し、第2前処理では、化学種(ここでは添加剤(レベラ))を、基板のフィールド部表面及び配線用凹部の入口付近表面のみに到達させるため、第2前処理液の攪拌をゆっくり行う。   From FIG. 13, it can be seen that the longer the distance from the upper surface of the diffusion layer, the longer the time until the chemical species reach. From FIG. 12, it is clear that the thickness of the diffusion layer depends on the flow rate of the treatment liquid. For these reasons, in the first pretreatment, many promoters (here, accelerators) are supplied to the bottoms of the wiring recesses in order to adsorb many promoters on the bottoms of the wiring recesses such as via holes and trenches. As described above, the stirring strength of the first pretreatment liquid is increased. On the other hand, in the second pretreatment, the chemical species (here, additive (leveler)) is allowed to reach only the surface of the field portion of the substrate and the surface near the entrance of the concave portion for wiring. Do.

一方、トレンチやビアホール等の配線用凹部の幅または径が大きく、配線用凹部の内部にも液攪拌による処理液の流が生じる場合には、処理液の流れが配線用凹部の深さ方向への物質の到達距離に影響を及ぼす。   On the other hand, if the width or diameter of the recess for wiring such as a trench or a via hole is large, and the flow of the processing liquid by liquid agitation occurs inside the recess for wiring, the flow of the processing liquid moves in the depth direction of the recess for wiring. Affects the reach of other substances.

例えば、処理液の攪拌により処理液が配線用凹部の内部まで浸入すると思われる3種類の径(10,30及び50μm)のビアホールについて考える。ビアホール深さは70μm一定とし、処理液の攪拌方法をパドル攪拌とし、パドル移動速度が0.3m/sec及び1.3m/secとなる場合のビアホール内部及びビアホールの入口近傍における処理液の流れの状態を求めるために数値解析を行った。この解析結果から、攪拌強度及びビアホール径により、処理液の流れがビアホール内に浸入する状況を評価した。図14は、浸入深さの定義として、流速が1mm/secの処理液の流れが到達した深さとしてプロットした時のグラフを示す。   For example, let us consider three types of via holes (10, 30 and 50 μm) that are thought to cause the processing liquid to penetrate into the wiring recesses by stirring the processing liquid. The depth of the via hole is constant at 70 μm, the treatment liquid is stirred in the paddle, and the flow of the treatment liquid in the via hole and in the vicinity of the via hole entrance when the paddle moving speed is 0.3 m / sec and 1.3 m / sec. Numerical analysis was performed to determine the state. From this analysis result, the state in which the flow of the processing liquid entered the via hole was evaluated based on the stirring strength and the via hole diameter. FIG. 14 shows a graph when the penetration depth is plotted as the depth reached by the flow of the treatment liquid having a flow velocity of 1 mm / sec.

図14から、同じ移動速度でパドルを移動させて処理液を攪拌しても、ビアホール径が大きくなるにつれ、処理液の流れの浸入深さが深くなっていることが判る。第2前処理工程において、ビアホール径10μmにおいて1.3m/secの移動速度で攪拌パドルを移動させた状態と同じ流れの浸入深さを、50μmのビアホール径に対して得ようとする場合、攪拌パドルの移動速度を0.3m/secにする必要がある。つまり、ビアホールの径が大きくなった場合、処理液の攪拌の程度を弱くすることで、ビアホールの深さ方向の流速分布をビアホール径の小さい場合に近い状態にすることができる。これにより、第2前処理時に、攪拌パドルの攪拌強度(移動速度)を制御することで、配線用凹部の径や幅が異なる場合でも、配線用凹部の深さ方向への添加剤(レベラ)の作用を同様にすることが可能となる。   FIG. 14 shows that even when the processing liquid is stirred by moving the paddle at the same moving speed, the penetration depth of the flow of the processing liquid becomes deeper as the via hole diameter increases. In the second pretreatment step, when the penetration depth of the same flow as the state in which the stirring paddle is moved at a moving speed of 1.3 m / sec at a via hole diameter of 10 μm is to be obtained with respect to the via hole diameter of 50 μm, stirring is performed. The moving speed of the paddle needs to be 0.3 m / sec. That is, when the diameter of the via hole is increased, the flow rate distribution in the depth direction of the via hole can be made close to that when the diameter of the via hole is small by reducing the degree of stirring of the processing liquid. Thereby, during the second pretreatment, by controlling the stirring strength (movement speed) of the stirring paddle, even when the diameter and width of the wiring recess are different, the additive (leveler) in the depth direction of the wiring recess It is possible to make the same action.

上記のように、第2前処理においては、第2前処理液の攪拌により内部に処理液の流れが生じない狭い配線用凹部や、第2前処理液の攪拌により内部に処理液の流れが生ずる広い配線用凹部に対しても、第2前処理液の攪拌強度を制御することで、添加剤(レベラ)の配線用凹部の内部へ影響を及ぼす距離を制御することができる。これにより、いずれのサイズの配線用凹部においても、基板のフィールド部表面及び配線用凹部の入口付近表面の促進剤の効果を抑制し、配線用凹部の内部、特に底部においては促進剤の効果を維持させてボトムアップ成長を実現することができる。   As described above, in the second pretreatment, a narrow wiring recess where the flow of the treatment liquid does not occur due to the stirring of the second pretreatment liquid, or the flow of the treatment liquid inside due to the stirring of the second pretreatment liquid. Even for the wide wiring recess that occurs, the distance of the additive (leveler) that affects the inside of the wiring recess can be controlled by controlling the stirring strength of the second pretreatment liquid. This suppresses the effect of the promoter on the surface of the substrate field portion and the surface near the entrance of the wiring recess in any size of the wiring recess, and the effect of the accelerator in the interior of the wiring recess, particularly in the bottom. It can be maintained to achieve bottom-up growth.

配線用凹部の入口付近表面おける促進剤の効果を抑制する基板のフィールド部表面からの深さ(範囲)は、基板のフィールド部表面から配線用凹部の底部までの深さの1/2〜1/3程度であることが好ましい。促進剤の効果を抑制する添加剤(レベラ)は、基板表面に形成される拡散層の上面から拡散によって配線用凹部の底部に向けて輸送される。このため、促進剤の抑制効果は、拡散層の最近の表面からの距離に比例することになる。   The depth (range) from the surface of the field portion of the substrate that suppresses the effect of the accelerator on the surface near the entrance of the wiring recess is 1/2 to 1 from the depth of the field portion of the substrate to the bottom of the wiring recess. / 3 is preferable. The additive (leveler) that suppresses the effect of the accelerator is transported from the upper surface of the diffusion layer formed on the substrate surface toward the bottom of the wiring recess by diffusion. For this reason, the inhibitory effect of the accelerator is proportional to the distance from the recent surface of the diffusion layer.

電解めっきにおいては、配線用凹部の底部に金属イオンを速やかに供給する必要がある。このことから、めっき液の攪拌は十分強いことが必要である。そのために、電解めっきでは第2前処理時と同等か、より強い攪拌強度でめっき液を攪拌する必要がある。   In electrolytic plating, it is necessary to quickly supply metal ions to the bottom of the wiring recess. For this reason, it is necessary that the plating solution is sufficiently stirred. Therefore, in the electroplating, it is necessary to stir the plating solution with the same or stronger stirring strength as in the second pretreatment.

前述の例では、促進剤としてSPSを使用しているが、他の促進剤、例えば、SPSの異性体、ビス(3−スルホ−2−ヒドロキシプロピル)ジスルフィド及びそのナトリウム塩、3−(ベンゾチアゾリル−2−チオ)プロピルスルホン酸及びそのナトリウム塩、N,N−ジメチルジチオカルバミン酸(3−スルホプロピルエステル)及びそのナトリウム塩、O−エチル−ジエチルカーボネート−S−(3−スルホプロピル)−エステルまたはそのカリウム塩、チオ尿素及びその誘導体などの硫黄系化合物を用いても良い。   In the above example, SPS is used as a promoter, but other promoters such as isomers of SPS, bis (3-sulfo-2-hydroxypropyl) disulfide and its sodium salt, 3- (benzothiazolyl- 2-thio) propylsulfonic acid and its sodium salt, N, N-dimethyldithiocarbamic acid (3-sulfopropyl ester) and its sodium salt, O-ethyl-diethyl carbonate-S- (3-sulfopropyl) -ester or its Sulfur compounds such as potassium salts, thiourea and derivatives thereof may be used.

添加剤(レベラ)として、PEIを用いたが、促進剤の効果を阻害する含窒素高分子化合物、例えば、ポリビニルピロリドンなどカチオン性を有する高分子及びその誘導体や、レベラとして用いられているヤヌスグリーンB、アミド系化合物、チオアミド系化合物、アニリン又はピリジン環を有する化合物、各種複素単環式化合物、各種縮合複素環式化合物、アミノカルボン酸類等を用いても良い。   PEI was used as an additive (leveler), but a nitrogen-containing polymer compound that inhibits the effect of the accelerator, for example, a cationic polymer such as polyvinylpyrrolidone and its derivatives, and Janus Green used as a leveler B, amide compounds, thioamide compounds, compounds having an aniline or pyridine ring, various heteromonocyclic compounds, various condensed heterocyclic compounds, aminocarboxylic acids, and the like may be used.

めっき処理で使用する抑制剤としてポリエチレングリコールを用いたが、抑制剤としては、例えば、ポリプロピレングリコール、エチレングリコールとプロピレングリコールとの共重合体、及びそれらの誘導体ポリビニルアルコール、カルボキシメチルセルロース等を用いても良い。   Polyethylene glycol was used as the inhibitor used in the plating treatment, but as the inhibitor, for example, polypropylene glycol, a copolymer of ethylene glycol and propylene glycol, and derivatives thereof such as polyvinyl alcohol and carboxymethyl cellulose may be used. good.

上記では、径20μm、深さ60μmのビアホールを対象として検討したが、径が同じ20μmで深さがより深くなったビアホールに対しては、第2前処理に使用される第2前処理液中の添加剤(レベラ)濃度を濃くしたり、基板の浸漬時間を延ばしたりすることで、ボイド不良のない埋込みが可能である。また、第2前処理における基板の浸漬時間は、例えば5秒と非常に短く、適切な基板の浸漬時間が装置上で再現できる可能性が低くなる。そのため、適切な基板の浸漬時間をより長くしたい場合は、第2前処理液中の添加剤(レベラ)濃度を低くすることで、同じ径、同じ深さのビアホールにおいても、適切な基板の浸漬時間をより長くすることができる。   In the above description, a via hole having a diameter of 20 μm and a depth of 60 μm was studied. However, for a via hole having the same diameter of 20 μm and a deeper depth, the second pretreatment liquid used for the second pretreatment is used. By increasing the concentration of the additive (leveler) or extending the immersion time of the substrate, embedding without void defects is possible. Further, the immersion time of the substrate in the second pretreatment is very short, for example, 5 seconds, and the possibility that the appropriate immersion time of the substrate can be reproduced on the apparatus is reduced. Therefore, if you want to make the appropriate substrate immersion time longer, reduce the additive (leveler) concentration in the second pretreatment liquid, so that the appropriate substrate immersion is possible even in via holes of the same diameter and depth. The time can be made longer.

また、数種類の径及び深さのビアホールあるいは幅及び深さの異なるトレンチを有する基板に対して、埋込み試験を行うことで、第2前処理における、適切な第2前処理液中の添加剤(レベラ)濃度及び基板の浸漬時間を把握することができる。これらの結果と拡散解析結果を比較することで、様々な幅あるいは径及び深さのトレンチあるいはビアホールを有する基板に対する適切な第2前処理液中の添加剤(レベラ)濃度及び基板の浸漬時間を予測することもできる。これら実験結果及び解析結果をデータベースとし、めっき装置において、第2前処理の基板の浸漬時間及び第2前処理液中の添加剤(レベラ)濃度を自動的に制御できるようなめっき装置も供給できる。   In addition, by performing an embedding test on a substrate having via holes of several kinds of diameters and depths or trenches having different widths and depths, an additive (2) in an appropriate second pretreatment liquid in the second pretreatment ( Leveler) The concentration and the immersion time of the substrate can be grasped. By comparing these results with the results of diffusion analysis, it is possible to determine the appropriate additive (leveler) concentration and substrate immersion time in the second pretreatment liquid for substrates having trenches or via holes of various widths, diameters and depths. It can also be predicted. Using these experimental results and analysis results as a database, a plating apparatus capable of automatically controlling the immersion time of the second pretreatment substrate and the additive (leveler) concentration in the second pretreatment liquid can be supplied in the plating apparatus. .

これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことはいうまでもない。   Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.

10 シード層
12 配線用凹部
14 金属めっき膜(銅)
20 めっき装置
24 第1前処理ユニット
26 第2前処理ユニット
28 めっきユニット
30a,30b,30c 洗浄ユニット
32 洗浄乾燥ユニット
34 基板仮置台
36,38 基板搬送装置
40 制御部
42 第1前処理液
44 処理槽
46 基板ホルダ
50 アノード
54 攪拌翼(攪拌装置)
60 第2前処理液
62 処理槽
64 基板ホルダ
68 攪拌翼(攪拌装置)
70 めっき液
72 めっき槽
74 基板ホルダ
78 アノード
82 攪拌翼(攪拌装置)
90 促進剤(SPS)
92 添加剤(PEI)
10 Seed layer 12 Recess for wiring 14 Metal plating film (copper)
DESCRIPTION OF SYMBOLS 20 Plating apparatus 24 1st pre-processing unit 26 2nd pre-processing unit 28 Plating unit 30a, 30b, 30c Cleaning unit 32 Cleaning-drying unit 34 Substrate temporary placement table 36, 38 Substrate conveyance device 40 Control part 42 1st pre-processing liquid 44 Processing Tank 46 Substrate holder 50 Anode 54 Stirring blade (stirring device)
60 Second pretreatment liquid 62 Treatment tank 64 Substrate holder 68 Stirring blade (stirring device)
70 Plating solution 72 Plating tank 74 Substrate holder 78 Anode 82 Stirring blade (stirring device)
90 Accelerator (SPS)
92 Additive (PEI)

Claims (14)

表面に配線用凹部を有する基板を用意し、
促進剤、金属イオン及び酸を含む第1前処理液に基板を浸漬させて第1前処理を行い、
前記第1前処理液に含まれる促進剤の効果を阻害するレベラを含み且つ促進剤を含まない第2前処理液に基板を浸漬させながら前記第2前処理液を攪拌し、前記基板の浸漬時間と前記第2前処理液の攪拌強度を制御することによって、前記基板のフィールド部表面から前記配線用凹部の底部までの深さの1/2から1/3の促進剤の効果を抑制する第2前処理を行い、しかる後、
基板の表面に、少なくとも金属イオン、酸及び抑制剤を含み、促進剤を含まないめっき液を使用した電解めっきを行って、前記配線用凹部内にめっき金属を埋込むことを特徴とするめっき方法。
Prepare a substrate with wiring recesses on the surface,
First immersion is performed by immersing the substrate in a first pretreatment liquid containing an accelerator, metal ions and an acid,
Stirring the second pretreatment liquid while immersing the substrate in a second pretreatment liquid containing a leveler that inhibits the effect of the accelerator contained in the first pretreatment liquid and not containing the accelerator, and immersing the substrate By controlling the time and the stirring strength of the second pretreatment liquid, the effect of the accelerator that is 1/2 to 1/3 of the depth from the field portion surface of the substrate to the bottom of the wiring recess is suppressed. Perform the second pretreatment, and then
A plating method comprising embedding a plating metal in the wiring recess by performing electrolytic plating using a plating solution containing at least metal ions, an acid and an inhibitor and not containing an accelerator on the surface of the substrate. .
前記レベラは、エチレンイミン重合体またはその誘導体であることを特徴とする請求項記載のめっき方法。 The leveler plating method of claim 1, wherein the ethyleneimine polymer or a derivative thereof. 前記第1前処理は、基板を前記第1前処理液に浸漬させつつ、基板の表面に電解処理を行う予備的電解処理であることを特徴とする請求項1記載のめっき方法。   The plating method according to claim 1, wherein the first pretreatment is a preliminary electrolytic treatment in which the surface of the substrate is subjected to an electrolytic treatment while the substrate is immersed in the first pretreatment liquid. 前記予備的電解処理における電流密度は、50A/m〜250A/mであることを特徴とする請求項記載のめっき方法。 The plating method according to claim 3, wherein a current density in the preliminary electrolytic treatment is 50 A / m 2 to 250 A / m 2 . 前記第1前処理液に含まれる促進剤として、硫黄系化合物を用いることを特徴とする請求項1乃至のいずれか一項に記載のめっき方法。 The plating method according to any one of claims 1 to 4 , wherein a sulfur-based compound is used as an accelerator contained in the first pretreatment liquid. 前記第1前処理液に含まれる促進剤の濃度は、5μM/L〜500μM/Lであることを特徴とする請求項記載のめっき方法。 The plating method according to claim 5, wherein the concentration of the accelerator contained in the first pretreatment liquid is 5 μM / L to 500 μM / L. 前記第1前処理及び前記電解めっきの少なくとも一つの処理を、処理液を攪拌しつつ行うことを特徴とする請求項1乃至のいずれか一項に記載のめっき方法。 Wherein the first at least one treatment of pretreatment Ri及 beauty the electrolytic plating, plating method according to any one of claims 1 to 6, characterized in that the processing solution with stirring. 記第2前処理液の攪拌と同等か、或いは前記第2前処理液の攪拌より強い攪拌強度でめっき液を攪拌しつつ前記電解めっきを行うことを特徴とする請求項1乃至のいずれか一項に記載のめっき方法。 拌and equal to or before Symbol second pretreatment solution, or of claims 1 to 6, characterized in that the electrolytic plating while stirring the plating solution with strong stirring strength than stirring the second pre-treatment liquid The plating method according to any one of the above. 前記第1前処理後に基板表面を希硫酸で洗浄し、前記第2前処理後に基板表面を希硫酸で洗浄することを特徴とする請求項1乃至のいずれかに記載のめっき方法。 Wherein after the first pre-processing the surface of the substrate was washed with dilute sulfuric acid, the plating method according to any one of claims 1 to 8, characterized in that to clean the substrate surface with a dilute sulfuric acid after the second pre-processing. 表面に配線用凹部を有する基板の該表面にめっきを行うめっき装置であって、
促進剤、金属イオン及び酸を含む第1前処理液中に基板を浸漬させて第1前処理を行う第1前処理ユニットと、
前記第1前処理液に含まれる促進剤の効果を阻害するレベラを含み且つ促進剤を含まない第2前処理液に基板を浸漬させながら前記第2前処理液を攪拌し、前記基板の浸漬時間と前記第2前処理液の攪拌強度を制御することによって、前記基板のフィールド部表面から前記配線用凹部の底部までの深さの1/2から1/3の促進剤の効果を抑制する第2前処理を行う第2前処理ユニットと、
前記第2前処理後の基板の表面に、少なくとも金属イオン、酸及び抑制剤を含み、促進剤を含まないめっき液を使用した電解めっきを行って、前記配線用凹部内にめっき金属を埋込むめっきユニットを有することを特徴とするめっき装置。
A plating apparatus for plating the surface of a substrate having a wiring recess on the surface,
A first pretreatment unit that performs a first pretreatment by immersing a substrate in a first pretreatment liquid containing an accelerator, metal ions, and an acid;
Stirring the second pretreatment liquid while immersing the substrate in a second pretreatment liquid containing a leveler that inhibits the effect of the accelerator contained in the first pretreatment liquid and not containing the accelerator, and immersing the substrate By controlling the time and the stirring strength of the second pretreatment liquid, the effect of the accelerator that is 1/2 to 1/3 of the depth from the field portion surface of the substrate to the bottom of the wiring recess is suppressed. A second pretreatment unit for performing a second pretreatment;
On the surface of the substrate after the second pretreatment, electrolytic plating using a plating solution containing at least metal ions, an acid and an inhibitor and not an accelerator is performed, and the plating metal is embedded in the wiring recess. A plating apparatus comprising a plating unit.
前記第1前処理ユニットは、前記第1前処理液中に基板を浸漬させつつ、該基板の表面に電解処理を行うように構成されていることを特徴とする請求項10記載のめっき装置。 The plating apparatus according to claim 10 , wherein the first pretreatment unit is configured to perform electrolytic treatment on a surface of the substrate while the substrate is immersed in the first pretreatment liquid. 前記第1前処理ユニットで第1前処理を行った基板表面を希硫酸で洗浄する第1洗浄ユニットと、前記第2前処理ユニットで第2前処理を行った基板表面を希硫酸で洗浄する第2洗浄ユニットとを更に有することを特徴とする請求項10または11記載のめっき装置。 A first cleaning unit that cleans the substrate surface that has been subjected to the first pretreatment in the first pretreatment unit with dilute sulfuric acid, and a substrate surface that has undergone the second pretreatment in the second pretreatment unit is cleaned with dilute sulfuric acid. plating apparatus according to claim 10 or 11, wherein further comprising a second cleaning unit. 前記第2前処理ユニットには、内部の第2前処理液を攪拌する攪拌装置が備えられ、前記第1前処理ユニット及び前記めっきユニットの少なくとも一つの処理ユニットには、内部の処理液を攪拌する攪拌装置が備えられ、前記攪拌装置の攪拌速度、前記第1前処理ユニットでの第1前処理時間、前記第2前処理ユニットでの第2前処理時間及び前記めっきユニットでのめっき時間を制御する制御部を有することを特徴とする請求項10乃至12のいずれか一項に記載のめっき装置。 Wherein the second pre-processing unit, provided with a stirring device for stirring the second pre-treatment liquid inside, at least one of the processing units of the first pre-processing unit及 beauty the plating unit, the internal processing liquid A stirring device for stirring, a stirring speed of the stirring device, a first pretreatment time in the first pretreatment unit, a second pretreatment time in the second pretreatment unit, and plating in the plating unit It has a control part which controls time, The plating apparatus as described in any one of Claims 10 thru | or 12 characterized by the above-mentioned. 記制御部は、前記配線用凹部の幅または直径、及び深さに基づき、前記第2前処理における基板の浸漬時間及び第2前処理液の攪拌強度を決定することを特徴とする請求項13記載のめっき装置。 Prior Symbol controller, claims wherein the width or diameter of the interconnect recesses, and based on the depth, and determines the intensity of stirring of the immersion time and the second pretreatment solution of the substrate in the second pre-processing 13. The plating apparatus according to 13 .
JP2011015222A 2010-01-27 2011-01-27 Plating method and plating apparatus Active JP5780496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011015222A JP5780496B2 (en) 2010-01-27 2011-01-27 Plating method and plating apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010015139 2010-01-27
JP2010015139 2010-01-27
JP2011015222A JP5780496B2 (en) 2010-01-27 2011-01-27 Plating method and plating apparatus

Publications (2)

Publication Number Publication Date
JP2011174177A JP2011174177A (en) 2011-09-08
JP5780496B2 true JP5780496B2 (en) 2015-09-16

Family

ID=44308137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011015222A Active JP5780496B2 (en) 2010-01-27 2011-01-27 Plating method and plating apparatus

Country Status (3)

Country Link
US (1) US20110180412A1 (en)
JP (1) JP5780496B2 (en)
TW (1) TWI487815B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9598787B2 (en) * 2013-03-14 2017-03-21 Rohm And Haas Electronic Materials Llc Method of filling through-holes
US20140299476A1 (en) * 2013-04-09 2014-10-09 Ebara Corporation Electroplating method
US10512174B2 (en) 2016-02-15 2019-12-17 Rohm And Haas Electronic Materials Llc Method of filling through-holes to reduce voids and other defects
US10508357B2 (en) 2016-02-15 2019-12-17 Rohm And Haas Electronic Materials Llc Method of filling through-holes to reduce voids and other defects
TWI697265B (en) * 2018-08-09 2020-06-21 元智大學 High-speed electroplating method
CN110838436A (en) * 2019-11-06 2020-02-25 上海新阳半导体材料股份有限公司 Wet processing technology and application
TWI758044B (en) * 2020-12-30 2022-03-11 日商荏原製作所股份有限公司 Coating device and operation control method thereof
TWI746334B (en) * 2020-12-31 2021-11-11 日商荏原製作所股份有限公司 Plating device and plating treatment method
CN113564646A (en) * 2021-09-02 2021-10-29 电子科技大学 Blind hole electroplating method and electroplating device
CN115988757A (en) * 2021-10-15 2023-04-18 深南电路股份有限公司 Electroplating method of circuit board and circuit board

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449098B1 (en) * 1999-10-05 2008-11-11 Novellus Systems, Inc. Method for planar electroplating
KR100665745B1 (en) * 1999-01-26 2007-01-09 가부시키가이샤 에바라 세이사꾸쇼 A method of copper plating and an apparatus therefor
US6355147B1 (en) * 1999-12-10 2002-03-12 Sandia Corporation Porous electrode apparatus for electrodeposition of detailed metal structures or microelectronic interconnections
US6432821B1 (en) * 2000-12-18 2002-08-13 Intel Corporation Method of copper electroplating
US6863795B2 (en) * 2001-03-23 2005-03-08 Interuniversitair Microelektronica Centrum (Imec) Multi-step method for metal deposition
US20060141157A1 (en) * 2003-05-27 2006-06-29 Masahiko Sekimoto Plating apparatus and plating method
JP2005029818A (en) * 2003-07-09 2005-02-03 Ebara Corp Plating method
JP4973829B2 (en) * 2004-07-23 2012-07-11 上村工業株式会社 Electro copper plating bath and electro copper plating method
JP2006131961A (en) * 2004-11-05 2006-05-25 Ebara Corp Plating method and device for substrate
EP1741804B1 (en) * 2005-07-08 2016-04-27 Rohm and Haas Electronic Materials, L.L.C. Electrolytic copper plating method
JP2007262486A (en) * 2006-03-28 2007-10-11 Ebara Corp Method and apparatus for plating substrate

Also Published As

Publication number Publication date
US20110180412A1 (en) 2011-07-28
TW201139760A (en) 2011-11-16
TWI487815B (en) 2015-06-11
JP2011174177A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
JP5780496B2 (en) Plating method and plating apparatus
JP5504147B2 (en) Electroplating method
JP6433161B2 (en) TSV bath evaluation using field versus feature contrast
JP4392168B2 (en) Copper plating bath and substrate plating method using the same
KR102364570B1 (en) Low copper electroplating solutions for fill and defect control
JP2014201835A (en) Electric plating method
TWI541388B (en) Electroplating method
JP2012224944A (en) Electroplating method
JP3490993B2 (en) Plating method
KR20200131909A (en) Copper electrofill on non-copper liner layers
JP5749302B2 (en) Plating method
KR20010074808A (en) Wafer plating method and apparatus
TWI518213B (en) Method for forming conductive structure
JP5385669B2 (en) Plating method and plating apparatus
US7918983B2 (en) Substrate plating method and apparatus
JP4509968B2 (en) Plating equipment
JP2003129273A (en) Electroplating process
JP2009155725A (en) Plating apparatus and plating method
JP2003268590A (en) Plating method and method of producing semiconductor system
JP2003129287A (en) Electroplating process
JP2009030167A (en) Method and apparatus for treating substrate
JP2003129274A (en) Electroplating process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150706

R150 Certificate of patent or registration of utility model

Ref document number: 5780496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250